

FPGA PUF based on Programmable LUT Delays

Bilal Habib

, Kris Gaj, Jens-Peter Kaps

Electrical and Computer Engineering Department

George Mason University

Fairfax, VA, USA

Email: {bhabib,kgaj,jkaps}@gmu.edu

Abstract— Strong and efficient techniques are required for
chip authentication and secret key generation by integrated
circuits (IC). This paper presents a novel approach toward
an FPGA friendly Ring Oscillator (RO) based Physical
Unclonable Function (PUF). In this design the internal
variations of FPGA Look-Up Tables are exploited to
generate a PUF response. Statistical tests were performed to
study the strength of this PUF. Moreover, stability is
compared with the state of the art reported in literature to
date. Our design has been tested on 31 Spartan-3e devices
and the results are promising with inter-device Hamming
distance of 48.3%, Uniformity 50.13%, Bit-aliasing 51.8%,
Reliability 97.88%, and Steadiness 99.5%. Furthermore, we
also analyzed the frequencies to extract the random
variation offered by our design.

Keywords-Physical Unclonable Function; Programmable
LUT Delays; Xilinx FPGAs

I. INTRODUCTION

With an increasing number of communication and
computing devices, security challenges are becoming
significant. An on-chip PUF (Physical Unclonable
Function) can solve these challenges effectively and
efficiently. A PUF is a chip-dependant unclonable
challenge-response function that can be used to uniquely
identify a specific integrated circuit. Furthermore, the
PUF itself is tamper resistant against physically invasive
attacks. Due to these attributes, a PUF offers security
against intellectual property (IP) theft and counterfeiting,
and solves issues such as chip authentication, reverse
engineering, trusted computing, and secure key
generation. The idea of PUFs was first presented in [1].
Since then, the scientific community has profoundly
investigated it. Silicon based PUFs use the idea of
extracting the maximum variability of the chip
manufacturing process. This variation is inherent and
results in a unique signature for each chip similar to a
biometric thumb impression of humans. Even for the
same manufacturing process each chip carries a
different signature due to process variations. A strong
PUF is classified to be the one that extracts the maximum
process variation and is reliable to exhibit this variation
under different conditions.

There are strong reasons to design PUFs for FPGAs.
Cryptographic functions are implemented using FPGAs
for faster execution compared to software execution, and
PUFs can provide random keys for these functions.
Furthermore, FPGAs are reconfigurable in nature and IP
protection during configuration of an FPGA is an
important issue from a security point of view.

In Section II, we describe the motivation for FPGA
based PUFs, in III we describe the previous work for a
better understanding of our study on PUF. Section IV
explains the design methodology. We present and discuss
implementation details, as well as highlight results in
Section V. In VI we highlight the bit-string generation
and in VII we do the frequency analysis. The conclusion
and future study are described in Sections VIII and IX
respectively.

II. MOTIVATION FOR FPGA BASED PUF

FPGAs as opposed to ASICs offer a flexible and
secure solution to IP implementations in hardware. The
reason for this flexibility is because FPGAs can be
configured at any time in the field without any cost
associated with it. Similarly FPGAs can offer secure IP
implementation. In a practical application, the IP reads the
PUF output and compares it with some built-in constant
(chip-ID) and if both of them match then it enables the IP
to run on this particular FPGA device. This way the IP
vendor makes sure that the IP is licensed only for a
selected device. The chip ID can be retrieved by the
manufacturer during enrollment.

Furthermore PUFs can be employed to verify if the
system having an FPGA as one component which came
from a genuine source. This can be done by extracting the
chip-dependent PUF output in the field and comparing it
with the one supplied by a genuine source.

Another motivation of FPGA based PUFs is that
FPGAs offer quick product customization as per market
demands compared to ASIC, therefore it is important to
investigate the security features of FPGA based PUF
designs.

