
A Configurable Ring-Oscillator-Based PUF for Xilinx FPGAs

Xin Xin, Jens-Peter Kaps, Kris Gaj
Electrical and Computer Engineering Department

George Mason University
Fairfax, VA, USA

Email: {xxin,jkaps,kgaj}@gmu.com

Abstract—In 2002, Devadas has first proposed the notion
of Silicon Physical Unclonable Function (sPUF), which takes
advantage of delay variations of wires and gates. A Ring-
Oscillator-Based PUF (RO PUF) is one possible implementation
of an sPUF. One disadvantage of RO PUFs is that they require
one pair of ring oscillators per bit of output. Therefore, in
order to collect enough output bits for a safe security level, a
large number of ring oscillators is needed. Configurable PUFs
may help solving this problem. In 2009, Maiti introduced a
configurable RO PUF to improve RO PUF reliability, where
each RO is implemented in one configurable logic block (CLB)
by using lookup tables (LUTs) and dedicated multiplexers.
In this paper we analyze Maiti’s configurable RO PUFs
and propose improvements to generate more output bits, by
utilizing latches as well as the resource mentioned above.
Experimental results demonstrate that our improved method
outputs more bits than Maiti’s configurable RO PUFs and the
original RO PUFs, while using the same amount of area.

Keywords-Physical Unclonable Function; Configurable Ring
Oscillator; Xilinx FPGAs

I. INTRODUCTION

Device authentication is an important issue in cryptog-
raphy. An authority which approves devices for use hopes
to be able to distinguish authentic devices from fake copies
which are not licensed for use. Conventional methods for
dealing with this problem require each device to store a
secret, unique key in non-volatile memory on the chip, and
the use of cryptographic algorithms to encrypt and protect
confidential information. This method is ineffective when it
comes to devices such as RFIDs, which are highly resources
constrained, thus not able to implement cryptography at
low cost. Besides, managing these secrets in non-volatile
memory is difficult and expensive.

Physical Unclonable Functions (PUF), can be used to
realize device authentication at low cost. They utilize the
manufacturing variations on each chip to create a secret that
can never leave that chip. Generally, a PUF takes an m-
bit challenge and generates an n-bit response, as shown in
Fig. 1. This response varies from chip to chip in a unique

c©2011 IEEE. Xin Xin, Jens-Peter Kaps, and Kris Gaj. A Configurable
Ring-Oscillator-Based PUF for Xilinx FPGAs. In 14th EUROMICRO
Conference on Digital System Design – DSD’11, pages 651–657. IEEE,
Sep, 2011. http://dx.doi.org/10.1109/DSD.2011.88

and random manner, even though each chip has an identical
implementation of the same PUF design. Manufacturing
variations cause that the challenge-response mapping is
unique to each chip, hence each chip can be uniquely
authenticated. A trusted party stores a certain amount of
randomly chosen static challenge and response pairs (CRPs)
in a secure database when it possesses authentic chips.
Afterwards, this trusted party is able to authenticate devices
by applying a challenge that is recorded in the database, and
compare the CRPs generated by the device under test and
the CRPs in the database [1]. The device under test can only
be deemed as authentic when the response is close enough
to the response recorded in the database.

Inter-chip variation and Intra-chip variation are often used
as two important parameters to measure a PUF’s quality.
A more detailed definition will be discussed in Section IV.
Generally speaking, Inter-chip variation explores how unique
the PUF outputs are from chip to chip and Intra-chip
variation reveals how reliable the PUF outputs can be when
re-generated, with or without environmental changes, for one
single chip. Ideally speaking, Inter-chip variation should be
50%, because the ideal PUF outputs uniformly distributed
independent random bits. Intra-chip variation should be 0%,
because a good PUF needs to output the same bits reliably
under the same challenge.

