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Abstract 

 
In this paper, we overview general hardware 

architecture and a programming model of SRC-6ETM 
reconfigurable computers, and compare the performance 
of the SRC-6E machine vs. Intel® Pentium IVTM. SRC-6E 
execution time measurements have been performed using 
three different approaches. In the first approach, the entire 
end-to-end execution time is taken into account. In the 
second approach, the configuration time of FPGAs have 
been omitted. In the third approach both configuration and 
data transfer overheads have been omitted. All 
measurements have been done for different numbers of 
data blocks. The results show that the SRC-6E can 
outperform a general-purpose microprocessor for 
computationally intensive algorithms by a factor of over 
1500.  However, overhead due to configuration and data 
transfer must be properly dealt with by the application or 
the system’s run-time environment to achieve the full 
throughput potential. Some techniques are suggested to 
minimize the influence of the configuration time and 
maximize the overall end-to-end system performance1. 
 
 
1: Introduction 
 

The SRC-6E Reconfigurable Computing Environment 
is one of the first general-purpose reconfigurable 
computing machines combining the flexibility of 
traditional microprocessors with the power of Field 
Programmable Gate Arrays (FPGAs). In this environment, 
computations can be divided into those executed using 
microprocessor instructions, and those executed in 
reconfigurable hardware. The programming model is 
aimed at separating programmers from the details of the 
hardware description, and allowing them to focus on an 
implemented function. This approach allows the use of 
software programmers and mathematicians in the 
development of the code, and substantially decreases the 
time to the solution. 

                                                 
1 This work was partially supported by Department of 
Defense through the LUCITE contract no. MDA904-98-
CA0810000. 

In this paper we investigate the possible speed-up that 
can be obtained using the SRC-6E Reconfigurable 
Computing Environment vs. a traditional PC based on the 
Pentium 4 microprocessor. Our benchmarks consist of the 
high-throughput implementations of Triple DES and DES 
Breaker algorithms in both environments.  Triple DES, is 
one of the three standardized secret-key ciphers 
recommended for use in the U.S. government, and is 
widely used worldwide in multiple commercial 
applications. DES Breaker is a technique for breaking an 
old encryption standard, DES, based upon an exhaustive 
key search algorithm, i.e., testing all possible encryption 
keys one by one. 

 
2: SRC-6E General Purpose Reconfigurable 
Computer 

 
2.1. Hardware architecture 
 

SRC-6E is a hybrid-architecture platform, which 
consists of two double-processor boards and one Multi-
Adaptive Processor (MAPTM) module (see Figure 1). The 
MAP module consists of two MAP processors, each 
including two user programmable Xilinx® Virtex II 
XC2VTM6000 FPGA devices. This way, the SRC-6E 
system achieves a 1:1 microprocessor to FPGA ratio. 
Processor boards are connected to the MAP processors 
through the so-called SNAP cards. A SNAP card plugs 
into a DIMM slot on a microprocessor motherboard and 
provides interconnect between the MAP board and one of 
the microprocessor boards. Each SNAP card can support 
the peak bandwidth of 800 MB/s. [1]. 
 
2.2. Programming model 
 

The SRC-6E has a similar programming model as a 
conventional microprocessor-based computing system, but 
needs to support additional tasks in order to produce logic 
for the MAP reconfigurable processor, as shown in Figure 
2.  

There are two types of the application source files to be 
compiled. Source files of the first type are compiled 
targeting execution on the Intel platform. Source files of 
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Figure 1. General Hardware Architecture of SRC-6E 
 
the second type are compiled targeting execution on the 
MAP. 

A file that contains the main program to be executed on 
the Intel processor is compiled using the microprocessor 
compiler to produce a relocatable object (.o) file. All files 
containing routines that execute on the MAP are compiled 
by the MAP FORTRAN compiler, mftn, or the MAP C 
compiler, mcc. These compilers produce several 
relocatable object files (.o), corresponding to respective 
subroutines. 

Object files resulting from both the Intel® and MAP 
compilation steps are then linked with the MAP libraries 
into a single executable file. The resulting binary file may 
then be executed on the SRC-6E Intel and MAP hardware, 
or run in the emulation mode. Environment variables 
determine the mode of execution. 
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Figure 2. SRC-6E Compilation Process 

 
 

 

2.2.1. Compiler architecture of MAP. The MAP 
compiler translates program sources that have been 
developed for the MAP execution into relocatable object 
files. The translation process has several steps, each 
performed by a distinct component of the MAP compiler, 
as shown in Figure 3. 

