
TECHNIQUES TO ENABLE THE USE OF BLOCK RAMS ON FPGAS WITH DYNAMIC AND
DIFFERENTIAL LOGIC

Rajesh Velegalati, Jens-Peter Kaps

ECE Department, George Mason University
4400 University Drive, Fairfax, VA 22030, USA

ABSTRACT

Block RAMs (BRAMs) are commonly used by implemen-
tations of cryptographic algorithms on Field Programmable
Gate Arrays (FPGAs). Unfortunately, any hardware imple-
mentation of a cryptographic function is susceptible to differ-
ential power analysis (DPA) attacks unless it is protected. Dy-
namic and Differential Logic (DDL), a constant power con-
sumption logic style, is the most popular and successful de-
fense method against DPA attacks. The required Measure-
ments to Disclosure (MTD) of the key has been shown to be
larger than the life period of the secret key in most systems.
DDL implementations on FPGAs proposed till date incur a
large area overhead. In this paper we show that BRAMs can
be used within a DDL design without compromising its se-
curity. We propose and analyze several implementation tech-
niques for using BRAMs in DDL designs. Our results show
that such DDL implementations increase the MTDs by a fac-
tor 4 over unprotected designs which use BRAMs and by
a factor 2.5 over DDL implementations which do not use
BRAMs.

Index Terms— Cryptography, Differential Power Analy-
sis, Block RAMs, SDDL, Xilinx FPGA.

1. INTRODUCTION

An FPGA consists of programmable Look-Up Tables (LUTs),
flip-flops, Block RAMs (BRAMs), etc. and a network of pro-
grammable interconnects. In Xilinx Spartan 3 FPGAs two
LUTs and two flip-flops are combined to one slice, four slices
to one Configurable Logic Block (CLB). Four LUTs within
each CLB can be configured as so called Distributed RAM of
16-bit per LUT. Each CLB has a dedicated switch box which
provides programmable connections between slices and the
FPGA wide routing network. Special interconnects are pro-
vided between a BRAM and its adjacent CLBs. BRAMs con-
sist of static RAM cells and contain 18,432 bits of total RAM.

c©2010, IEEE. Rajesh Velegalati and Jens-Peter Kaps. Tech-
niques to enable the use of block RAMs on FPGAs with dynamic and
differential logic. In International Conference on Electronics, Cir-
cuits, and Systems, ICECS 2010, pages 1251–1254. IEEE, Dec 2010.
http://dx.doi.org/10.1109/ICECS.2010.5724744

Each has two completely independent access ports called Port
A and Port B. Each port is synchronous with its own clock,
clock enable and write enable [1]. BRAMs can be used as
data storage, FIFOs, large (LUTs), data width converters, cir-
cular buffers, shift registers, wide logic functions and other
basic functional primitives of cryptographic algorithms.

However, data integrity sensitive applications are vulnera-
ble to passive, non-invasive attacks such as Differential Power
Analysis (DPA) attacks. These attacks are powerful, easy to
mount and almost guarantee success every time. Therefore,
many countermeasures against DPA attacks were proposed.
One such countermeasure is Dynamic and Differential Logic
(DDL) introduced by Tiri [2]. DDL tries to ”hide” the se-
cret data by achieving constant power consumption per clock
cycle using the following two basic principles.

Constant switching activity: During each clock cycle ei-
ther a gate output in the direct path switches or the corre-
sponding gate output in the complementary path.

Constant load capacitance: The capacitive loads driven
by the gates in the direct path are equal to the loads driven by
the gates in the complementary path.
DDL achieves these goals by duplication of the original
circuit into direct and complementary parts. During the
precharge phase all gate outputs are set to logic ’0’, during
evaluation phase either the direct output evaluates to logic ’1’
or the complementary output.

Separated DDL for FPGAs (SDDL for FPGAs) is a vari-
ant of DDL tailored for lightweight implementations on FP-
GAs [3]. It allows FPGA CAD tools to have maximum flex-
ibility to optimize a given design for the target FPGA. Such
an optimized design allows logic packing in LUTs and also
allows the use of FPGA intrinsic features such as BRAMs. A
variant of the SDDL logic style called iWDDL is described
in [4]. It extracts negative logic and isolates the resulting in-
verters between flip-flops. The authors analyze the usage of
Distributed RAMs with iWDDL. In [5], the authors propose
BCDL, a variant of Wave DDL [2] (WDDL), which uses all
positive logic. It directly applies precharge as one of the in-
puts to the Look-up Tables (LUTs) and as a part of the address
for BRAMs, which is similar to our design in Fig. 3. However
this method leads to memory usage increase by a factor of 4.
In this paper we introduce a method that halves that increase.