III. PREVIOUS WORK

Since 2002, silicon based PUFs have been extensively
investigated. The initial proposal of a delay based arbiter
PUF was made in [3]. Arbiter PUF was further explored
by [4] and [5] to investigate reliability and security
features. Although the Arbiter-PUF offers strong PUF
properties, it is prone to machine-learning attacks.

In [8], the idea of a Ring-Oscillator (RO) based PUF
is presented. In this PUF the challenge is the selection of a
pair of ROs. The response is the one bit comparison result
of the frequencies of those ROs. A large-scale
characterization of RO based PUF has been done in [13].
In [7] the first SRAM-PUF is presented, in which the
start-up values of uninitialized Embedded RAMs are used
as a PUF response. However, in the current state of the art
Xilinx and Altera FPGAs, the start-up values of memory

locations are controlled by the chip manufacturer, which
renders SRAM PUF useless for FPGAs. In [9], Butterfly-
PUF is presented, which requires symmetric paths
between registers for causing metastability. FPGA tools
do not offer complete access to symmetric design at the
wire level, therefore, routing schemes make it hard to
achieve symmetric butterfly design on FPGAs. This fact
has been verified by [15] for both Arbiter and Butterfly
PUF. In [12] and [20], the concept of programmable delay
lines is presented, in which the LUT delays are used to
create a metastable condition which is further used to
develop a PUF and TRNG respectively. Our approach is
to employ the concept of programmable delay lines in
ring oscillators based PUF for improving the number of
independent response bits. We did not create metastability
for randomness. In [11], Maiti et al. presented an RO
PUF, in which multiplexers were introduced in the ring to
select different paths inside the ring. In this design, only
two rings with identical paths were compared at a time
because the authors wanted to determine a configuration
which resulted in the maximum frequency difference
between two ROs. However, in our case, the path outside
of the LUTs stays constant. Therefore, we minimize the
impact of routing or wire delays on the frequency of ring
oscillator. Hence, the randomness is purely due to internal
LUT variation. This delay is the significant and deciding
factor in the comparison of two ring oscillators. In [17],
the number of configurations of ring oscillator has been
improved by introducing a latch in the path of a ring,
making it impossible to compare a latch-path with no-
latch-path. Our approach is completely different because
we do not introduce anything in the path of a ring. We
extract only the randomness inherent in LUTs, where we
have the luxury of comparing any configuration of a LUT
with any other configuration i.e., any configuration from
‘000’ to ‘111’ with any other configuration from ‘000’ to
‘111’. All configurations are applied to LUT input lines.
We will show in the next section that the programmable
delay offers to generate random and independent bits with
a very strong capability to repeat them.

IV. DESIGN METHODOLOGY

Our PUF is designed for Spartan xc3s100e devices,
where each CLB has four slices, each with two 4-input
LUTs. Our PUF design is based on a RO, which has one
AND gate and three inverters. This design uses one LUT
for an AND gate and three LUTs for inverters. We used
one LUT-input to connect in a ring, while the remaining
LUT-inputs are varied in order to generate programmable
delays, as shown in Fig. 1.

In Fig. 1, three inverter LUTs in a ring are connected
to three delay lines each, while the remaining LUT is tied
to two lines. Because we wanted to analyze the maximum
effect of delay lines on the ring oscillator frequency,
therefore we connected all free LUT inputs to our
programmable delay controller. All the LUT inputs are
locked by using a LOCK_PINS attribute provided by
Xilinx tools. By doing so we ensured that all
interconnects leading to LUT inputs are fixed and cannot

be arbitrarily changed by routing tools. Additionally we
ensure that all the rings are identical and are subject only
to CLB internal routing delays. In order to achieve this,
we defined each ring oscillator as a macro and placed
them at selected locations. The output of this ring
oscillator is fed into a 32-bit counter, which determines
the frequency of this oscillator. It is important to mention
that the response from our design is solely dependent on
the internal variation of FPGA LUTs, and variations due
to routing delays are minimized. In particular, our method
eliminates any differences in routing paths (and thus
routing delays) caused by the tools.