The optimization phase of the compiler performs 
language syntax and semantic analysis followed by the 
classical scalar and loop optimization. During the Data 
Flow Graph (DFG) generation phase, the dataflow graph 
representing relationships between basic blocks of the 
program procedure is created.  In this graph, basic 
operations are represented as nodes connected by the input 
and output arguments. Additional nodes are inserted for 
connecting blocks of graph and communicating data 
between blocks. Redundant nodes are pruned or optimized 
away [1]. 

The Verilog generator phase of compilation can be 
regarded as the “code generator” for the MAP. The 
Verilog generator translates the dataflow graph into its 
own internal format. After this translation, Verilog 
generator produces synthesizable Verilog code. 

A commercial tool Synplify ProTM is used for the logic 
synthesis of the obtained Verilog file, and produces at the 
output the netlist EDIF file and constraint file. These files 
together with earlier synthesized macro files become an 
input for the place and route tools. The place and route 
tools, Xilinx® Integrated Software EnvironmentTM, 
complete the bitstream creation process for the MAP.  

The configuration integrator is a small program that 
takes as input FPGA bitstream files and loads them into 
static structures contained in C functions. C files obtained 
from the MAP compilation process are then compiled 
together with the remaining application source files. This 
separate compilation of all C files is done with the Intel µP 
as a target microprocessor and produces as output an Intel 
executable. This executable can then be run on the SRC-
6E system. 
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Figure 3. MAP Compilation Process 

 

2.2.2.  Macro integration. The MAP compiler translates 
the source code’s various basic operations into macro 
instantiations. Here, macro can be defined as a piece of 
hardware logic designed to implement a certain function. 
Since users often wish to extend the built-in set of 
operators, the compiler allows users to integrate their own 
macros into the compilation process. The macro is invoked 
from within the FORTRAN subroutine or C function by 
means of a subroutine call.  

In SRC-6E platform, macros can be categorized by 
various criteria, and the compiler treats them in different 
ways based on their characteristics. In the MAP compiler, 
four characteristics are particularly relevant: 

A macro is “stateful” if the results it computes are 
dependent upon previous data it has computed or seen. In 
contrast “non-stateful” macro computes values using only 
its current inputs; it has no memory of its past values [4]. 
A macro is “external” if it interacts with parts of the 
system beyond the code block in which it lives [4]. 

A “pipelined” macro is able to accept new data values 
on its inputs in every clock cycle. Since the MAP compiler 
produces pipelined inner loops, the macros that will be 
used in such loops must be capable of pipelined operation 
[4]. 

 
3: Triple DES macro integration 
 
3.1. Triple DES algorithm 
 

In order to compare the performance of SRC-6E 
Reconfigurable Computing Environment and a 
conventional computer based on Intel® Pentium 4 
processor, we have implemented the same algorithm in 
both environments. Our algorithm of choice is Triple DES, 

an American encryption standard and one of the most 
popular encryption algorithms used worldwide. 

Triple DES by itself can be defined in a number of 
ways. In this paper, we use a Triple DES version proposed 
by Tuchman that uses only two different keys [3]. This 
version follows an encryption-decryption-encryption 
(EDE) sequence: 

 
C = EK1[DK2[EK1[P]]], 

 
where E and D denote DES encryption and description, 
respectively. Although there is no cryptographic benefit to 
using decryption in the second stage, nevertheless, it 
provides users of Triple DES with flexibility of 
communicating with users of an older encryption standard 
- single DES. This reduction can be accomplished by 
setting both keys of Triple DES to the same value, as 
shown below: 

 
C = EK1[DK1[EK1[P]]] = EK1[P] 

 
Triple DES with two keys is stronger and more reliable 

alternative to single DES. Triple DES is used in very 
popular Internet applications and protocols such as PGP 
and S/MIME. Triple DES has also been adopted for use in 
the key management standards ANSI X9.17 and ISO 8732. 
 
3.2. DES encryption and decryption structure 
 

DES encryption takes 64-bit plaintext block (data) and 
64-bit key (including 8 bits of parity) as inputs and 
generates a 64-bit ciphertext block (encrypted data). As 
shown in Figure 4, DES consists of 16 identical rounds 
supplemented by a few auxiliary transformations.  
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Figure 4. General architecture of DES 
 
We have implemented DES using Verilog HDL as a non-
stateful, pipelined macro with 17 pipeline stages. Triple 
DES was implemented in software by instantiating DES 
macro three times within the program subroutine. 
 