PUFs may suffer from the following vulnerabilities [2]:
reverse engineering, emulation, man-in-the-middle attacks
and reconfiguration of the FPGA. To reverse engineer a
PUF an attacker tries to estimate the component delay model
of the PUF and use it to clone the PUF. For an emulation
attack an attacker would store all possible CRPs in a memory
chip and use it to emulate the authentic PUF. Man-in-the-
middle attack is a technique in which an attacker would
steal the CRP information exchanged between PUFs and
authentication server. To resist emulation and man-in-the-
middle attacks, a very large number of PUF output bits are

PUF

Challenge m bits Response n bits

Figure 1. Challenge and Response Pairs from PUF

needed, making it infeasible for an attacker to record all
CRPs and emulate a PUF.

Several schemes have been proposed to implement PUFs.
Some PUFs use explicitly introduced randomness, while
others make use of intrinsic randomness. The former group
includes Optical PUF [3] and protective coating based
PUF [4]. The latter group includes silicon PUF [5], SRAM
based PUF [6], Butterfly PUF [7] and Tri-state buffer based
PUF [8]. In 2001, the first physical implementation of PUF
was announced by Pappu in his Ph.D thesis [3]. One year
later, Devadas et al. first introduced the notion of a Silicon
PUF [5]. In 2004, Lee et al. proposed a delay-based Arbiter
PUF as a silicon PUF implementation method [9]. Another
silicon PUF implementation, a Ring Oscillator Based PUF
(RO PUF), was introduced by Suh et al. in 2007 [1].
These two silicon PUF implementation methods derive their
PUF behavior from delay variations of gates and wires.
Meanwhile, other researchers also studied new possible
applications for PUFs, e.g. IP protection [10], [11]. This
paper focuses on the RO PUF on Xilinx FPGAs, because
as Morozov et al. pointed out a Ring Oscillator based PUF
is more FPGA friendly [12], and can be integrated with an
RO based random number generator [13].

As mentioned above, in order to obtain enough output bits
to resist the attacks above, a large area to implement a large
number of ring oscillators on chip is required. In this paper
we improve a configurable RO PUF to yield more output
bits while using the same amount of area as the basic RO
PUF on Xilinx FPGAs.

The rest of this paper is organized as follows: Section II
provides background of RO PUFs and the definition of a
reconfigurable PUF. Section III discusses our configurable
RO design. Section IV defines parameters regarding the
quality of a configurable RO PUF. The following section
presents and analyzes our experimental results. Conclusions
are drawn in the last section.

II. RO PUF AND RECONFIGURABLE PUF
A. Previous Silicon PUF Implementations

Arbiter based PUF and Ring Oscillator based PUF are
two implementations of sPUF. The Arbiter based PUF has
two paths and uses a D-flip-flop as an arbiter at the end
of these two paths, as shown in Fig. 2. A rising-edge is
used as input for the circuit. PUF challenges are applied to
determine if the rising-edge switches between the top and
bottom paths. Ultimately, the rising-edge from the top path
will feed the data input D of the D-flip-flop and the rising-
edge from the bottom path will feed the clock input of D-
flip-flop. It subsequently outputs a ’1’ or ’0’ based on which
rising-edge comes first, i.e. ’1’ if top path is faster. This
design requires rigorous symmetric placement and routing
on chip [12], otherwise the PUF response is not dependent
on wire and gate delay variations but is dominated by routing
bias.

Rising

Edge

1

0

0

1

0

1

1

0

......

0

1

1

0

G

QD

is faster, else 0
Q=1, if top path

Challenge

Figure 2. Basic Structure of Arbiter PUF

RO 1

RO 2

RO N

.......

.......

Counter

Counter

>?
0 or 1

Response

Challenge

Figure 3. Structure of Basic RO PUF

Unlike the Arbiter PUF, the RO PUF only requires each
single Ring Oscillator to be identical rather than the entire
design to be symmetrically placed and routed. Moreover,
identical ring oscillator routing can be easily achieved by
using hard macros on Xilinx FPGAs. RO PUFs can differen-
tiate devices because even seemingly-identical ROs will have
slightly different frequencies. This slight difference allows
the RO PUF to characterize devices in order to authenticate
them. A diagram of the basic RO PUF is shown in Fig. 3
and a basic ring oscillator model is shown in Fig. 4.