Figure 1. Single Ring-Oscillator with programmable delay lines

Figure 2 shows the placement of 130 ROs that make
up our PUF. Each ring oscillator is constrained in a single
CLB. In this design, 130 rings are configured at the center
of a chip in a 13x10 matrix, The chip under test does not
allow us to place 130 rings in a square format placed at
the center of a chip. In Figure 2 rings start from the
bottom left (R0) corner and the last one is shown at the
top-right corner numbered R129.

We selected 130 as a number of rings, because the
FPGA devices available to us had 240 CLBs in total. We
cannot use all CLBs for rings, because we need some
logic resources to use for control purposes as shown in the
Table 1.

We could have decreased the slice count by forcing
two rings per CLB (as each CLB slice contains two
neighboring LUTs), but we intentionally rejected that
approach, because the two rings might lock with each

other, and hence their frequency affect each other. This
phenomenon is also reported in [16].

For data retrieval we used Enhanced Parallel Port
(EPP protocol), which has a very small area imprint. On
the PC side, Digilent Port Communications (DPC)
utilities were used, which are provided with Digilent
Adept software.

Figure 2. PUF array configuration of 130 RO on Spartan xc3s100e
device

Table 1. Area requirements of our design

Number of

slices occupied
Percentage

Slices for
rings

4*130 =520 54.2%

Slices for
other logic

227 23.6%

Total
slices

747 77.8%

V. IMPLEMENTATION DETAILS

LUT_input bits can be varied from ‘000’ to ‘111’,
resulting in eight different frequencies of a ring oscillator.
Additionally, these frequencies are highly repeatable for
any particular ring as shown in Fig. 3. From Fig. 3, it is
evident that the frequency varies significantly depending
on the LUT_input sequence. In [12] and [20], it is stated
that maximum frequency is achieved with ‘000’ and
minimum with ‘111’ sequence. However, based on our
experiments, this is not always the case.

Figure 3. Frequency distribution due to LUT_input bits variation

The pattern presented in Fig. 3 changes completely
when we select another ring oscillator. Even a
neighboring CLB exhibits a different pattern. One reason
might be that we use Spartan-3e devices which are based
on 90nm technology while in [12,20], Virtex-5 devices
are used which are 65nm technology. We also observed
that the standard deviation among 20 samples never
exceeds 0.018 % of ring oscillator frequency. By using
longer characterization time the noise further decreases. It
is important to mention here that we did not test
repeatability under different voltage and temperature
conditions. We believe that the behavior should not be
different from [11], for different voltage and temperature
conditions, because Maiti et al. also used Spartan-3e
devices in their experiment, which are based on 90nm
technology.

We tested our PUF for different characterization
times; which is the time required to allow the ring to
oscillate freely. Each RO should be enabled for enough
time, such that the delay pattern associated with each
LUT input value is sufficiently repeatable as shown in
Fig. 4. Preliminary investigation revealed that a small
characterization time causes huge differences in the
pattern. In Fig. 5, the characterization time is reduced
from 1sec to 1msec and standard deviation increases
among four runs from 0.018% to 0.15%.

Figure 4. Characterization time equal to 1 sec

Figure 5. Characterization time equal to 1 msec

We used a characterization time of 1 sec when we
extracted data from PUF, implemented on 31 Digilent
boards. We did the frequency analysis of each ring and
devised two schemes to analyze the improvement in the
number of response bits.
Scheme # P1

In this scheme, we compared eight frequencies
resulting from eight different values (000 to 111) applied
to LUT input of one ring oscillator with eight frequencies
of the neighboring oscillator i.e., only ROs under the
same configurations are compared. In post-processing, if
fr0>fr1, the response is ‘1’ otherwise it is ‘0’. To remove
systematic variation (an unwanted correlated variation
due to spatial location of a ring-oscillator on a chip),
under each configuration, only the comparisons shown in
Fig. 6 are made. Therefore, the PUF will output
8*(r − 1) bits response for each FPGA, and chip ID is
extracted from these 1032 bits.

