
METHODOLOGY FOR DEVELOPING LIGHTWEIGHT ARCHITECTURES FOR FPGAS

by

Panasayya S.V.V.K Yalla
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Electrical and Computer Engineering

Committee:

Dr. Jens-Peter Kaps, Dissertation Director

Dr. Kris Gaj, Committee Member

Dr. Brian L. Mark, Committee Member

Dr. Robert Simon, Committee Member

Dr. Monson H. Hayes, Department Chair

Dr. Kenneth Ball, Dean, The Volgenau
School of Engineering

Date: Fall Semester 2017
George Mason University
Fairfax, VA

Methodology for Developing Lightweight Architectures for FPGAs

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Panasayya S.V.V.K Yalla
Master of Science

George Mason University, 2009
Bachelor of Engineering
Andhra University, 2006

Director: Dr. Jens-Peter Kaps, Professor
Department of Electrical and Computer Engineering

Fall Semester 2017
George Mason University

Fairfax, VA

Copyright c© 2017 by Panasayya S.V.V.K Yalla
All Rights Reserved

ii

Dedication

I dedicate this dissertation to my mother Anantha Lakshmi and my father Ananda Ra-
mayya. Without their unconditional love and unwavering support, this would not been
possible. To my sister Swathi and my brother Satish for their support and encouragement.
Last but not least, I dedicate this dissertation to my wife Sharanya for her love and affection.

iii

Acknowledgments

There are many people I must acknowledge who are instrumental in bringing this to a
successful completion.

First and foremost, I must thank my advisor Dr. Jens-Peter Kaps. I was fortunate to
have him as my mentor. Learnt a great deal of things both academically and personally
from him. His constant support, guidance and patience are instrumental in finishing my
research work.

Second, I must thank Dr. Kris Gaj for his guidance, support and constructive comments.
He always drove us to pay attention to details and aim for perfection. Third, I would like
to thank my other committee members Dr. Brian Mark and Dr. Robert Simon for their
comments and suggestions.

I would like to thank my friends Rajesh, Mahidhar, Ahmad, Ice, Marcin for their support
and advice and making my years at GMU fun and enjoyable. I would also like to thank my
other colleagues at CERG group for providing an excellent atmosphere for research. Finally,
I would like to thank all my colleagues at Riscure for being very supportive in completing
my doctoral studies.

iv

Table of Contents

Page

List of Tables . viii

List of Figures . ix

Abstract . xi

1 Introduction . 1

1.1 Introduction . 1

1.2 Motivation . 4

1.3 Organization . 5

2 Background . 6

2.1 FPGA . 6

2.2 Power Consumption in FPGAs . 7

2.3 ROM-based FSMs . 8

3 Previous Work . 12

3.1 Survey of Lightweight Algorithm Implementations 12

3.2 Optimization Techniques for Datapath . 13

3.3 Optimization of ROM-based FSMs . 14

3.4 Summary . 14

4 Contributions . 15

5 Methodology for Developing Lightweight Architectures 16

5.1 Top-level Optimizations . 18

5.1.1 Interface . 18

5.1.2 Width of datapath . 18

5.1.3 Choice of an FPGA . 19

5.2 Datapath Optimizations . 20

5.3 Control Logic Optimizations . 24

5.3.1 General Control Logic Optimization Strategy for Tool 26

5.3.2 Optimization Test Case . 29

5.3.3 CASE:1 . 29

5.3.4 CASE:2 . 30

5.3.5 Generation of State Table Using Simulator 30

v

5.3.6 Translation of VCD to State Table 31

6 Lightweight Implementations of AES128 and SHA-256 32

6.1 Lightweight AES Architectures . 32

6.1.1 Interface . 32

6.1.2 AES Algorithm . 34

6.1.3 Lightweight Architecture with 8-bit datapath 34

6.1.4 Lightweight Architecture with 16-bit datapath 36

6.1.5 Lightweight Architecture with 32-bit datapath 37

6.1.6 Implementation Results . 37

6.2 Lightweight SHA-256 Architecture . 41

6.2.1 Interface . 41

6.2.2 SHA-256 Algorithm . 42

6.2.3 Lightweight SHA-256 Architecture 43

6.2.4 Implementation Results . 44

6.3 Conclusions . 44

7 Evaluation of the CAESAR Hardware API for Lightweight Implementations . . 47

7.1 Introduction and Motivation . 47

7.2 Background . 48

7.2.1 CAESAR Hardware API and Development Package 48

7.2.2 Ketje . 51

7.2.3 Ascon . 52

7.3 Lightweight Designs . 54

7.3.1 Design Decisions . 54

7.3.2 Lightweight Ketje-Sr . 55

7.3.3 Lightweight Ascon . 57

7.4 Results . 58

7.5 Conclusions . 62

8 Comparison of Multi-Purpose Cores of Keccak and AES 64

8.1 Background . 65

8.1.1 AES . 65

8.1.2 Keccak . 66

8.1.3 Padding . 67

8.2 Design Decisions . 68

8.3 Low Area Architecture of AES . 69

8.4 Low Area Architecture of Keccak . 69

8.5 Results . 71

vi

8.6 Conclusion . 74

9 Lightweight AES IP Core for ASCIs . 76

9.1 AES-LightWeight IP Core Features . 76

9.1.1 Interface and Modes of Operation 77

9.2 Datapath . 79

9.3 Design Performance . 81

9.3.1 Latency . 81

9.4 Implementation Results . 82

10 Conclusion and Future Work . 84

vii

List of Tables

Table Page

1.1 FPGA vs ASIC . 4

5.1 Comparison of interface widths with respect to lightweight applications . . 18

5.2 Optimum datapath widths for some of the cryptographic functions 19

5.3 List of FPGAs currently available from the three major vendors 21

5.4 Comparison of realizing AES state using flip-flops and LUT based Memory

on a Xilinx Aritix-7 FPGA in terms of FFS, LUTs, and slices 23

5.5 Comparison of controller for AES128 6.1.4 using traditional approach vs tool

optimized on Xilinx Aritix-7 FPGA . 29

6.1 CipherCore Port Descriptions. 33

6.2 Comparision of our lightweight implementation of block ciphers with previous

results . 38

6.3 Results for our AES implementation compared to Other Block Ciphers and

the eSTREAM Portfolio Ciphers on Xilinx FPGA 40

6.4 Implementation results of SHA-256 compared with other implementations of

SHA-3 candidates . 46

7.1 Comparison of Ketje and Ascon Parameters 54

7.2 Area overhead high-speed vs. lightweight packages 59

7.3 Implementation Results on Xilinx Spartan-6 FPGA 61

8.1 AES / Rijndael* Modes . 66

8.2 Keccak Modes . 66

8.3 Results of AES and Keccak Implementations 73

8.4 Comparison of our designs with other implementations on Xilinx Virtex-5 . 74

9.1 Interface Signals . 78

9.2 Modes of Operation . 78

9.3 Operational Latency . 82

9.4 Implementation results using SAED 90nm ASIC library 83

viii

List of Figures

Figure Page

1.1 Relation of various performance parameters on algorithmic parameter . . . 2

1.2 Classification of implementation platforms 3

1.3 Classification of cryptographic algoithms . 3

2.1 Moore machine . 9

2.2 Moore machine . 9

2.3 Control word . 10

2.4 A simple FSM based on memory (ROM) 11

5.1 Top-level block diagram of an architecture 16

5.2 Lightweight architecture design flow . 17

5.3 32-bit shiftregister using SRL32s in Xilinx 6 and 7 series FPGAs 23

5.4 Choosing storage element implementation option 23

5.5 State of Mulit-Mode AES using flip-flops . 24

5.6 Snippet of AES128 8-bit datapath state table 25

5.7 Design flow with controller optimization . 26

5.8 FSM optimization flow . 27

5.9 State table . 28

5.10 Optimized state table . 28

5.11 Hybrid FSM . 29

5.12 Generation of state table using RTL simulator 30

6.1 Top-level interface . 32

6.2 Top-level interface with feedback . 33

6.3 8-bit lightweight architecture of AES128 . 35

6.4 16-bit lightweight architecture of AES128 36

6.5 32-bit lightweight architecture of AES128 39

6.6 Interface and protocol for our SHA cores . 41

6.7 Datapath of SHA-256 using dedicated memory (BRAM) 44

6.8 Datapath of SHA-256 using logic only . 45

7.1 CAESAR API . 48

ix

7.2 Lightweight CAESAR API block diagram 49

7.3 MonkeyDuplex construction . 52

7.4 Ketje-Sr datapath . 56

7.5 Ascon datapath . 57

7.6 Comparison of CAESAR LW vs HS package overheads 60

7.7 Comparison of integrated vs CAESAR LW package 62

8.1 Various cryptographic services using same cryptographic primitive 65

8.2 Authenticated Encryption Mode in Keccak 68

8.3 Authenticated Decryption mode in Keccak 68

8.4 Low area datapath of AES . 70

8.5 Low area datapath of Keccak . 71

8.6 Performance improvement of multi-Keccak over multi-AES for specific modes

of operation . 75

8.7 Performance improvement of dedicated and multi- purpose Keccak over cor-

responding AES cores for AEAD . 75

9.1 Overview of AES LightWeight IP Core . 76

9.2 The AES LightWeight IP core interface diagram 77

9.3 8-bit datapath of AES round . 79

9.4 AES state using sixteen 8-bit registers . 80

9.5 Storing IV using sixteen 8-bit registers . 81

x

Abstract

METHODOLOGY FOR DEVELOPING LIGHTWEIGHT ARCHITECTURES FOR FP-
GAS

Panasayya S.V.V.K Yalla, PhD

George Mason University, 2017

Dissertation Director: Dr. Jens-Peter Kaps

Until now, application specific integrated circuits (ASICs) are the main platform for

lightweight cryptography because of their low power consumption and good performance.

However, their complex design cycle and very high non-recurring engineering cost limit them

to high volume applications. In recent years, low cost and power Field Programmable Gate

Arrays (FPGAs) (Xilinx: Spartan-6 and Artix-7; Altera: Cyclone-IV and -V; Actel: IGLOO

and ProASIC3) have started emerging, reducing the power consumption gap between ASICs

and FPGAs. FPGAs are the ideal platform for fast changing environments and lower volume

applications. In spite of these advantages, very little attention has been paid to FPGAs as

a target for lightweight cryptography.

Implementing algorithms for lightweight applications is a complex and time consuming

task due to interdependencies of the constraints on size, power, energy, and cost. The

various design choices such as interface, width of datapath, serialization, pipelining, choice

of processing elements etc. determine whether the design meets these constraints. In most

cases this results in designs where the datapath width is reduced. However, this is not

sufficient, one has to carefully evaluate the trade-off various constraints at every step of the

design process. The control unit is an additional hurdle.

Extensive component re-use in the datapath can lead to a very complex control logic

which might negate the area savings in the datapath.

In this research, we tackle these problems in three parts. First part involves developing

a generalized methodology for making early design choices and various optimizations that

can be applied to datapath. The control logic optimization techniques using memories

are proposed in the second part. Finally, a tool is developed which optimizes the control

logic by using the existing controller or state matrix as the input and transforms it into an

optimized controller. This optimized controller is a combination of traditional FSM realized

using Flip-flops and combinational logic with fewer states and memories.

Using the proposed methodology, we developed lightweight architectures for block cipher

Advanced Encryption Standard (AES) for three different widths, Secure Hash Algorithm-

256 (SHA-256), multipurpose AES and Keccak cores, Competition for Authenticated En-

cryption: Security, Applicability, and Robustness (CAESAR) candidates Ketje-Sr, Ascon-

128, and Ascon-128a. The effectiveness of the optimization tool is tested using AES128

and Keccak core. We also developed hardware package which supports CAESAR hardware

Application Programming Interface (API) for lightweight implementations and evaluated

its benefits using Ketje-Sr and Ascon.

Chapter 1: Introduction and Motivation

1.1 Introduction

In the current day of the Internet of Things (IoT) and embedded processor and inter-

net connections are getting integrated seamlessly into our everyday life. Smart-watches,

fitness monitors, mobile phones, Global Positioning System (GPS), smart fridges, WiFi

thermostats, etc. are a few examples to name. For these devices to provide more cus-

tomized services, our behavioral patterns, habits, and movements are being tracked. Some

of these devices are easy to loose due to their portability and some are prone to malicious

hacking as they are constantly connected to internet. Access of this information or control

over these devices by unsavory people would lead to undesirable consequences. Hence, safe-

guarding one’s privacy and security is paramount. Cryptographic algorithms are employed

to address these issues. Traditional cryptographic algorithms may not be applicable for low

end IoT devices as they have limited memory and computational power along with serious

power and energy constraints. The branch of cryptography which addresses the security

and privacy issues of these devices is called LightWeight Cryptography (LWC).

Traditional cryptographic algorithms were made for data processing on a computer.

Initially these algorithms were tailored for lightweight cryptographic applications. But this

tailoring degraded the performance of the algorithms either in terms of security or speed

or both. Therefore, new cryptographic algorithms such as Present [1], Hight [2], XTEA [3]

etc. are a few to name were designed exclusively for lightweight cryptographic applications.

In general, LWC algorithms must have the following attributes

• Small internal state→lower area consumption

• Short processing time→lower energy consumption

1

• Short output→lower communication cost

• Allow serialization→lower power consumption

• Same primitives→same security level as traditional

Some of these attributes are complimentary which can be seen in Figure 1.1. For ex-

ample: Making the algorithm more serialized would reduce area and power consumption at

the cost of energy and throughput. Hence, depending on the application and target device,

optimization criteria and limitations are determined. In general, corner 1 in Figure 1.1 is

the ideal place for lightweight applications. The other two corners 2 and 3 are for high

security and low latency applications respectively.

31

2

K
ey

 S
iz

e

of R
ounds

Serialization ThroughputArea
Power Energy

Security

Cost Performance

Figure 1.1: Relation of various performance parameters on algorithmic parameter

Based on the target platform, LWC algorithms can be broadly classified into two cate-

gories as shown in Figure 1.3. The first category is software oriented algorithms where the

algorithms are implemented on a microprocessor (µP) or a microcontroller (µC). Block ci-

phers XTEA [3] and TWIS [4] are two such software oriented LWC algorithms. The second

category is hardware oriented algorithms which are mainly targeted for ASICs and FPGAs.

Block ciphers DES [5], HIGHT [2], Present [1] and MIBS [6] are designed for lightweight

hardware applications. A generalized classification of various implementation platform is

2

Pµ Cµ

FPGAs

HardwareSoftware

Implementation Platforms

GPU Programmable Fixed

ASICs
Target Platform

Flash SRAM

Figure 1.2: Classification of implementation platforms

SCREAM

SHA−2
SHA−3
AES−Hash

ACORN
TriviA−ck
RaviyoylaALE

LAC
Sablier

Grain v1
MICKEY 2.0
Trivium

Camellia
RC6
MARS
Serpent
Twofish

AES Hight
Present
XTEA
Simon
Speck
Clefia
Misty1
Kasumi

Blake
Grostl
Skein
JH

Quark
Photon
MAME
Armadillo
Tav−128
SipHash

NTRU

Encryption
Authenticated

Encryption
Authenticated

Lightweight ciphers

RSA
ECC

Cryptographic Algorithms

Symmetric Hash functionsAsymmetric

Block ciphers Stream ciphers

Encryption

AES−GCM

Encryption

AEZ
ICEPOLE
Keyak

Ketje JR
Ketje SR

Figure 1.3: Classification of cryptographic algoithms

3

Table 1.1: FPGA vs ASIC
FPGA ASIC

Time-to-market Fast Slow
Upfront NRE cost Less High

Design cycle Simple Complex
Reprogramability Yes No

Unit costs(small volume) Low High

Unit costs(high volume) High Low
Power Consumption High Low

Internal clock speeds Low High
Custom Capability No Yes

shown in Figure 1.2. In our current research, we limit our focus only to FPGAs as the

target platform.

1.2 Motivation

Until now, application specification integrated circuits (ASICs) are the primary platform for

lightweight cryptography because of their low power consumption and good performance.

The Table 1.1 shows the comparison of FPGAs and ASICs in terms of several factors that

determine the target platform. The ones marked in green are the favorable ones. However,

their complex design cycle and very high Non-Recurring Engineering (NRE) cost limit them

to high volume applications. In recent years, low cost and power Field Programmable Gate

Arrays (FPGAs) (Xilinx: Spartan-6 and Artix-7; Altera: Cyclone-IV and -V; Actel: IGLOO

and ProASIC3) have started emerging, reducing the power consumption gap between ASICs

and FPGAs. FPGAs are the ideal platform for fast changing environments and lower volume

applications. Reconfigurability of FPGAs allows the system to be upgraded if ever the need

arises. This upgrade may be critical due to security threats or change in the operating

conditions. In spite of these advantages, very little attention has been paid for lightweight

cryptography for FPGAs. Hence in this dissertation, we explore these devices for lightweight

cryptographic applications.

Using FPGAs as the target platform for lightweight applications is relatively a new area.

4

Therefore, no set of guidelines exists for developing lightweight architectures. This problem

coupled with complexity involved due to interdependencies of constraints on size, power,

energy, and cost make it a challenging task. In this dissertation, we tackle these problems.

1.3 Organization

The remainder of this dissertation is organized as follows. Chapter 2 covers the background

regarding FPGAs and their power consumption and Read-Only Memory (ROM)-based Fi-

nite State Machines (FSMs). Previous work is described in chapter 3 in three sections

depending on the area of research. In Chapter 4 we outline our contributions in this

dissertation. The methodology for developing lightweight architectures and control logic

optimization tool is described in Chapter 5. Lightweight implementations of block cipher

AES and SHA-256 are described in Chapter 6. We evaluate the CAESAR hardware API for

lightweight implementations in Chapter 7. In Chapter 8, we present multi purpose cores of

Keccak and AES and compare them. The Chapter 9 describes the lightweight multi-mode

AES implementation for ASCIs. Finally, we present our conclusions and future work in

Chapter 10.

5

Chapter 2: Background

This chapter provides the background for FPGAs and their power consumption and ROM-

based FSMs.

2.1 FPGA

Field Programmable Gate Arrays (FPGAs) are ICs which can be configured using HDL

in the field after manufacturing. These FPGAs contains a matrix of programmable logic

blocks and a mesh of programmable interconnects connecting them. In general, a logic

block contains the following:

1. Look Up Tables (LUTs)

2. Flip-flops (FFs)

3. Miscellaneous logic

LUTs can be configured to perform complex combinational functions. FFs are memory units

within the logic block which can either be used purely as storage units or can be used to

realize sequential logic in combination with LUTs. Apart from LUTs and FFs, logic blocks

also contain miscellaneous logic elements such as multiplexers, logic gates, carry chain etc.

which increases the versatility of logic block. In addition to logic blocks and interconnects,

FPGAs also contain

1. I/O blocks: I/O pins which can be programmed as inputs or outputs

2. Memory blocks: Large memory blocks which allows for on-chip memory.

3. Digital Signal Processing (DSP) blocks: Dedicated blocks for performing addition/subtraction

and multiplications

6

4. Clock distribution network: Network of dedicated lines for routing clock.

5. Phase-Locked Loops (PLLs): Serves as frequency synthesizer for a wide range of

frequencies.

There are multiple FPGA vendors in the current market. However, only three vendors

Xilinx, Altera, and Microsemi together comprise 90% of market share in 2012 [7]. Hence,

FPGAs from these three vendors are considered in this dissertation.

2.2 Power Consumption in FPGAs

The power consumption in an FPGAs is dependent on its underlying technology. Even

though there exists many FPGAs based on various technologies, we limit our discussion

only to namely SRAM (Static Random Access Memory)-based (Xilinx and Altera) and

flash-based (Microsemi) FPGAs. Flash-based FPGAs consume less power than SRAM-

based FPGAs [8]. For these two FPGAs, the following are the major components of power

consumption

1. Static power: Power consumed by the device when it is turned on but not actively

performing any operation also called standby power.