The challenge signal in a basic RO PUF (Fig. 3) selects
two ROs to feed two counters which start and stop simul-
taneously. Since the frequencies of these ROs are slightly
different, the two counters produce two different values. If
the top counter value is greater than the bottom counter
value, the PUF outputs ’1’ otherwise it outputs ’0’. The ROs
that differ more in terms of frequency generate more reliable
output bits since the relation between their frequencies is
less likely to reverse even in the presence of environmental
changes. Moreover, a 1-out-of-k masking has been proposed
to improve RO PUF reliability [1]. This scheme simply picks
one pair of ROs that has the maximum frequency distance
among k pairs of ROs. A drawback of this masking is that
k times more area will be sacrificed.

B. Reconfigurable PUF

Kursawe et al. first defined the reconfigurable PUF (rPUF)
in 2009 [14] as a PUF that has the mechanism to transform
itself into a completely new PUF such that even with the
knowledge of the challenge-response behavior under a pre-

Enable
......

Even Number of Inverters

Figure 4. Basic RO model

vious configuration, the challenge-response behavior under
a new configuration can not be predicted. Furthermore, they
stipulated that it should be very difficult to revert the PUF
reconfiguration even with invasive means. The configuration
mechanism should not be in the form of changing a part of
the challenge or altering the placement of PUF in FPGAs.

In 2009, Maiti et al. constructed PUFs based on con-
figurable ROs [15]. As we discussed above, for a basic
RO PUF 1-out-of-k masking sacrificed k times more area
to achieve better reliability. Maiti mitigates this drawback
by designing a configurable RO which has 8 configuration
possibilities and occupies the same amount of area as the
basic RO. One can improve the RO PUF reliability by
selecting a configuration for the one pair of configurable ROs
which has the maximum frequency difference among the 8
configurations. However, Maiti did not mention whether his
method can also be used to generate more output bits.

By Kursawe’s definition of rPUF neither Maiti’s config-
urable RO PUF [15], nor the configurable RO PUF proposed
in this paper are an rPUFs, since a part of the challenge
bits is used to configure the PUF and the configuration is
reversible. However both techniques are FPGA friendly and
provide configurability compared to basic RO PUF. Besides,
both can increase either the number of PUF output bits or
PUF reliability.

III. CONFIGURABLE RING OSCILLATOR

Maiti [15] introduced a PUF based on configurable ROs
which fit into a single Configurable Logic Block (CLB) in
Xilinx FPGAs. The main advantage of this size restriction
is, that all routing between resources within the CLB are
restricted to the switch box associated with that CLB. This
RO can be defined as a hard macro and when duplicated,
all routing and logic resources will remain identical. Any
speed difference between such ROs will solely depend
on manufacturing variations. A CLB on Xilinx Spartan 3
devices consist of four slices, each in turn are comprised
of two Look-Up Tables (LUTs), a multiplexer (F5 MUX)
and two flip-flops and some other dedicated resources. Fig. 5
shows Maiti’s configurable RO. Three select signals, c1, c2
and c3 are used to decide which LUT is used. This allows
for eight different configurations. Each configuration will
have its own distinct frequency of the RO due to delay
variations of different LUTs and wires within the switch
box. Hence, when comparing the frequency of a pair of ROs,
both ROs must have the same configuration. This guarantees
that the only difference between two ROs are solely based

LUT F

LUT G

LUT F

LUT G

LUT F

LUT G

LUT

Slice

Enable

1

0

Slice

F5 MUX

1

0

Slice

1

0

Slice

F5 MUX F5 MUX

C1 C2

C3

Figure 5. Maiti’s Configurable RO in One CLB [15]

1

0

1

0

1

0

1

0

1

0

Latch

1

0

Latch

1

0 1

0

Latch

1

0 1

0

Latch

’0’

LUT F

’0’

LUT G

Enable bx0sel0

SLICE X0Y1

LUT F

LUT G

1

0

1

0

sel3 bx3

SLICE X1Y0

LUT F

LUT G SLICE X1Y1

bx2sel2

1

0

LUT F

LUT G SLICE X0Y0

bx1sel1

1

0

Figure 6. Our Configurable RO Design in One CLB

on manufacturing variations but not routing differences.
Nevertheless, instead of generating a single output bit from
two ROs, Maiti’s design enables the creation of eight bits,
using only two CLBs for the pair. It is important to notice
that data dependency may exist among eight bits, i.e. first
three bits will always the same. In the result section, more
analyses are conducted to gauge performance.

