
Performance Evaluation of Selected Job Management Systems

Kris Gaj1, Tarek El-Ghazawi2, Nikitas Alexandridis2, Frederic Vroman2, Nguyen Nguyen1,
Jacek R. Radzikowski1, Preeyapong Samipagdi2, and Suboh A. Suboh2

1 George Mason University, 2 The George Washington University
kgaj@gmu.edu, tarek@seas.gwu.edu, alexan@seas.gwu.edu

Abstract

One important component of grid software infrastructure
and parallel systems management is the Job Management
System (JMS). With many JMSs available commercially
and in public domain, it is difficult to choose the most
efficient JMS for a given computing environment. All
previous comparisons of JMSs had only a conceptual
character. In this paper, we present the results of the first
empirical study of JMSs reported in the literature. Two
most popular commercial systems, LSF and PBS Pro,
were included in our study. The study has revealed
important strengths and weaknesses of these JMSs under
different operational conditions. For example, LSF was
shown to exhibit excellent throughput for a wide range of
job types and submission rates. On the other hand, PBS
appeared to excel in terms of turn-around time. Whenever
possible, our study have tried to identify and explain the
reasons behind the observed behavior of investigated
JMSs.

1. Introduction

A lot of work has been done in grid software
infrastructure [1]. One of the major tasks of this
infrastructure is job management, also known as
workload management, load sharing, or load
management. Software systems capable of performing
this task are referred to as Job Management Systems
(JMSs) [2].

Job Management Systems can leverage under-utilized
computing resources to serve remote users who currently
have the needs, in a grid computing like style. Most JMSs
can operate in multiple environments, including
heterogeneous clusters of workstations, supercomputers,
and massively parallel systems. The focus of our study is
performance of JMSs in a loosely coupled cluster of
heterogeneous workstations.

Taking into account the large number of JMSs
available commercially and in public domain, choosing
the best JMS for particular type of distributed computing
environment is not an easy task. All previous
comparisons of JMSs reported in literature had only a
conceptual character. In [3], selected JMSs were
compared and contrasted according to a set of well

defined criteria. In [4, 5], the job management
requirements for the Numerical Aerodynamic Simulation
(NAS) parallel systems and clusters at NASA Ames
Research Center were analyzed and several popular JMSs
evaluated according to these criteria. In [6, 7], three
widely used JMSs were analyzed from the point of view
of their use with Sun HPC Cluster Tools. Finally, our
earlier conceptual study, reported in [8], gave a
comparative overview and ranking of twelve popular
systems for distributed computing, including several
JMSs.

In this paper, we extend the conceptual comparison
with the empirical study based on a set of well defined
experiments performed in a uniform fashion in a
controlled computing environment [9]. To our best
knowledge, this is a first reported experimental study
quantifying the relative performance of Job Management
Systems.1

Our paper is organized as follows. In Section 2, we
give an introduction to Job Management Systems, and
summarize conceptual functional differences among
them. In Section 3, we define metrics used for
comparison, present our experimental setup, and discuss
parameters and role of all experiments. In Section 4, we
describe our methodology and tools used for the
measurement collection. Finally, in Sections 5 and 6, we
present experimental results, their analysis, and we draw
conclusions regarding the relative strengths and
weaknesses of investigated JMSs.

2. Job Management Systems

2.1. General architecture of a JMS

The objective of a JMS, investigated in this paper, is to
let users execute jobs in a non-dedicated cluster of
workstations with a minimum impact on owners of these
workstations by using computational resources that can
be spared by the owners. The system should be able to
perform at least the following tasks:

a. monitor all available resources,

1 This work was sponsored by the Department of Defense under
the LUCITE contract #MDA904-98-C-A081 and by
RIACS/NASA/IPG

b. accept jobs submitted by users together with resource
requirements for each job,

c. perform centralized job scheduling that matches all
available resources with all submitted jobs according to
the predefined policies,

d. allocate resources and initiate job execution,
e. monitor all jobs and collect accounting information.

