
PUF Scripts USER GUIDE

https://cryptography.gmu.edu/ i

PUF Scripts

March 2016

Version 0.5

PUF Scripts USER GUIDE

https://cryptography.gmu.edu/ ii

PUF Scripts USER GUIDE

https://cryptography.gmu.edu/ iii

Document Revisions

Date
Version

Number
Document Changes

04/05/2015 v0.1 Initial Draft

06/07/2015 v0.2 Second Draft

10/4/15 V0.3 Third Draft

12/8/15 V0.4 Fourth Draft

3/15/16 V0.5 Fifth Draft

8/5/16 V0.6 Sixth Draft

PUF Scripts USER GUIDE

https://cryptography.gmu.edu/ iv

Table of Contents

1 Introduction .. 5

1.1 Scope and Purpose ... 5

1.2 Tools ... 5

2 Converting Raw results into PUF IDs .. 5

2.1 Configuration File .. 5

2.2 Pair-wise Comparison (PC) ... 6

2.3 Comparing the Neighboring Components (CNC) ... 7

2.4 Binary Lehmer-Gray (BLG) encoding ... 9

2.5 S-ArbRO-2 ... 11

2.6 Identity Mapping .. 13

3 PUF Properties.. 16

3.1 Uniqueness .. 16

3.2 Reliability .. 17

3.3 Entropy ... 18

3.4 Files and Data Provided: ... 19

4 References .. 20

 PUF Scripts USER GUIDE

https://cryptography.gmu.edu/ 5

1 Introduction

1.1 Scope and Purpose

Physical Unclonable Function (PUF) is a hardware primitive used for secure authentication of

Integrated Circuits (IC). Furthermore, PUF can be employed to generate secure keys for

cryptographic functions. This user guide is about the software scripts that can be used to generate

PUF response bits, PUF evaluation and analyzing PUF responses under different conditions.

To use these scripts, user does not need an in-depth knowledge of Information theory, Hardware

circuit design or Cryptography. However, user must know the basics of statistics. In addition, user

is expected to know how to run an application from the command line. In depth details of these

schemes is available at [9].

1.2 Tools

These scripts are written in Python, therefore to run it successfully; user must have Python

version 3.3 installed on his/her machine. Additionally, input files are in Comma Separated Values

(CSV) format. To read CSV files, a Python package named csv has been used.

2 Converting Raw results into PUF IDs
Python based scripts are employed to convert the raw data collected from the FPGA devices into

a binary PUF response. Raw data consists of either the counts of Ring Oscillators (ROs) or SR-

Latches. Ring oscillators are used in RO-PUF. Similarly SR-Latches are used in the design of SR-

Latch PUF. In this document RO and Latches are called components. As shown below in Fig. 1,

the ID generation script has two inputs, Raw PUF data and Parameters. The Metrics are covered

in PUF properties.

ID gen

Raw PUF

data PUF

responses

Metrics

ID generation scripts

Metrics

values

Parameters

Evaluation scripts

Fig. 1. PUF ID generation and evaluation

2.1 Configuration File

The script name config.py is provided. It lists all the parameters that are passed to PUF-ID

generation schemes as shown in Fig. 2. In this file, the dataset consisting of Raw data is

 PUF Scripts USER GUIDE

https://cryptography.gmu.edu/ 6

chosen. The input data is then passed to different schemes. We can enable multiple schemes

to generate the PUF IDs. Another script file all_schemes.py is provided. This file imports the

config parameters and reads raw data from csv files. Furthermore it also generates the PUF-

IDs.

Fig. 2. Config.py file format

Chip # 1

Chip # 2

Chip # N

Components

C0 C1 CM-1
Device

Name

Fig. 3. Data input format for PUF-ID generating scripts

Raw data from the devices is stored in a csv file. As shown in Fig. 3, each device data is

stored in a separate row. Similarly each row has M+1 columns, where first column contains

the device name and the remaining M columns contains the raw data for M components.