In this paper we expand on Maiti’s idea and increase the
number of possible configurations to 256 for one config-
urable RO. Fig. 6 shows our configurable RO, which also
fits into one CLB. Each slice implements one stage of the
RO and each stage is driven by two select signals, bx and
sel. The bx signals decide which LUTs, are used as a part of
this RO. They have the same function as the signals c1,c2,c3
in Maiti’s design. The sel signals decide whether a latch

=Max?

.......

.......

.

.

.

.

Std_Counter

50 MHz

RO_Counter E

E

Challenge[7:0]

En

To MicroBlaze

=sel[0:3]||bx[0:3]

Novel_Conf_RO r−1

Novel_Conf_RO 0

Novel_Conf_RO 1

Challenge[7+ Log r : 8]
2

Figure 7. Configurable RO PUF

from the preceding slice is included or not. We configure
the flip-flops in the slices as transparent latches, i.e. they
only serve to generate additional delays. Please note that the
slice X1Y0 implements buffers in LUTs instead of inverters
in order to keep the total number of inverters in the RO
odd. For example, if sel0 is ’0’ and bx0 is ’1’, then the
latch in slice X1Y0 and LUT F in slice X0Y1 have been
configured to be included in the RO. The additional enable
signal in the slice X0Y1 can be used to disable the operation
of a given RO. In total, our RO provides eight configuration
signals: sel[3:0] and bx[3:0], as well as an enable signal.
Hence, 256 different frequency comparisons can be obtained
from one pair of our configurable ROs under the assumption
that both ROs are compared under a same configuration.
Clearly, the configuration including more latches will result
in a much lower frequency than a configuration with fewer
or no latches. However, as long as the pair of ROs that we
are comparing have the same configuration, i.e. use the same
values for bx[3:0] and sel[3:0], the frequency difference will
depend only on manufacturing variations.

Fig. 7 shows the high level block diagram of our RO
PUF which we implemented on Xilinx Spartarn3E starter
kits. The challenge is composed of two parts, the RO
configuration bits sel[3:0] and bx[3:0] and the RO selection
bits. The least significant bits of the challenge are used to
configure all ROs simultaneously. For this, challenge[7:4] is
mapped to sel[0:3], and challenge[3:0] to bx[0:3]. The most
significant bits of the challenge are used to select which RO’s
frequency should be measured. This selection is done by a
multiplexer and by enabling the corresponding RO through
its enable signal. Since only one RO is active at any time,
adjacent ROs will not interlock. The frequency of a selected
RO is obtained by having it drive the RO-counter and a
crystal 50 MHz clock drive the Std-counter. Both counters
start counting at the same time and are forced to stop when
Std-counter hits its maximum value. The RO-counter value
is subsequently read by a MicroBlaze processor. Then the
next RO is selected and after it stabilizes the MicroBlaze
software will start the counters for the next measurement.
Please note that only ROs under the same configuration
should be compared. To remove correlation in comparing,

under each configuration, only the following comparison
are made for a single RO PUF which consists of r ROs.
They are RO0−RO1, RO1−RO2, . . . , RO(r−2)−RO(r−1).
Therefore, the PUF will output a (r − 1) bits response for
each configuration, which we will call one ID in this paper.
For example, if our design has 64 configurable ROs, a 63-
bit ID will be generated for challenge=XXXXXX00000000,
and a different 63-bit ID for challenge=XXXXXX00000001.