2. Dynamic power: Power consumed by the device when it is actively performing oper-

ations.

3. Inrush power: It is the power consumed by the FPGA during power-up

4. Configuration power: Power consumed during the configuration of the FPGA upon

power up. This power is specific to SRAM-based FPGAs due to their non-volatile

nature.

5. Sleep-mode power: Power consumed by an FPGA when it is in sleep mode or low

power mode.

7

In this dissertation, we limit our focus only to power consumed during normal operation

of an FPGA or execution power (Pexecution) which is the sum of static power (Pstateic) and

dynamic power (Pdynamic) as shown in Eq 2.1.

Pexecution = Pstatic + Pdynamic (2.1)

The static power (Pstateic) depends on several factors such as transistor leakage, tempera-

ture, and supply voltage. On the other hand, dynamic power (Pdynamic) depends on switch-

ing frequency (f), supply voltage (V) and load capacitance (C) and switching activity (α)

as shown in Eq 2.2 .

Pdynamic = α · C · V 2 · f (2.2)

The major contributors for Pdynamic are power consumption due to interconnects, logic,

clocking, and I/O blocks. Within these four, power consumption due to interconnects is

found to be the dominant one [9] and [10].

2.3 ROM-based FSMs

Finite State Machines (FSMs) or Finite State Automaton provide the mathematical ab-

straction for the design of digital systems and computer programs. These FSMs are one of

the four major families of automaton, the other three are Pushdown, Linear-bounded and

Turing machines. FSMs consists of a set of states with a start state, inputs, outputs, and

a transition function which maps current inputs and state to a next state. Depending on

relation of the current input (X) on the output (Y), FSMs can be classified into two cate-

gories called Mealy [11] and Moore [12] machines named after G.H. Mealy and E.F. Moore

in recognition of their work. In a Mealy machine, the output depends on both current input

and the state where as in Moore machine it only depends on the current state as shown in

Figures 2.2 and 2.1 respectively.

For both Mealy and Moore machines, there are three components namely next-state

8

R
e
g
is

te
r

Function

Next−State

YX
Output

Function

Figure 2.1: Moore machine

R
e
g
is

te
r

Function

Next−State

YX
Output

Function

Figure 2.2: Moore machine

function, output function and state register. The traditional way of realizing FSM in

digital circuits is by using combinational logic for next-state and output functions and

Flip-Flops (FFs) for state register. Another way to synthesize FSM is by using memories

(RAM/ROMs) which are found to be more efficient in terms of power, speed, and resource

usage [13–16]. The idea of using ROMs for FSM is not a novel one as it is similar to

microprogram control unit in a processor.

Notations:

Number of input variables : M

Number of output variables : N

Number of FSM states : P

Input variable set : X={x1, x2, · · · , xM}

Output variable set : Y={y1, y2, · · · , yN}

State variable set : S={s1, s2, · · · , sP }

Number of bits needed to

represent state variable S : R=dlog2 P e

(binary encoding)

9

To convert a traditional FSM into a ROM-FSM, all control signals for each operation

in a given clock cycle or state are combined to form one control word. Apart from control

signals, the control word also contains the state bits (bits need to represent a state) as

shown in Figure 2.3. Such control words for each state are stored in a memory which can

be accessed by an address. The addresses for the memory can be generated by using a

simple counter or a shift-register. The size of the memory for the FSM is determined by

State code Control signals

R N

Figure 2.3: Control word

number of inputs, outputs, and states as given by the equation 2.5. If no optimizations are

considered, the size of the memory would be very large. Hence, when using ROM-based

FSMs, various optimization techniques are used to reduce its size. A simple ROM-FSM is

shown in Figure 2.4.

Number of bits in each control word = R+N (2.3)

Number of memory address bits = R+M (2.4)

Total size of the memory = 2R+M · (R+N) (2.5)

10

R
e
g
is

te
r

Yll ROM
N+R N

R+N

control word

M
X

R

M+R

Figure 2.4: A simple FSM based on memory (ROM)

11

Chapter 3: Previous Work

In this chapter we summarize the most significant work in the area of lightweight architec-

tures. This chapter is broken down into three individual sections for ease of understanding

and describing.

3.1 Survey of Lightweight Algorithm Implementations

In [17] and [18], a brief survey of lightweight algorithms implementation on ASICs which in-

cludes both symmetric and asymmetric cryptographic algorithms along with hash function

are presented. Additionally in [17], the effect of various algorithmic factors such as struc-

ture, functional primitives and storage requirements on energy consumption are analyzed.

Furthermore, ASIC implementations of various lightweight block ciphers are analyzed with

a particular focus on low-latency in [19] and energy in [20].

Various lightweight FPGA implementations for block ciphers AES, Camellia, XTEA,

Present, Hight are reported in [21–26]. All these implementations are targeted for Xilinx

Spartan-3 FPGA. The widths of their datapath range from 8-bit to 32-bit and consume

an area of 100 to 400 slices with some using dedicated memory blocks. In [27], FPGA

implementations of stream ciphers are presented. Lightweight FPGA implementations of

SHA-3 competition round-2 candidates in [28] and round-2 candidates in [29,30]. In [28,29]

similar optimizations are applied on all candidates with same design constraints to make a

fair comparison. The effect of unrolling of various lightweight block cipher implementations

on energy consumption is investigated in [31]

12

3.2 Optimization Techniques for Datapath

The most straightforward approach for reducing the area of the datapath is folding. Vertical

folding reduces the datapath width while horizontal folding reduces the size of processing

elements while maintaining the datapath width. How many times and in which direction a

design can be folded depends on the algorithm. The extent to which folding can be applied

to the SHA-3 candidates and how much it affects their throughput and throughput over

area ratio has been examined in [32].

Another technique is reusing of processing elements. The benefit of applying this tech-

nique and additionally with vertical folding at multiple levels down to single processing

elements, not just the datapath as a whole is shown in [32]. Both folding and reuse of

processing elements minimize the area consumption at the cost of an increased number of

clock cycles. In some of the algorithms like SHA-2, straight forward application of pipelin-

ing techniques is not trivial due to data dependency. So an optimization technique called

quasi-pipelining is applied to reduce the critical time. These technique rearranges order of

operations along with introduction of pipeline registers which optimizes the critical path

along with reduction in latency [28] and [29].

Several optimization techniques which use the inherent features such as LUT based

memories (DRAMs) and shift registers (SRL16) of Xilinx Spartan-3 FPGAs([33]) are pro-

posed in [21,22] and their effectiveness is demonstrated by implementing the block ciphers

Camellia [34], Present [1], and Hight [2]. Furthermore, SRL16 are found to be well suited

for optimizing serialized implementation of block cipher LED and PHOTON [35].

For optimizing the leakage power in an FPGA, a technique called sleep mode where

the unused logic blocks and flip-flops are put to sleep is proposed in [36, 37]. In [38],

this technique is further improved and applied to the embedded memories. In order to

optimize the dynamic power consumption, several techniques which include use of 5-LUTs,

new routing algorithms, clustering schemes, double-edge-triggered flip-flops are proposed

in [39–41]. An Overview of various power optimizations that can be applied to FPGAs are

13

presented in [42].

3.3 Optimization of ROM-based FSMs

Using memory units in an FPGA for implementing FSM was first proposed in [14] along

with optimization technique called fuzzy state encoding technique to reduce its size. This

optimization technique can only be applied to FSM which contain fuzzy bits in their state

codes. In [15,16], ROM-based FSMs are implemented using embedded memory blocks which

are found to be more power saving. Using functional decomposition where the number of

variables in a function is reduced is proposed in [43] for optimizing logic function imple-

mented on an FPGA. This technique is further explored for reducing the size of ROM-based

FSMs in [13]. With the use of “don’t cares” in logic functions, the size of the ROM-based

FSM is reduced in [16].

3.4 Summary

There are no generalized optimization techniques which can applied to basic building blocks

while considering various interdependent design constraints. Furthermore, transforming a

traditional FSM into ROM-based FSM and applying optimization techniques is complex

and ime consuming. Having a tool to perform this task would be very helpful. But no

such tool exists which can transform a traditional FSM described in VHDL as input and

generates an optimized ROM-based FSM in VHDL.

14

Chapter 4: Contributions

The main goal fo this dissertation is to reduce the complexity and time required in designing

efficient lightweight architectures targeted for FPGAs. We address this in two parts. In

first part, we proposed a generalized methodology for developing architectures targeted for

lightweight applications. For the second part, we optimize the control logic with a tool we

developed using python. This tool optimizes the controller using memories. We evaluated

this tool using block cipher AES and Keccak Core as the test cases.

Using the proposed methodology and optimization techniques, we designed lightweight

architectures of AES128 with 8, 16, 32-bit datapaths. We also developed lightweight ar-

chitectures of CAESAR candidates Ketje-Sr, Ascon-128, and Ascon-128a and used

them for evaluating CAESAR hardware LWAPI package. Additionally, we investigate the

benefits of building cryptographic services based on the same cryptographic primitive for

lightweight applications using AES and Keccak. Furthermore, we developed a lightweight

8-bit AES core targeted ASICs which supports both encryption and decryption, multiple

modes, and two key sizes.

15

Chapter 5: Methodology for Developing Lightweight

Architectures

In this chapter, we put forth our methodology for developing lightweight architectures. De-

signing a lightweight architecture is a complex task compared to high speed implementation

due to various limiting factors like size, power, energy, and cost. Usually digital designs,

can be broken down into three parts namely datapath, controller and top-level interface as

illustrated in Figure 5.1.

Datapath Controller

Input
Data

Status

Signals

Interface

Control

Signals

Status

Signals

Control

Signals

Output
Data

Figure 5.1: Top-level block diagram of an architecture

Datapath is a unit where the data is processed and controller is the one which controls

16

ControllerDatapath

Manual optimization

Contraints
Design

State MatrixSpecification

Algorithm

5

4

2

1

3

Figure 5.2: Lightweight architecture design flow

other units by providing timing and control signals. The top-level interface encompasses

both datapath and controller providing an interface between these two units and the outside

world.

Developing lightweight architectures is not a straight forward approach given the inter-

dependency of controller and datapath. Reducing the datapath width and reuse of resources

may not be ideal if the control logic negates any of the saving achieved. The Figure 5.2

shows generalized design flow we used in development of lightweight architectures.

We break down various optimization techniques that can be applied in developing

lightweight architectures into three categories.

1. Top-level optimizations: We identify the factors that influence both datapath and

control unit and analyze their effect on the performance in this section (1 and 2 in

Figure 5.2).

2. Datapath optimizations: In this section, we analyze various existing techniques and

also develop new ones for datapath optimizations (3 in Figure 5.2).

3. Controller optimizations: Several techniques for optimizing the control logic using

ROM-based FSMs are explored in this section (4 and 5 in Figure 5.2).

17

Table 5.1: Comparison of interface widths with respect to lightweight applications

Interface Advantages Disadvantages

Serialized
• Least number of I/Os required • More time spent on communi-

cation
•Additional resources for con-
verting serial to word-size for
input and word-size to serial for
output

Word-size/
N.word-size

• Small number of I/Os required • Small penalty on communica-
tion

• Usually optimum for perfor-
mance

Parallelized • Less time on communication • Large number of I/Os required
• May not be able to leverage
memories for input and output
storage

5.1 Top-level Optimizations

5.1.1 Interface

The top-level interface which determine the number of Input-Output pins (I/Os) needed is

dependent on the application. Usually, the number of I/Os must be limited to small number.

Having a large number of I/Os would require larger FPGAs which increases the cost. On

the other hand, keeping it very low would require more time spent on communication which

degrades the performance. Hence a proper balance must be struck between the two.

The other effect of the interface is due to width of the I/O bus. If the width is smaller

or not a multiple of word size of the algorithm, additional storage units may be needed as

seen in [28,29]. Table 5.1 lists the comparison of interface widths.

5.1.2 Width of datapath

Due to various constraints such as area, power, energy, etc. an algorithm cannot be im-

plemented at full width (each round operation takes one clock cylce) for lightweight ap-

plications. So an algorithm is folded both horizontally (width of datapath) and vertically

18

Table 5.2: Optimum datapath widths for some of the cryptographic functions

Algorithm Width(bits) Function

AES128 32 Mixcolumns
Camellia 8 8x8 Sbox
HIGHT 8 8-bit Addition
Present 16 Permutation
SHA-3 64 64-bit rotation
Ketje-Jr 8 8-bit rotation
Ketje-Sr 16 16-bit rotation
Ketje-Minor 32 32-bit rotation
Ketje-Major 64 64-bit rotation
Ascon-128 64 Linear diffusion
Ascon-128a 64 Linear diffusion

(number of rounds processed in one clock-cycle). The width of the functions in the al-

gorithm determines the optimum width of the datapath called as natural width. Having

datapath width smaller than the natural width would incur a penalty in terms of area and

performance. For example, the optimum width of datapath for AES[44] is 32-bit due to

its Mixcolumns function. If a full 128-bit width datapath of AES requires 1 clock-cycle for

each round, a 32-bit datapath would need 4 clock-cycle (128/32=4). But in case of 8 or

16-bit datapaths, it would require more than 8 and 16 clock-cycle (128/16=8, 128/8=16)

respectively as they are below the natural width. These additional clock-cycles would also

increase the complexity of the controller i.e. large counters, more states etc. In some cases,

additional storage may be required.Some of the optimum datapath widths for some of the

cryptographic functions is shown in Table 5.2

5.1.3 Choice of an FPGA

The underlying features of an FPGA varies depending on the vendor, family and type

of packaging. Due to these variations, the performance of an algorithm implementation

varies across FPGAs. Even on the same device but using different resources of an FPGA

would end with different results [29]. Hence choosing an appropriate FPGA is essential for

efficient implementation. Table 5.3 lists all the currently available FPGAs from the three

19

major vendors Xilinx, Altera and Microsemi along with their major features.

5.2 Datapath Optimizations

Datapath consists of storage (key, plaintext, ciphertext, etc) and processing elements (eg.

round function). The available resources in a given FPGA and characteristics of the func-

tion determine the efficient way to implement them. In lightweight architectures, storage

elements account for majority of area. These storage elements can be implemented in an

FPGAs in the following ways

1. Flip-flops

2. LUT based memory

3. Dedicated Memory

4. LUT based shiftregisters (only in Xilinx FPGAs)

Flip-flops

Flip-flops(FF) are one way to implement storage elements. Each of FPGA programmable

logic blocks consists of not just Flip-flops but also other resources such as LUTs, multiplexer.

Using flip-flops only as a register would render these resources unusable. Also each of

programmable block consists of limited number of flip-flops and therefore require a large

number of blocks. For example, in Xilinx 6 and 7 series FPGAs, each SLICE consists of 8

flip-flops. If we have to storage 128-bits, we would require 16 SLICEs (128/8). Furthermore,

additional resources such as multiplexers are required to select bits for processing and output

given that only part of the state is processed in each clock cycle due to scaling of design.

The advantage of using a flip-flops is that all of the data stored is readily accessible. Hence

these can be used for temporary storage small data blocks.

20

Table 5.3: List of FPGAs currently available from the three major vendors
V

en
d
o
r

Family T
ec

h
n
o
lo

g
y

(n
m

)

Cost Power Speed #
o
f

L
U

T
in

p
u
ts

Dedicated
Memories

M
u
lt

ip
li
er

si
ze

X
il
in

x

Spartan-6 45 low low low 6 18Kb 18x18

Artix-7 28 lowest lowest low 6 18Kb 25x18

Kintex-7 28 moderate moderate low 6 18Kb, 36kb 25x18

Virtex-7 28 high high high 6 18Kb, 36kb 25x18

A
lt

er
a

Cyclone-IV 60/65 lowest lowest low 4 9Kb 18x18

Cyclone-V 28 lowest lowest low 8 10Kb 18x18

Arria -V 28 low moderate moderate 8 20/10Kb 18x18

Stratix-IV 40 high high high 6 9Kb, 144kb 9x9

12x12

18x18

36x36

Stratix-V 28 high high high 6 9Kb, 144Kb 9x9

12x12

18x18

36x36

Stratix-10 14 high low high 4 576b, 4Kb, 9x9

576Kb 18x18

36x36

M
ic

ro
se

m
i

IGLOO/e 130 low low low 3 4Kb

IGLOO nano 130 low lowest low 3 4Kb

IGLOO Plus 130 low low low 3 4Kb

ProASIC3/e 130 low low low 3 4Kb

ProASIC3 nano 130 low low low 3 4Kb

ProASIC3 Plus 130 low low low 3 4Kb

IGLOO 2 low low low low 4 18Kb 18x18

SmartFusion 2 65 low low low 4 18Kb 18x18

21

LUT Based Memories

Some of the programmable logic blocks LUTs can be configured as memories (MLAB in

Altera and SLICEM in Xilinx). These are localized memories which can be cascaded to

realize deeper memories with minimal penalty on timing. The resources required for these

memories depend on memory depth and number of output bits required. These memories

can be configured as synchronous/asynchronous read and synchronous write. For example,

in Xilinx 6 and 7 series FPGAs, for a state of 256-bits at 8-bit wide words, we would require

only 2 slices(32x8 memory) which is far less as compared to 32 slices if flip-flops are used.

In [21], it is observed that the area consumption for key and data storage for Camellia [34]

block cipher is reduced by a factor of 4.

Dedicated Memories

As shown in Table 5.3, all of FPGAs have dedicated memories with varying sizes and

features. These dedicated memories offer a large amount of memory space for storage and

can be configured in various configurations single-, dual-port, and quad port memories. The

limit on the number of I/O lines limits the number of independent values and number of

bits that can be accessed in a single clock. This may lead to use of additional resources

to improve performance. Additionally using these resources might cause a degradation in

performance [45].

LUT Based Shift-Registers

LUT bases shift registers additional features of Xilinx FPGAs. Each of the 6-input LUTs of

SLICEM in Xilinx 6 and 7 series FPGAs can be configured as 32-bit shift register(SRL32).

The number of slices required for implementing a shift register depends on the number of

bits to be stored and the number of taps. Taps are are positions of a shift register where

data can be read from or written too. The tap breaks the chain and places a Flip-flop.

The Figure 5.3 shown an example of 32-bit shift register with taps at 12, 11, 10, and 0.

The advantage of using a shiftregister is that it does not require any addressing which is

22

9FF FF FF FF

0
SRL32

32

20

SRL32
12 11 10

Figure 5.3: 32-bit shiftregister using SRL32s in Xilinx 6 and 7 series FPGAs

Full width
yes no

yes no

data

order
in

access

Flip−flop

Shift−register LUT−based Memory
or

Dedicated Memory

Storage Element

Figure 5.4: Choosing storage element implementation option

required in case of 5.2 and 5.2. The Figure 5.4 shows the decision tree for choosing the

option for storage element implementation.

The Figure5.5 shows architecture of AES state using non memory element ie. FFs. If

the same state is implemented using memories, it requires 60% less resources. (Table 5.4).

Table 5.4: Comparison of realizing AES state using flip-flops and LUT based Memory on a
Xilinx Aritix-7 FPGA in terms of FFS, LUTs, and slices

FFs LUTs Slices

FFs 64 72 21
DRAM 8 8 8

23

sel_mbyte

dout_rnd

sel_mrc

sel_mrd

sel_mrb

sel_mra

dout_state

din

R9

R10

R11

R5

R6

R7 R3

R2

R1
0

3

1

2

8

8

8

0 1 2

0 1 2

0 1 2

R12 R8 R4 R0

0 1 2

R13

R14

R15

Figure 5.5: State of Mulit-Mode AES using flip-flops

5.3 Control Logic Optimizations

Once the datapath is designed, a state table (matrix with list of control signal in columns

and states in rows)is developed. An snippet of one such state table is shown in Figure 5.6.