We provide the following five schemes to generate the PUF IDs. All the schemes can be

called from all_schemes.py.

2.2 Pair-wise Comparison (PC)

The function named PC() is provided. It is called from all_schemes.py to generate the PUF

response bits by comparing the neighboring components. In this comparison each component is

compared only once with its neighbor. The comparison of (C0, C1), (C2, C3), (C4, C5)…. (CM-2,

CM-1) is carried out. Therefore for M components the total number of PUF response bits will be

equal to ⌊M/2⌋. Fig. 4 shows this scheme.

 PUF Scripts USER GUIDE

https://cryptography.gmu.edu/ 7

C15 C14 C12 C11 C10 C9 C8

C0 C1 C2 C3 C4 C5 C6 C7

C13

CM-8 CM-7 CM-5 CM-4 CM-2 CM-1

CM-9 CM-10 CM-11 CM-12 CM-13 CM-14 CM-15 CM-16

CM-6 CM-3

Fig. 4. Pairwise comparison with neighbors

Algorithm 1 Pairwise Comparison (PC)

PC(F[], M): // F[] is the input array of M raw PUF responses

for(i=0; i < ⌊M/2⌋ ; i++)
 if(F[2∙i] > F[2∙i+1])

 ID[i] = 1

 else

 ID[i] = 0

 end if

end for

return ID

Where ID array stores the PUF response of N components.

This scheme is called from all_schemes.py by providing the following parameters,
PC(inputdata, outputfile, No. of devices, components, response)

2.3 Comparing the Neighboring Components (CNC)

The function named CNC () is provided. It is called from all_schemes.py to generate the PUF

response bits by comparing the neighboring components. In this scheme raw data from the

neighboring components of FPGA are compared. Fig. 5 shows this scheme. In this figure C0,

 PUF Scripts USER GUIDE

https://cryptography.gmu.edu/ 8

C1…CM-1 shows the physical location of components on the FPGA fabric. Raw data from the

neighboring components are compared to mitigate the effect of systematic variation.

Algorithm 2 Comparing the Neighboring Components (CNC)

CNC(F[], M): // F[] is the input array of M raw PUF responses

for(i = 0; i< M-1; i++)

 if(F[i] > F[i+1])

 ID[i] = 1

 else

 ID[i] = 0

 end if

end for

return ID

Where ID array stores the PUF response of M components. In this scheme each component is

compared with both neighbors except the first and last component. In case of first and last

component, comparison is done only with a single neighbor. The comparison of (C0,C1), (C1, C2),

(C2, C3)... (CM-2,CM-1) is carried out. Therefore for M components the total number of PUF

response bits will be equal to M-1.

CM-8 CM-7 CM-5 CM-4 CM-2 CM-1

CM-9 CM-10 CM-11 CM-12 CM-13 CM-14 CM-15 CM-16

CM-6 CM-3

C15 C14 C12 C11 C10 C9 C8

C0 C1 C2 C3 C4 C5 C6 C7

C13

Fig. 5. Comparison of neighboring Components.

This scheme can be called from all_schemes.py as shown below,

pairwise_main (inputdata, outputfile, No. of devices, components , response)

 PUF Scripts USER GUIDE

https://cryptography.gmu.edu/ 9

2.4 Binary Lehmer-Gray (BLG) encoding

In LG encoding, all components are divided into sets of size S. Encoding the ordering of S

component measurements Fs= (F0, . . . , Fs-1) results into an L-bit response.

A Lehmer code is a unique numerical representation of an ordering which is moreover efficient to

obtain since it does not require explicit value sorting. It represents the sorted ordering of F

components as a coefficient vector Ls-1= (L1, . . . , Ls− 1) with Li ∈ {0, 1, . . . , i}. It is clear that Ls−

1
 can take 2 × 3 × . . . × S = S! possible values which is exactly the number of possible orderings.