4
OutQ

Latch
D
enclr

LoutLUT

Pre

In

Out

Lout

In 0 5 0A

Pre Eval PreEval Pre

Fig. 1. LUT with Precharge

OutQ
Latch
D
enclr

FoutFF

Pre

In

Out

Fout

In

Eval PrePre

Pre

EvalPre

Fig. 2. Flip-Flop with Precharge

The focus of this paper is to verify whether BRAMs in
DDL implementations enhance or diminish their security. We
propose several implementation techniques which facilitate
the use of BRAMs in DDL implementations in Sect. 2. We
test our designs on a circuit which uses basic functional prim-
itives of the AES block cipher (Sect. 3) and analyze our results
in Sect. 4.

2. IMPLEMENTATION OPTIONS

2.1. One Clock Cycle Operation

In this method, the precharge and evaluation phase share one
clock cycle. The evaluation phase is defined by the ”low”
clock signal and the precharge phase by the ”high” clock sig-
nal. This allows flip-flops to clock in new data at the rising
edge of the clock as this is the transition from evaluation to
precharge. The advantage of the one clock cycle operation is
that the precharged circuit can be clocked with the same clock
signal clk as external non-precharged circuits. The Pre input
of the circuits in Fig. 1–Fig. 3 is connected to the clk signal.

In order to precharge the output of a LUT we use the tech-
nique proposed in [6]. The flip-flop following the LUT is
configured as an asynchronously cleared latch. It forces the
output of the slice to logic ’0’ during the precharge phase as
shown in Fig. 1.

We precharge the output of a flip-flop in a similar manner
and connect the flip-flop output to an asynchronously cleared
latch (Fig. 2). Because the flip-flops within a slice share a
common enable, clear, and clock input, we have to use a flip-
flop of a different slice for the precharge latch. In earlier ex-
periments [3] we discovered that connections within a CLB
do not leak any exploitable information, however, connec-
tions between CLBs do. Therefore, we place the precharge
latch in a flip-flop within the same CLB as shown in [7].

Unfortunately we cannot use the approach that we used
for LUTs and flip-flops to precharge BRAMs If we use a
precharge latch for a BRAM, wiring resources would be used
to connect the non-precharged BRAM output to a CLB. This
leads to information leakage. Nassar [5] uses a bit of the ad-

8
0

8
0

7

8
8

OutFF
BRAM

DoAddr

CLK

A’ 

Dclk

Pre

Pre
In

Out

A’

In

Eval PrePreEval

C7 00 5F 00

84 2A

000 184

0000

000 12A

Dclk
Pre

Fig. 3. Block RAM with Precharge Through Address

8 8

Out

Fo

In

Pre Eval PrePreEval

Dclk

C7 00 5F 00

84 2A

00 84

0000

00 2A

OutIn Fo

Pre
FF

Dclk

BRAM
DoAddr

SSR
CLK

Pre

Fig. 4. Block RAM with Precharge Through Clear

dress to select a region of memory in which all data values
are ’0’. We use the MSB of the address for this as shown
in Fig. 3. However, this doubles the memory usage within a
BRAM which might not be feasible for memory demanding
applications.

Therefore, we developed the precharge circuit shown in
Fig 4 which does not double the memory usage. The outputs
of the BRAMs are cleared to logic ’0’ by connecting the clock
of the circuit to the synchronous set/reset (SSR) inputs of the
BRAM. In both cases we have to operate BRAMs at twice
the clock frequency (Dclk) compared to the rest of the circuit.
One rising edge of Dclk resets the outputs of the BRAM to
’0’, the following releases the data stored at the address given
in the previous Dclk cycle. This introduces a delay for the
address by one Dclk cycle which we compensate for with a
flip-flop. The flip-flop output is connected using leaky wiring
resources to the BRAM, however, as can be seen in Fig. 4
this signal is precharged. Even though this precharge occurs
during the evaluation phase this does not violate the goal of
constant switching activity. The contents of the BRAMs are
complemented using Eq. (1).

BRAM(addr) = BRAM
(
addr

)
(1)

2.2. Two Clock Cycle Operation

In this method, each phase, precharge and evaluate, takes a
full clock cycle. Therefore, the precharged circuit has to run
at twice the clock speed of external circuits. The precharge
signal Pre reflects the phases and is low for one clock cycle
and high for one clock cycle.