The main goal here is to transform state table into a ROM-based FSM. But given the

dependency of some of the control signals on inputs, transforming into a pure ROM-FSM

is not feasible. Therefore, we choose a hybrid approach consisting of an FSM with small

number of states for input dependent control signals and ROM/s for all other signals. The

control signals separation is performed by dividing the whole state table into three phases.

1. Input phase: Loading of inputs

2. Iterative phase: round operations

3. Output phase: writing the result out

24

T
c

lk
R

E
n

L
O

/P
R

#
R

E
n

R
cl

k
y4

y3
y2

y1
yo

R
L

w
r

A
d

d
en

w
r

MD1

MD2

MD3

MD4

MD5

MD6

MD7

MA1

MA2

MA3

MA4

32
0

0
0

2
1

0
1

0
0

0
0

0
0

x
x

0
0

1
1

x
x

1
0

0
1

0
0

0
1

x
0

0
33

0
0

0
2

1
0

1
1

0
0

0
0

1
x

x
0

5
1

1
0

1
1

0
0

1
0

0
0

1
x

0
0

34
0

0
0

2
1

0
1

2
0

0
0

1
0

x
x

0
10

1
1

0
1

1
0

0
1

0
0

0
1

x
0

0
35

0
0

0
2

1
0

1
3

0
0

0
1

1
x

x
0

15
1

1
0

1
1

0
0

1
0

0
0

1
x

0
0

36
0

0
0

2
1

0
1

4
0

0
1

0
0

13
0

1
0

0
0

0
1

1
1

0
1

0
1

0
1

x
0

0
37

0
0

0
2

1
0

1
5

0
0

1
0

1
14

1
1

5
0

0
0

1
1

1
0

1
0

0
0

1
x

0
0

38
0

0
0

2
1

0
1

6
0

0
1

1
0

15
2

1
10

0
0

0
1

1
1

0
1

0
0

0
1

x
0

0
39

0
0

0
2

1
0

1
7

0
0

1
1

1
12

3
1

15
0

0
0

1
1

1
0

1
0

0
0

1
x

0
0

40
0

0
0

2
1

0
1

8
0

1
0

0
0

x
x

0
4

0
0

0
1

1
0

1
0

0
0

0
1

x
0

0
41

0
0

0
2

1
0

1
9

0
1

0
0

1
x

x
0

9
0

0
0

1
1

0
1

0
0

0
0

1
x

0
0

42
0

0
0

2
1

0
1

10
0

1
0

1
0

x
x

0
14

0
0

0
1

1
0

1
0

0
0

0
1

x
0

0
43

0
0

0
2

1
0

1
11

0
1

0
1

1
x

x
0

3
0

0
0

1
1

0
1

0
0

0
0

1
x

0
0

44
0

0
0

2
1

0
1

12
0

1
1

0
0

0
4

1
4

0
0

0
1

1
0

1
0

0
0

0
1

x
0

0
45

0
0

0
2

1
0

1
13

0
1

1
0

1
1

5
1

9
0

0
0

1
1

0
1

0
0

0
0

1
x

0
0

46
0

0
0

2
1

0
1

14
0

1
1

1
0

2
6

1
14

0
0

0
1

1
0

1
0

0
0

0
1

x
0

0
47

0
0

0
2

1
0

1
15

0
1

1
1

1
3

7
1

3
0

0
0

1
1

0
1

0
0

0
0

1
x

0
0

48
0

0
0

2
1

0
1

16
1

0
0

0
0

x
x

0
8

0
0

0
1

1
0

1
0

0
0

0
1

x
0

0
49

0
0

0
2

1
0

1
17

1
0

0
0

1
x

x
0

13
0

0
0

1
1

0
1

0
0

0
0

1
x

0
0

50
0

0
0

2
1

0
1

18
1

0
0

1
0

x
x

0
2

0
0

0
1

1
0

1
0

0
0

0
1

x
0

0
51

0
0

0
2

1
0

1
19

1
0

0
1

1
x

x
0

7
0

0
0

1
1

0
1

0
0

0
0

1
x

0
0

52
0

0
0

2
1

0
1

20
1

0
1

0
0

4
8

1
8

0
0

0
1

1
0

1
0

0
0

0
1

x
0

0
53

0
0

0
2

1
0

1
21

1
0

1
0

1
5

9
1

13
0

0
0

1
1

0
1

0
0

0
0

1
x

0
0

54
0

0
0

2
1

0
1

22
1

0
1

1
0

6
10

1
2

0
0

0
1

1
0

1
0

0
0

0
1

x
0

0
55

0
0

0
2

1
0

1
23

1
0

1
1

1
7

11
1

7
0

0
0

1
1

0
1

0
0

0
0

1
x

0
0

56
0

0
0

2
1

0
1

24
1

1
0

0
0

x
x

0
12

0
0

0
1

1
0

1
0

0
0

0
1

x
0

0
57

0
0

0
2

1
0

1
25

1
1

0
0

1
x

x
0

1
0

0
0

1
1

0
1

0
0

0
0

1
x

0
0

58
0

0
0

2
1

0
1

26
1

1
0

1
0

x
x

0
6

0
0

0
1

1
0

1
0

0
0

0
1

x
0

0
59

0
0

0
2

1
0

1
27

1
1

0
1

1
x

x
0

11
0

0
0

1
1

0
1

0
0

0
0

1
x

0
0

60
0

0
0

2
1

0
1

28
1

1
1

0
0

8
12

1
12

0
0

0
1

1
0

1
0

0
0

0
1

x
0

0
61

0
0

0
2

1
0

1
29

1
1

1
0

1
9

13
1

1
0

0
0

1
1

0
1

0
0

0
0

1
x

0
0

62
0

0
0

2
1

0
1

30
1

1
1

1
0

10
14

1
6

0
0

0
1

1
0

1
0

0
0

0
1

x
0

0
63

0
0

0
2

1
0

1
31

1
1

1
1

1
11

15
1

11
1

0
0

2
1

0
1

0
0

0
0

1
x

0
0

C
o

n
tr

o
l

S
ig

n
a

ls
 d

u
ri

n
g

 r
o

u
n

d
 o

p
e

ra
ti

o
n

s
M

a
in

 C
o

u
n

te
r

R
o

u
n

d
 C

o
u

n
te

r
K

E
Y

D
at

a
S

R
3

D
at

ap
at

h
A

d
d

re
s

s

Figure 5.6: Snippet of AES128 8-bit datapath state table

25

Controller

Simulation
Functional

vcd

FSM
Hybrid

Optimizer
Controller

Contraints
Design

Specification

Datapath

State Matrix

Algorithm

1

2 53

6

7

9

8

4

Figure 5.7: Design flow with controller optimization

Most of the control signals such as enables for counters, registers, memory write etc are

involved in the input and output phase end in FSM while the iterative phase in ROM.

Manually translating into a hybrid FSM is complex and tendencies process. Hence, we

developed a tool based on python to transform the state table into a hybrid FSM (5 to 9

in Figure 5.7).

5.3.1 General Control Logic Optimization Strategy for Tool

Let us assume that state table in Figure 5.9 which contains 19 states. The blue columns

denoted A are two identical columns and brown not of A . The rows within green rectangles

(B1, B2, and B3) are identical except the ones within magenta (C) and red (D) rectangles.

For this state table, the tool first applies the vertical optimization i.e. the number of the

control signals are reduced by removing the redundant ones. In the current example shown

in Figure 5.9, there are two identical columns denoted by A. One of the two A blocks is

26

removed during vertical optimization.

(reduced number

State table to

VHDL converter

Vertical

Optimization

Horizontal

Optimization

State table

State table
Optimized

Optimized
State table in VHDL

Hybrid FSM

of rows)

columns)
(reduced number of

Figure 5.8: FSM optimization flow

Horizontal optimization techniques are applied in the next step which reduces the num-

ber of states. For the given examples, the blocks C and D are merged and transformed into

a ROM while each of the blocks B1, B2, B3 are reduced to a single state. The optimized

state table now contains 13 states which can be seen in Figure 5.10. In the final step, we

manually transforms the optimized state table back into VHDL. The tool combines the

blocks magenta (C) and red (D) and generates a ROM in VHDL.

The end result is a hybrid FSM as it contains both traditional and ROM-based FSMs

is shown in Figure 5.11. In addition to these FSMs, the hybrid FSM might have a couple

of counters or shift-register to generate addresses for ROMs and multiplexers to choose

between the main and ROM-based FSM control signals. During the horizontal and vertical

optimizations, we incorporated the existing techniques proposed in [13–16,43].

The address for the ROMs are generated either by using a counter or a shift-register.

Counters are based on adder logic whose delay increases with its size where as shift-register

do not suffer from this draw back. Since both are realized using look-up tables and flip-flops,

there may not much difference for smaller sizes.

27

0

1

0

0

1

0

0

1

0

0

1

1

0

0

1

1

0

0

1

0

1

0

0

1

0

0

1

1

0

0

1

1

0

0

1

0

1

0

1

1

0

0

1

0

0

1

1

0

0

1

1

0

0

1

0

1

0

1

9

8

7

6

5

4

3

2

1

10

11

12

13

14

15

16

17

18

19

A

States

Control signals

C D

C D

C DB3

B2

B1

0

1

1

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

!A

0

1

0

1

1

0

1

0

1

1

0

1

0

1

1

0

1

Figure 5.9: State table

x x

A

C DB11

0

0

1

0

0

1

0

1

0

3

2

1

6

7

8

B2
1

0

1

11

12

13

14 0

0

1

1 1

0

1

1

0

1

0

1

1

C

C D

D

B3

0

1

0

1

1

0

0

1

1

17

18

19

0

Control signals

States

0

1

1

Counter C D

x x

x x

x x

x x

x x

Figure 5.10: Optimized state table

28

Main
FSM

ROM

(C+D)

Counter

ll
X

Y

Figure 5.11: Hybrid FSM

Table 5.5: Comparison of controller for AES128 6.1.4 using traditional approach vs tool
optimized on Xilinx Aritix-7 FPGA

Controller States Control signals FFs LUTs Slices Frequency(MHz)

Traditional 20 56 9 55 33 202.38
Tool optimized 8 48 11 40 25 157.60

5.3.2 Optimization Test Case

In order to test the effectiveness of the control logic optimization tool, we consider following

two test cases.

• CAES:1 AES128 lightweight architecture (described in Section 6.1.4)

• CAES:2 Lightweight Keccak core (described in Section 8.3)

5.3.3 CASE:1

In this case, we considered the AES128 implementation with 16-bit datapath. For this

datapath, we manually developed the state table using spreadsheet. This state table is then

translated into a traditional FSM i.e using FFs and combinational logic. The same state

table is fed as the input to the tool and obtained an optimized version of controller. The

tool was able to reduce the number of control signals from 56 to 48 and states from 20 to

8. The tool generated a 10x12-bit ROM which contains the control signals for the round

operations. There is a slight dip in the obtained maximum frequency for tool optimized

version. We believe this may be due to addition of multiplexer at the end of ROM output.

This clearly shows the benefit of using the developed tool for optimizing control logic.

29

5.3.4 CASE:2

In this case, the optimized controller is obtained by feeding the state table developed for

the Keccak datapath described in Section 8.3. The tool was able to find three groups

(16x34, 16x50, 16x64)within the state table which were moved into the memory. We obtain

memories with higher depths (34, 50, and 64) as each round in Keccak 8.3 takes 163 clock

cycles. Additionally, the number of control signals were reduced from 68 to 48.

State table to

VHDL converter

Vertical

Optimization

Horizontal

Optimization

RTL

Simulator

State table
Optimized

Optimized
State table in VHDL

Hybrid FSM

of rows)

columns)
(reduced number of

(reduced number

State table

in VHDL

FSM

Traditional

Figure 5.12: Generation of state table using RTL simulator

5.3.5 Generation of State Table Using Simulator

Value Change Dump (VCD) is one the two formates a toggle data is generated by Electronic

Design automation(EDA) simulation tools. The toggle data is used as input in power

estimation tools such as Xilinx Xpower. We use this toggle data to generate the state

tables for existing designs (Figure 5.12). If the design adheres to the format as shown in

Figure 5.1 where datapath and controller are separate modules, just adding the controller

module would capture toggle data of all control signals. Otherwise, one need to add all this

signals individually.

30

Generation of VCD

We capture the toggle data by using either Xilinx ISIM or modelsim. The commands

specified below are the ones used for generating the VCD dumpfile. The first command sets

the filename, followed by the variables to capture and module name. Once these are set,

the simulation needs to run for at least one whole operation of the cryptographic function.

The last command flushes all the data into a specified file.

$vcd dumpfile <filename.vcd>

$vcd dumpvars -m <module>

$run <run time>

$vcd dumpflush

5.3.6 Translation of VCD to State Table

We developed a tool in python which reads the VCD file and generates the state table.

Since the VCD captures only the toggle data i.e, control signals that are unchanged are not

captured. Therefore, we need to fill in this missing data. We do this by saving previous

values and update only the changed value. After populating the data, we filter out the rows

where clk value is 1. The resulting matrix now becomes the state table for the design. The

obtained state table can now be given as input to control logic optimization tool to generate

the optimized controller as illustrated in Figure 5.7.

31

Chapter 6: Lightweight Implementations of AES128 and

SHA-256

In this chapter we describe various lightweight architectures developed by using the opti-

mizations described in the Chapter 5. All of these designs are targeted for Xilinx FPGAs.

6.1 Lightweight AES Architectures

6.1.1 Interface

clk rst

sw

Block Cipher

w

do_valid

do_datadi_data

di_valid

di_ready

key_data

key_valid

key_ready

do_ready

w

Figure 6.1: Top-level interface (W, SW = 8, 16, and 32).

The block cipher architectures for lightweight use the interface shown in Figure 6.1.1.

and description of the ports are found in Table 6.1. Another design constraint considered

for these implementation is that the cipher core should be able to support I/O feedback

32

modes i.e output is xored with input as illustrated in Figure 6.1.1. In order accommodate

this design constraint, both input and output has to be synchronised.

Table 6.1: CipherCore Port Descriptions.

Name Direction Size Description

Data Input & Output

key data in SW Key data

di data in W Block data input

do data out W Block data output

Key Control

key valid in 1 Key data is valid

key ready out 1 CipherCore is ready to receive a new
key

Input Data Control

di valid in 1 BDI data is valid

di ready out 1 CipherCore is ready to receive data

Output Data Control

do valid out 1 DO data is valid

do ready in 1 ready to receive data.

0
1

0
1

clk rst

sw

Block Cipher

w

do_valid

do_datadi_data

di_valid

di_ready

key_data

key_valid

key_ready

do_ready
datain

w

datain_valid

Figure 6.2: Top-level interface with feedback(W, SW = 8, 16, and 32).

33

6.1.2 AES Algorithm

Advanced Encryption Standard (AES) [44] is a 128-bit block cipher which supports key

lengths of 128, 192, and 256-bits. For lightweight applications, we consider 128-bit key

length to be adequate. Therefore, we consider a 128-bit key size for all our implementa-

tions. The round function of AES consists of four functions namely SubBytes, ShiftRows,

MixColumns and AddRoundKey. For each of 10 round operations, the AES state is trans-

formed using these four functions except the last round where MixColumns are skipped.

6.1.3 Lightweight Architecture with 8-bit datapath

In this architecture, the reduction in area is achieved by scaling the datapath width to 8-bit.

This is well below the natural width of AES (32-bit). Hence, we require additional resources

for storing intermediate values (four 8-bit registers A3 to A0) as shown in Figure 6.1.3 and

also pay the penalty in higher latency. The state is stored in a single port RAM (DATA

DRAM) and key in two DRAMS (K0 DRAM and KR DRAM) one for original key and the

other for round key. We assume that the key is rarely changed in lightweight applications.

Hence, preserving the original key would save additional clock cycles for loading the key

for each block of data. The single port RAM of state both for read and write operations

would incur penalty as simultaneous read and write from two different memory locations is

not feasible. We over come this by storing the round output to the location we are reading

leading to misaligned data for the subsequent round. Therefore, a different sequence of

addresses are required for each round operation. We noticed that the misalignment of data

is off by a fixed offset between any two subsequent rounds. For each round, this offset is

corrected and a new sequence of addresses are generated using two shiftregisters (SR1 and

SR2) and a 4-bit adder and added to Therefore, no additional latency is incurred. For key

scheduling, the addresses are generated by using a counter (KC), subtracter and a ROM.

The round constant used in key scheduling are generated using a shift registers(SR3). The

SubBytes module is shared between round and key scheduling to keep the area foot print

low. Overall, it takes 310 clock cycles for encrypting a single 128-bit block of data.

34

D
R

A
M

D
A

T
A

K
R

D
R

A
M

K
E

Y

K
O

S
R

3

A
3

A
2

A
1

A
0

2
x

3
x

−
1

S
R

1
S

R
2

S
B

O
X

D
R

A
M

K
E

Y

0
x
0
0

K
C

K
E

Y

0
x
0

0
x
5

0
x
9

0
x
c

0
x
1

S
R

O
M

0
x
0

0
x
c

8

8
8

8
8

8

88

1
0
x
0

8

8

4 4

8

8

8
8

8
8

8

d
i_

d
a
ta

k
e
y
_
d

a
ta

d
o

_
d

a
ta

Figure 6.3: 8-bit lightweight architecture of AES128

35

6.1.4 Lightweight Architecture with 16-bit datapath

8

A

M
ix

−
C

o
lu

m
n

3
1

1
61
5

0

s s

8 0

71
5

1
5

0

D
R

A
M

A

D
R

A
M

B
B

W
ri
te

7

0

7

0

1
5

8

1
5

1
5

0

1
5

8 7

0

1
6

3
2

3
2

3
1

1
6

1
5

0

1
5

0

R
n
d
K

e
y

d
i_

d
a
ta

d
o

_
d

a
ta

Figure 6.4: 16-bit lightweight architecture of AES128

A 16-bit datapath is considered for this architecture which is also below the natural

36

width. Therefore, we require additional resources (register in Figure 6.1.4) for storing the

intermediate round outputs. As AES round function requires byte addressable words, using

a single 16-bit memory is not a preferred choice. Therefore, two memories (DRAM A and

DRAM B) are used for storing the state with each storing a byte of the 16-bit word. An

additional register (B) is used to store the lower 16-bits of MiXColumns function output.

Using this additional register, the latency is improved by a factor of two. Furthermore,

the complexity of control logic is reduced due to decreased number of clock cycles for each

round and fewer control signals due to increased regularity.

The key is stored in a single dual port RAM where lower address locations are used for

storing the original key and higher addresses for round keys. The round keys are generated

on the fly. This architecture requires 88 clock cycles for encrypting a single 128-bit block

of data.

6.1.5 Lightweight Architecture with 32-bit datapath

The 32-bit datapath of lightweight AES is shown in Figure 6.1.5. As the datapath width

is equal to the natural width, no additional resources are required for intermediate values.

As stated above, due to byte addressable word constraint of AES round function, a single

32-bit wide memories is not the optimum choice to store the state. Therefore, four 8-bit

wide memories are used for storing the four bytes of a 32-bit word. The key is stored in

a dual-port ram and the round constants in a ROM. Separate SubBytes modules (S) for

round and key scheduling are used as sharing would incur 20% penalty on the latency.