The Lehmer coefficients are calculated from F as Lj = ∑ 𝑔𝑡
𝑗−1
𝑖=0 (Fj, Fi) with gt (x, y) = 1 if x > y

and 0 otherwise. The Lehmer encoding has the nice property that a minimal change in the sorted

ordering caused by two neighboring values swapping places only changes a single Lehmer

coefficient by ±1.

 The total number of bits generated for each set is:

Bits generated per set (L) = ∑ ⌈log2i⌉
S
i=2 (1)

Below is a pseudo code for converting counts of S components into an L-bit response denoted by

L_Response.

This scheme can be called from all_schemes .py as shown below,
BLG (inputdata, outputfile, No. of devices, components, set_size , response)

 PUF Scripts USER GUIDE

https://cryptography.gmu.edu/ 10

Algorithm 3 Binary Lehmer Gray Encoding

BLG (F[],M,S): // S=Set size

for(t=0; t < ⌊M/S⌋; t+ +)

 ID= ID || Lehmer (F[t ĀS:(t+1) ĀS- 1],S)

end for

return ID

Lehmer (array[],S):

for(j=1; j<S; j++)

 sum = 0

 for(i=0; i<j; i++)

 if (array[j] > array[i])

 sum++

 end if

 end for

 L_Response = L_Response || (Gray(bin(sum, ⌈log 2 j ⌉)))

end for

return L_Response

Gray(bin_bits): //array of binary bits is passed to Gray().

G[0] = bin_bits [0]

for(i=1; i < len (bin_bits); i++)

 G[i] = bin_bits [i] XOR bin_bits [i - 1]

end for

Above in a pseudo code a function named bin(p,t), converts a decimal number p to t binary bits.

For M components, the total response is equal to (M/S)*L bits. In [3, 4], set size S, is 16.

Similarly, a function named Gray() is used for encoding the Lehmer co-efficients. Gray encoding

make it sure that each subsequent number is only a single bit different than a previous one. Where

bin_bits is an array of binary bits. G is an array of corresponding Gray encoded bits.

 PUF Scripts USER GUIDE

https://cryptography.gmu.edu/ 11

2.5 S-ArbRO-2

S-ArbRO-2 is described in [6]. In this design the number of CRPs have been improved.

Components are divided into elements. Each element has a pair of components associated with it

as shown below in Fig. 6,

Fig. 6. Element contains a pair of components.

The difference between the counts of components in each element is the respective count

associated with that element (r1-r2 or r2-r1). This difference in count value may be positive or

negative. The next step is to select a group size for elements. This is done by selecting a value for

parameter K. Inside this group, elements are added with each other. The range of K is 2 ≤ K ≤ N.

Here, N is the total number of elements and K is the number of elements selected in each group.

Challenge is the selection of group of elements, while response (Rc) is the one bit result as shown

in the figure below,

> 0

E1

E2

EN

Element

Subset
Counters Adder

Rc

Challenge

Mc

Fig. 7. S-ArbRO-2 showing the relationship between Challenge Response Pairs (CRPs)

Algorithm 4 S-ArbRO-2

S- ArbRO- 2(E[],K, M/2): //K is the size of an element group

i = 0

for combo in combinations(E,K,M/2):

//choose K out of M/2 elements each element E[s] consists of

//two raw responses E[s][0] and E[s][1]

 for(j=0; j < (2^ K- 1); j++)

 p = bin(j, K)

 sum = 0

 for (s=0; s<K; s++)

 if p[s] == 0

 sum += combo.E[s][0] - combo.E[s][1] // r1 - r2

 else

 sum += combo.E[s][1] - combo.E[s][0] // r2 - r1

 end if

 end for

 if sum > 0

 ID[i] = 1

 else

 ID[i] = 0

 end if

 i++

 PUF Scripts USER GUIDE

https://cryptography.gmu.edu/ 12

 end for

end for

return ID

As evident from the Fig. 7, the total number of elements is N.