Figure 6. Comparison of rings along the rows

Scheme # P2
In this scheme we compared the frequencies along the

CLB columns as shown in Fig. 7, where each circle shows
a single comparison, otherwise it is similar to scheme P1.
From this scheme, we were able to extract the same 1032
bit response. However, the inter-chip variation decreases
to 95.34% from 96.6% as shown in Table 3. One reason is
that the first row of the chips (R0-R9) were having the
smallest frequencies and resulted in a similar response
when compared to the frequencies of the 2nd row (R10-
R19). This behavior reduced the HD and subsequently the
Inter-chip variation.

Figure 7. The comparison of rings along the columns

VI. BIT-STRING GENERATION

For 130 ROs, each ring pair is able to generate 8 bits
due to 8 LUT configurations, which yields bitstring of
length 129*8 = 1032 bits. In this work we only compare
the neighboring rings to cancel out the effect of
systematic variation. During comparison, if the
frequencies of two rings cross, then we record 8 bits,
otherwise a single bit is contributed toward the PUF ID.
Therefore, during enrollment, we store for each ring
number a corresponding crossover bit (i.e., we store pairs:
(Ring #, c)). In Fig. 8, a meaning of the crossover is
demonstrated.

Figure 8. Crossover of two rings

A thresholding technique as explained below is
employed to discard those comparisons which are
vulnerable to producing “bit-flips”.

Thresholding Technique:

 If an ID bit is flipped during regeneration then it
reduces the reliability. In order to avoid this condition, a
thresholding technique is employed which accepts a bit if
the difference in frequency for any comparison is greater
than 150kHz (∆f ≥ 150 kHz). Otherwise we discard that
bit, because it can be flipped by noise during
regeneration. But if the frequencies of two rings fail the
thresholding condition (∆f ≥ 150 kHz), then only one bit
is contributed towards the chip ID, and this bit is
generated by the majority vote of 8 comparisons.
Furthermore, ∆f is fixed at 150 kHz, because we observed
that the average standard deviation among 20 samples of
each frequency is around 30 kHz for all the rings.

Therefore, we keep it at least 5 times the standard
deviation. After applying this condition, the number of
strong bits per chip is 283 as shown in Table 2. We call
this sequence of bits the Chip-ID. It is important to
mention here that 283 bits is the minimum length of
bitstring generated by a particular FPGA, all other devices
generated more than 283 bits.

The more different a pattern is from another ring
oscillator in absolute frequency terms, the stronger 8-bits
we will get from their comparison.

Table 2. Details of dataset

 Maiti et al.

[22]

This work

No. of Chips (N) 193 31

Samples (T) 100 20

No. of ID’s (K) 1 1

ID size (L) bits 511 283

Ring oscillators (M) 512 130

FPGA family

(Device used)

Spartan-3E

(XC3S500E)

Spartan-3E

(XC3S100E)

In Tables 2, 3 and 4 we compared our results with the
results shown by Maiti et al. in [22]. Five PUF properties
are listed in Table 3, they are briefly defined as:

Uniformity: Uniformity of a PUF estimates how
uniform the proportion of ‘0’s and ‘1’s are in the PUF
response.

�Uniformity��

1
n	�r�,� 	� 100%

�

���
																		�1�

Uniqueness: It represents the ability of a PUF to
uniquely distinguish a particular chip among a group of
chips of the same type.

Uniqueness
 �
������∑ ∑ !"#$%,$&'

�
�(��)������� � 100% (2)

Bit-aliasing: If bit-aliasing happens, different chips
may produce nearly identical PUF responses, which is an
undesirable effect.

�Bit + aliasing��
	��∑ /0,� � 100%���� (3)

Reliability: PUF reliability means how efficient a
PUF is in reproducing the response bits.

	HDINTRA

1
m�

HD�R�, R′�,9�
n

:

9��
	×	100%														�4�

Reliability
 100% + 	HDINTRA

Steadiness: Steadiness indicates how stably a PUF
outputs the same responses to the same challenge sets.