4: Execution time measurements for the 
Triple DES application 
 
4.1. SRC-6E MAP measurements  
 

Execution of an algorithm on the MAP requires that the 
FPGA devices are first configured with the algorithm 
logic. A first execution of a given subroutine on the MAP 
performs this configuration. At each invocation of the 
subroutine, there is a check of the configuration bitstream 
to be loaded to the MAP. In case, there is no change in the 
required configuration, the configuration is not repeated. 
In this case, the time to configure the MAP is amortized 
over all subsequent calls to the same subroutine. 

The execution time measurement on the SRC-6E 
platform has been performed using three different 
approaches. 
1. Total execution time, including both configuration and 

data transfer overheads (Total Time). By 
configuration overhead we mean time necessary to 
configure system FPGAs. By data transfer overhead 
we mean time necessary to transfer input and output 
data between the main microprocessor memory 
(System Common Memory, SCM) and the MAP’s on-
board memory (OBM). 

2. Total execution time without configuration overhead 
(Total Time w/o Config).  

3. Total execution time for MAP only. This time does 
not include either configuration or data transfer 
overheads (MAP Time). 

All the SRC-6E time measurements have been done 
using second() routine provided in the MAP compiler 
library. This routine is based on the number of clock 
cycles used by the processor.  

Table 1 shows the execution time and throughput for all 
three measurement approaches explained above. A number 
of encrypted data blocks have been varied from 1024 to 
500,000. Each data block is 64-bit (8-byte) long. Column 2 
shows the total execution time including both 
configuration and communication overhead. The 
corresponding throughput is calculated as a ratio of the 
number of encrypted data blocks (in Mbytes) to the total 
execution time in seconds. The results are given in column 
3. 

Column 4 shows the total execution time without 
configuration overhead. By subtracting column 4 from 
column 2, we can find the configuration time for the 
FPGA on the MAP board. This time is approximately 
equal to 100 milliseconds. As we can see from column 5, 
there is a significant increase in the system throughput 
when we avoid configuration time. 

In column 6, the execution time for MAP only is 
provided. This time does not include any configuration or 
communication overheads. Column 7 shows a very large 
increase in the throughput of the system. The MAP 
implementation of the Triple DES algorithm is pipelined 
and therefore creates an output block every clock cycle. 
This was demonstrated by the MAP throughput of 799.8 
MB/s. Nevertheless, since the configuration and data 
transfer overheads were not considered, this measurement 
can only show the data processing throughput for the 
FPGA itself, and not for the entire system. 
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Figure 5. Components of the total execution time 
as a function of the number of encrypted blocks 
for high-throughput Triple DES encryption 
 



Table 1. Execution time and Throughput for three different measurement approaches 
 

Length  
(words) 

Total time 
(sec) 

Throughput 
(MB/sec) 

Total time 
w/o config (sec)

Throughput 
w/o config 
(MB/sec) 

MAP time 
(sec) 

MAP 
Throughput 

(MB/sec) 
1024 0.099 0.08 0.00050 16.29 1.12E-05 730.12

10,000 0.100 0.80 0.00133 60.33 0.000101 792.23
25,000 0.102 1.96 0.00266 75.19 0.000251 796.88
50,000 0.105 3.81 0.00492 81.30 0.000501 798.44

100,000 0.108 7.37 0.00932 85.84 0.001001 799.22
250,000 0.123 16.27 0.02228 89.77 0.002501 799.69
500,000 0.146 27.32 0.04421 90.48 0.005001 799.84

 
In Figure 5, components of the total execution time for 
Triple DES encryption are shown as a function of the 
number of processed data blocks. It can be seen that for all 
considered numbers of blocks, configuration time 
dominates the entire execution time. However, even if the 
configuration is done in advance or is amortized over 
encryption of multiple messages, FPGA devices are still 
relatively poorly utilized. This is because more time is 
spent on transferring data between the microprocessor 
board and the MAP board than on the FPGA computations 
themselves. 
 