6.1.6 Implementation Results

We implemented our designs on a Xilinx Spartan-6, Virtex-6, Artix-7, and Virtex-7 FPGAs

and the results are shown in Table 6.2. Here we only compare with lightweight imple-

mentation of AES128 from the literature. All our archiectures achieve a higher throughput

with less resource usage as compared to [31] which is a full width implementation. In case

of our 32-bit architecture, TP/A ratio is almost twice that of [31]. Due to high latency,

37

Table 6.2: Comparision of our lightweight implementation of block ciphers with previous
results (TP= Throughput; TP/A= Throughput/Area; TW = This Work)

Device Cipher T
h

ro
u

g
h

p
u

t
(M

b
p

s)
at
f m

a
x

A
re

a
(S

li
ce

s)

T
h

ro
u

g
h

p
u

t/
A

re
a

(M
b

p
s/

S
li

ce
s)

Spartan-6

AES-8[TW] 59.47 86 0.87

AES-16[TW] 236.66 133 1.78

AES-32[TW] 489.58 170 2.88

AES[31] 213.00 668 0.32

Virtex-6

AES-8[TW] 98.22 71 1.38

AES-16[TW] 383.58 115 3.34

AES-32[TW] 834.75 212 3.94

Artix-7

AES-8[TW] 71.92 64 1.12

AES-16[TW] 280.26 125 2.24

AES-32[TW] 639.64 219 2.92

Virtex-7

AES-8[TW] 102.69 62 1.66

AES-16[TW] 467.25 120 3.89

AES-32[TW] 829.27 190 4.36

Zynq

AES-8[TW] 71.41 67 1.07

AES-16[TW] 291.84 134 2.18

AES-32[TW] 548.47 190 2.89

38

D
R

A
M

A

D
R

A
M

B

7

0

1
5

8

2
3

1
6

1
5

0

2
3

0

3
1

0

D
R

A
M

C

D
R

A
M

D

s s s s

8 0

7

1
5

3
1

2
3

2
4

1
6

M
ix

−
C

o
lu

m
n

2
3

1
6

1
5

8

7

0

3
1

2
4

d
o

_
d

a
ta

3
1

2
4

R
n
d
K

e
y

3
2

d
i_

d
a
ta

3
1

3
1

3
1

3
2

3
2

3
2

Figure 6.5: 32-bit lightweight architecture of AES128

8-bit architecture achieves a throughput of 59.47 Mbps which is 4.0 and 8.2 times lower as

compared to 16-bit and 32-bit architectures.

39

Table 6.3: Results for our AES implementation compared to Other Block Ciphers and the
eSTREAM Portfolio Ciphers on Xilinx FPGA(TW = This Work)

Design M
a
x
im

u
m

D
el

ay
(n

s)

C
lo

ck
C

y
cl

es
p

er
b

lo
ck

B
lo

ck
S

iz
e

(b
it

s)

K
ey

S
iz

e
(b

it
s)

A
re

a
(s

li
ce

s)

B
lo

ck
R

A
M

s

T
h

ro
u

g
h

p
u

t
(M

b
p

s)
a
t
f m

a
x

T
h

ro
u

g
h

p
u

t/
A

re
a

(M
b

p
s/

sl
ic

e)

Device

AES-8 [TW] 13.48 310 128 128 226 0 30.64 0.07 xc3s500e-5
AES-16[TW] 3.14 88 128 128 590 0 131.68 0.12 xc3s500e-5
AES-32[TW] 1.51 44 128 128 595 0 274.05 0.24 xc3s500e-5

Present [22] 8.78 256 64 128 117 0 28.46 0.24 xc3s50-5
HIGHT [22] 6.12 160 64 128 91 0 65.48 0.72 xc3s50-5

Camellia [21] 7.95 875 128 128 318 0 18.41 0.06 xc3s50-5
AES [23] 14.21 534 128 128 393 0 16.86 0.04 xc3s50-5

AES 8-bit [24] 14.93 3900 128 128 124 2 2.2 0.01 xc2s15-6
AES [25] 20.00 46 128 128 222 3 139 0.27 xc2s30-5

TinyXTEA-3 [26] 15.97 112 64 128 254 0 35.78 0.14 xc3s50-5

Grain v1 [27] 5.10 1 1 80 44 0 196 4.45 xc3s50-5
Grain 128 [27] 5.10 1 1 128 50 0 196 3.92 xc3s50-5

MICKEY v2 [27] 4.29 1 1 80 115 0 233 2.03 xc3s50-5
MICKEY 128 [27] 4.48 1 1 128 176 0 223 1.27 xc3s50-5

Trivium [27] 4.17 1 1 80 50 0 240 4.80 xc3s50-5
Trivium (x64) [27] 4.74 1 64 80 344 0 13,504 39.26 xc3s400-5

For comparing with other lightweight implementation of block ciphers and eSTREAM

ciphers, we implemented our three AES architectures on Xilinx Spartan-3 FPGA. A larger

device is chosen as there are not enough I/O ports for our AES-32 architecture. Considering

block ciphers, our three AES architectures equal or outperforms all other implementations

with respect to throughput. The only exception is AES-8 architecture which has about 47%

throughput of HIGHT [22]. All stream ciphers outperform all block cipher implementations

when we consider throughput/area ratio. This may be due to their 80-bit key size except in

case of Grain 128 and MICKEY 128 where 128-bit key is considered. Overall AES-32 has

the highest throughput and HIGHT [22] for throughput/area ratio for block ciphers. One

interesting aspect noticed is that the 16-bit AES architecture consumes as much area as

AES 32-bit architecture. But, both throughput and throughput/area are reduced by about

40

50%. This may be due to the additional cost associated for datapath width being less than

32-bit which is the natural width of AES.

6.2 Lightweight SHA-256 Architecture

As part of SHA-3 competition, we developed lightweight architecture of SHA-2 to evaluate

other candidates. With Xilinx Spartan-3 FPGA as the target device an area budget of 700

slices in case of logic only (No use of BRAMs) and 500 slices with use of 1 BRAM are

considered as the design constraints.

6.2.1 Interface

din
w

bitsw
seg_len_ap 01

seg
1

bitsw

seg
0

seg
n−1

src_ready dst_ready

clk

clk

SHA Core

src_read dst_write

rst

rst

dout
w

msg_len_ap 1

msg_len_bp

message

a)SHA Interface b)SHA Protocol

seg_len_ap 00

seg_len_ap 1

seg_len_bp n−1

n−1

Figure 6.6: Interface and protocol for our SHA cores

We based our hardware interface and I/O protocol (Fig. 6.6) on the one presented in [46]

and updated in [47]. The SHA Core assumes that its inputs and outputs are connected to

FIFOs. We believe that the FIFO interface model proposed in [46] is very suitable for

lightweight implementations. In its simplest form a FIFO is a single w-bit wide register

with minimal logic to support the handshake of read/write and ready. This can easily

be interfaced to a micro-controller or other circuitry in an embedded system. Lightweight

applications usually have smaller databus sizes than the 32 or 64 bits proposed in [46].

41

Therefore, we use a databus width w of 16 bits. The protocol supports two scenarios: 1)

when the message length is known and 2) when the message length is not known. In case

1) the message is sent as a single segment starting with the message length after padding

“msg len ap” in 32-bit words concatenated with a ’1’ followed by the message length before

padding “msg len bp” in bits followed by the message. The “msg len bp” is needed by

several algorithms even when the message is already padded. In case 2) the message can

be processed in segments seg0, seg1, · · · , segn−1. Each segment seg0, · · · , segn−2 is headed

by the segment length after padding “seg len ap” concatenated with a ’0’ followed by the

segment of the message. The last segment segn−1 follows the format of case 1). It contains

a block of the message and must contain all padding. The formulae to compute the total

number of bits before padding and after padding are:

msg len ap =

n−1∑
i=0

seg len api · 32

msg len bp =

n−2∑
i=0

seg len api · 32 + seg len bpn−1

Furthermore in order to conserve logic resources needed for message counters, we limit the

total amount of data in a single message to 232 bits i.e. 4 Gbits which we believe is sufficient

for lightweight applications.

6.2.2 SHA-256 Algorithm

The SHA-256 uses six logical functions Ch, Maj, Σ0, Sigma1, sigma0, and sigma1. Each of

these functions operates on 32-bit words resulting in a new 32-bit words. These six functions

are used in one of the three processing steps. The first processing step is message expansion

where a 512-bit message block is expanded into 2048-bit message using two functions σ0

and σ1. The second processing step is round operation which uses eight working variables

a, b, .., h. These eight working variables are initialized with initial hash values and updated

42

using 2048-bit message, sixty four 32-bit round constants and four functions Σ0, Σ1, Ch

and Maj. The final step is intermediate hash generation where the eight working variables

are added with initial hash values to obtain new intermediate hash values.

6.2.3 Lightweight SHA-256 Architecture

We implemented two versions of each algorithm, one which utilizes only logic resources

(Logic version) and one that additionally utilizes a single Block RAM (BRAM version).

Using BRAMs

Our implementation of SHA-256 with BRAM uses it in Dual-port mode to store message,

working variables, round constants, initial and final hash values (6.7). The datapath is

quasi-pipelined to reduce the critical time and clock cycles. Most of the pipeline registers

except R1, R2 and R3 does not cost any additional area. The initialization of the working

variables and intermediate hash values is performed while loading of message. Due to BRAM

contention, message expansion takes 99 clock cycles while the round operation takes 448

clock cycles.

Logic only

In the logic only version, the BRAM is replaced with three DRAMs and six registers (6.2.3).

The message, round constants and hash values are stored in DRAMs and the working

variables in registers. Using registers for working variables reduces the required clock cycles

for round operation to 192 clock cycles. The number of clock cycles for message expansion

increases to 196 clock cyles due to use of single port DRAM. Using a dual-port DRAM can

reduce the clock cyles but would increase area significantly. Using approximately additional

100 slices, the throughput can be doubled but it would violate the area constraint.

43

Σ
1

c
h

re
g
−

A
1

re
g
−

R
1

re
g
−

R
2

re
g
−

A
2

σ
1

σ
0

re
g
−

M
1

re
g
−

M
2

0

1

re
g
−

R
3

re
g
−

A
4

Maj Σ0

0

3

1

2

dout 0

1
15

0

31

16

BRAM

Port−B

Port−A

Reg

31

16

15

0

din

3

0
2

1

01

Figure 6.7: Datapath of SHA-256 using dedicated memory (BRAM)

6.2.4 Implementation Results

The implementation results of SHA-2 are compared with other SHA-3 finalist candidate

implementations. Our SHA-256 achieves a throughput of 132.1 Mbps in case of logic only

and 98.4 Mbps for the design using BRAM on Xilinx Spartan-3 device. Only BLAKE-

256 [29] has a higher throughput which is about twice that of our SHA-256. This is due to

higher latency of SHA-256 as compared to BLAKE-256 [29]. The same trend is observed

across all the devices for both logic only and BRAM design.

6.3 Conclusions

We developed lightweight implementations of AES128 block cipher with 8, 16, and 32-bit

datapath widths that can support feedback mode. Even with additional design constraints,

44

din

Regs

A to H

Σ
0

M
a
j

c
h

Σ
1

re
g
−

A
2

re
g
−

A
2

σ0

σ0

re
g
−

A
2

reg−A2

31

16

re
g
−

A
2

15

0

01

Message

DRAM

0 1

dout

0

31

16

15

Const

DROM

Hash

DRAM

Figure 6.8: Datapath of SHA-256 using logic only

it can be seen that all three designs achieve higher performance both in terms of throughput

and throughput/area ratio. Using these designs results, we conclude the following:

• Applying optimization techniques proposed in Chapter 5 can improve the design per-

formance in terms of area, throughput and throughput over area.

• Datapth width below the natural width of a function would incur penalty in terms of

area and latency

• Using embedded memory blocks (BRAMs) for SHA-256 degrades the performance.

• Only BLAKE-256 [29] outperforms SHA-256 across all device for both logic only and

BRAM designs.

45

Table 6.4: Implementation results of SHA-256 compared with other implementations of
SHA-3 candidates(TW= This Work)

Message Long Short

D
ev

ice

V
ersion

Algorithm A
rea

(slices)

B
lo

ck
R

A
M

s

M
ax

im
u

m
D

elay
(n

s)
T

T
h

ro
u

gh
p

u
t

(M
b

p
s)

T
P

/
A

rea
(M

b
p

s/
slice)

T
h

rou
g
h

p
u

t
(M

b
p

s)

T
P

/
A

rea
(M

b
p

s/slice)

X
ilin

x
S

p
a
rtan

-3
(x

c3s5
0-5)

B
R

A
M

BLAKE-256 [29] 549 1 8.05 219.3 0.40 205.9 0.375
Grøstl [29] 594 1 7.65 122.4 0.21 61.9 0.104
JH42 [29] 502 1 9.19 69.6 0.14 34.0 0.068

Keccak [29] 627 1 8.90 32.5 0.05 32.3 0.052
Skein [29] 498 1 10.65 19.7 0.04 10.0 0.020

SHA-256[TW] 547 1 8.48 101.5 0.19 98.4 0.180

L
ogic

on
ly

BLAKE-256 [29] 631 0 8.16 216.3 0.34 203.0 0.322
Grøstl [29] 766 0 6.83 192.6 0.25 97.9 0.128
JH42 [29] 558 0 10.05 63.7 0.11 31.2 0.056

Keccak [29] 766 0 9.83 46.2 0.06 45.8 0.060
Skein [29] 766 0 12.83 16.6 0.02 8.5 0.011

SHA-256[TW] 745 0 8.52 137.8 0.19 132.1 0.177

X
ilin

x
S

p
a
rtan

-6
(x

c6slx
4csg-3)

B
R

A
M

BLAKE-256 [29] 152 1 5.63 313.8 2.06 294.5 1.938
Grøstl [29] 271 1 4.80 195.0 0.72 98.7 0.364
JH42 [29] 182 1 6.23 102.6 0.56 50.2 0.276

Keccak [29] 127 1 5.07 57.0 0.45 56.8 0.447
Skein [29] 182 1 7.19 29.2 0.16 14.8 0.081

SHA-256[TW] 140 1 5.93 145.2 1.04 140.7 1.005
L

ogic
on

ly

BLAKE-256 [29] 164 0 5.34 330.6 2.02 310.2 1.882
Grøstl [29] 230 0 4.43 297.3 1.29 151.2 0.657
JH42 [29] 156 0 6.14 104.2 0.67 51.0 0.327

Keccak [29] 113 0 4.95 91.8 0.81 91.1 0.806
Skein [29] 190 0 8.77 24.3 0.13 12.4 0.065

SHA-256[TW] 227 0 5.74 204.6 0.90 196.0 0.864

X
ilin

x
V

irtex
-6

(x
c6v

lx
75T

-1)

B
R

A
M

BLAKE-256 [29] 163 1 5.06 348.7 2.14 327.3 2.008
Grøstl [29] 241 1 4.09 229.1 0.95 115.9 0.481
JH42 [29] 196 1 4.11 155.4 0.79 148.9 0.760

Keccak [29] 129 1 3.84 75.2 0.58 74.9 0.580
Skein [29] 207 1 6.00 35.0 0.17 17.8 0.086

SHA-256[TW] 155 1 4.84 177.8 1.15 172.3 1.111

L
ogic

on
ly

BLAKE-256 [29] 166 0 3.72 474.6 2.86 445.4 2.693
Grøstl [29] 263 0 2.78 473.3 1.80 240.7 0.915
JH42 [29] 171 0 3.96 161.5 0.94 154.9 0.906

Keccak [29] 106 0 3.34 136.0 1.28 135.0 1.273
Skein [29] 193 0 5.17 41.3 0.21 21.0 0.109

SHA-256[TW] 238 0 3.86 304.2 1.28 291.5 1.225

46

Chapter 7: Evaluation of the CAESAR Hardware API for

Lightweight Implementations

7.1 Introduction and Motivation

The Competition for Authenticated Encryption: Security, Applicability, and Robustness

(CAESAR), aimed at developing a portfolio of new-generation authenticated ciphers sur-

passing the capabilities of current standards, such as AES-GCM [48], has moved to third

round. The selection of authenticated ciphers for the new portfolio is based on three use-

cases, namely lightweight applications, high-speed applications, and defense in depth. The

use-case for lightweight applications includes performance of hardware implementations on

resource constrained devices.

The Application Programming Interface (API) has a significant impact on the perfor-

mance of any design. This is more true in case of hardware implementations. Hence, the

CAESAR committee adopted a hardware API [49] which specifies the interface, communica-

tion protocol, and minimum compliance criteria. The CAESAR Hardware API is supported

by a development package which includes VHDL code for universal pre- and post-processors

for high-speed [50] and recently also for lightweight implementations. These processors are

designed to simplify the complexity involved in making a cipher core design compliant with

the API.

Designing lightweight implementations of cipher cores can be quite challenging and time

consuming due to the difficulty in achieving a balance between area minimization of the

datapath, the complexity of the controller, as well as performance. While the lightweight

pre- and post-processors remove some of the additional burden of complying with the API,

it is generally assumed that this comes at a cost of an increase in area consumption over

merging their functionality with lightweight cipher cores. Integration of the protocol in an

47

existing state machine and re-using counters as well as storage should lead to a smaller area

foot print.

In order to evaluate the penalty for using the generic lightweight pre- and post-processors

of the CAESAR development package over integrated processors, we developed two lightweight

implementations of Ketje-Sr, one with dedicated and one with integrated processors.

These are the first lightweight implementations of Ketje-Sr. We also compare the over-

head caused by the CAESAR API over the cipher core for both high-speed and lightweight

implementations. For this, we developed the first lightweight implementation of an Ascon

cipher core and attached it to the generic lightweight pre- and post-processors to make the

design compliant with the CAESAR API and repeated this for a high-speed Ascon core

with the high-speed processors.

7.2 Background

7.2.1 CAESAR Hardware API and Development Package

do_data

Ports

PDI

Secret Data Input

Ports

SDI

clk rst

AEAD

rstclk

pdi_valid

pdi_ready

w

Data Output

Ports

DO
w

do_ready

do_valid

sdi_valid

sdi_ready

sw
sdi_data

pdi_data

Public Data Input

Figure 7.1: CAESAR API

48

s
d

i_
v
a

lid

s
d

i_
re

a
d

y
s
d

i_
re

a
d

y

s
d

i_
v

a
li

d

s
d

i_
d

a
ta

s
d

i_
d

a
ta P

ro
c
e

s
s
o

r

P
re

s
w w w
/8

w
/8

w
/8

+
1

w
ww

4

P
ro

c
e
s

s
o

r

P
o

s
t

w
/8

T
a

g

C
o

m
p

a
ra

to
r

w

p
d

i_
v
a

lid

p
d

i_
re

a
d

y
p

d
i_

re
a

d
y

p
d

i_
v
a

li
d

p
d

i_
d

a
ta

p
d

i_
d

a
ta

d
o

_
re

a
d

y
d

o
_
re

a
d

y

d
o

_
v
a

lid
d

o
_

v
a

li
d

d
o

_
d

a
ta

d
o

_
d

a
ta

w

4

b
d

i

A
E

A
D

b
d

i_
e

o
i

b
d

i_
e

o
t

k
e

y
_

v
a

lid

k
e

y
_

re
a

d
y

k
e

y

c
m

d
_

v
a

lid

c
m

d
_

re
a

d
y

R
e

q
u

ir
e

d
O

p
ti
o

n
a

l

b
d

i_
ty

p
e

d
e

c
ry

p
t

k
e

y
_

u
p

d
a

te

C
ip

h
e
rC

o
re

k
e

y

k
e

y
_

v
a

lid

k
e

y
_

re
a

d
y

b
d

i

b
d

i_
re

a
d

y

b
d

i_
v
a

lid
b

d
i_

v
a

lid

b
d

i_
re

a
d

y

b
d

i_
p

a
rt

ia
l

b
d

i_
e

o
t

b
d

i_
e

o
i

b
d

i_
ty

p
e

d
e

c
ry

p
t_

in

k
e

y
_

u
p

d
a

te

b
d

o

b
d

o
_

v
a

lid

b
d

o
_

re
a

d
y

d
in

_
v
a

lid

d
in

_
re

a
d

y

d
o

u
t_

v
a

lid

d
o

u
t_

re
a

d
y

d
o

u
t

H
e
a
d

e
r/

T
a
g

F
IF

O
c
m

d
_

v
a

lid

c
m

d
_

re
a

d
y

d
in

e
n

d
_

o
f_

b
lo

c
k

b
d

o
_

re
a

d
y

b
d

o
_

v
a

lid

b
d

o

e
n

d
_

o
f_

b
lo

c
k

c
m

d
c
m

d

b
d

i_
p

a
rt

ia
l

b
d

i_
s
iz

e
b

d
i_

s
iz

e

b
d

i_
v
a

lid
_

b
y
te

s
b

d
i_

v
a

lid
_

b
y
te

s

b
d

i_
p

a
d

_
lo

c
b

d
i_

p
a

d
_

lo
c

b
d

o
_

v
a

lid
_

b
y
te

s
b

d
o

_
v
a

lid
_

b
y
te

s

m
s
g

_
a

u
th

_
re

a
d

y
m

s
g

_
a

u
th

_
re

a
d

y

m
s
g

_
a

u
th

_
v
a

lid
m

s
g

_
a

u
th

_
v
a

lid

m
s
g

_
a

u
th

m
s
g

_
a

u
th

b
d

o
_

ty
p

e
b

d
o

_
ty

p
e

s
w

Figure 7.2: Lightweight CAESAR API block diagram

49

The CAESAR Hardware API (Fig 7.1) uses two input buses Public Data Input (PDI)

and Secret Data Input (SDI) and one output bus Data Output (DO) along with their cor-

responding control signals valid and ready. For high-speed implementations, the permitted

bus widths are 32 ≤ w ≤ 256 for PDI and PDO and 32 ≤ sw ≤ 64 for SDI. In case of

lightweight implementations, they are limited to only three discrete values 8, 16, and 32.