If the result of adding elements is positive, the response is ‘1’, otherwise it is ‘0’. The total

Challenge Response (CR) space is,

𝑇𝑜𝑡𝑎𝑙 𝐶𝑅 𝑠𝑝𝑎𝑐𝑒=
𝑁!

𝐾!×(𝑁−𝐾)!
×2𝐾−1 (2)

For example, 64 components will result in N = 32 elements. Suppose the parameter K is equal to

2. Then the total number of possible combinations are 992. In the pseudo code, E[] is an input

array of N elements.

Each Element has 2 components. K is the subset size. Index holds all the possible combinations

of (N
K
) elements. Sums will hold all the sums for K elements. Combination(N,K) calculates the

(N
K
), sum(array) adds all the elements of an array. The response of S-ArbRO-2 is returned by an

array Response[]. The pseudo code will generate all the possible CRPs. Assume the list of

components is [10,5,6,4,17,11]. Therefore the three elements formed are E1=[10,5], E2=[6,4] and

E3=[17,11]. The possible number of combinations for K = 2 is (3
2
)=3. Hence three groups of

elements formed will be {E1, E2}, {E1, E3} and {E2, E3}. Index will contain [{E1, E2}, {E1,

E3},{E2, E3}] or [{[10,5], [6,4]}, {[10,5], [17,11]},{[6,4], [17,11]}]. If the group challenge is

(01), it will select group {E1,E3}. Similarly inside each group if the challenge is (00). It will result

in 0=>E1[r1-r2]= 10-5= 5 and 0=>E3[r1-r2]= 17-11= 6. Sums will hold 5+6=11. Since 11>0,

therefore the final PUF response will be ‘1’.

This scheme can be called from all_schemes.py as shown below,

S_ArbRO_2(inputdata, outputfile, No. of devices, components, K, response)

 PUF Scripts USER GUIDE

https://cryptography.gmu.edu/ 13

2.6 Identity Mapping

This scheme is described in [5]. In identity mapping m components can generate 2m – m – 1

response bits. In this method, t component counts are selected from m component counts where 2

≤ t ≤ m. Initially all pairs of component counts are determined S2,

|𝑆2|=(
𝑚

2
)

Similarly, S3 contains all possible triplets of component counts.

|𝑆3|=(
𝑚

3
)

Likewise,

|𝑆𝑡|=(
𝑚

𝑡
)

Then a random variable 𝑄𝑡 is defined that assigns a real number X to each outcome of 𝑆𝑡

𝑄𝑡: 𝑆𝑡→𝑋 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

𝑄𝑡(𝑓𝑥1,𝑓𝑥2,𝑓𝑥3,….𝑓𝑥𝑡)= ∑ ∑ 𝑤(𝑥𝑢)(𝑥𝑣)

𝑡

𝑣=𝑢+1

𝑡−1

𝑢=1

.‖𝑓(𝑥𝑢)−𝑓(𝑥𝑢)‖
𝑒
 (3)

Where 1≤ x1, x2, x3, …, xt ≤ m

And, x1≠ x2≠ x3≠ .. ≠xt and 2 ≤ t ≤ m

The weight factor 𝑤(𝑥𝑢)(𝑥𝑣) can depend on a particular design. However, in our script it is

equivalent to 1. We chose 1 because we believe that systematic variations come into the effect,

 PUF Scripts USER GUIDE

https://cryptography.gmu.edu/ 14

when far away components are compared. Therefore we keep the weight factor constant for all Q

values. Response R, from Q is generated by using the following equation,

𝑅=𝑚𝑜𝑑(𝑄[𝑖]/𝑞,2)) for i =0,1,2,..

Where q is the bucket size. The size of array Q depends on the value of t selected. For instance if

t =2, the total elements of Q are (𝑚
2
). If t=3, then total length of Q will be (𝑚

2
) + (𝑚

3
), and so on.