4.2. Intel Pentium 4 measurements 
 

We have run a public domain code of Triple DES on a 
personal computer equipped with one 1.8 GHz Pentium P4 
processor with 512KB cache and 1GByte memory. Two 
cases have been considered: C implementation of the 
algorithm and an optimized assembly language 
implementation of the algorithm. 

 
4.2.1. C Code for Triple DES (Non-optimized): In the 
non-optimized case, C code is compiled with the Intel C++ 
compiler  v.  5.0 with  the  -O3  level   optimization.  The 
results are given in the left part of Table 2. In contrast to 
the  SRC-6E  platform,  there  is  no significant 
dependence 

 
Table 2.  Total execution time of Triple DES for 
Pentium 4 processor using optimized and non-

optimized DES code 
 
 P4 non-optimized P4 optimized 

Length 
 

(words) 

Total time 
(sec) 

Throu-
ghpu 

(MB/sec) 

Total time 
(sec) 

Throu-
ghput 

(MB/sec) 
1024 0.00379 2.15920 0.00102 8.06299

10,000 0.03663 2.18400 0.01010 7.92354
25,000 0.09279 2.15540 0.02561 7.80969
50,000 0.18637 2.14627 0.05116 7.81937

100,000 0.37150 2.15343 0.09960 8.03253
250,000 0.91990 2.17415 0.25478 7.84985
500,000 1.83200 2.18341 0.49841 8.02546

between the throughput and the number of input blocks. 
This is because all blocks are processed sequentially, one 
at a time. 
 
4.2.2. Assembly Code for Triple DES (Optimized): An 
optimized implementation of Triple DES considered in 
this paper is based on [5]. It contains a mixture of the C 
code and assembly language code. The entire program is 
compiled using GNU “gcc” version 2.96 20000731 (Red 
Hat Linux 7.3 2.96-112) with the -O4 optimization option. 
The results are given in the right part of Table 2. As we 
can see from Table 2, the total execution time on Pentium 
P4 decreased by a factor of approximately four as a result 
of moving majority of computations from C to assembly 
language. 
 
5: Comparisons for the Triple DES 
Application 
 

Based on the measurements described in Section IV, the 
speed-ups of the SRC-6E machine vs. Intel Pentium 4 PC 
are given in Table 3. Two cases are considered for the 
Pentium 4 implementation of Triple DES, non-optimized 
implementation described in Section 4.2.1 and optimized 
implementation described in section 4.2.2.  In both cases, 
the speed-up increases as a function of the number of data 
blocks processed, and is the highest for the largest 
considered input of 500,000 data blocks.  

For the case of optimized Pentium assembly language 
implementation, when all overheads of the SRC-6E 
machine are included, the SRC-6E platform is 
approximately 3.5 times faster than Pentium 4. Without 
configuration time, the speed-up exceeds 11. Without 
configuration or communication overheads (MAP only), 
the speed-up of SRC-6E reaches 100. For the case of non-
optimized Pentium C implementation, all SRC speed-ups 
are approximately four times larger. 

In Figure 6, the throughput curves for both SRC-6E 
MAP and the Intel Pentium processor are given. For the 
reconfigurable computer, the throughput rates are given for 
two cases. In the first case, all overheads are taken into 
account.   In   the  second  case,  the  configuration  time  is  



 
Table 3. Speed-ups of SRC-6E vs. Pentium 4 for high-throughput Triple DES encryption 

 
MAP vs. Non-optimized P4  MAP vs. Optimized P4  

Length 
(words) 

Speedup 
Total 

Speedup 
Total w/o 

Config 

Speedup 
MAP 

Speedup 
Total 

Speedup 
Total w/o 

Config 

Speedup 
MAP 

1024 0.04 7.5 338.2 0.01 2.0 90.6 
10000 0.37 27.6 362.8 0.10 7.6 100.0 
25000 0.91 34.9 369.7 0.25 9.6 102.0 
50000 1.78 37.9 372.0 0.49 10.4 102.1 

100000 3.42 39.9 371.1 0.92 10.7 99.5 
250000 7.49 41.3 367.8 2.07 11.4 101.9 
500000 12.51 41.4 366.3 3.40 11.3 99.7 
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Figure 6. Throughput curves for both SRC-6E MAP and Pentium 4 processor 
 

excluded. Additionally, two throughputs of the Pentium 4 
processor are given; one for the optimized program and the 
second for the non-optimized C only P4 program. 
 