To perform these basic tasks, a JMS must include at least
the following major functional units shown in Fig. 1:
1. User server – which lets user submit jobs and their

requirements to a JMS (task b), and additionally may
allow the user to inquire about the status and change
the status of a job (e.g., to suspend or terminate it).

2. Job scheduler – which performs job scheduling and
queuing based on the resource requirements, resource
availability, and scheduling policies (task c).

3. Resource manager, including
• Resource monitor – which collects information about

all available resources (tasks a and e), and
• Job dispatcher – which allocates resources and

initiates execution of jobs submitted to JMS (task d).

2.2. Choice of Job Management Systems

More than twenty JMS packages, both commercial and
public domain, are currently in use [2, 3, 8]. For interest
of time we selected two representative and most
commonly used commercial JMSs

• LSF – Load Sharing Facility, and
• PBS Pro – Portable Batch System

The common feature of these two JMSs is that both of
them are based on a central Job Scheduler running in a
single computational node.
 LSF (Load Sharing Facility) is a commercial JMS from
Platform Computing Corp. [10]. It evolved from the

jobs &
their requirements

User
Server

Job Scheduler
Resource
Monitor

available
resources

resource
requirements

scheduling
policies

Job
Dispatcherresource allocation

and job execution

Resource Manager

User job

jobs &
their requirements

User
Server

Job Scheduler
Resource
Monitor

available
resources

resource
requirements

scheduling
policies

Job
Dispatcherresource allocation

and job execution

Resource Manager

User job

Figure 1. Major functional blocks of a Job
Management System

Utopia system developed at the University of Toronto
[11], and is currently probably the most widely used JMS.

PBS (Portable Batch System) has both a public domain
and a commercial version. The commercial version called
PBS Pro is supported by Veridian Systems. This version
was used in our experiments. PBS was originally
developed to manage aerospace computing resources at
NASA Ames Research Center.

2.3. Functional similarities and differences among
selected Job Management Systems

The most important functional characteristics of
selected two JMSs are presented and contrasted in Table
1. From this table, it can be seen that LSF supports all
operating systems, job types, and features included in the
table. PBS trails LSF in terms of support for parallel jobs,
process migration, dynamic load balancing,
checkpointing, and master daemon fault recovery. It also
does not support Windows NT.

Table 1. Conceptual functional comparison of selected Job Management Systems

 LSF PBS

Distribution commercial commercial and public
domain

Linux, Solaris yes yes
Tru64 yes yes
Windows NT yes no
Interactive jobs yes yes
Parallel jobs yes partial
Stage-in and
stage-out

yes yes

Process migration yes no
Dynamic load balancing yes no
Checkpointing yes only kernel-level
Daemon fault recovery master and execution

hosts
only for execution hosts

time

Job submissions

time

1 N

i1 iN

time=0

Jobs finishing execution

Tk – time necessary to execute k jobs

Throughput (k) =
k
Tk

ik

a)

time

Job submissions

time

1 N

i1 iN

time=0

Jobs finishing execution

TN – time necessary to execute N jobs

Total Throughput =
N
TN

b)

Figure 2. Definition of (a) partial and (b) total
throughput

3. Experimental Setup

3.1. Metrics

The following performance measures were
investigated in our study:
1. Throughput is defined in general as a number of jobs
completed in a unit of time. Nevertheless, this number
depends strongly on how many jobs are taken into
account. Therefore, we introduce the notion of Partial
Throughput with parameter k, and define it as k divided
by the amount of time necessary to complete k JMS jobs
(see Fig. 2a). We also define Total Throughput as a
special case of Partial Throughput for parameter k equal
to the total number of jobs submitted to a JMS during the
experiment, N (see Fig. 2b).