IV. CONFIGURABLE RO PUF QUALITY FACTORS

In this section we define quality factors for the config-
urable RO PUF. Suppose the same configurable RO PUF
design is implemented on k chips. Each RO PUF includes r
ROs. Moreover, each RO PUF has c configuration possibil-
ities. If we treat one RO PUF as a black box, the response
for each RO PUF can be viewed as an output that has a
length of c× (r − 1) bits.

We define the Inter-chip variation as an average value
of the percentage of Hamming distances between any pairs
among k PUF outputs, each of which has a length of c ×
(r − 1) bits.

Inter var =

k−1∑
i=0

k−1∑
j=0,i6=j

haij

c×(r−1) × 100%

k(k − 1)

Here haij is the Hamming distance of PUF outputs between
ith and jth chip. Maiti et al. large scale investigation showed
that the average Inter-chip variation for the conventional
RO PUF is 47.31% with a minimum value 38.98% and a
maximum value of 56.36% [16].

We can define Intra-chip variation as

Intra var =

l−1∑
p=0

l−1∑
q=0,p6=q

hbpq
c×(r−1) × 100%

l(l − 1)

where hbpq is the Hamming distance between pth and qth

regenerated PUF output on the same chip out of a total of l
regenerated PUF outputs.

For configurable RO PUFs we also have to inspect the
inter-configuration variation. Let us first define two sets and
a function as

IDS = {ID0, ID1, ID2, . . . , ID2r−1−1},

CONFS = {C0, C1, C2,, Cc−1}, and

ROPUF : CONFS → ID.

The function ROPUF simply illustrates how the RO PUF
produces a new ID under a new configuration. The car-
dinality of IDS and CONFS are |IDS| = 2r−1 and
|CONFS | = c respectively.

The set IDS includes all the possible IDs that can be
obtained from applying elements from set CONFS , which
includes all possible configurations of ROs. The way how

one element in CONFS is mapped to one element in IDS is
defined in the function ROPUF, which takes a configuration
for ROs as input and outputs a (r − 1) bits long ID. If
|CONFS | > |IDS | then multiple elements in CONFS
would map to the same element in IDS .

Further let us define the inter-configuration variation as

Interconf var =

c−1∑
s=0

c−1∑
t=0,s6=t

hcst
(r−1) × 100%

c(c− 1)

where hcst is the Hamming distance between PUF output
IDs from sth and tth configuration on the same chip,
with each ID a length of (r − 1) bits. The mapping from
CONFS to IDS through the ROPUF function is random
and independent. Hence, for an ideal configurable RO PUF,
we have:

∀Ci ∈ CONFS , ∃IDm ∈ IDS ,

Pr{ROPUF(Ci) = IDm} =
1

|IDS |
and

∀Ci ∈ CONFS , Cj ∈ CONFS , ∃IDm ∈ IDS ,

Pr{ROPUF(Ci) = IDm ∧ ROPUF(Cj) = IDm}

=
1

|IDS |
× 1

|IDS |
This leads to an inter-configuration variation of 50% for an
ideal configurable RO PUF.

V. RESULTS AND ANALYSIS

All experiments, other than Fig. 8 and Fig. 9, reported in
this paper have been performed using four Xilinx Spartan-
3E Starter Kits. Our configurable RO PUF has been built as
an IP core and was used in conjunction with MicroBlaze in
order to measure the RO frequencies.

Before comparing the performance of the improved con-
figurable RO PUF and Maiti’s configurable RO PUF, it is im-
portant to notice that if sel[3:0] remains “1111”, our design
almost becomes Maiti’s design, and the frequency of the RO
under this configuration will depend solely on LUT delays.
Other than adding one more configurable LUT into the path
of the RO, our main change is that we introduced transparent
latches to add more configurable delay differences. Later in
this section we will compare the influence of latch delays
versus LUT delays and explore which are more significant
in terms of flipping the PUF output.

First, the behavior of one pair of our ROs has been
analyzed in order to illustrate how configurations affect the
relative frequency relation. Fig. 8 shows the frequencies of
two adjacent ROs, RO-1 as red line and RO-2 as blue line,
as a function of the configuration bits, challenge[7:0]. Fig. 9
shows the frequency differences between these two ROs as
a function of configuration bits. If the blue line is above
“0”, then RO-1 is faster for this configuration, else RO-0.