6: Execution time measurements for DES 
breaker application 
 

As a second benchmark for SRC-6E MAP vs. P4, we 
have employed the DES Breaker based on the exhaustive 
key search algorithm. In this algorithm, the entire key 
space is searched for a match between a given pair of a 
ciphertext block and the corresponding plaintext block.  In 
each iteration of the algorithm, a given plaintext block is 
encrypted using a candidate key, and the result is 
compared against the expected ciphertext. If the match is 
not found, the key is incremented by one, otherwise the 
algorithm returns the key as a final solution.  

We have measured the performance of the DES Breaker 
application for both the Pentium 4 and SRC-6E platforms. 
For the SRC-6E platform, we have made the time 
measurements based on three different approaches that are 
defined in previous sections. The difference is that in this 
application we take scalability and flexibility advantages 
of reconfigurable computers into account by using more 
than one DES unit for the key search in FPGAs. These 
measurements are given in Table 4 where nX refers to a 
number of DES units operating in parallel within MAP.  

In Figure 7, the components of the total execution time 
are presented for the case of a single DES unit. As we can 
see, a vast majority of time is spent for actual 
computations, a small fixed amount of time for 
configuration, and almost no time for data transfer. This is 
because all new inputs (new keys) are computed on the 
MAP board itself and do not need to be transmitted from 
the microprocessor board. This is the most favorable 



scenario from the point of view of performance of SRC-
6E. 

As a second step, we have implemented DES Breaker 
application in two different ways on Pentium 4 1.8GHz 
PC, using the same hardware and software environments 
as in the case of the Triple DES benchmark. As one way of 
implementing DES Breaker, we have used the non-
optimized implementation of DES, coded entirely in C, 
described in Section 4.2.1. In this implementation, both 
pre-calculation of the round keys and DES encryption are 
coded in C. The results are given in Table 5. As a second 
way of implementing DES Breaker application, we have 
used an optimized version of the DES P4 implementation 
based on [5]. In this case, an optimized assembly language 
code was used for DES encryption. The results are given 
in Table 5. Unfortunately, as we discovered, the optimized 
version of DES has been optimized specifically for 
encryption of long streams of data with the same key, and 
appeared to be extremely inefficient when the keys needed 
to be changed for every new input data block.  As a result, 
since the pre-calculation of the round keys takes 
significantly longer than DES encryption itself, the total 
execution time of the DES breaker application is longer for 
the optimized version of the DES code than for the non-
optimized version of the DES code. 
 
7: Comparisons for DES breaker application 
 
Using the total execution time measurements, the results of 
which are given in Tables 4 and 5 (second column), we 
easily derived speedup factors for SRC-6E vs. a PC based 
on    Pentium    4    processor.    Only    the    case   of   the  

 
Table 4. Execution time and Throughput for three 

different measurement approaches where nX 
refers to the number of parallel DES engines in 

MAP 
 

Number 
of  DES 

units 

Search Size 
(keys) 

Total 
Time 
(sec) 

Total 
Time 
w/o 

Config. 
(sec) 

MAP 
only 
(sec) 

128,000 0.101 0.0016 0.00128 
1,000,000 0.109 0.0103 0.01001 

 
1 X 

100,000,000 1.101 1.0006 1.00001 
128,000 0.101 0.0009 0.00064 

1,000,000 0.104 0.0053 0.00500 
 

2 X 
100,000,000 0.602 0.5006 0.50000 

128,000 0.101 0.0006 0.00032 
1,000,000 0.102 0.0028 0.00250 

 
4 X 

100,000,000 0.352 0.2503 0.25000 
128,000 0.097 0.0005 0.00016 

1,000,000 0.098 0.0015 0.00125 
 

8 X 
100,000,000 0.222 0.1253 0.12500 

 

Table 5. Total execution time of the DES Breaker 
for Pentium 4 processor using optimized and 

non-optimized DES code 
 

Search size 
(keys) 

Time for non-
optimized DES 

(sec) 

Time for 
optimized DES 

(sec) 
128,000 0.25 3.22 

1,000,000 1.97 24.64 
100,000,000 198.40 2394.51 

 
non-optimized implementation of DES on Pentium 4 was 
considered, since the optimized implementation of DES 
appeared to be significantly less efficient for this 
application. 
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Figure 7. Components of the total execution time 
as a function of the number of tested keys for the 
DES breaker application 

 
Table 6. Speedup for SRC-6E vs. Pentium 4 

1.8GHz processor for the compiler non-optimized 
case. Where nX refers to number of parallel DES 

engines in MAP. 
 