In Fig. 3, we show the typical dependence of the
partial throughput on the number of jobs taken into
account, k. It can be seen that the partial throughput
increases sharply as a function of k until the moment
when either all system CPUs become busy, or the number
of jobs submitted and completed in a unit of time become
equal. When the number of jobs taken into account, k,
gets close to the total number of jobs submitted during the
experiment, the throughput drops sharply and
unpredictably.

Figure 3. Throughput as a function of the number of
jobs taken into account

This drop is the result of a boundary effect and is not
likely to appear during the regular operation of a JMS,
when the flow of jobs submitted to a JMS continues
uninterrupted for a long period of time. The total
throughputs are affected by this boundary effect, and as a
result do not characterize well the relative performance of
JMSs for real-life workloads. Therefore, we decided to
use for comparison Average Throughput, defined as the
Partial Throughput averaged over all possible values of
the job number, k.
2. Average turn around time is the time from submitting
a job till completing it, averaged over all jobs submitted
to a JMS (see Fig. 4).
3. Average response time is the average amount of time
between submitting a job to a JMS and starting the job on
one of the execution hosts (see Fig. 4).
4. Utilization is the ratio of a busy time span to the
available time span. In our experiments, we measured the
utilization by measuring the average percentage of the
CPU time used by all JMS jobs on each execution host.
These average machine utilizations were then averaged
over all execution hosts (see Fig. 5).

time

ts
submission

time

tb
begin of execution

time

te
end of execution

time

td
delivery

time

TR
response

time

TTA
turn around

time

TEXE
execution

time

TD
delivery

time

Figure 4. Definition of timing parameters

machine 2

machine M

machine 1

0%

100%
CPU utilization

average CPU
utilization

0%

100%
CPU utilization

average CPU
utilization

0%

100%
CPU utilization

average CPU
utilization

.

job1 job2 job3

job1 job2

job2

job1 job3

Uavr

1

Uavr

2

Uavr

M

∑
=

=
M

1j

avr
jU

M
1 UOverall utilization =

machine 2

machine M

machine 1

0%

100%
CPU utilization

average CPU
utilization

0%

100%
CPU utilization

average CPU
utilization

0%

100%
CPU utilization

average CPU
utilization

.

job1 job2 job3

job1 job2

job2

job1 job3

Uavr

1

Uavr

2

Uavr

M

∑
=

=
M

1j

avr
jU

M
1 UOverall utilization =

Figure 5. Definition of the system utilization and its
measurement using top

3.2. Our Micro-grid testbed

A Micro-grid testbed used in our experiments is shown
in Fig. 6. The testbed consists of 9 PCs running Linux
OS, and 4 workstations Ultra 5, running Solaris 8. The
total number of CPUs available in the testbed is 20. The
network structure of the testbed is flat, so that every
machine can serve as both an execution host and a
submission host. In all our experiments, pallj was used
as a master host for all Job Management Systems. All 13
hosts, including the master host, were configured as
execution hosts. In all our experiments, pallj was also
employed as a submission host.

3.3. Application benchmarks

A set of 36 benchmarks has been compiled and
installed on all machines of our testbed. These programs
belong to the following four classes of benchmarks: NSA
HPC Benchmarks, NAS Parallel Benchmarks, UPC
Benchmarks, and Cryptographic Benchmarks. Each
benchmark has been characterized in terms of the CPU
time, wall time, and memory requirements using one of
the Linux machines.

science.gmu.edu

Linux – PII,
400 MHz, 128 MB
RAM

Linux RH7.0 – PIII 450
MHz, 512 MB RAM

4 x Linux RH6.2 – 2xPIII –
500 MHz, 128MB

m1

pallj / m0

Solaris 8 –
UltraSparcIIi,
360 MHz,
512 MB RAM

m4 m5 m7

3 x Linux RH6.2 – 2xPIII –
450 MHz, 128MB

Solaris 8 – UltraSparcIIi,
440 MHz, 512 MB RAM

Solaris 8 –
UltraSparcIIi,
440 MHz,
128 MB RAM

Solaris 8 –
UltraSparcIIi,
330 MHz,
128 MB RAM

palpc2

alicja

anna

magdalena

redfox

gmu.edu

Figure 6. A Micro-grid testbed used in the
experimental study

All benchmarks have been divided into the following
three sets of benchmarks:
1. Set 1 – Short job list – 16 benchmarks with an

execution time between 1 second and 2 minutes, and
an average execution time equal to 22 seconds.