=>
 1?	 �@.B 	∑ ∑ CDE�	max	�pn,k,l,1-	pn,k,l,�BJ��@K�� (5)

where L>,K,J,�
	�M∑ />,K,N,JMN��

The following notations are used in equations (1) to (5).

N = total number of chips

n = index of a chip (1 ≤ n ≤ N)

K = total number of identifiers(IDs) generated per

chip

k = index of an ID in a chip (1 ≤ k ≤ K)

T = total number of samples measured per ID

t = index of a sample (1 ≤ t ≤ T)

L = total number of response bit in an ID

l = index of a response bit (1 ≤ l ≤ L)

M = total number of ring oscillators

m = index of an oscillator (1 ≤ m ≤ M)

r = is the PUF response bit

Ri	
	Response	of	chip	i
Rj = Response of chip j

Table 3. Comparison with Maiti et al. [22]

 P1 P2 Maiti Ideal

Uniformity 50.13 50.75 50.56 50%

Uniqueness 96.6 95.34 93.98 100%

Bit-aliasing 51.8 50.75 50.56 50%

Reliability 97.88 98.1 99.13 100%

Steadiness 99.5 99.5 98.9 100%

We measured our PUF responses at room temperature
and then generated results shown in Table 3, by running a
script available at [23] on our PUF data.

From Table 3 and 4, it is evident that our result set is
comparable to Maiti et al. However, we believe that with
four times smaller PUF size (in-terms of the number of
CLB slices for Ring Oscillators) we were able to generate
more than twice as many bits per ring oscillator.
Furthermore, our PUF-IDs are more biased towards ‘1’,

resulting in Uniformity greater than ideal by 0.13%. All
the five PUF properties are thoroughly explained in [22].

Table 4. Properties of independent strong bits

This

work

(P1)

This

work

(P2)

Maiti et

al.[11]

Number of ring

oscillators [A]
130 130 512

Average

Independent ,

strong response

bits* [B]

283 318 511

Bits per Ring

[B/A]
2.17 2.44 ~1

*strong bit = When the ∆f ≥ 150kHz, [Average of 31 Chips Frequency ≈

165MHz]

VII. FREQUENCY ANALYSIS

To show the extent of randomness offered by the chip
under test and extracted by our design, we analyzed the
frequencies of all rings under all configurations.

The frequencies of all 31 chips are shown in Fig. 9.
Each frequency is an average of all 1040 frequencies
generated by ROs of a given chip. Each ring generates 8
different frequencies and there are 130 rings in total.

The standard deviation in the frequency of 1040 points
per chip is shown in Fig. 10.

Figure 9. Average frequency of all ring oscillators located on each
board

The average frequency of each ring oscillator
averaged over all boards is shown in Fig. 11. Each point
in this figure is the average of (8 frequencies * 31 boards)
= 248 frequencies. From Fig. 11, it is evident that the
highest peaks in the frequency occur at the central part of
the chip. While the lowest frequencies occur at the edges.
Our PUF layout is not placed at the center of the chip as
explained in section IV, therefore in Fig. 11 the highest
peaks seem off the center.

Figure 10. Average standard deviation in frequency of 1040 points
per board

Figure 11. The average frequency of all boards for 130 Ring

oscillators depending on CLB locations

Systematic and Manufacturing Variation

The frequency of any ring oscillator consists of both
systematic variation and manufacturing process variation.
For PUF statistical and qualitative analysis we need to
decompose these variations into within-die and die-to-die
variations.

Decomposition Methodology

With the introduction of programmable delay lines,
we were able to generate eight different frequencies from
a single ring oscillator. Therefore we had 1040 total
frequencies for 130 ring oscillators. We analyzed 130
rings that make the rectangle shown in Fig. 2 at the
central part of the chip. This rectangle is a matrix of
13x10 ring oscillators. We laid these 1040 frequencies in
the form of a matrix with 13 rows and 80 columns. Any
point in this matrix is denoted by F(x,y), where x ranges
from 0 to 79 and y ranges from 0 to 12, i.e., each row
contains 80 frequencies from 10 ring oscillators. Other
dimensions could also be employed for this experiment.
F(0,0) is the frequency of ring oscillator 0, with
LUT_input configuration equal to ‘000’. We call F(0,0) as
the nominal frequency in our calculations.