The CAESAR hardware API has two types of control words namely instructions and seg-

ment headers of widths 16 and 32 bits respectively. Instructions are used to specify the

mode of operation, loading and activating key operations whereas segment headers contain

information of the subsequent data i.e., data type, size of data etc.

Both lightweight and high-speed development packages have four modules namely Pre-

Processor, CipherCore, FIFO, and PostProcessor. A block diagram of the CAESAR lightweight

hardware API along with internal modules and their interconnections is shown in Fig 7.2.

The signals highlighted in blue are the differences between high-speed and lightweight mod-

ules. In this work, we consider only single-pass algorithms and therefore ignore all additional

signals or modules for two-pass algorithm support.

The PreProcessor handles the CAESAR API protocol and provides data to the Ci-

pherCore. For high-speed implementations, it also pads data blocks when necessary. It is

assumed that lightweight implementations perform the padding inside the CipherCore. In

case the data is smaller than the width of the bus, it is zero padded to the bus width. The

PreProcessor provides the necessary information to the CipherCore to perform padding,

such as bdi valid bytes and bdi size which indicate the location and number of valid bytes

within the input data on the bdi bus. The CipherCore contains the cipher algorithm.

Handling of the output protocol is performed by the PostProcessor. Additionally, the Post-

Processor also performs tag comparisons for lightweight implementations. However, when

an algorithm requires the tag for decryption, the tag comparison is performed within the

CipherCore and the result is indicated through the two optional signals msg auth valid and

msg auth done to the PostProcessor. The FIFO module provides a bypass path for headers

from Pre- to PostProcessor.

50

7.2.2 Ketje

Ketje[51] CAESAR round 3 candidates whose primary use-case is “lightweight applica-

tion”. It is built on the Keccak-p permutation, a round-reduced version of the Keccak-f

permutation [52] used in the new Secure Hash Standard (SHA-3) [53]. Ketje uses this

underlying function in a mode called MonkeyWrap which is based on MonkeyDuplex

(Fig 7.3), a variant of the duplex construction [54]. There are four variants of Ketje:

Ketje-Jr, Ketje-Sr, Ketje-Minor, and Ketje-Major which use Keccak-p∗[200],

Keccak-p∗[400], Keccak-p∗[800], and Keccak-p∗[1600] respectively.

A round of the Keccak-p permutation consists of five operations (R = ι ◦χ ◦ π ◦ ρ ◦ θ).

Algorithm 5 shows the pseudo-code for the round function in which A denotes the 5x5 state

array and RC the round constant. B[x,y], C[x], D[x] are intermediate variables and the

constant r[x,y] is the rotation offset. The width of A[x,y], B[x,y], C[x], D[x], and RC is b.

Depending on the variant, the value of b is 8, 16, 32, or 64.

Algorithm 1 Keccak-p Permutation Round Function

Input: (A,RC)
Output: A

1: θ step
C[x] = A[x,0] ⊕ A[x,1] ⊕ A[x,2] ⊕ A[x,3] ⊕ A[x,4] ∀ x in 0. . .4
D[x] = C[x-1] ⊕ rot(C[x+1],1), ∀ x in 0. . .4
A[x,y] = A[x,y] ⊕ D[x], ∀ (x,y) in (0. . .4,0. . .4)

2: ρ step
A[x,y] = rot(A[x,y], r[x,y]) ∀ (x,y) in (0. . .4,0. . .4)

3: π step
B[y,2x+3y] = A[x,y] ∀ (x,y) in (0. . .4,0. . .4)

4: χ step

A[x,y] = B[x,y] ⊕ (B[x+1,y] · B[x+2,y]), ∀ (x,y) in (0. . .4,0. . .4)
5: ι step

A[0,0] = A[0,0] ⊕ RC

The θ step XORs each bit in the state with two bits from two different columns in the

state array. This is achieved by using the temporary variables C[x] and D[x]. The bits in

51

f

pad

n
start

0

I

f

pad .

σ
i Z i

n
step

f

pad .

σ
j Z j

n
stride

Figure 7.3: MonkeyDuplex construction

a word are rotated using one of 25 offsets in the ρ step. The value of the rotation offset

for any word depends on its location in the state array. The words in the state array are

rearranged in π. The χ step involves integer multiplication where each bit of the state is

XORed with a non-linear function of two other bits. A round constant is added to word

A[0,0] of the state array in the final ι step. As a round 3 tweak, a twisted permutation is

added to Ketjev1 [55] version. The twisted permutation adds π and π−1 to Keccak-p

which is just a reordering of bits in the state. The permutation function with the twisted

permutation is referred to as Keccak-p∗.

Start, step, and stride are the three stage in the MonkeyDuplex construction. In the

first stage start, the state is initialized using key and Initialization Vector (IV), then the

round function is iterated 12 times (nstart = 12). The processing of Associated Data (AD),

plaintext, and ciphertext is done in the step stage. In this stage, the round function is

iterated only once (nstep=1) for each block of AD, plaintext, or ciphertext. Finally, the tag

is generated in the stride stage where the number of rounds is 6 (nstride = 6).

7.2.3 Ascon

Ascon [56] is another CAESAR round 3 lightweight candidate which is also based on a

permutation function like Ketje. It is built on a mode of operation called duplex sponge. In

52

order to enhance the security, Ascon employs stronger keyed initialization and finalization

steps. There are two variants of Ascon referred to as Ascon-128, and Ascon-128a with

the former being the primary recommendation. These two variants differ in terms of the

rate at which data is processed and the number of rounds for processing the data.

The permutation function is made of three transformations called constant-addition,

substitution, and linear diffusion (Algorithm 2). Each of the words xi, ti, yi, zi, and

RC are 64-bit wide. In constant-addition, a round constant is added to the state. The

substitution layer applies 64 parallel 5x5 S-boxes to the state. This layer can also be

implemented using a bit-slice approach. Algorithm 2 shows the operations involved in the

bit-slice implementation. For ease of understanding, we divide the substitution layer into

four stages a, b, c, and d. The final step is linear diffusion which provides diffusion within

each of the five words of the state. Diffusion is achieved by using right circular shifts and

an XOR operations.

Algorithm 2 Ascon Round Function

Input: (x0, x1, x2, x3, x4,RC)
Output: (x0, x1, x2, x3, x4)

1: Constant-addition
x2=x2 ⊕ RC

2: Substitution layer
a) t0 = x0 ⊕ x4; t1 = x1; t2 = x2 ⊕ x1; t3 = x3; t4 = x4 ⊕ x3;

b) y0 = t0 · t1; y1 = t1 · t2; y2 = t2 · t3; y3 = t3 · t4;
y4 = t4 · t0;

c) z0 = t0 ⊕ y1; z1 = t1 ⊕ y2; z2 = t2 ⊕ y3; z3 = t3 ⊕ y4;
z4 = t4 ⊕ y0;

d) x0 = z0 ⊕ z4; x1 = z1 ⊕ z0; x2 = z2; x3 = z3 ⊕ z2; x4 = z4;

3: Linear diffusion layer
x0=x0 ⊕ (x0 ≫ 19) ⊕ (x0 ≫ 28);
x1=x1 ⊕ (x1 ≫ 61) ⊕ (x1 ≫ 39);
x2=x2 ⊕ (x2 ≫ 1) ⊕ (x2 ≫ 6);
x3=x3 ⊕ (x3 ≫ 10) ⊕ (x3 ≫ 17);
x4=x4 ⊕ (x4 ≫ 7) ⊕ (x4 ≫ 41);

53

Table 7.1: Comparison of Ketje and Ascon Parameters

Cipher Variant
Key size Nonce size Tag size Rate State

(bits) (bits) (bits) (bits) (bits)

Ketje

Ketje-Jr |K| 182-|K| 128 16 200
Ketje-Sr |K| 382-|K| 128 32 400
Ketje-Minor |K| 782-|K| 128 64 800
Ketje-Major |K| 1582-|K| 128 128 1600

Ascon
Ascon-128 128 128 128 64 320
Ascon-128a 128 128 128 128 320

|K| →length of Key

Ascon’s Duplex construction has four stages. In the first stage, the state is initialized

with IV, key (K) and nonce (N). The state is updated by iterating the round function 12

times. Then the state gets XORed with 0∗||K which concludes the first stage. The second

stage involves processing of AD where for each block of AD, the round function is repeated

6 times for Ascon-128 and 8 times for Ascon-128a. After processing the last block of AD,

the state is XORed with 0∗||1. Similarly, the plaintext or ciphertext gets processed in the

next stage without the last XOR operation on the state. The last step is finalization which

starts with an XOR of the state with K||0∗ followed by 12 round operations and finally an

XOR with the key to generate the tag.

Various parameters for each variant of Ketje and Ascon are shown in Table 7.1.

7.3 Lightweight Designs

7.3.1 Design Decisions

The widths of the datapaths are chosen such that they equal the word size of their respective

functions i.e., 16 for Ketje-Sr and 64 for Ascon. The sizes of key, IV, and tag are fixed

to 128-bits. We assume that key is changed rarely in case of lightweight applications.

Therefore, the original key is preserved and only changed during key update operation. All

our lightweight designs were developed with Xilinx Spartan-6 as the target device. This

54

allows us to leverage the architectural features of these FGPAs. Some of their 6-input

Look Up Tables (LUTs) can be used as memory units referred to as Distributed RAMs

(DRAMs) or as shift registers (SRLC32Es) [57]. We use DRAMs to store state, key, and

constants. We take a hybrid approach for the design of the controllers i.e., a combination

of traditional Finite State Machines (FSMs) using flip-flops and combinational logic and

ROM-based FSMs using RAMs. Using RAMs for implementations of FSMs are found to

be more efficient compared to the traditional approach [16], [13], [14]. Round operations

typically repeat a short sequence of operations. Therefore, the control signals for round

operations can easily be generated using a ROM-based FSM. No embedded resources such

as block RAMs, DSP units etc, are used as they mask the true cost of implementing the

designs. Additionally using these resources might cause a degradation in performance [45].

Furthermore, this allows porting of our designs to ASIC, however RAM cells would have to

be used for the controller.

7.3.2 Lightweight Ketje-Sr

Two versions of Ketje-Sr were developed, one using the CAESAR API lightweight de-

velopment package and one where we integrated the functionality of the pre- and post-

processors in the controller of the cipher-core. Both designs use the same datapath architec-

ture. The 16-bit datapath of Ketje-Sr is shown in Fig 7.4. A dual-port memory (RAM)

with Port-A being read/write and Port-B ready-only is used to store the 400-bit state.

The key is stored in two memory units with Most Significant Bytes (MSB) in RAMK1,

and Least Significant Bytes (LSB) in RAMK2. Since key and IV are of fixed sizes, the

KeyPack function can be implemented using pre-stored values in RAMK1, and RAMK2,

and by rearranging key bytes using register (reg-K). This approach allows us to implement

the KeyPack functionality with minimal cost in terms of area. Padding for message and

AD are realized using three 8-bit wide 4-to-1 multiplexers.

The state memory is initialized using the output of RAMK1, RAMK2, IV and by ap-

plying the round function on the state for 12 rounds. The first step θ, involves computation

55

Keypack

<<<1

Port−B

Port−A

RAM

Rho

16

RAMK2
(LSB)

8

15

RAMK1
(MSB)

0

7 reg−K

15

8

7

0

Padding

reg−Arcon
16

16

16

sdi_data

pdi_data

do_data

Figure 7.4: Ketje-Sr datapath

of the temporary state variables C0, . . . C4, and D0, . . . D4. First, the five state variables

of C are computed and stored in state memory. Using the stored five C variables, the five

D variables are obtained and saved in state memory. In order to preserve space, some of

the C variables’ address locations are reused for storing D variables. The last operation in

the θ step is the state matrix update using D. This operation is merged with the ρ and π

steps. The rotations in ρ are performed using a variable rotator. In the χ step, each word

of the state matrix is is a function of three other words. As the state memory has only two

read-ports, it takes multiple clock cycles to update each word. Finally, a round constant is

XORed with first word of the state. This operation is combined with the χ step by using

register reg-A and the rcon module. Hence, no additional clock cycles are needed for this

step. In total, each round operation requires 160 clock cycles. The additional operation

introduced as the round 3 tweak is a twisted permutation which is not considered in our

current designs. The datapath can support this additional operation without any changes

as it can be accomplished through addressing. Therefore, only the controller needs to be

modified. We believe that this does not alter the outcome of the current study. Hence no

changes were made to the designs to include this tweak.

56

31

0
63

32

32

Padding

31

0 RAMK

63

32

R1

32

32

64

32

32

pdi_data

sdi_data

LDiff

63

1
0

00

0

63

8

rcon7

0

do_data

64

1

0

0

64

Port−B

Port−A

RAM

Figure 7.5: Ascon datapath

7.3.3 Lightweight Ascon

We developed architectures for both variants of Ascon using the CAESAR API lightweight

development package. The widths of I/O buses are set at 32-bits. As the difference between

Ascon-128, and Ascon-128a lies in the number of rounds and rate at which data is

processed, they both have the same architecture for the datapath with a small exception in

the round constant generation and initialization value. The controller required only a few

minor changes.

The 64-bit datapath of Ascon is shown in Fig 7.5. The size of the nonce is fixed to 128

bits. A single-port memory (RAMK) is used to store the key along with state initialization

constants. This removes the need for separate storage for these constants. Depending on

the Ascon variant, the initialization constants in (RAMK) are adjusted accordingly. The

padding for message and AD is accomplished using four 4-to-1 8-bit multiplexers. The

320-bit state is stored in a 64 x 10 dual-port memory with Port-A as read/write and Port-B

57

as read-only port. Ascon uses twelve 64-bit round constants. Except for the last byte,

all other bytes are zero for each of these round constants. Assuming each of these last

bytes are concatenation of two nibbles, all round constants can be generated by using two

4-bit registers, a 4-bit adder and a 4-bit subtractor. Different initial values for these 4-bit

registers are used depending on the variant. The constant-round operation is combined

with the substitution layer operation. Therefore no additional clock cycles are required for

this operation.

The substitution layer is implemented using a bit-slice approach which is more efficient

when the state is stored word-wise in a memory. Even though there are only eighteen

operations involved, it takes 33 clock cycles due to contention on data ports of the state

memory. The number of clock cycles can be reduced by adding additional storage units.

The rotations in the linear diffusion step are implemented using two 5-to-1 multiplexers

located inside the functional block LDiff.

The key is initially loaded into the memory (RAMK) and then into the state memory.

The 32-bit register R1 acts as a buffer for the expansion of from the 32-bit input to the 64-bit

datapath. Once the nonce N is loaded into the state memory, the round function is applied

on the state 12 times for initialization. It takes 38 clock cycles for each round operation.

The majority of the clock cycles in the round are due to the bit-slice implementation of

the substitution layer. Apart from the clock cycles for round operations, five additional

clock cycles are needed to perform the final XOR with the key to complete initialization.

Similarly, five additional clock cycles are needed in the finalization as the state is XORed

with K||0∗. The final XOR with K is performed during the generation of the tag. Hence

no additional clock cycles are required.

7.4 Results

All the designs were implemented on a Xilinx Spartan-6 FPGA and optimized using the

Automated Tool for Hardware EvaluatioN (ATHENa) [58]. All reported results were ob-

tained after place-and-route. The primary optimization criteria is set to area with highest

58

Table 7.2: Area overhead High-Speed (HS) vs. LightWeight (LW) packages

Design Top-level Slices LUTs Filp-flops

AEAD1 231 684 268
LW Ascon

CipherCore 196 606 212

Overhead 35 78 56

AEAD2 416 1282 792
HS Ascon [59]

CipherCore 379 1033 529

Overhead 37 249 263

1 ⇒ CAESAR LW Package; 2 ⇒ CAESAR HS Package

throughput to area ratio as the secondary optimization. We refer to block size as the rate at

which plaintext, ciphertext, or AD are processed. For simplicity, we refer to the lightweight

development package of the CAESAR hardware API as CAESAR LW package and for high-

speed as CAESAR HS package. Table 7.2 shows the overheads for CAESAR LW package

and CAESAR HS package. Table 7.3, contains results for all our implementations (in bold)

as well as other lightweight implementation of CAESAR candidates available in the current

literature [59].

The CAESAR LW package is worthwhile to consider if it satisfies two cases:

• Case 1: Smaller area foot print than CAESAR HS package.

• Case 2: Small overhead compared to an integrated controller for CAESAR API sup-

port.

Case 1: CAESAR LW vs HS packages: We evaluate this case by comparing our

lightweight Ascon implementation with the high speed Ascon1 implementation as both

have the same I/O bus widths w = 32 but are using different CAESAR packages. To

determine the area foot print, we implemented the designs with and without CAESAR API

support. Using these results, we calculate the overhead for the corresponding packages as

shown in Table 7.2. The overhead for using the CAESAR LW package on a lightweight

design compared to the overhead of using the CAESAR HS package on a high speed design

1VHDL is available at https://cryptography.gmu.edu/athena/index.php?id=CAESAR

59

https://cryptography.gmu.edu/athena/index.php?id=CAESAR

Slices LUTs FFs
0

50

100

150

200

250

300

Case Study 1

LW Overhead

HS Overhead

Figure 7.6: Comparison of CAESAR LW vs HS package overheads

is about 6% in terms of slices and about 69% in terms of LUTs and 78% for flip-flops

(Figure 7.6). The required number of slices for high-speed is lower than expected based on

the large number of LUTs and flip-flops. This may be due to higher slice utilization (i.e.,

more LUTs of the slices are used) and some merging of the logic for high-speed API with

the cipher core. The higher count of flip-flops used in the high-speed design is due to the

additional storage required for expansion of input data to the corresponding block sizes in

the preprocessor which is not done in CAESAR LW. Considering the utilization of all three

resources, we can clearly state that the CAESAR LW package has a smaller area foot print

compared to the CAESAR HS package.