2. Set 2 – Medium job list – 8 benchmarks with an
execution time between 2 minutes and 10 minutes,
and an average execution time equal to 7 minutes 22
seconds.

3. Set 3 – Long job list – 6 benchmarks with an
execution time between 10 minutes and 31 minutes,
and an average execution time equal to 16 minutes 51
seconds.

3.4. Experiments

Each experiment consists of running N jobs chosen
pseudorandomly from the given set of benchmarks, and
submitted one at a time to a given JMS in the
pseudorandom time intervals. All jobs were submitted
from the same machine, pallj, and belonged to a single
user of the system. The rate of the job submissions was
chosen to have a Poisson distribution.

Table 2. Characteristics of experiments performed during our study

Experiment
Number

Benchmark Set Average
CPU time / Job

Average Time
Intervals Between
Job Submissions

Total
Number
of Jobs

Special Assumptions

1 Set 2, Medium
job list

7 min 22 s 30 s, 15 s, 5 s 150 one job / CPU

2 Set 3, Long job
list

16 min 51 s 2 min, 30 s 75 one job / CPU

3 Set 1, Short job
list

22 s 15 s, 10 s, 5 s,
2 s, 1 s

150 one job / CPU

The only job requirement specified during the job
submission was the amount of available memory. No
information about the expected execution time, or limits
on the wall or CPU time were specified.

The total number of jobs submitted to a system, N,
was chosen based on the expected total time of each
experiment, the average execution time of jobs from the
given list, and the number of machines in our testbed. In
Experiments 1 and 3, regarding medium and short job
lists, the total number of jobs was set to 150, which led
to a total experiment time of about two hours. In
Experiment 2, regarding the long job list, the total
number of jobs was reduced to 75 to keep the time of
each experiment within the range of 2 hours.

Each experiment was repeated for both JMSes, under
exactly the same initial conditions, including the same
initial seeds of the pseudorandom generators.
Additionally, all experiments were repeated 3 times for
the same JMS to minimize the effects of random events
in all machines participating in the experiment.

Additionally, each experiment was repeated for
several different average job submission rates. These
rates have been chosen experimentally in such a way
that they correspond to qualitatively different JMS
loads. For the smallest submission rate, each system is
very lightly loaded. Only a subset of all available CPUs
is utilized at any point in time. Any new job submitted
to the system can be immediately dispatched to one of
the execution hosts. For the highest submission rate, a
majority of CPUs are busy all the time, and almost any
new job submitted to a JMS must spend some time in a
queue before being dispatched to one of the execution
hosts.

The characteristic parameters of three experiments
performed during our experimental study are
summarized in Table 2.

3.5 Common settings of Job Management
Systems

An attempt was made to set both JMSes to an
equivalent configuration, using the following major
configuration settings:
A. Maximum Number of Jobs per CPU

In all experiments, except Experiment 2, a maximum
number of jobs assigned simultaneously to each CPU
was set to one. In other words, no timesharing of CPUs
was allowed. This setting was chosen as an optimum
because of the numerical character of benchmarks used
in our study. All benchmarks from the short, medium,
and long job lists have no input or output. For this kind
of benchmarks, timesharing can improve only the
response time, but has a negative effect on two most
important performance parameters: turn-around time
and throughput.