 We decomposed the frequency of rings into random
and systematic variation components. Our decomposition
method follows the method explained in [18], as shown in
equation (6).

F�x,y�
	F�0,0�?RWID?SWID�x,y�?SD2D�x,y�									�6�
Here, RWID is the random within die variation

component, SWID is the systematic within die variation
component while SD2D is the systematic die to die
variation.

We used Down Sampled Moving Average (DSMA) to
extract the random and systematic variation from equation
6. In DSMA we moved the window over 1040 points and
we got the average frequency of all the points in a
window.

DSMA�x,y�
	�2z?1�-2∑ F�i,j�x?z,y?z
i
x-z,	j
y-z 									�7�

The window size is 9 with a 3x3 dimension, by setting
z=1 in equation (7). We keep z = 1, because with a big
window size we will be averaging too many points, which
will suppress the randomness due to programmable delay
lines.

DSMA�x,y�
	F�x,y�-	RWID																						�8�
From equation 7 and 8, we got

RWID
	F�x,y�-	DSMA�x,y� (9)

For 1040 points in total and z=1, we get 858 random
values. We normalized it over F(0,0) to get the RWID
variation. It has been shown in Fig 12.

Figure 12. Random within die variation (normalized over F(0,0),
shown as a percentage)

Random within die variation has the following
properties.

Table 5. Properties of Random with-in die variation normalized
over F(0,0)

Mean 0.0

Min -3.23 %

Max 2.27 %

Peak to Peak 5.5%

Standard Deviation 0.84%

The distribution of this randomness is shown in Fig.
13. The distribution of Random within Die variation is
plotted using a histogram. It is evident that the plot is
centered at 0.0.

We plan to publish our data for 31 boards at : www.
cryptography.gmu.edu for independent verification.

VIII. CONCLUSION

In this work we presented a novel PUF design, based
on ring oscillators, where the programmable delays of
FPGA LUTs were used to generate additional bits of an
ID. The strength of this design is its ability to generate
more than one random frequency per ring oscillator
without changing the path of the ring outside LUTs. This
solution offers the option to reduce the area requirements
of ring oscillator PUFs. To demonstrate the strength of
this PUF, it was shown that our design generated more
bits per ring oscillator, and these bits are as strong as the
ones reported in literature for Configurable Ring
Oscillators. The statistical and PUF properties were
analysed and were shown to be very strong from a
security point of view.

Fig. 13. Distribution of the random within die variation

IX. FUTURE WORK

The analysis of the behaviour of LUT programmable
delays and patterns under different voltage and
temperature conditions will be carried out in the future.
Furthermore, mitigation of systematic variations using
programmable delay lines will be studied. In addition, the
effect of FPGA ageing and the possibility of its
compensation will be investigated.

REFERENCES

[1] R. Pappu: Physical One-Way Functions, PhD Thesis,

Massachusetts Institute of Technology, 2001.

[2] T. Kean: Cryptographic rights management of FPGA intellectual

property cores. In: ACM/SIGDA tenth international symposium

on Field-programmable gate arrays — FPGA 2002, pp. 113–118

(2002).

[3] B. Gassend, D. Clarke, M. van Dijk, S. Devadas, Controlled

Physical Random Functions. ACSAC ’02: Proceedings of the

18th Annual Computer Security Applications Conference (IEEE

Computer Society, Washington, DC, 2002), p. 149

[4] J.W. Lee, D. Lim, B. Gassend, G.E. Suh, M. van Dijk, S.

Devadas, A Technique to Build a Secret Key in Integrated

Circuits for Identification and Authentication Application. Proc.

Symposium on VLSI Circuits, 2004, pp. 176–159.