Case 2: Integrated vs CAESAR LW package APIs: In order to assess this case,

we consider our two lightweight Ketje-Sr implementations, one using an integrated con-

troller and the other using the CAESAR LW package. In the first section of the Table 7.3,

we calculate the overhead involved due to usage of the CAESAR LW package. As expected,

there is a penalty for using the CAESAR LW package because some functionality for sup-

porting the CAESAR API can be absorbed into the cipher controller. However, the overhead

in terms of resource utilization (slices:15, LUTs:14, flip-flops:16) is very small which can be

60

Table 7.3: Implementation Results on Xilinx Spartan-6 FPGA

Design S
ta

te
S

iz
e

(b
it

s)

B
lo

ck
S

iz
e

(b
it

s)

K
ey

S
iz

e
(b

it
s)

S
li

ce
s

L
U

T
s

F
li

p
-F

lo
p

s

F
re

q
u

en
cy

(M
H

z)

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

T
h

ro
u

gh
p

u
t/

A
re

a
(M

b
p

s/
sl

ic
e)

KETJE-SR1 400 32 128 140 436 98 122.4 24.48 0.17
KETJE-SR2 400 32 128 155 450 114 120.1 24.03 0.16

Overhead 15 14 16

ASCON-1282 320 64 128 231 684 268 216.0 60.10 0.26
ASCON-128a2 320 128 128 231 684 268 216.0 119.16 0.52
Joltik [59]3 64 64 64 168 534 381 200.0 426.67 2.54
ACORN [59]4 293 8 128 202 540 383 231.6 1,852.80 9.17

1 ⇒ Dedicated CAESAR API; 2 ⇒ CAESAR LW Package; 3 ⇒ Not compliant to CAESAR API; 4 ⇒
Tweaked CAESAR HS Package

seen in Figure 7.7. For simplicity, separate counters are used for sdi and pdi buses in the

PreProcessor of the CAESAR LW package. Therefore, using only a single counter for both

buses could reduce the area overhead. When we consider the performance of these designs,

there is only a 2% difference for throughput and a 6% difference for throughput by area

ratio. These difference may vary with the cipher being considered.

Based on these two case studies,we believe it is worthwhile to use the CAESAR LW

package in development of lightweight hardware designs to be compliant with CAESAR

hardware API.

Since no other lightweight implementations of Ketje-Sr and Ascon exist in the cur-

rent literature, we compare our implementations between each other and with lightweight

implementations of other CAESAR candidates. Ascon-128a clearly out performs both

Ketje-Sr designs by about 5 times for throughput and about 3 times in terms of through-

put to area ratio. The Ketje-Sr designs can be improved further by adding additional

storage units as its design is much smaller than Ascon-128a.

Joltik [59] and ACORN [59] are two lightweight implementations of CAESAR candidates

available in the literature. Joltik [59] has a much better throughput than our designs. We

61

Slices LUTs FFs
0

50
100
150
200
250
300
350
400
450
500

Case Study 2

Integrated

LW Package

Figure 7.7: Comparison of integrated vs CAESAR LW package

believe this is due its smaller key size (64-bit) and its non-compliance with the CAESAR

hardware API which adds additional cost. Furthermore, the design uses a custom I/O

giving it an additional advantage. Another lightweight design is ACORN [59] which is

based on a stream cipher. Lightweight implementations of authenticated ciphers which are

based on stream ciphers achieve a very high throughput even comparable to that of high

speed designs. But they have high latency for initialization which is not considered in the

calculation of throughput and throughput/area ratio.

7.5 Conclusions

We justify the benefits of using the lightweight development package of the CAESAR hard-

ware API with two case studies. As a part of these case studies, we developed the first

lightweight FPGA implementations of Ketje-Sr, Ascon-128, Ascon-128a. Using As-

con as test case, we have shown that the CAESAR LW package has a very low area foot print

and is about 69% smaller in terms of LUTs and 78% flip-flops compared to the CAESAR

HS package. Furthermore, using Ketje-Sr with an integrated controller and Ketje-Sr

with the CAESAR LW package, we demonstrate that the overhead of the CAESAR LW

62

package is negligible. We conclude that using the CAESAR LW package eases the burden

of making a cipher compliant with the CAESAR API.

63

Chapter 8: Comparison of Multi-Purpose Cores of Keccak

and AES

Cryptographic algorithms are used to provide authentication, integrity, confidentiality, and

non-repudiation services required by security protocols such as IPSec [60], SSL [61] and

TLS [62]. As no single cryptographic algorithm can provide all these services, a combination

of algorithms is used. Furthermore, these protocols rely on pseudo random numbers for

secret keys and nonces. Several of these services could be provided by a single secret key

algorithm such as AES [44] through application of several modes of operation. This would

be beneficial as fewer resources are required to implement one algorithm that can provide

several cryptographic services than to implement many different algorithms.

While AES is a natural choice for an all-in-one implementation due to its popularity,

Keccak [63], specifically Keccak’s f-permutation, is also a very interesting option. Keccak is

the winner of the competition for the next Secure Hash Algorithm (SHA-3). Its predecessors,

SHA-1 and SHA-2 are being used widely. As a result, Keccak is very likely to be adopted

by the general public. Its versatile f-permutation [64] allows it to operate in multiple modes

to support various cryptographic services needs. Furthermore, the Keccak f-function is also

the basis of two candidates of the cryptographic Competition for Authenticated Encryption:

Security, Applicability, and Robustness (CAESAR) namely Ketje and Keyak. Keccak has

been shown to perform very well in hardware [65], [32], [66], [67] and [68].

As a result, we want to investigate cryptographic cores that can provide the following

services: Integrity is provided through a Hash Function which takes a variable-length

input message M and produces a fixed length output which is called hash H. The length

of the message is denoted by |M |. Authentication and integrity can be provided by a

Message Authentication Code (MAC). It takes the same inputs as a hash function and

64

additionally a secret key K. The output of the MAC is an authentication tag T .

Confidentiality, integrity, and authentication can simultaneously be provided by Au-

thenticated Encryption (AE). AE schemes have the same inputs as MACs and generate,

in addition to the authentication tag T , the encrypted message called cipher text C. Securely

combining confidentiality and authentication using two separate algorithms has shown to

be non trivial. Hence, it is advantageous to use a single algorithm that can provide both.

Furthermore, several AE schemes also support to provide only authentication to other data

that is associated with the message which requires integrity. Such a scheme is called Au-

thenticated Encryption with Associated Data (AEAD) and its additional authenticated

data input is AD. Some cryptographic algorithms require an initialization vector IV as an

additional input. PRNG uses a random seed S as input and generates a random string R.

PRNG AEAD

Hash MAC

Primitive

AES/Keccak

Figure 8.1: Various cryptographic services using same cryptographic primitive

8.1 Background

8.1.1 AES

Different modes of operation have to be used for AES to function as a Hash, MAC, AEAD,

and PRNG. We chose AES-Hash [69] as our hashing mode which has been proposed to

NIST as a mode of operation. It is a variant of Davies-Meyer [70] and uses Rijndael

65

with a block size of 256-bit and a 256-bit key. The Cipher based Message Authentication

Code (CMAC) [71] is a NIST recommended mode of operation for authentication and

is equivalent to OMAC1, a variation of One-Key CBC-MAC (OMAC). For AE schemes,

NIST recommends Galois/Counter Mode (GCM) [48]. Fortuna [72] was developed as a

cryptographically secure PRNG mode. Table 8.1 shows the parameters for each mode of

AES.

Table 8.1: AES / Rijndael* Modes (Rd. = Number of rounds)

Operation Mode Block Key Rd. Inputs Outputs

Hash* AES-Hash 256 N/A 14 |M |, M H
MAC CMAC 128 128 10 |M |, M , K, IV T
AEAD GCM 128 128 10 |M |, M , K, IV , T , C

|AD|,AD
PRNG Fortuna 128 N/A 14 S R

Table 8.2: Keccak Modes (Rd. = Number of rounds)

Operation Mode Block Key Rd. ρ Inputs Outputs

Hash Sponge 1600 N/A 24 1088 |M |, M H
MAC Sponge 1600 128 24 1088 |M |, M , K, IV T
AEAD Duplex 1600 128 12 1344 |M |, M , K, IV , T , C

|AD|,AD
PRNG Duplex 1600 N/A 12 1344 S R

8.1.2 Keccak

Keccak [64] is a family of cryptographic hash function which maps a variable-length input

to variable-length output using a fixed length permutation called f -permutation. The f -

permutation operates on b = r + c bits, where b, r, and c, are called width, bit-rate

66

and capacity respectively. All the cryptographic services we presented in this paper for

Keccak are based on two underlying constructions. The first construction is called Sponge

construction where a variable length input is mapped to a fixed length output. The second

mode is called Duplex construction which allows alternation of inputs and outputs at the

same bit rate. Table 8.2 shows the parameters for each mode of Keccak we explore in this

paper.

The functions Hash and MAC are built using the sponge construction. The message M

is padded such that it is a multiple of the block size (r). In MAC mode, Key and IV are

processed as if they are normal blocks of a message. With the state after processing Key

and IV as the initial state, the message is hashed to produce MAC as the final result.

The modes PRNG and AEAD are built using the Duplex construction. In PRNG mode,

a nonce is used as an initial seed. Pseduo random bits are generated after the processing

of the initial seed. The maximum number of pseudo random bits that can be produced is

limited by the bit rate (r). When more random bits are needed, more calls to the f -function

must be made with an empty block as input. The AE mode is based on the DuplexWrap

construction which, in turn is built on top of the Duplex construction for encryption. One

could also call this mode of operation stream cipher mode as it generates the key stream for

encrypting the data. The key stream (Z0) is produced after processing Key and IV. The

key stream is XORed with a message to produce the cipher text. Also, the message serves

as the input to the state for generating the subsequent key stream bits Z1, Z2,...Zn−1. This

process is repeated until the last block of the message. The output after processing the last

block is called Tag.

8.1.3 Padding

Most of the modern cryptographic hash functions split a message into blocks of fixed size

for processing. Usually messages are not a multiple of the block size. Hence additional bits

are appended. This process is called padding. Keccak’s Sponge and Duplex construction

pad data differently. In Sponge construction, only the last block of message is padded. In

67

ffff

Z 1Z 0

ff

0

0r

c

f

Z
n−1

C 0 C 1 Cn−1

PMK PMK PMKPMK PMK

KeyPack||IV||AD ||E
0

AD ||0 AD ||1n−1

M ||30 1
M ||3 M ||1n−1

f

T
1

Figure 8.2: Authenticated Encryption Mode in Keccak

ffff

Z 1Z 0

ff

0

0r

c

f

padpad

C 0 C 1 Cn−1M0 M1
Mn−1

pad
Z

n−1

0
P (KeyPack||IV||AD ||P)
MK FK

Tag

f

p(AD ||Pad)
1 AE

p(AD ||Pad)n−1 AE

Figure 8.3: Authenticated Decryption mode in Keccak

Duplex construction, additionally to the Sponge padding, each block < r and is padded

to reach r. As a result, while the same rate (r) is used for both constructions, the data

being encrypted/hashed by them is consumed at a slightly different speed. As a result, to

simplify the design, we assume that all input data must be a multiple of a byte. For more

details about padding, we refer to [63], and [73].

8.2 Design Decisions

We designed low-area (LA) architecture for each Keccak and AES. These two architectures

support all modes for Hash, MAC, AEAD, and PRNG. Analyzing the results of these

implementations led us to additionally designing two dedicated implementations of each

Keyak and AES-GCM. The datapath width of the LA architecture for AES is 32 bits

as this is the width of the largest single operation: MixColumn. For Keccak we used a

datapath width of 64 bits which is the width of a word in Keccak. All architectures have

68

the secondary design goal of high throughput to area ratio. We assume that all input

data must be a multiple of a byte. Padding of messages is performed in hardware. Input

data is assumed to be zero padded if not a multiple of the I/O width. For more details

about padding, we refer to [63], and [73]. Keccak-r is chosen to be 1088-bit, which is the

recommended bit rate that would provide the same level of security as SHA-256. To keep

the design simple, the size of key, IV and seed are fixed to 128 bits.We consider that 128-bit

key and IV provide adequate security margin. The interface used is based on [46] and [47].

The data input (DI) and outputs (D0) are designed to operate with FIFOs. The width of

these interfaces w is set to 16-bit

8.3 Low Area Architecture of AES

The LA AES datapath has two dual-port 32-bit wide RAMs with dedicated read and write

ports which are used to store various inputs and state variables. These RAMs are actually

a combination of four 8-bit wide RAMs which allows splitting of 32-bit words into four

individual bytes. This way of storing the state allows to perform the shift-row operation by

addressing. It takes four clock cycles to perform one round of AES. In case of AES-Hash,

it takes eight clock cycles for one-round due to the 256-bit block size. The original key (K),

round key (Krnd), and two subkeys used in AES-CMAC are stored in an additional RAM.

The multiplication in AES-GCM is performed using a 128x2 multiplier and two 128-bit

registers. It takes 64 clock cycles to perform one 128x128 multiplication. The dedicated

AES-GCM design is a reduced version of multi-purpose core without additional hardware

to support other modes.

8.4 Low Area Architecture of Keccak

Two dual-port distributed RAMs with dedicated read and write ports are used to store the

state matrix along with all the other state variables. The state variables C and D in the

θ step of f -function are computed using a register and a couple of multiplexers. It takes

69

0

0
1

2

F

0

1

2

Mul−H

32

0

3

1

2

128

32

32

0

1

2(M, S,IV)

RAM1

RAM2
(A,|A|,|C|,

H,Jo)

0

3

1

2
AES−Rnd

0

1

2

0

1

2

32

Reg

0

16

31

15

di

0

1

do

cnt

0

Key

32

16

others

31

16 15

Figure 8.4: Low area datapath of AES

14 clock cycles to compute the 5 state variables C0 to C4 and 6 clock cycles to compute

other 5 state variables D0 to D4. These 10 state variables are stored in both RAMs as

they are required for both even and odd state words. The π step is performed by means

of addressing the words. The 25 different cyclic rotations in ρ step are performed using

three pipelined 4x1 multiplexers and the χ step using three registers. All together, these

three steps are computed in 39 clock cycles. To conserve resources only 6-bits of each of the

24 round-constants in ι step are stored in memory as the remaining bits are all zeros. No

additional clock cycles are required for ι step. In total it takes 58 clock cycles to perform

one round operation. Through scheduling the operations of two consecutive rounds, the

total clock cycles for 24 round is reduced to 1323 from the expected 1392 clock cycles. An

additional single-port RAM is used to store the Key, Seed and IV. Since the sizes of Key,

Seed and IV are fixed, padding for them requires minimal additional logic. Hence it is

70

0

1

<
<

<
1

0

1

2

SF1

0

3 2 1

R
1RAM1

RAM2

0

3 2 1

SF3

0

3 2 1

SF2

R2

IB

0 1

0

3

1

2
chi

RAM3

0

3

1

2

M4

1

0

0

3

1

2

1

2

3

16
64

0

3 2 1

Min

M1a

others

do

Mout1

Mout

0

M1b

Mcon

80

di

Figure 8.5: Low area datapath of Keccak

included in the core. The dedicated Keyak design is derived from the multi-purpose Keccak

with minimal change.

8.5 Results

All of our results are after place-and-route and were generated using Automated Tool for

Hardware EvaluatioN (ATHENa) [58] with Xilinx ISE 14.7 and Quartus II 13.1. Through-

put (TP) is calculated for long messages i.e the number of clock cycles required for ini-

tialization, preprocessing of Key and IV are assumed to be zero. None of our designs

utilize embedded resources for ease of comparison. Using embedded resources improves

the performance of AES, however it would degrade the performance of Keccak as shown

in a previous study [45]. Some results reported by others, especially the ones from the

71

industry, may include them as not all information is provided. We implemented our designs

on Xilinx Virtex-5, Spartan-6, Virtex-6, Artix-7, and Virtex-7 and Altera Cyclone-IV and

Stratix-IV FPGAs. Detailed results for high-speed implementations on Xilinx Virtex-7 and

for low-area implementations on Xilinx Artix-7 are shown in Table 8.3. All performance

comparisons are made with respect to TP/Area.

Figure 8.6 shows the performance of our multi-Keccak implementations relative to the

multi-AES implementations for all modes of operation on all devices. In almost every case,

the performance of multi-Keccak is much better, up to 14 times, than of multi-AES. In

terms of throughput, this is not surprising as the width of the Keccak datapath in high-

speed designs is 12.5 times wider than AES and 2 times for low-area designs while the

number of rounds is similar. However, this increase in datapath width does not come

with an increase in area, leading to much better TP/Area results. This is due to the fact

that AES modes of operation have vastly different underlying characteristics. As a result,

resource sharing is not possible. On the other hand, the primary difference between Keccak

modes is how the input blocks are formatted. Hence, Keccak requires minimal additional

resources. In case of low-area designs the performance of Keccak in AEAD mode stands

out. The reason is the number of clock cycles required for the AES-GCM multiplier.

Our dedicated implementations of Keyak outperform our AES-GCM implementations

in a similar way as multi-Keccak outperforms multi-AES (Fig. 8.7). For low-area imple-

mentations the relative performance of Keyak is higher than multi-Keccak in AEAD mode.

However, for high-speed designs the opposite is true. That is due to the fact that multi-AES

employs a dual-core AES while AES-GCM has only a single AES core.

Comparison with results from literature, which are on Xilinx Virtex-5, are reported in

Table 8.4. As there are no reported results of a design which can be operated in all the

four modes of operations, we compare our results with designs that utilize block ciphers

operating in a specific mode. When comparing our low-area designs in Hash mode, our

Multi-Keccak performs better than [29] but not against [30]. We believe that the reduction

of performance is due to support for other modes. In case of dedicated modes, our Keyak

72

Table 8.3: Results of AES and Keccak Implementations
Mode Design Area Freq. TP TP/Area

(Slices) (MHz) (Gbps) (Mbps/
Slices)

Xilinx Artix-7 FPGA([74])

Hash
Multi-AES 2852 107.53 1.835 0.643

Multi-Keccak 2299 115.87 5.253 2.285

MAC
Multi-AES 2852 107.53 1.251 0.439

Multi-Keccak 2299 115.87 5.253 2.285

AEAD
Multi-AES 2852 107.53 2.502 0.877

Multi-Keccak 2299 115.87 12.978 5.645

PRNG
AES-PRNG 2852 107.53 1.835 0.643

Multi-Keccak 2299 115.87 12.978 5.645

Dedicated AES-GCM 1425 172.56 2.008 1.409
AEAD Keyak 2173 133.39 14.940 6.875

High-Speed Designs on Xilinx Virtex-7 FPGA ([74])

Hash
Multi-AES 3061 188.18 3.212 1.049

Multi-Keccak 2495 206.70 9.370 3.756

MAC
Multi-AES 3061 188.18 2.190 0.715

Multi-Keccak 2495 206.70 9.370 3.756

AEAD
Multi-AES 3061 188.18 4.380 1.431

Multi-Keccak 2495 206.70 23.150 9.279

PRNG
AES-PRNG 3061 188.18 3.212 1.049

Multi-Keccak 2495 206.70 23.150 9.279

Dedicated AES-GCM 1455 352.98 4.107 2.823
AEAD Keyak 2444 258.40 28.941 11.841

Low-Area Designs on Xilinx Artix-7 FPGA[TW]

Hash
Multi-AES 629 82.83 0.166 0.263

Multi-Keccak 264 152.23 0.125 0.474

MAC
Multi-AES 629 82.83 0.189 0.301

Multi-Keccak 264 152.23 0.119 0.451

AEAD
Multi-AES 629 82.83 0.074 0.117

Multi-Keccak 264 152.23 0.274 1.037

PRNG
Multi-AES 629 82.83 0.379 0.602

Multi-Keccak 264 152.23 0.280 1.060

Dedicated AES-GCM 548 71.09 0.630 0.115
AEAD Keyak 260 177.87 0.136 1.231

Xilinx Virtex-7 FPGA

Hash
Multi-AES 532 169.38 0.339 0.637

Multi-Keccak 267 306.84 0.252 0.945

MAC
Multi-AES 532 169.38 0.387 0.728

Multi-Keccak 267 306.84 0.240 0.899

AEAD
Multi-AES 532 169.38 0.151 0.283

Multi-Keccak 267 306.84 0.438 1.431

PRNG
Multi-AES 532 169.38 0.774 1.455

Multi-Keccak 267 306.84 0.564 2.113

Dedicated AES-GCM 521 153.53 0.136 0.262
AEAD Keyak 272 414.08 0.745 2.739

73

Table 8.4: Comparison of our designs with other implementations on Xilinx Virtex-5 (TW
= This Work)

Mode Design Area Freq. TP TP/Area
(Slices) (MHz) (Gbps) (Mbps/

Slices)

H
ig

h
-S

p
ee

d
Hash

Multi-AES [74] 2871 203.29 3.470 1.208
Multi-Keccak [74] 2805 163.92 7.431 2.649

Keccak[32] 1395 281.84 12.777 9.16

MAC
Multi-AES [74] 2871 203.29 2.366 0.824

Multi-Keccak [74] 2805 163.92 7.431 2.649
GMAC[75] 9405 120.17 15.382 1.636

Dedicated
AEAD

AES-GCM [74] 1089 283.53 3.299 3.030
AES-GCM[76] 678 335.00 2.250 3.319
AES-CCM[77] 490 274.00 1.525 3.112

Grøestl/AES[78] 3102 233.00 3.848 1.240
Keyak [74] 2357 243.96 27.324 11.593

L
ow

-A
re

a

Hash

Multi-AES [TW] 478 131.23 0.262 0.549
Multi-Keccak [TW] 318 257.00 0.211 0.665

Keccak[29] 275 251.25 0.118 0.430
Keccak[30] 393 159.0 0.864 2.198

Dedicated
AEAD

AES-GCM [TW] 351 130.87 0.116 0.331
AES-GCM[76] 247 393.00 0.230 0.931
AES-CCM[77] 214 272.00 0.363 1.696

Keyak [TW] 259 281.29 0.506 1.954

performs better that [76], [77].Unfortunately, our dedicated AES-GCM does not perform as

well as [76] and [77]. However, their implementation details are not known.