B. CPU factor of execution hosts
The CPU factors determine the relative performance

of execution hosts for a given type of load. Based on the
recommendations given in the LSF manual, CPU factors
for LSF were set based on the relative performance of
benchmarks representing a typical load. For each list of
benchmarks, two representative benchmarks were
selected, and run on all machines of distinctly different
types. The CPU factors were set based on an average
ratio of the execution time on the slowest machine to the
execution time on the machine for which the CPU factor
was determined. Based on this procedure, the slowest
machine had always a CPU factor equal to 1.0. The
CPU factors of remaining machines varied in the range
from 1.2 to 1.7 for a small job list, and from 1.4 to 1.95
for the medium and long job lists. The CPU factors in
LSF affect the operation of the scheduler. In PBS, the
equivalent parameter has no effect on scheduling, and
affects only accounting and time limit enforcement.
C. Dispatching interval

The dispatching interval determines how often the
JMS scheduler attempts to dispatch pending jobs. This
parameter clearly affects an average response time, as
well as scheduler overhead. It may also influence the
remaining performance parameters.

LSF and PBS use a different definition of this
parameter. In both systems, this parameter describes the
maximum time in seconds between subsequent attempts
to schedule jobs. However in PBS, the attempts to
schedule a job also occur whenever a new job is
submitted, and whenever a running batch job
terminates. The same is not the case for LSF. On the
other hand, LSF has two additional parameters that can
be used to limit the time spent by the job in the queue,
and thus reduce the response time.
F. Scheduling policies

No changes to the parameters describing scheduling
policies were made, which means that the default First
Come First Served (FCFS) scheduling policy was used
for all systems. One should be however aware that
within this policy, a different ranking of hosts fulfilling
job requirements might be used by different JMSs.

4. Methodology and measurement collection

Each experiment was aimed at determining values of
all performance measures defined in Section 3.1. All
parameters were measured in the same way for all
JMSs, using utilities and mechanisms of the operating
systems only.

In particular, timestamps generated using the C
function gettimeofday(), were used to determine
the exact time of a job submission, as well as the begin
and end of the execution time.

Job
submission
program

Job
Management

System

Submission
script

list
of jobs

average
interval
between

jobs

job

submission
time

job

beginning
of execution time

end of
execution time

timing
log files

timing parameters

Timing
postprocessing

program

top

Utilization
postprocessing

program

utilization
parameters

top
log files

Figure 7. Software used to collect performance
measures

The function gettimeofday() gets the current time
from the operating system. The time is expressed in
seconds and microseconds elapsed since Jan 1, 1970
00:00 GMT. The actual resolution of the returned time
depends on the accuracy of the system clock, which is
hardware dependent. The Unix Network Time Protocol
(NTP) was used to synchronize clocks of all machines
of our Micro-grid. The protocol provides accuracy
ranging from milliseconds (on LANs) to tenths of
milliseconds (on WANs).

In order to determine the JMS utilization, the Unix
top utility was used. This utility records an
approximate percentage of the CPU time used by each
process running on a single machine averaged over a
short period of time, e.g., 15 seconds (see Fig. 5). For
each point in time, the sum of percentages
corresponding to all JMS jobs is computed. These sums
are then averaged over the entire duration of an
experiment, to determine an average utilization of each
machine by all JMS jobs The execution host utilizations
averaged over all execution hosts determine the overall
utilization of a JMS.

Three programs were developed to support the
experiments and were used in a way shown in Fig. 7. A
C++ Job Submission program has been written to
emulate a random submission of jobs from a given host.
This program takes as an input a list of jobs, a total
number of submissions, an average interval between
two consecutive submissions, and the name of a JMS
used in a given experiment. Two postprocessing Perl
scripts, Timing and Utilization postprocessing utilities,
have been developed to process log files generated by
benchmarks and the top utility. These scripts generate
exhaustive reports including values of all performance
measures separately for every execution host, and
jointly for the entire Micro-Grid testbed.