In addition to the response bits, a set of helper data is also generated. This helper data is used to

reduce the effect of noise in the field. For example, with noise the count value for a component is

different from the one calculated during enrolment. Therefore, a helper data is used to mitigate

the effect of noise. Helper data 𝑊𝑡 is calculated using the following equation,

𝑊𝑡 =(
𝑞

2
)−(𝑄[𝑖]−𝑞∗⎣

𝑄[𝑖]

𝑞
⎦) for i=0, 1, 2, 3…

In the above equation, q is the bucket size. It must be appropriately chosen. If q is chosen very

big, then too many bits will be encoded into the same bucket. Therefore, it will reduce the

uniqueness significantly. Similarly, if q is chosen very small, then it will affect the reliability

property. A small change by the noise in the field will move the response bit to another bucket. It

must be noted that for each element of Q, only one value of Wt is calculated.

In the pseudo code, components[] is an input array that contains the counts of components. q is

the bucket size , parameter e is any real number except 1 and t is the parameter , such that 2 ≤ t ≤

m. PUF Response during enrolment is stored in an array ID_enrollment. While Wt is the array

that contains the helper data. In the field, each response bit is recalculated using Wt and noisy Q’t

values. ID_field[] contains the PUF response generated at the field.

This scheme can be called from all_schemes.py as shown below,

identity_map (inputfile, enrol_outputfile, field_outputfile,field_re sponse,

enrol_data_row, field_data_row , components, q, t, e, response)

 PUF Scripts USER GUIDE

https://cryptography.gmu.edu/ 15

Algorithm 5 Identity Mapping

Id_map_enroll(F[], t, q, e)://Enrollment: q, t and e

i=0 //are parameters

for combo in combinations(F[], t, M)

 // choose t out of M raw results F[j]

 Qt = 0

 for (Ru, Rv) in combinations(combo, 2, t)

 // choose 2 out of t raw results F[j] from combo

 Qt += |Ru - Rv| e

 end for

 ID_enrollment[i] = ⌊(Qt/q)⌋ mod 2

 Wt[i] = 0.5 Āq - (Qt - (⌊Qt/q ⌋Āq))

 i++

end for

return ID_enrollment, Wt

Id_map_reproduce(F[], Wt[], t, q, e) //Reproducti on

i=0

for combo in combinations(F[], t, M)

 // choose t out of M raw results F[j]

 Qt = 0

 for (Fu, Fv) in combinations(combo, 2, t)

 // choose 2 out of t raw results F[j] from combo

 PUF Scripts USER GUIDE

https://cryptography.gmu.edu/ 16

 Qt += |Fu - Fv| e

 end for

 Qt ' = Qt + Wt[i]

 ID_field[i] = ⌊(Qt ' /q)⌋ mod 2

 i++

end for

return ID

3 PUF Properties

The following are the important properties of PUF. These properties evaluate the quality of PUF.

1. Uniqueness

2. Reliability

3. Entropy

3.1 Uniqueness

The function named uniqueness() determines the Uniqueness property of PUF. The input for this

script is the PUF response of more than one chip. This function can be called from

all_schemes.py by providing the following parameters,

uniqueness(inputdata, outputfile, No. of devices, response_bits)

Finally, the script generates the uniqueness and stores the result in an output file. This script also

generates the Hamming Distances between all the devices. These distances can be used to

determine the minimum, maximum or mean inter-chip Hamming distance.

The information of Hamming distance generated by the script can be used to draw the histogram

like the one shown below,

 PUF Scripts USER GUIDE

https://cryptography.gmu.edu/ 17

Inter-chip Hamming distance

In the above histogram, the x-axis shows the normalized Hamming Distance. While the y-axis

(denoted frequency) shows the total number of times a given normalized inter-chip Hamming

distance was obtained. In the above figure 25 devices have been used, the total number of

combinations (i.e., the total number of board pairs {i,j}) is (25
2
) = 300. In ideal case, the

normalized inter-chip HD should be 50% and will follow the binomial distribution. It means that

50% PUF output bits are different between PUF A and PUF B.