The circuit for precharging the output of a LUT shown in
Fig. 1 does not need to change for this method. Only the Pre
input needs to be connected to the Pre signal. As we have
now one full clock cycle for each phase, we can simplify the
precharge circuit for flip-flops by just adding another flip-flop
instead of a latch as shown in Fig. 5. The placement constraint



Table 1. Implementation Results of our Test Design
4 input Minimum MTD ImprovementDesign Slices FFs
LUTs

BRAMs
Delay

MTD
over SE

1. SE design w/o BRAM 82 24 155 0 8.088 ns > 450 1
2. SE design with BRAM 23 16 27 1 5.710 ns > 7, 000 15
3. SDDL w/o BRAM 283 80 502 0 18.352 ns > 10, 000 22
4. SDDL with SSR 1 clock cycle 51 100 54 2 16.138 ns > 27, 000 60
5. SDDL with Address 1 clock cycle 51 100 54 2 16.138 ns > 27, 000 60
6. SDDL with SSR 2 clock cycles 51 100 54 2 8.069 ns > 27, 000 60
7. SDDL with Address 2 clock cycles 51 100 54 2 8.069 ns > 27, 000 60

we had for flip-flop precharge can now be relaxed as all sig-
nals are precharged.

FF
1

FF
2 Out

Fout

clk

In

Pre

Out

Fout

In

Eval PrePreEvalPre

clk

Fig. 5. Flip-Flop with Precharge Using Single Clock

For precharging the BRAM outputs in this method the cir-
cuits shown in Fig. 3 and Fig. 4 apply. However, the Dclk in-
put must be connected to the clk signal and the Pre input to
the Pre signal.

3. TEST SETUP AND ATTACK METHOD

The Test Design circuit consists of a synchronous (Sync.) S-
Box whose input is connected to an 8-bit LFSR and output is
XORed with an 8-bit Key. The result is stored in a register.
The block diagram of this circuit is shown in Fig. 6(a). The
Sync. S-Box can be implemented using look-up tables and
a register as in Fig. 6(b), or a BRAM as in Fig. 6(c). The
later option absorbs the register. The “Pre” blocks indicated
in Fig. 6 are implemented using the different precharge op-
tions discussed in Sect. 2. We use the term Single Ended (SE)
design to refer to the unprotected designs in this paper. In
order to implement the SDDL versions of the SE designs we
use the secure design flow described in [7]. It describes the
step-by-step process of precharging, duplicating and comple-
menting the logic. In our attacks we use Pearson’s correlation
to correlate instantaneous power consumption with hamming
distance model [8]. The hamming distance equation for the
attack on single ended implementations is shown in Eq. (2)
and for SDDL implementations in Eq. (3).

Pest. = HD(lfsr(i−1),SBOX−1(kguess ⊕Qi)) (2)

Pest. = HD(0x00,SBOX−1(kguess ⊕Qi)) (3)

Attack point 1, indicated in Fig. 6 by arrow 1, is the precharged
output of the LFSR. At attack point 2 data arrives half a clock
cycle later than at point 1 during single cycle clock operation.

F
L

S
R

F
L

S
R FF1 Pre Pre

(LUTs)
S−Box
AES

8 AES
S−Box

8

8
FF1

FF2

FF2

8

8

Pre
8

1

F
L

S
R FF1

(BRAM)
S−Box
AES 8

Pre FF2
8

Pre
8

1 2

8

Key

Sync. S−Box

Q

Q

(a) Single Ended Test Design

(b) Precharged Test Design w/o BRAM

8

Q

Key

(c) Precharged Test Design with BRAM

8

Key

Fig. 6. Block Diagrams of Test Design

In case of two clock cycle operation the data arrives at point
2 one clock cycle later compared to point 1. Hence, in order
to attack the design at point 2 appropriate adjustments must
be made while correlating the data with the power models.