5. Experimental Results

Two most important parameters determining the
performance of a Job Management System from the
user’s point of view are turnaround time and
throughput. Throughput is particularly important when a
user submits a large batch of jobs to a JMS and does not
do any further processing till all jobs complete
execution. Turnaround time is particularly important
when a user
tends to work in a pseudo-interactive mode and awaits
results of each subsequent experiment.

In Experiment 1, with the medium job list, LSF and
PBS are almost identical in terms of the average
throughput. In terms of the average turn-around time,
PBS is better by a factor ranging from 7 to 17%.

In Experiment 2, with the long job list, the
throughputs of LSF and PBS are once again almost
identical, and the turn-around time of PBS is better, but
this time only by a small margin ranging from 1 to 6%.

In Experiment 3, for short job list, the throughput of
LSF was significantly higher than the throughput of
PBS. The difference between throughputs of both
systems increased as a function of the job submission
rate, reaching a factor of 2.1 for the two highest job
submission rates. On the other hand, PBS appeared to
have a smaller turn-around time for majority of job
submission rates. The difference between the turn-
around times of PBS and LSF was in the range of 25%
for small job submission rates, and reached almost a
factor of 2 for the highest investigated job submission
rate.

The analysis of the system utilization and job
distribution has revealed the following reasons for the
different relative performance of investigated systems in
terms of throughput and turn-around time. LSF tends to
dispatch jobs to all execution hosts, independently of
their relative speed as shown in Fig. 11a. It also uses a
complex algorithm for scheduling, which guarantees
that jobs are executed tightly one after the other. Both
factors contribute to a high system throughput. At the
same time, distributing jobs to all machines, including
slow ones, increases average execution time, and
complex scheduling affects average response time. Both
factors contribute to the high increase in the average
turn-around time. On the other hand, PBS distributes
jobs only to a limited number of the fastest execution
hosts, as shown in Fig. 11b. As a result, the average
execution time is smaller compared to LSF, which
contributes to a better average turn-around time. At the
same time, the limited utilization of the execution hosts
contributes to only average throughput.

0
20
40
60
80
100
120
140

2 jobs/min 4 jobs/min 12 jobs/min

Average job submission rate

Throughput [jobs/hour]
LSF
PBS

91
89

111 111 119
123

0

500

1000

1500

2000

2500

2 jobs/min 4 jobs/min 12 jobs/min

LSF
PBS

Average job submission rate

Turn-around Time [s]

496 462

1134
944

1765

1466

Figure 8. Average throughput and average turn-around time for the medium job list

0
5
10
15
20
25
30
35
40
45

0.5 job/min 2 jobs/min
Average job submission rate

Throughput [jobs/hour]
LSF
PBS

22 22

38 37

0

500

1000

1500

2000

2500

3000

3500

4000

0.5 job/min 2 jobs/min
Average job submission rate

Turn-around Time [s]
LSF
PBS

1148 1079

2191 2163

Figure 9. Average throughput and average turn-around time for the long job list

0
200
400
600
800
1000
1200
1400

Throughput [jobs/hour]
LSF
PBS

4 jobs/min 6 jobs/min 12 jobs/min 30 jobs/min 60 jobs/min

Average job submission rate

224
221

328 311

605

375

1123

532

1311

624

0

20

40

60

80

100

120

140

4 jobs/min 6 jobs/min 12 jobs/min 30 jobs/min 60 jobs/min
Average job submission rate

LSF
PBS

Turn-around Time [s]

42
34

41
33

42
58

68
58

120

62

Figure 10. Average throughput and average turn-around time for the short job list

Figure 11. Utilization of machines by a) LSF and b)
PBS.

6. Conclusions

Based on Figures 8-11, we can draw the following
conclusions. In terms of the average system throughput,
LSF and PBS appear to offer almost the same
performance for medium and long jobs, and LSF
outperforms PBS for short jobs, especially in case of
large job submission rates.