0 50 100 150 200 250 300
80

90

100

110

120

130

140

150

160

170
Frequency by Two Our Configurable ROs. Red = RO1 Blue = RO2

Challenge[7:0]

F
re
q
u
e
n
c
y
(M

H
z
)

Figure 8. Frequencies of Two of Our Configurable ROs

We can clearly see that by changing the configuration bits,
the frequency relation between these two ROs varies, even
though there is never a configuration difference between the
ROs. Moreover, as shown in Fig. 8, there is a substantial
frequency change every 16 configurations. This is due to
the change in the number of latches used in both ROs.
If more latches are used, the ROs are significantly slower.
The highest frequency appears at the top right corner with
sel[3:0] equal to “1111”, which means that no latches are
configured in the RO path. An interesting fact can also be
observed in this graph. Even if the numbers of latches being
used are the same, but these latches are in different stages
of the RO, the RO frequency may also change substantially.
For example, when the configuration value is in the range
from 16 to 31 (sel[3:0] = “0001”) the average frequency
is clearly lower than in the case when the configuration
value is in the range from 32 to 47 (sel[3:0] = “0010”), even
though three latches are used in both cases. This behavior
can be explained by the fact that the routing in the switch
box differs depending on which latch is used. However, this
still will not affect the fact that frequency difference between
two ROs under the same configuration is only dependent on
manufacturing variations because both ROs will always use
the same routing resources.

Inter-configuration variation describes the difference of
the IDs when different configurations are applied on the
same chip. As we discussed in section IV, we hope to
see an inter-configuration variation of 50% as the best
case scenario. The lesser the difference, the higher is the
dependency between configurations, the fewer independent
bits will be produced. If the inter-configuration variation is
zero, then IDs under different configurations are the same
and the configurations yield no additional benefit.

For this experiment we built an RO PUF with 64 our
configurable ROs, which can produce 256 IDs, each ID

0 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1

1.5
Freq of RO1 subtracts Freq of RO2

Challenge[7:0]

F
re
q
u
e
n
c
y
(M

H
z
)

Figure 9. Frequency Difference of Two of Our Configurable ROs

Table I
HAMMING DISTANCE CAUSED BY ONE CHALLENGE BIT CHANGE

Conf. Hamming Distance
Signal avg(%) min(%) max(%)

bx3 12.6 0 30.1
bx2 9.7 1.5 22.2
bx1 12.8 3.17 25.4
bx0 10.7 0 23.8
sel3 19.8 6.35 41.2
sel2 16.6 7.9 30.1
sel1 25.4 6.35 50.7
sel0 17.4 3.17 36.5

63-bit long. We examine how much Hamming Distance
is provided by each individual bit in the configuration
challenge[7:0]. The result in Table I shows that, although
these 256 IDs are not the same, they do some have data
dependency.

Some of these IDs are apparently dependent, since some
worst case Hamming Distances are 0 which means there
is no difference. Some best case scenarios do have a close
value to 50%. Additionally, we can see that manipulating a
single bit in sel[3:0] results in a higher Hamming Distance
(about 8% higher) on average than a single bit in bx[3:0].
This observation can be explained by the longer path through
the additional latches of such configurations which makes
them more susceptible to manufacturing variations.

Table II
HAMMING DISTANCE BY ONLY BXS CHANGED OR ONLY SELS

CHANGED OR NO CONSTRAINT

Hamming distance
avg(%) min(%) max(%)

only bx bits change 18.1 0 42.8
only sel bits change 33.8 0 68.2

any configuration bits 36.5 0 76.1

Next we examine the impact of changing multiple bits
only in bx[3:0] or sel[3:0] or any configuration bits without

constraints. The result in shown in Table II. It can clearly
be seen that if multiple configuration bits are changed, it is
more likely that the IDs will be more different, since the
average ID Hamming Distance in Table II is greater than
in Table I where only single configuration bits are allowed
to change. Moreover, it is also clear that ROs with latches
yields more Hamming Distance than ROs with only LUTs.
The last line stands for the case when we change any bits in
the configuration arbitrarily. Given that the major difference
between our improved configurable RO PUF and Maiti’s
configurable RO PUF is the introduction latches as extra
delay components, the two tables above suggest that our
design will produce more IDs and these IDs will have a
higher average Hamming Distance. We explore this claim
in the following experiments.