Numbe
r of  

DES 
units 

Search Size 
(keys) 

Speedu
p  

Total 

Speedu
p 

w/o 
Config. 

Speedu
p  

MAP 
only 

128,000 2.5 157.4 194.0 
1,000,000 18.1 191.3 197.3 

 
1 X 

100,000,00
0 180.2 198.3 198.4 

128,000 2.5 265.1 387.8 
1,000,000 18.9 373.0 394.6 

 
2 X 

100,000,00
0 329.4 396.3 396.8 

128,000 2.5 406.7 774.6 
1,000,000 19.3 706.0 789.0 

 
4 X 

100,000,00
0 563.0 792.6 793.6 



128,000 2.6 500.0 1562.5 
1,000,000 20.1 1313.3 1576.0 

 
8 X 

100,000,00
0 893.7 1583.4 1587.2 

When 8 units of DES are implemented in parallel on a 
single FPGA, then even if we take into account all 
configuration and data transfer overheads, SRC-6E 
platform is still approximately 894 times faster compared 
to the C program running on a PC with 1.8 GHz Pentium 
4. This speed up factor reaches 1583 when we omit the 
configuration time. When we consider only MAP (FPGA 
processor board) the speed up is about 1587. 

 
8: Conclusions 
 

The two benchmarks, Triple DES and DES Breaker 
represent two distinct classes of algorithms.  Both are 
compute intensive, but they differ in their data transfer 
characteristics: Triple DES encryption is based on real-
time data streaming, while DES Breaker has minimal 
input/output requirements.  In both cases the SRC-6E 
system outperforms the P4 microprocessor.  However, the 
speed-up factor varies significantly depending on the 
application type. 

For Triple DES as a benchmark, we have demonstrated 
the overall speed-up of 3 between the SRC-6E machine 
and the standard PC. When the configuration time of 
FPGAs in the SRC-6E machine was eliminated the speed-
up increased to a factor of 11. When both configuration 
and communication overheads were eliminated, the speed-
up reached a factor of 100. 

On the other hand, for the DES Breaker benchmark, an 
894x speedup has been achieved even with configuration 
of the FPGAs present.  Eliminating the configuration time 
yielded a 1583x speedup for SRC-6E over P4. The 
computational intensity and the relative minimal data 
movement put the reconfigurable processor at its best 
advantage. 

Based on these results, we clearly see the importance of 
an overhead management, in particularly eliminating the 
configuration time from the main computational path. 
Obviously, the configuration time is not unique to the 
SRC-6E. It exists for all systems that use FPGAs. 
Configuration times would be worse for systems that use 
the serial port for configuration. For the applications that 
require long execution time, such as DES Breaker, the 
configuration time overhead can be negligible. 
Nevertheless, for short and sequential applications, 
configuration time is a major source of the performance 
degradation and must be minimized or eliminated. To 
deliver the performance potential of reconfigurable 
computing in the general purpose computing arena, the 
compiler and run time libraries must eliminate 
configuration time from the computational path. Latency 
hiding techniques such as preloading configurations during 

initialization, and ping-pong allocation of reconfigurable 
chips and processors can be used. 

In case of run-time reconfiguration, the run-time 
switching from one algorithm to another would cause 
additional demands upon reconfiguration time. The 
increase in the algorithm switching frequency would make 
the SRC-6E system inefficient from the execution point of 
view compared to the standard microprocessors if latency 
hiding is not utilized. 

SRC understands the impact of the reconfiguration of 
the FPGAs in the MAP and is working on methods that 
will reduce the apparent configuration time for multiple 
algorithms using the MAP. Some of the techniques that 
can be used are flip-flopping the FPGA used by an 
algorithm. This would mean that two algorithms utilizing 
single FPGAs can be loaded into a MAP and thereby 
incurring the configuration only once. There are cases that 
will require more elegant solutions if there are more than 
two algorithms using the MAP or for algorithms requiring 
both FPGAs in the MAP. 

There are significant application performance gains to 
be achieved using run time reconfigurable systems like the 
SRC-6E.  Taking a system wide approach that addresses 
the programming model, the resource management, and 
the overhead management will permit these performance 
gains to be achieved in a wide range of applications. 
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