[5] D. Lim, Extracting Secret Keys from Integrated Circuits. Master’s

thesis, MIT, MA, USA, 2004.

[6] P. Sedcole, P.Y.K. Cheung. Within-die Delay Variability in 90-

nm FPGAs and Beyond, In Proc. FPT 2006.

[7] J. Guajardo, S. S. Kumar, G. Schrijen, and P.Tuyls. FPGA

intrinsic PUFs and their use for IP protection, Workshop on

Cryptographic Hardware and Embedded Systems - CHES

2007, Lecture Notes in Computer Science (LNCS), volume 4727,

Springer, pp 63–80, 2007.

[8] G.E. Suh, S. Devadas. Physical unclonable functions for device

authentication and secret key generation. Proc. 44th Annual

Design Automation Conference, New York, 2007.

[9] S. S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and P.

Tuyls. Extended abstract: The butterfly PUF protecting IP on

every FPGA, Hardware-Oriented Security and Trust – HOST

2008, pp 67–70, 2008.

[10] M. Gora, A. Maiti, P. Schaumont: A Flexible Design Flow for

Software IP Binding in Commodity FPGA. IEEE Symposium on

Industrial Embedded Systems (SIES 2009), July 2009.

[11] A. Maiti and P. Schaumont: Improved Ring oscillator PUF: An

FPGA Friendly Secure Primitive, Journal of Cryptology, volume

24, number 2, pp 375-397, Oct. 2010.

[12] M Majzoobi, F Koushanfar, S Devadas: FPGA PUF using

Programmable Delay Lines. Proc. WIFS, 2010.

[13] A. Maiti, J. Casarona, L. McHale, P. Schaumont: A Large Scale

Characterization of RO-PUF. Hardware-Oriented Security and

Trust (HOST), 2010.

[14] Y. Hori, T. Katashita, A. Satoh, T. Yoshida: Quantitative and

Statistical Performance Evaluation of Arbiter Physical

Unclonable Functions on FPGAs Proc. The 2010 International

Conference on Reconfigurable Computing and FPGAs, ReConFig

2010.

[15] S. Morozov, A. Maiti, and P. Schaumont: An analysis of delay

based PUF implementations on FPGA. Reconfigurable

Computing: Architectures, Tools and Applications – ARC 2010.

LNCS, vol. 5992, Springer, pp 382–387, 2010.

[16] C. Costea, F. Bernard, V. Fischer, and R. Fouquet: Analysis and

Enhancement of Ring Oscillators Based Physical Unclonable

Functions in FPGAs. Proc. 2010 International Conference on

Reconfigurable Computing and FPGAs, pp 262–267, IEEE, 2010.

[17] X. Xin, J. Kaps, and K. Gaj: A Configurable Ring-Oscillator-

Based PUF for Xilinx FPGAs. Proc. 14th EUROMICRO

Conference on Digital System Design – DSD’11, pp 651–657,

IEEE, Sep. 2011

[18] T. Tuan, A. Lesea , C. Kingsley , and S. Trimberger . Analysis of

Within-Die Process Variation in 65nm FPGAs, 12th

International Symposium on Quality Electronic Design

(ISQED), March, 2011.

[19] A. Maiti, L. McDougall and P. Schaumont: The Impact of Aging

on an FPGA-Based Physical Unclonable Function. 21st

International Conference on Field Programmable Logic and

Applications (FPL 2011), September 2011.

[20] M. Majzoobi, F. Koushanfar, and S. Devadas: FPGA-Based

True Random Number Generation Using Circuit Metastability

with Adaptive Feedback Control. Proc. CHES 2011.

[21] http://rijndael.ece.vt.edu/puf/detailed_CRO.php

[22] A. Maiti, V. Gunreddy and P. Schaumont: A Systematic Method

to Evaluate and Compare the Performance of Physical Unclonable

Functions. IACR ePrint 2011/657

[23] http://rijndael.ece.vt.edu/puf/script_download.html