We compare our configurable RO PUF, Maiti’s config-
urable RO PUF and the basic RO PUF under the constraint
that all implementations use the same area, here 64 CLBs.
Instead of implementing Maiti’s PUF, we use our RO PUF
but set sel[3:0] to “1111”. This results in the same design
with one small change in that this design produces 16 63-bit
long IDs whereas Maiti’s original would produce 8 63-bit
IDs. Our design generates 256 63-bit long IDs and the basic
RO PUF has one 63-bit long ID. Table III shows for how
many IDs w of each PUF any pair of these IDs has at least
a Hamming Distance of d% .

Table III
NUMBERS OF IDS FOR WHICH ANY PAIR HAS AT LEAST HAMMING

DISTANCE OF d%

Hamming Number of IDs w
Distance This Maiti G. Suh
min=d% Paper Conf RO PUF Basic RO PUF

15 57.25 7.75 1
20 28.75 5 1
25 14.5 3.25 1
30 8.5 2 1
35 4.5 1.75 1
40 3 1 1
45 2 1 1

The first line in the Table III shows that our design has on
average 57.25 IDs out of 256 IDs, such that any pair of these
57.25 IDs has at least Hamming Distance of 15%. Maiti’s
design has on average 7.75 IDs out of 16 IDs which meet the
same minimum Hamming Distance requirement, which is a
7.38 times fewer than ours. Even under strict ID Hamming
Distance requirement (45%), our method still generates two
63-bit IDs as opposed to one 63-bit ID for Maiti’s design.
Additionally, Table III shows that under the 45% minimum
Hamming Distance requirement, Maiti’s design does not
outperform the basic RO PUF, which also generates one
63-bit ID.

Inter-chip variation is also an important quality factor for
PUFs. Table IV shows the inter-chip variation for our PUF
based on experiments with four different Spartan 3 starter kit

Table IV
INTER-CHIP VARIATION

32 ROs 64 ROs 128 ROs
Uncontrolled

Placement 27% 32% 28%
Controlled
Placement 40% 41% 40%

boards. If we use controlled placement, i.e. we place the ROs
as close together as possible and compare adjacent RO pairs,
our RO PUF generates a 40% variation between chips. This
is sufficient to be able to uniquely identify a chip. Otherwise
the Inter-chip variation drops to 32% and below.

Table V
INTRA-CHIP VARIATION

32 ROs 64 ROs 128 ROs
0.94% 0.71% 1.02%

The Intra-chip variation should also be sufficiently small
for our RO PUF. This feature is confirmed by the results
summarized in Table V. Our RO PUF inherits both Inter-
chip and Intra-chip variation quality from the general RO
PUF, which has been thoroughly analyzed in [16] on 125
FPGAs and under varying voltages and temperatures. Our
analysis above shows that our configurable RO PUF can
yield more IDs than Mait’s configurable RO PUF and basic
RO PUF while using the same amount of area. Furthermore
our PO PUF meets all expected quality factors.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have introduced an improvement of
Maiti’s configurable RO PUF and analyzed its performance
in generating more IDs while using the same amount of
area on Xilinx FPGAs. Under a loose Hamming Distance
requirement (15%), our design generates 57.25 63-bit IDs
on average, such that any ID pair among these 57.25 IDs
has at least a Hamming Distance of 15%, as opposed to 7.75
IDs on average for Maiti’s design, which is factor of 7.38
fewer. Even when a strict Hamming Distance is expected
(45%), our design still increases the number of valid IDs
by a factor of 2 compared to Maiti’s configurable RO PUF
or basic RO PUF. Meanwhile, Inter-chip and Intra-chip
variation also conform to the requirements of the general RO
PUF. Future work may include refining the ID generation to
filter out dependent bits and an investigation on the potential
improvement of PUF reliability using our RO PUF.