3.2 Reliability

The function named reliability() determines the reliability of PUF output under different

conditions. The input files consists of the PUF response at room temperature and nominal

voltage. On the other hand Field files consist of PUF response at different temperature or voltage

conditions in the field. The function can be called from all_schemes.py by providing the

following parameters,

reliability(inputdata_nominal, inputdata_field, output_file, Num_devices_field ,

Response_lengt h, directory_name)

To determine the reliability of devices at field conditions, the user has to provide the name of

directory where the field data is stored, in the config.py as shown below,

Additionally, the field_nominal is the name of file in the directory that contains the data for the

same devices under nominal conditions (room temperature…). The format of input data is shown

below,

 PUF Scripts USER GUIDE

https://cryptography.gmu.edu/ 18

Chip # 1

Chip # 2

Chip # N

Components

C0 C1 CM-1

Device

Name

Input Data Format

The list of device names in the first column of all input files in the field directory must be similar.

The number of files in the field depends on the number of field conditions. For each condition of

voltage and temperature a single csv file is required.

The output of the script shows the number of erroneous bits at each condition. It also shows the

average reliability for all conditions. These results are stored in a separate file.

3.3 Entropy

The function named entropy() determines the Pairwise Joint Entropy (Worst case Entropy),

Average Joint Entropy, Worst case Binary Entropy and Average Binary Entropy of PUF response

of all the devices in a data set. The input for this script is the PUF response bits. This script can be

called from all_schemes.py by providing the parameters like,

entropy (inputdata, outputfi le, No. of devices, response_bits,

directory_name)

The outputfile contains the result of entropy.

 PUF Scripts USER GUIDE

https://cryptography.gmu.edu/ 19

3.4 Files and Data Provided:

Below is a list of directories and file that are provided,

 PUF Scripts USER GUIDE

https://cryptography.gmu.edu/ 20

4 References

1. A. Maiti and P. Schaumont. “Improved Ring oscillator PUF: An FPGA Friendly Secure

Primitive,” Journal of Cryptology, volume 24, number 2, pp. 375-397, Oct. 2010.

2. Hori Y, Yoshida T, Katashita T, Satoh A . “Quantitative and statistical performance

evaluation of arbiter physical unclonable functions on FPGAs”. In Proc. International

conference on Reconfigurable computing and FPGAs (ReConFig) 2010, pp 298–303, Dec

2010.

3. R. Maes, A. Herrewege and I. Verbauwhede, “PUFKY: A Fully Functional PUF-based

Cryptographic Key Generator,” In Proc. Workshop on Cryptographic Hardware and

Embedded Systems (CHES), 2012, LNCS vol. 7428, pp. 302-319.

4. R. Maes “Physically Unclonable Functions: Constructions, Properties and Applications”. PhD

Thesis, katholiek universiteit Leuven (2012).

5. A. Maiti, I. Kim, and P. Schaumont "A Robust Physical Unclonable Function With Enhanced

Challenge-Response Set". IEEE Transactions on Information Forensics and Security, Vol. 7,

No. 1, February 2012.

6. D. Ganta and L.Nazhandali. “Easy-to-Build Arbiter Physical Unclonable Function with

Enhanced Challenge/Response Set”. In Proc. Quality Electronic Design (ISQED), 2013 14th

International Symposium on Quality Electronic Design.

7. Maiti, V. Gunreddy, and P. Schaumont. “A Systematic Method to Evaluate and Compare the

Performance of Physical Unclonable Functions,” in Embedded Systems Design with FPGAs,

Springer, 2013, pp. 245-267.

8. B. Habib, J. Kaps and K. Gaj . “Efficient SR-Latch PUF”, In Proc. 11th International

Symposium on Applied Reconfigurable Computing, 2015, Bochum, Germany, April 15-17.

2015.

9. B. Habib and K. Gaj . "A Comprehensive Set of Schemes for PUF Response Generation,"

Proc. 12th International Symposium on Applied Reconfigurable Computing, Rio de Janeiro,

Brazil, 22-24 March, 2016.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6520923
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6520923