4. RESULTS AND CONCLUSIONS

Table 1 compares the results of SE designs with several SDDL
implementations with regards to area consumption, speed and
Measurements to Disclosure (MTD) of the key. The results
for MTD were obtained from the plots shown in Fig. 7. By
comparing the MTD of the key between between the SE De-
signs 1 and 2, it is clear that BRAMs provide some inherent
resistance against DPA attacks. All SDDL implementations
of Design 2, namely Designs 4–7, have a 4 times higher MTD
compared to the unprotected Design 2. Furthermore, they are
more secure than Design 3 which is also an SDDL imple-
mentation but does not use BRAMs. We note that there is no
difference in security between using address or SSR to force
the BRAM output to ’0’ during precharge as can be seen from
Fig. 7(c) and Fig. 7(f). Hence, we can conclude that lowering
memory usage by using SSR does not impact security in a
negative way. At attack point 2 the output of the flip-flop is
precharged during the evaluation phase and the data evaluates



20 40 60 80 100 120 140 160

−0.1

−0.05

0

0.05

0.1

0.15

Number of Measurements x 28

C
or

re
la

tio
n 

Key = 173

MTD

(a) SE Design with BRAM

20 40 60 80 100 120 140 160

−0.1

−0.05

0

0.05

0.1

0.15

Number of Measurements x 28

C
or

re
la

tio
n 

MTD

Key = 173

(b) SDDL Design w/o BRAM

20 40 60 80 100 120 140 160

−0.1

−0.05

0

0.05

0.1

0.15

Number of Measurements x 28

C
o

rr
e

la
tio

n
 Key = 173

MTD

(c) SDDL Design with SSR, Attack Point 1, 1 clock cycle

20 40 60 80 100 120 140 160

−0.1

−0.05

0

0.05

0.1

0.15

Number of Measurements x 28
C

or
re

la
tio

n 

MTD

Key = 173

(d) SDDL Design with SSR, Attack Point 1, 2 clock cycles

20 40 60 80 100 120 140 160

−0.1

−0.05

0

0.05

0.1

0.15

Number of Measurements x 28

C
or

re
la

tio
n 

Key = 173

MTD

(e) SDDL Design with SSR, Attack Point 2, 1 clock cycle

20 40 60 80 100 120 140 160

−0.1

−0.05

0

0.05

0.1

0.15

Number of Measurements x 28

C
o

rr
e

la
tio

n
 Key = 173

MTD

(f) SDDL Design with Address, Attack Point 1, 1 clock cycle

Fig. 7. Measurements to Disclosure (MTD) for Implementation Options of Test Design

during precharge phase. At attack point 1 the data follows the
phases normally. Fig. 7(c) and Fig. 7(e) show that this has no
impact on security as the MTDs at both points are equivalent.

In this paper, we proposed and analyzed different im-
plementation techniques for using BRAMs in DDL designs.
Our results indicate that DDL implementations with BRAMs
increase the MTDs by a factor 4 over unprotected designs
which use BRAMs and a factor 2.5 over DDL implementa-
tions which do not use BRAMs.

5. REFERENCES

[1] Xilinx, Inc., Using Block RAM in Spartan-3 Generation
FPGAs, xapp463 (v2.0) edition, Mar 2005.

[2] K. Tiri and I. Verbauwhede, “A logic level design
methodology for a secure DPA resistant ASIC or FPGA

implementation,” in DATE’04. Feb 2004, pp. 246–251,
IEEE Computer Society.

[3] R. Velegalati and J.-P. Kaps, “DPA resistance for light-
weight implementations of cryptographic algorithms on
FPGAs,” in FPL 2009, Martin Daněk, Jiŕı́ Kadlec, and
Brent Nelson, Eds. Aug 2009, pp. 385–390, IEEE.

[4] R. P. McEvoy, C. C. Murphy, W. P. Marnane, and M. Tun-
stall, “Isolated WDDL: A hiding countermeasure for dif-
ferential power analysis on FPGAs,” ACM Trans. Recon-
figurable Technol. Syst., vol. 2, no. 1, pp. 1–23, Mar 2009.

[5] M. Nassar, S. Bhasin, J.-L. Danger, G. Duc, and S. Guil-
ley, “BCDL: A high speed balanced DPL for FPGA with
global precharge and no early evaluation,” in DATE 2010.
Mar 2010, pp. 849–854, IEEE.

[6] P. Yu and P. Schaumont, “Secure FPGA circuits using



controlled placement and routing,” in CODES+ISSS ’07,
New York, NY, USA, 2007, pp. 45–50, ACM.

[7] J.-P. Kaps and R. Velegalati, “DPA resistant AES on
FPGA using partial DDL,” in FCCM 2010. May 2010,
pp. 273–280, IEEE.

[8] Eric Brier, Christophe Clavier, and Francis Olivier, “Cor-
relation power analysis with a leakage model,” in CHES
2004. Aug 2004, vol. 3156 of LNCS, pp. 135–152,
Springer.