REFERENCES

[1] G. Suh and S. Devadas, “Physical unclonable functions for de-
vice authentication and secret key generation,” in Proc. ACM
IEEE DAC, 2007, pp. 9–14.

[2] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Techniques
for design and implementation of secure reconfigurable
PUFs,” ACM Trans. Reconfigurable Technol. Syst., vol. 2,
no. 1, pp. 1–33, 2009.

[3] P. S. Ravikanth, “Physical one-way functions,” Ph.D. disser-
tation, Massachusetts Institute of Technology, Mar 2001.

[4] P. Tuyls, G.-J. Schrijen, B. Skoric, J. v. Geloven, N. Verhaegh,
and R. Wolters, “Read-proof hardware from protective coat-
ings,” in Cryptographic Hardware and Embedded Systems –
CHES 2006, ser. LNCS, vol. 4249. Springer, 2006, pp. 369–
383.

[5] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon
physical random functions,” in Proc. CCS ’02. New York,
NY, USA: ACM, 2002, pp. 148–160.

[6] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls,
“FPGA intrinsic PUFs and their use for IP protection,” in
Cryptographic Hardware and Embedded Systems – CHES
2007, ser. LNCS, vol. 4727. Springer, 2007, pp. 63–80.

[7] S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and P. Tuyls,
“Extended abstract: The butterfly PUF protecting IP on every
FPGA,” in Hardware-Oriented Security and Trust – HOST
2008. IEEE, June 2008, pp. 67–70.

[8] E. Öztürk, G. Hammouri, and B. Sunar, “Physical unclonable
function with tristate buffers,” in ISCAS 2008. IEEE, 2008,
pp. 3194–3197.

[9] J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van Dijk, and
S. Devadas, “A technique to build a secret key in integrated
circuits for identification and authentication applications,” in
Symposium on VLSI Circuits, Jun 2004, pp. 176 – 179.

[10] E. Simpson and P. Schaumont, “Offline hardware/software
authentication for reconfigurable platforms,” in Cryptographic
Hardware and Embedded Systems – CHES 2006, ser. LNCS,
vol. 4249. Springer, 2006, pp. 311–323.

[11] J. Guajardo, S. Kumar, G.-J. Schrijen, and P. Tuyls, “Brand
and IP protection with physical unclonable functions,” in
ISCAS 2008. IEEE, 2008, pp. 3186–3189.

[12] S. Morozov, A. Maiti, and P. Schaumont, “An analysis of
delay based PUF implementations on FPGA,” in Reconfig-
urable Computing: Architectures, Tools and Applications –
ARC 2010, ser. LNCS, P. Sirisuk, F. Morgan, T. El-Ghazawi,
and H. Amano, Eds., vol. 5992. Springer, 2010, pp. 382–387.

[13] A. Maiti, N. Raghunandan, A. Reddy, and P. Schaumont,
“Physical unclonable function and true random number gen-
erator: a compact and scalable implementation,” in Proc.
GLSVLSI’09. New York, NY, USA: ACM, May 2009, pp.
425–428.

[14] K. Kursawe, A.-R. Sadeghi, D. Schellekens, B. Skoric, and
P. Tuyls, “Reconfigurable physical unclonable functions - en-
abling technology for tamper-resistant storage,” in Hardware-
Oriented Security and Trust – HOST ’09. IEEE, 2009, pp.
22–29.

[15] A. Maiti and P. Schaumont, “Improving the quality of a phys-
ical unclonable function using configurable ring oscillators,”
in Field Programmable Logic and Applications – FPL 2009.
IEEE, 2009, pp. 703–707.

[16] A. Maiti, J. Casarona, and P. Schaumont, “A large scale
characterization of ro-puf,” in Hardware-Oriented Security
and Trust – HOST 2010. IEEE, 2010, pp. 94–99.