8.6 Conclusion

Overall, our Multi-Keccak design has a much better TP/Area than our Multi-AES design

by about a factor of 4 across all functions and FPGAs as can be seen in Fig. 8.6. Also,

the throughput of Keccak exceeds AES’s on most FPGAs. The maximum throughput for

Multi-Keccak AEAD is 23.2 Gbps on Virtex-7 and 28.7 Gbps on Stratix-IV. Multi-AES

in GCM mode achieves 4.4 Gbps and 5.6 Gbps on the same devices respectively. In case

of dedicated cores, the maximum throughput for Keyak and AES-GCM are 28.9 Gbps

and 4.1 Gbps on Virtex-7 respectively. All in all, this clearly shows that Keccak is more

suitable than AES as a basis for multi-service functions.

74

LA HS LA HS LA HS LA HS LA HS LA HS LA HS
Virtex-5 Spartan-6 Virtex-6 Artix-7 Virtex-7 Cyclone-IV Stratix-IV

0

2

4

6

8

10

12

14
Normalized TP/Area

Hash

CMAC

AEAD

PRNG

Device

X
tim

e
s

Figure 8.6: Performance improvement of multi-Keccak over multi-AES for specific modes
of operation

LA HS LA HS LA HS LA HS LA HS LA HS LA HS
Virtex-5 Spartan-6 Virtex-6 Artix-7 Virtex-7 Cyclone-IV Stratix-IV

0

2

4

6

8

10

Normalized TP/Area

Device

X
 ti

m
e

s

Multi-purpose

Dedicated

Figure 8.7: Performance improvement of dedicated and multi- purpose Keccak over corre-
sponding AES cores for AEAD

75

Chapter 9: Lightweight AES IP Core for ASCIs

9.1 AES-LightWeight IP Core Features

The AES-LightWeight IP Core is designed for ASIC technology with small area footprint.

We developed this core using an 8-bit architecture of AES block cipher.

This AES core is developed such that it can perform both encryption and decryption

for all modes specified in Table 9.2. In addition to this, the core also supports two key

lengths 128 and 256 bits. To keep the area foot low, the SubBytes and InvSubBytes are

implemented using combinational logic with some resource sharing. Furthermore, SubBytes

are shared between both for key expansion and encryption/decryption modules. A high level

overview of the IP core is shown in Figure 9.1.

The AES LightWeight IP Core consists of two independent modules: Encryption/Decryption

(EncDec) and Key Expansion (KeyExp). These modules are clearly separated in order to

allow an implementer to trade area for security. For instance, in an area constrained design,

one may want to apply the side-channel countermeasures only to the EncDec module.

Data OutData In

Key

Status

EncDec

KeyExp

Memory

Control

Figure 9.1: Overview of AES LightWeight IP Core

76

9.1.1 Interface and Modes of Operation

3

8

8

8

8

8

8

8

start
mode
key_update

di_valid
di_last

key_valid
key

ram_di

rstnclk

do_ready
do_valid

busy

di_ready

ram_do

key_ready

ram_wr

ram_rd_addr
ram_wr_addr

key_length

di_data
do_data

EncDec

KeyExp

Figure 9.2: The AES LightWeight IP core interface diagram

The AES LightWeight IP core interface diagram is shown in Figure 9.2. External mem-

ories connected to the core are assumed to have a registered output, i.e., output data is

available one clock cycle after a read (di ready) was issued. Signals used to communicate

between external control modules and the AES LightWeight core are shown in Table 9.1.

Input and output ports are shown in blue and red, respectively. Operational codes for the

mode signal are shown in Table 9.2. With the exception of ECB, all other modes require

an IV block. This means that the first block prior to data has to be an IV block.

A standard operation of the core begins with a key expansion operation initiated by

asserting key update and setting the length of the key using key length. The generated

round keys are stored in an external memory, which can be read by the EncDec module.

While the round keys are being generated, the status signal busy is set high to prevents

the AES core from processing any data until all round keys are updated. The status signal

77

Table 9.1: Interface Signals

Group Signal I/O Description

Global
clk in Clock signal
rstn in Asynchronous reset active low

Control

start in Start encryption/decryption
mode in Modes of operation (see Table 9.2)
key update in Update key
key length in Key length (1=256-bit, 0=128-bit)

Status busy out Core busy

Data In

di data in Input data bus
di valid in Input is available
di last in Indicates last byte of input
di ready out Ready to accept input

Data out
do data out Output data bus
do valid out Output is available
do ready in Ready to accept output

Key
key in Key data bus
key valid in Key is available
key ready out Ready to accept key

Memory

ram di in Input data from RAM
ram do out Output data to RAM
ram wr out RAM write enable
ram rd addr out RAM read address
ram wr addr out RAM write address

Table 9.2: Modes of Operation

Opcode/Mode Operation IV

000 ECB-Encryption
No

001 ECB-Decryption

010 CBC-Encryption
Yes

011 CBC-Decryption

100 CFB-Encryption
Yes

101 CFB-decryption

110 CTR Yes

111 OFB Yes

is also set high while the EncDec is processing data, which prevents a key update. This

safeguards keys from being overwritten by new keys while they are in use.

EncDec begins processing with a start signal, and setting the mode of operation (Ta-

ble 9.2) through mode. Depending on the mode of operation, the data is loaded in proper

78

order. For example: In CTR-Encryption mode, IV is loaded initially, followed by plaintext

blocks in order. The end of data (plaintext/ciphertext) is specified by asserting di last high

for the last byte of last block.

9.2 Datapath

sel_mix

8
)
−10

1

1 0 1 0

MIX
−1

MIX

MX X

1

0

0

1

(MX)
−1

X
−1

8

8

8
0

1

8

8

1

0

RA RB RC RD

b

b

sel_mr2

rnd_key

enc_dec

key_data

data

key

dout_rnd

dout_sbox

GF(2

Figure 9.3: 8-bit datapath of AES round

The Figure 9.3 shows the 8-bit datapath of the round operation. The signal key data

allows the sharing of SubBytes resources between key expansion and encryption/decryption

operations. The signal enc dec enables switching between encryption and decrption op-

erations. Since the datapath width is 8-bits which is less than the natural width of AES

79

(32-bit due to Mixcolumn/InvMixColumn), four 8-bit registers (RA, RB, RC, and RD) are

needed for MixColumn/InvMixcolumn operations.

The state is stored using sixteen 8-bit registers (R1 to R15) as shown in Figure 9.4 These

registers are grouped into four and within each group they are connected in shift register

configuration where the data from one register is feed into next one. This arrangement is

considered due to the shift row operation of AES and to reduce the size of output multi-

plexer. Similarly for IV, we use the same construction but with an 8-bit adder for counter

mode as shown in Figure 9.5.

sel_mbyte

dout_rnd

sel_mrc

sel_mrd

sel_mrb

sel_mra

dout_state

din

R9

R10

R11

R5

R6

R7 R3

R2

R1
0

3

1

2

8

8

8

0 1 2

0 1 2

0 1 2

R12 R8 R4 R0

0 1 2

R13

R14

R15

Figure 9.4: AES state using sixteen 8-bit registers

80

sel_mrc

sel_mrd

sel_mrb

sel_mra

din

sel_mbyte

dout_iv

sel_madd

R5

R6

R7 R3

R2

R1

8

7

0

8

8

RCout

1 0

8

2

2

2

1

2

2

2

9

1

0

3

1

0 1 2

0 1 2

0 1 2

R12 R8 R4 R0

0 1 2

R13

R14

R15

R9

R10

R11

Figure 9.5: Storing IV using sixteen 8-bit registers

9.3 Design Performance

9.3.1 Latency

The latencies of AES encryption and decryption operations are based on the minimum

number of clock cycles required to compute a single AES data block. The Table 9.3 lists

the formulae for calculating the latencies of different operations supported by our design for

processing N blocks. The latencies of Key Expansion are based on the minimum number of

clock cycles required between the rising edge of key update and the falling edge of the busy

output.

81

Table 9.3: Operational Latency
Key length 128-bit 256-bit

Key Expansion 321 417

AES Encryption Decryption Encryption Decryption

ECB 339·N 348·N 467·N 480·N
CBC 17 + 339·N 17 + 348·N 17 + 467·N 17 + 480·N
CFB 17 + 323·N 17 + 323·N 17 + 451·N 17 + 451·N
CTR 17 + 323·N 17 + 323·N 17 + 451·N 17 + 451·N

MODE

OFB 17 + 323·N 17 + 323·N 17 + 451·N 17 + 451·N

9.4 Implementation Results

Our design is synthesized using Synopsys Design Vision and SAED 90nm library. We mea-

sure the area in terms of Gate Equivalents (GE) and throughput at maximum frequency

(fMax). The results for our ASIC implementation are summarized in the Table 9.4 for

each mode and key sizes. The area foot print of the design is 6,952 GEs with a maxi-

mum frequency of 309.60 MHz. The highest throughput of 12.269 Mbps is observed for

CTR/CFB/OFB modes with 128-bit key for encryption and lowest in case of ECB/CBC

mode with 256-bit key for decryption. This is expected as decryption take more clock cycles

than encryption and with 256-key you have more rounds.

For comparisons, we only considered cores which supports all five modes same as our

IP Core. [79] is one such core implemented on 65nm technology. This core consumes about

6000 GEs and achieves throughput of 0.58 Mbps and 0.43 Mbps with 1 MHz clock for 128-

bit key and 256-bit key sizes. Our core achieves a throughput of 0.38 Mbps at 1 MHz which

is less than [79]. Since [79] is a commercial core, it may be highly optimized for that specific

ASIC technology. Ours is more generalized and the results are from older technology.

82

Table 9.4: Implementation results using SAED 90nm ASIC library

Enc/Dec Key size mode Latency GE Fmax Mbps Kbps/GE

E
n

cr
y
p

ti
on

128

ECB 339 6952 309.60 11.690 1.682
CBC 339 6952 309.60 11.690 1.682
CFB 323 6952 309.60 12.269 1.765
CTR 323 6952 309.60 12.269 1.765
OFB 323 6952 309.60 12.269 1.765

256

ECB 467 6952 309.60 8.486 1.221
CBC 467 6952 309.60 8.486 1.221
CFB 451 6952 309.60 8.787 1.264
CTR 451 6952 309.60 8.787 1.264
OFB 451 6952 309.60 8.787 1.264

D
ec

ry
p

ti
on

128

ECB 348 6952 309.60 11.387 1.638
CBC 348 6952 309.60 11.387 1.638
CFB 323 6952 309.60 12.269 1.765
CTR 323 6952 309.60 12.269 1.765
OFB 323 6952 309.60 12.269 1.765

256

ECB 480 6952 309.60 8.256 1.188
CBC 480 6952 309.60 8.256 1.188
CFB 451 6952 309.60 8.787 1.264
CTR 451 6952 309.60 8.787 1.264
OFB 451 6952 309.60 8.787 1.264

83

Chapter 10: Conclusion and Future Work

In this dissertation, we made efforts to reduce the complexity and time in designing lightweight

architectures. We present a generalized methodology for developing lightweight architec-

tures which helps in making various design choices such as interface, width of datapath,

choice of processing elements etc. We developed a tool for optimizing control logic using

memories and evaluate their effectiveness using AES and Keccak core.

Furthermore, using proposed methodology and optimization techniques, we present

lightweight architectures of AES with three different datapath widths, SHA-256, Ketje-Sr,

Ascon-128, Ascon-128a. Multiple cryptographic services built on the same cryptographic

primitives is attractive for resource constraints devices. We investigated this with AES and

Keccak as the underlying primitive.

We developed lightweight CAESAR hardware LWAPI package for lightweight applica-

tion and show its benefits using Ketje-Sr and Ascon. Furthermore, we also developed

lightweight architecture of AES targeted for ASICs which supports block cipher modes

ECB, CBC, CFB, CTR, and OFB for 128 and 256-bit key lengths.

For future work, we want to extend our control logic optimization tool for asymmetric

cryptographic algorithms and for non cryptographic algorithms. Power and energy are two

important metrics for evaluation of lightweight designs. We would like to analyzing our

lightweight architecture with respect to power and energy. Exploring various side channel

protection techniques for lightweight architectures would be another good extension of this

work.

84

Bibliography

[1] A. Bogdanov, L. Knudsen, G. Leander, C. Paar, A. Poschmann, M. Robshaw,
Y. Seurin, and C. Vikkelsoe, “PRESENT: An ultra-lightweight block cipher,” in Cryp-
tographic Hardware and Embedded Systems–CHES 2007, ser. Lecture Notes in Com-
puter Science (LNCS), vol. 4727. Springer, 2007, pp. 450–466.

[2] D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B.-S. Koo, C. Lee, D. Chang, J. Lee,
K. Jeong, H. Kim, J. Kim, and S. Chee, “HIGHT: A new block cipher suitable for
low-resource device,” in CHES 2006, ser. LNCS, L. Goubin and M. Matsui, Eds., vol.
4249. Springer, 2006, pp. 46–59.

[3] D. Wheeler and R. Needham, “TEA extensions,” Cambridge University, England, Tech.
Rep., Oct 1997.

[4] S. Ojha, N. Kumar, K. Jain, and Sangeeta, “TWIS:a lightweight block cipher,” in
Information Systems Security, ser. Lecture Notes in Computer Science, A. Prakash
and I. Sen Gupta, Eds. Springer Berlin / Heidelberg, 2009, pp. 280–291.

[5] Data Encryption Standard (DES), National Institute of Stan-
dards and Technology (NIST), FIPS Publication 46-3, Oct 1999,
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf.

[6] M. Izadi, B. Sadeghiyan, S. Sadeghian, and H. Khanooki, “MIBS: A new lightweight
block cipher,” in Cryptology and Network Security, ser. Lecture Notes in Computer
Science, J. Garay, A. Miyaji, and A. Otsuka, Eds., vol. 5888. Springer Berlin /
Heidelberg, 2009, pp. 334–348.

[7] “sourcetech411,” http://sourcetech411.com/2013/04/top-fpga-companies-for-2013/,
accessed:01-05-2015.

[8] “Microsemi,” http://www.microsemi.com/products/fpga-soc/low-power, accessed:01-
05-2015.

[9] L. Shang, A. S. Kaviani, and K. Bathala, “Dynamic power consumption
in virtex™-ii fpga family,” in Proceedings of the 2002 ACM/SIGDA
Tenth International Symposium on Field-programmable Gate Arrays, ser. FPGA
’02. New York, NY, USA: ACM, 2002, pp. 157–164. [Online]. Available:
http://doi.acm.org/10.1145/503048.503072

[10] A. Amara, F. Amiel, and T. Ea, “FPGA vs. ASIC for low power applications,” Micro-
electronics Journal, vol. 37, no. 8, pp. 669–677, 2006.

85

http://sourcetech411.com/2013/04/top-fpga-companies-for-2013/
http://www.microsemi.com/products/fpga-soc/low-power
http://doi.acm.org/10.1145/503048.503072

[11] G. H. Mealy, “A method for synthesizing sequential circuits,” Bell System Technical
Journal, The, vol. 34, no. 5, pp. 1045–1079, Sept 1955.

[12] E. F. Moore, “Gedanken-experiments on sequential machines,” in Automata Studies,
C. Shannon and J. McCarthy, Eds. Princeton, NJ: Princeton University Press, 1956,
pp. 129–153.

[13] M. Rawski, H. Selvaraj, and T. Luba, “An application of functional decomposition in
ROM-based FSM implementation in FPGA devices,” J. Syst. Archit., vol. 51, no. 6-7,
pp. 424–434, 2005.

[14] V. Skylarov, “Synthesis and implementation of RAM-based finite state machines in
FPGAs,” in Field-Programmable Logic and Applications – FPL’00, ser. LNCS, R. W.
Hartenstein and H. Grünbacher, Eds., vol. 1896. Springer-Verlag, 2000, pp. 718–728.

[15] A. Tiwari and K. A. Tomko, “Saving power by mapping finite-state machines into
embedded memory blocks in FPGAs,” in DATE ’04: Proceedings of the conference on
Design, automation and test in Europe. IEEE Computer Society, 2004, p. 20916.

[16] I. Garćıa-Vargas, R. Senhadji-Navarro, G. Jiménez-Moreno, A. Civit-Balcells, and
P. Guerra-Gutiérrez, “ROM-based finite state machine implementation in low cost
FPGAs,” in International Symposium on Industrial Electronics, ISIE 2007. IEEE,
June 2007, pp. 2342–2347.

[17] J.-P. Kaps, G. Gaubatz, and B. Sunar, “Cryptography on a Speck of Dust,” Computer,
vol. 40, no. 2, pp. 38–44, Feb 2007.

[18] T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann, and L. Uhsadel, “A Survey of
Lightweight-Cryptography Implementations,” IEEE Design & Test of Computers,
vol. 24, no. 6, pp. 522–533, Nov.-Dec. 2007.

[19] M. Kneevi, V. Nikov, and P. Rombouts, “Low-Latency Encryption Is Lightweight
= Light + Wait?” in Cryptographic Hardware and Embedded Systems CHES
2012, ser. Lecture Notes in Computer Science, E. Prouff and P. Schaumont,
Eds. Springer Berlin Heidelberg, 2012, vol. 7428, p. 426446. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-33027-8 25

[20] S. Kerckhof, F. Durvaux, C. Hocquet, D. Bol, and F.-X. Standaert, “Towards green
cryptography: A comparison of lightweight ciphers from the energy viewpoint,” in
Proceedings of the 14th International Conference on Cryptographic Hardware and
Embedded Systems, ser. CHES’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp.
390–407. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-33027-8 23

[21] P. Yalla and J.-P. Kaps, “Compact FPGA implementation of Camellia,” in Field Pro-
grammable Logic and Applications, FPL 2009, M. Daněk, J. Kadlec, and B. Nelson,
Eds. IEEE, Aug. 2009, pp. 658–661.

[22] ——, “Lightweight cryptography for FPGAs,” in International Conference on ReCon-
Figurable Computing and FPGAs – ReConFig’09. IEEE, Dec. 2009, pp. 225–230.

86

http://dx.doi.org/10.1007/978-3-642-33027-8_25
http://dx.doi.org/10.1007/978-3-642-33027-8_23

[23] J.-P. Kaps and B. Sunar, “Energy Comparison of AES and SHA-1 for Ubiquitous
Computing,” in EUC-06, ser. LNCS, vol. 4097. Springer, Aug 2006, pp. 372–381.