In terms of the average turn-around time, PBS is
superior to LSF for almost all investigated job sizes and
submission rates. The largest difference between turn-
around times of both systems appeared for short jobs and
large submission rates.

The relative performance of Job Management Systems
is similar for medium and large jobs, and changes
considerably for short jobs where the job execution times
became comparable with the times required for resource
monitoring and job scheduling. The obtained results have
confirmed that the type of underlying workload and the
considered metrics can determine the relative
performance standing of different systems.

Despite the limitations resulting from the relatively
small size of our Micro-Grid testbed and a limited set of
system settings exercised in our experiments, the practical
value of our empirical knowledge comes, among the
other, from the following factors:
• Even though our benchmarks and experiment times

seem to be relatively short compared to the real-life
scenarios, we make up for that by setting the average
time between job submissions to the relatively small
values. As a result, the systems are fully exercised,
and our results are likely to scale for more realistic
loads with proportionally longer job execution times
and longer times between job submissions.

• Typical users rarely use all capabilities of any
complicated system, such as JMS. Instead, majority of
Job Management Systems deployed in the field use
the default values of majority of configuration
parameters.
Additionally, to our best knowledge, our study is the

first empirical study of Job Management Systems
reported in the literature. Our methodology and tools
developed as a result of this project may be used by other
groups to extend the understanding of similarities and
differences among behavior and performance of various
Job Management Systems.

Acknowledgments

The authors would like to acknowledge Jearanai
Vongsaard, Sébastien Chauvin, and Alexandru V. Staicu
for their contribution to the study described in this paper.

References

[1] I. Foster and C. Kesselman (eds.), The Grid: Blueprint for a

New Computing Infrastructure, Morgan Kauffman
Publishers Inc., 1999.

[2] K. Hwang, Z. Xu, Scalable Parallel Computing:
Technology, Architecture, Programming, McGraw-Hill
1998.

[3] M. A. Baker, G. C. Fox, and H. W. Yau, “Cluster
Computing Review,” Northeast Parallel Architectures
Center, Syracuse University, Nov. 1995.

[4] J. P. Jones, “NAS Requirements Checklist for Job
Queuing/Scheduling Software,” NAS Technical Report
NAS-96-003 April 1996, available at
http://www.nas.nasa.gov/Pubs/TechReports/NASreports/N
AS-96 003/

[5] J. P. Jones, “Evaluation of Job Queuing/Scheduling
Software: Phase 1 Report,” NAS Technical Report, NAS-
96-009, September 1996 available at
http://www.nas.nasa.gov/Research/Reports/Techreports/19
96/nas-96-009-abstract.html

[6] C. Byun, C. Duncan, and S. Burks, "A Comparison of Job
Management Systems in Supporting HPC Cluster Tools,"
Proc. SUPerG, Vancouver, Fall 2000.

[7] O. Hassaine, "Issues in Selecting a Job Management
Systems (JMS)," Proc. SUPerG, Tokyo, April 2001.

[8] T. El-Ghazawi, et al., Conceptual Comparative Study of
Job Management Systems, Technical Report, February
2001, available at http://ece.gmu.edu/lucite/reports.html.

[9] T. El-Ghazawi, et al., Experimental Comparative Study of
Job Management Systems, Technical Report, July 2001,
available at http://ece.gmu.edu/lucite/reports.html.

[10] I. Lumb, "Wide-area parallel computing: A production-
quality solution with LSF," Supercomputing 2000, Dallas,
Texas, Nov. 2000.

[11] S. Zhou, X. Zheng, J. Wang, and P. Delisle, "Utopia: A
load sharing facility for large heterogenous distributed
computer systems." Software Practice and Experience,
Dec. 1993.

http://www.nas.nasa.gov/Pubs/TechReports/NASreports/NAS-96-003/
http://www.nas.nasa.gov/Pubs/TechReports/NASreports/NAS-96-003/

	Distribution
	Table 2. Characteristics of experiments performed during our