[24] T. Good and M. Benaissa, “AES on FPGA from the Fastest to the Smallest.” in CHES
2005, ser. LNCS, J. R. Rao and B. Sunar, Eds., vol. 3659. Springer, 2005, pp. 427–440.

[25] P. Chodowiec and K. Gaj, “Very Compact FPGA Implementation of the AES Algo-
rithm,” in CHES 2003, ser. LNCS, vol. 2779. Springer, Sep. 2003, pp. 319–333.

[26] J.-P. Kaps, “Chai-tea, Cryptographic Hardware Implementations of xTEA,” in IN-
DOCRYPT 2008, ser. LNCS, D. Chowdhury, V. Rijmen, and A. Das, Eds., vol. 5365.
Springer, Dec 2008, pp. 363–375.

[27] D. Hwang et al., “Comparison of FPGA-Targeted Hardware Implementations of eS-
TREAM Stream Cipher Candidates,” in SASC Workshop 2008, ser. , Feb 2008, pp.
151–162.

[28] J.-P. Kaps, P. Yalla, K. K. Surapathi, B. Habib, S. Vadlamudi, S. Gurung, and J. Pham,
“Lightweight implementations of SHA-3 candidates on FPGAs,” in Progress in Cryp-
tology – INDOCRYPT 2011, ser. Lecture Notes in Computer Science (LNCS), D. J.
Bernstein and S. Chatterjee, Eds., vol. 7107. Springer Berlin / Heidelberg, Dec 2011,
pp. 270–289.

[29] J.-P. Kaps, P. Yalla, K. K. Surapathi, B. Habib, S. Vadlamudi, and S. Gurung,
“Lightweight implementations of SHA-3 finalists on FPGAs,” Washington, D.C., Mar
2012, third SHA-3 candidate conference.

[30] B. Jungk and J. Apfelbeck, “Area-efficient FPGA implementations of the SHA-3 final-
ists,” in International Conference on ReConfigurable Computing and FPGAs. IEEE:
ReConfig’11, DEC 2011.

[31] S. Banik, A. Bogdanov, and F. Regazzoni, “Exploring the energy consumption of
lightweight blockciphers in fpga,” 2015 International Conference on ReConFigurable
Computing and FPGAs (ReConFig), pp. 1–6, 2015.

[32] E. Homsirikamol, M. Rogawski, and K. Gaj, “Throughput vs area trade-offs architec-
tures of five round 3 SHA-3 candidates implemented using Xilinx and Altera FPGAs,”
in CHES, ser. LNCS, B. Preneel and T. Takagi, Eds., vol. 6917. Springer, Sep 2011,
pp. 491–506.

[33] Spartan-3 Generation, FPGA User Guide, Ug331 (v1.2) ed., Xilinx, Inc., Apr 2007.

[34] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, and T. Tokita,
“Camellia: A 128-bit block cipher suitable for multiple platforms – design and anal-
ysis,” in Selected Areas in Cryptography, SAC 2000, ser. Lecture Notes in Computer
Science (LNCS), vol. 2012. Springer, 2001, pp. 39–56.

[35] N. Nalla Anandakumar, T. Peyrin, and A. Poschmann, A Very Compact FPGA
Implementation of LED and PHOTON. Cham: Springer International Publishing,
2014, pp. 304–321. [Online]. Available: https://doi.org/10.1007/978-3-319-13039-2 18

87

https://doi.org/10.1007/978-3-319-13039-2_18

[36] B. Calhoun, F. Honore, and A. Chandrakasan, “Design methodology for fine-grained
leakage control in mtcmos,” in Low Power Electronics and Design, 2003. ISLPED ’03.
Proceedings of the 2003 International Symposium on, Aug 2003, pp. 104–109.

[37] A. Gayasen, Y. Tsai, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, and T. Tuan,
“Reducing leakage energy in fpgas using region-constrained placement,” in in Proc.
ACM Intl. Symp. Field-Programmable Gate Arrays, 2004, pp. 51–58.

[38] A. Rahman and V. Polavarapuv, “Evaluation of low-leakage design techniques
for field programmable gate arrays,” in Proceedings of the 2004 ACM/SIGDA
12th International Symposium on Field Programmable Gate Arrays, ser. FPGA
’04. New York, NY, USA: ACM, 2004, pp. 23–30. [Online]. Available:
http://doi.acm.org/10.1145/968280.968285

[39] E. Kusse and J. Rabaey, “Low-energy embedded fpga structures,” in Low Power Elec-
tronics and Design, 1998. Proceedings. 1998 International Symposium on, Aug 1998,
pp. 155–160.

[40] V. George, H. Zhang, and J. Rabaey, “The design of a low energy fpga,” in Low Power
Electronics and Design, 1999. Proceedings. 1999 International Symposium on, Aug
1999, pp. 188–193.

[41] J. Rabaey and M. Pedram, Low Power Design Methodologies, ser. . Norwell, Mas-
sachusetts: Kluwer Academic Publishers, 1996.

[42] N. Grover and M. Soni, “Reduction of power consumption in FPGAs-an overview,”
I.J. Information Engineering and Electronic Business, pp. 50–69, Oct 2012. [Online].
Available: http://www.mecs-press.org/ijieeb/ijieeb-v4-n5/IJIEEB-V4-N5-7.pdf

[43] J. A. Brzozowski and T. Luba, “Decomposition of boolean functions specified by
cubes,” Journal of Multiple-Valued Logic and Soft Computing, Tech. Rep., 1997.

[44] Advanced Encryption Standard (AES), National Institute of Standards and Technol-
ogy (NIST), FIPS Publication 197, Nov 2001, http://csrc.nist.gov/publications/fips/
fips197/fips-197.pdf.

[45] M. U. Sharif, R. Shahid, M. Rogawski, and K. Gaj, “Use of embedded FPGA resources
in implementations of five round three SHA-3 candidates,” ECRYPT II Hash Workshop
2011, May 2011.

[46] Hardware Interface of a Secure Hash Algorithm (SHA), v. 1.4 ed., Cryptographic En-
gineering Research Group, George Mason University, Jan 2010.

[47] K. Gaj, E. Homsirikamol, and M. Rogawski, “Fair and comprehensive methodology
for comparing hardware performance of fourteen round two SHA-3 candidates us-
ing FPGA,” in CHES, ser. LNCS, S. Mangard and F.-X. Standaert, Eds., vol. 6225.
Springer, 2010, pp. 264–278.

[48] M. Dworkin, Recommendation for Block Cipher Modes of Operation: Galois/Counter
Mode (GCM) for Confidentiality and Authentication, NIST, SP 800-38D, Apr 2006,
draft.

88

http://doi.acm.org/10.1145/968280.968285
http://www.mecs-press.org/ijieeb/ijieeb-v4-n5/IJIEEB-V4-N5-7.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[49] E. Homsirikamol, W. Diehl, A. Ferozpuri, F. Farahmand, P. Yalla, J.-P. Kaps, and
K. Gaj, “CAESAR hardware API,” Cryptology ePrint Archive, Report 2016/626, 2016,
http://eprint.iacr.org/2016/626.

[50] “Implementer’s guide to hardware implementations compliant with the CAESAR hard-
ware API version 2.0,” https://cryptography.gmu.edu/athena/CAESAR HW API/
caesar hw devpkg-2.0.zip, accessed: 2017-10-20.

[51] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer, “CAESAR
submission:Ketje v2,” Submission to CAESAR (Round3), September 2016, https://
competitions.cr.yp.to/round3/ketjev2.pdf.

[52] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Keccak reference,”
http://keccak.noekeon.org/Keccak-reference-3.0.pdf, Jan 2011.

[53] SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions, National
Institute of Standards and Technology (NIST), FIPS Publication 202, Aug 2015, http:
//nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf.

[54] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, “Duplexing the sponge: Single-
pass authenticated encryption and other applications,” in SAC, ser. LNCS, vol. 7118.
Springer, 2012, pp. 320–337.

[55] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer, “CAE-
SAR submission:Ketje v1,” Submission to CAESAR (Round2), March 2014, https:
//competitions.cr.yp.to/round1/ketjev1.pdf.

[56] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer, “ASCON v1.2,” Submission
to CAESAR (Round3), September 2016.

[57] Spartan-6 FPGA Configuration User Guide, UG380 (v2.9) ed., Xilinx, Inc., Aug 2016,
https://www.xilinx.com/support/documentation/user guides/ug380.pdf.

[58] K. Gaj, J.-P. Kaps, V. Amirineni, M. Rogawski, E. Homsirikamol, and B. Y. Brewster,
“ATHENa – automated tool for hardware evaluation: Toward fair and comprehensive
benchmarking of cryptographic hardware using FPGAs,” in FPL. IEEE, 2010, pp.
414–421.

[59] “ATHENa database of FPGA results for authenticated ciphers,” https://cryptography.
gmu.edu/athenadb/fpga auth cipher/table view, accessed: 2017-10-20.

[60] S. Frankel, K. Kent, R. Lewkowski, A. D. Oerbaugh, R. W. Ritchey, and S. S. R.,
Guide to IPsec VPNs, NIST, SP 800-77, Dec 2005.

[61] A. Freier, P. Karlton, and P. Kocher, “The secure sockets layer (SSL) protocol,” IETF,
RFC 6101, Aug 2011.

[62] T. Dierks and E. Rescorla, “The transport layer security (TLS) protocol version 1.2,”
Network Working Group, RFC 5246, Aug 2008.

89

http://eprint.iacr.org/2016/626
 https://cryptography.gmu.edu/athena/CAESAR_HW_API/caesar_hw_devpkg-2.0.zip
 https://cryptography.gmu.edu/athena/CAESAR_HW_API/caesar_hw_devpkg-2.0.zip
https://competitions.cr.yp.to/round3/ketjev2.pdf
https://competitions.cr.yp.to/round3/ketjev2.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://competitions.cr.yp.to/round1/ketjev1.pdf
https://competitions.cr.yp.to/round1/ketjev1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug380.pdf
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/table_view
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/table_view

[63] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “The Keccak SHA-
3 submission,” Submission to NIST (Round 3), 2011, http://keccak.noekeon.org/
Keccak-submission-3.pdf.

[64] ——, “Cryptographic sponge function,” http://sponge.noekeon.org/CSF-0.1.pdf, Jan
2011.

[65] F. K. Gürkaynak, K. Gaj, B. Muheim, E. Homsirikamol, C. Keller, M. Rogawski,
H. Kaeslin, and J.-P. Kaps, “Lessons learned from designing a 65nm ASIC for evalu-
ating third round SHA-3 candidates,” Mar 2012, third SHA-3 Candidate Conference.

[66] S. Tillich, M. Feldhofer, M. Kirschbaum, T. Plos, J.-M. Schmidt, and A. Szekely, “High-
speed hardware implementations of BLAKE, Blue Midnight Wish, CubeHash, ECHO,
Fugue, Grøstl, Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-3, SIMD, and Skein,” Cryp-
tology ePrint Archive, Report 2009/510, Nov 2009.

[67] X. Guo, S. Huang, L. Nazhandali, and P. Schaumont, “Fair and comprehensive per-
formance evaluation of 14 second round SHA-3 ASIC implementations,” 2010, second
SHA-3 Candidate Conference.

[68] L. Henzen, P. Gendotti, P. Guillet, E. Pargaetzi, M. Zoller, and F. Gürkaynak, “De-
veloping a hardware evaluation method for SHA-3 candidates,” in CHES, ser. LNCS,
S. Mangard and F.-X. Standaert, Eds., vol. 6225. Springer, 2010, pp. 248–263.

[69] B. Cohen and B. Laurie, AES-Hash, Submission to NIST, May 2001, http://csrc.nist.
gov/groups/ST/toolkit/BCM/documents/proposedmodes/aes-hash/aeshash.pdf.

[70] S. Matyas, C. Meyer, and J. Oseas, “Generating strong one-way functions with cryp-
tographic algorithm,” IBM Tech. Disclosure Bulletin, 5658–5659, Tech. Rep. 27, 1985.

[71] M. Dworkin, Recommendation for Block Cipher Modes of Operation: The CMAC Mode
for Authentication, NIST, Special Publication 800-38B, Mar 2005.

[72] R. McEvoy, J. Curran, P. Cotter, and C. Murphy, “Fortuna:cryptographically secure
pseudo-random number generation in software and hardware,” in Irish Signals and
Systems Conference, 2006 IET, June 2006, pp. 457–462.

[73] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. V. Keer, “Caesar submis-
sion: Keyak v1,” http://competitions.cr.yp.to/round1/keyakv1.pdf, Mar 2014.

[74] P. Yalla, E. Homsirikamol, and J.-P. Kaps, “Comparison of multi-purpose cores of
Keccak and AES,” in Design, Automation Test in Europe DATE 2015. ACM, Mar
2015, pp. 585–588.

[75] Y. Lu, G. Shou, Y. Hu, and Z. Guo, “The research and efficient fpga implementation
of ghash core for gmac,” in E-Business and Information System Security, 2009. EBISS
’09, 2009, pp. 1–5.

[76] AES-GCM Core family for Xilinx FPGA, Helion Technology, Fulbourn, Cam-
bridge CB21 5DQ, England, 2011, http://www.heliontech.com/downloads/aes gcm
8bit xilinx datasheet.pdf.

90

http://keccak.noekeon.org/Keccak-submission-3.pdf
http://keccak.noekeon.org/Keccak-submission-3.pdf
http://sponge.noekeon.org/CSF-0.1.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/aes-hash/aeshash.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/aes-hash/aeshash.pdf
http://competitions.cr.yp.to/round1/keyakv1.pdf
http://www.heliontech.com/downloads/aes_gcm_8bit_xilinx_datasheet.pdf
http://www.heliontech.com/downloads/aes_gcm_8bit_xilinx_datasheet.pdf

[77] AES-CCM Core family for Xilinx FPGA, Helion Technology Limited, Fulbourn, Cam-
bridge CB21 5DQ, England, 2011, http://www.heliontech.com/downloads/Helion PB
- AES-CCM 8-bit FPGA.pdf.

[78] M. Rogawski, “Development and Benchmarking of New Hardware Architectures for
Emerging Cryptographic Transformations,” Ph.D. dissertation, George Mason Univer-
sity, July 2013.

[79] AES IP Core for ASICS, Helion Technology, Fulbourn, Cambridge CB21 5DQ,
England, 2014, http://www.heliontech.com/downloads/Helion PB - AES ASIC.pdf#
view=Fit.

91

http://www.heliontech.com/downloads/Helion_PB_-_AES-CCM_8-bit_FPGA.pdf
http://www.heliontech.com/downloads/Helion_PB_-_AES-CCM_8-bit_FPGA.pdf
http://www.heliontech.com/downloads/Helion_PB_-_AES_ASIC.pdf#view=Fit
http://www.heliontech.com/downloads/Helion_PB_-_AES_ASIC.pdf#view=Fit

Curriculum Vitae

Panasayya Yalla received his Bachelor of Engineering from Andhra University, India in
2006. He graduated with Master of Science in Computer Engineering from George Mason
University, USA, in 2009. During his Master’s and Ph.D studies, he served as a research
assistant developing several lightweight architectures for cryptographic applications. He
also served as teaching assistant for several undergraduate and graduate courses.

Publications:

1. Panasayya Yalla and Jens-Peter Kaps. Compact FPGA implementation of Camellia,
Field Programmable Logic and Applications, FPL 2009. In Martin Daněk, Jíŕı Kadlec,
and Brent Nelson editors, IEEE, pages 658–661, Aug., 2009

2. Panasayya Yalla and Jens-Peter Kaps. Lightweight cryptography for FPGAs, Inter-
national Conference on ReConFigurable Computing and FPGAs ReConFig’09, IEEE,
pages 225–230, Dec., 2009

3. Jens-Peter Kaps, Panasayya Yalla, Kishore Kumar Surapathi, Bilal Habib, Susheel
Vadlamudi, Smriti Gurung, and John Pham. Lightweight implementations of SHA-
3 candidates on FPGAs, Progress in Cryptology INDOCRYPT 2011. In Daniel J.
Bernstein and Sanjit Chatterjee editors, LNCS, volume 7107, Springer, pages 270–
289, Dec., 2011

4. Jens-Peter Kaps, Panasayya Yalla, Kishore Kumar Surapathi, Bilal Habib, Susheel
Vadlamudi, and Smriti Gurung. Lightweight implementations of SHA-3 finalists on
FPGAs, third SHA-3 conference, Washington, D.C., Mar, 2012

5. Panasayya Yalla, Ekawat Homsirikamol, and Jens-Peter Kaps. Comparison of multi-
purpose cores of Keccak and AES, Design, Automation Test in Europe DATE 2015,
ACM, pages 585-588, Mar., 2015

6. William Diehl, Farnoud Farahmand, Panasayya Yalla, Jens-Peter Kaps, and Kris Gaj.
Comparison of hardware and software implementations of selected lightweight block
ciphers, 27th International Conference on Field Programmable Logic and Applica-
tions, FPL 2017, Ghent, Belgium, Sep., 2017

7. Panasayya Yalla and Jens-Peter Kaps. Evaluation of CAESAR hardware API for
lightweight implementations, International Conference on Reconfigurable Computing
and FPGAs (ReConFig 2017), Cancun, Mexico, Dec., 2017

92

8. Ahmad Salman, Ahmed Ferozpuri, Ekawat Homsirikamol, Panasayya Yalla, Jens-
Peter Kaps, and Kris Gaj. A scalable ECC processor implementation for high-speed
and lightweight with side-channel countermeasures, International Conference on Re-
configurable Computing and FPGAs (ReConFig 2017), Cancun, Mexico, Dec., 2017

9. Jasper Van Woudenberg, Cees-Bart Breunesse, Rajesh Velegalati, Panasayya Yalla
and Sergio Gonzalez. Differential Fault Analysis Using Symbolic Execution, 7th Soft-
ware Security, Protection, and Reverse Engineering Workshop, Orlando, USA, Dec.,
2017

93

	List of Tables
	List of Figures
	Abstract
	 Introduction
	Introduction
	Motivation
	Organization

	 Background
	FPGA
	Power Consumption in FPGAs
	ROM-based FSMs

	 Previous Work
	Survey of Lightweight Algorithm Implementations
	Optimization Techniques for Datapath
	Optimization of ROM-based FSMs
	Summary

	 Contributions

	 Methodology for Developing Lightweight Architectures
	Top-level Optimizations
	Interface
	Width of datapath
	Choice of an FPGA

	Datapath Optimizations
	Control Logic Optimizations
	General Control Logic Optimization Strategy for Tool
	Optimization Test Case
	CASE:1
	CASE:2
	Generation of State Table Using Simulator
	Translation of VCD to State Table

	 Lightweight Implementations of AES128 and SHA-256
	Lightweight AES Architectures
	Interface
	AES Algorithm
	Lightweight Architecture with 8-bit datapath
	Lightweight Architecture with 16-bit datapath
	Lightweight Architecture with 32-bit datapath
	Implementation Results

	Lightweight SHA-256 Architecture
	Interface
	SHA-256 Algorithm
	Lightweight SHA-256 Architecture
	Implementation Results

	Conclusions

	 Evaluation of the CAESAR Hardware API for Lightweight Implementations
	Introduction and Motivation
	Background
	CAESAR Hardware API and Development Package
	Ketje
	Ascon

	Lightweight Designs
	Design Decisions
	Lightweight Ketje-Sr
	Lightweight Ascon

	Results
	Conclusions

	 Comparison of Multi-Purpose Cores of Keccak and AES
	Background
	AES
	Keccak
	Padding

	Design Decisions
	Low Area Architecture of AES
	Low Area Architecture of Keccak
	Results
	Conclusion

	 Lightweight AES IP Core for ASCIs
	AES-LightWeight IP Core Features
	Interface and Modes of Operation

	Datapath
	Design Performance
	Latency

	Implementation Results

	 Conclusion and Future Work

