
Universal Hash Functions for
Emerging Ultra-Low-Power Networks

Kaan Yüksel, Jens-Peter Kaps, and Berk Sunar
Electrical & Computer Engineering

Worcester Polytechnic Institute
Worcester, Massachusetts 01609

Email: {kyuksel, kaps, sunar}@wpi.edu

Abstract— Message Authentication Codes (MACs) are a valu-
able tool for ensuring the integrity of messages. MACs may be
built around a keyed hash function. In this paper, we propose
three variations on NH (a universal hash function explored in
UMAC [1]), namely PH, PR and WH. Our main motivation
was to prove that universal hash functions can be employed to
provide provable security in ultra-low-power applications such
as the next generation self-powered sensor networks. The first
hash function we propose, i.e.PH, produces a hash of length2w
and is shown to be2−w-almost universal. The other two hash
functions, i.e. PR and WH, reach optimality and are proven to
be universal hash functions with a much shorter hash length
of w. In addition, these schemes are simple enough to allow
for efficient constructions. To the best of our knowledge the
proposed hash functions are the first ones specifically designed
for low-power hardware implementations. We achieved drastic
power savings of up to 59% and speedup of up to 7.4 times
over NH. Note that the speed improvement and the power
reduction are accomplished simultaneously. Our implementation
of WH consumes only11.6 µW at 500 kHz. It could therefore be
integrated into a self-powered device. This enables the use of hash
functions in ultra-low-power applications such as “Smart Dust”
motes and RFIDs. By virtue of their security and implementation
features mentioned above, we believe that the proposed universal
hash functions will fill an important gap in cryptographic
hardware applications.

Index Terms— Universal hashing, ultra-low-power, self-
powered, provable security, message authentication codes

I. I NTRODUCTION

W IRELESS sensor networks are a very active topic
of research with far reaching applications [2], from

monitoring birds on Great Duck Island on the coast of
Maine [3] [4], collecting microclimate data in the James San
Jacinto Mountains Reserve to several military applications like
target tracking [5] and detecting bio-weapons. One type of
sensor nodes used for this purpose is “Smart Dust” motes [6].
These are tiny autonomous nodes which contain sensors, some
computing power, transceivers, and a power source. They
communicate wirelessly and their energy source is extremely
limited. Current dust motes still require two AA batteries [7]
for operation and are the size of modern pagers. The circuits
of newer motes are only 5 square millimeters but they still
require batteries. Kahn describes in [6] that tiny batteries for

This material is based upon work supported by the National Science
Foundation under Grant No. ANI-0133297.

these devices can supply10 µW for only one day. Gorder
wrote in [7] that the size of the mote depends mainly on
the development of new batteries. Some smart dust motes
use micro-electromechanical systems (MEMS) for sensing and
communicating. Amirtharajah showed in [8] that MEMS could
also be used to convert energy from environmental sources,
such as light, heat, noise, or vibration into electrical power
in order to power a digital system. Devices that harvest
power from such sources are commonly referred to aspower
scavengers, and autonomous nodes which use scavengers are
calledself-powered. An implementation of a signal processing
unit powered by a large scavenger device that can generate up
to 400 µW is described in [8]. Newer scavengers are based
on micro-electromechanical systems (MEMS). They can be
integrated into the chip and therefore reduce the cost and size.
The scavenger shown in [9] produces around8 µW relying
solely on ambient vibration.

Smart dust motes are used in distributed sensor networks.
The security aspects of these networks have been reviewed
by NAI Labs in [10]. However, this study focused only on
software implementations on current general purpose proces-
sors whose energy consumption is far above the amount that
can be supplied by a scavenger circuit. Perrig introduced
a set of security protocols (SPINS) specifically for sensor
networks that are using smart dust sensors [11]. Protecting the
integrity of data that is transmitted between nodes is of utmost
importance. For example, smart dust motes that are embedded
in a bridge could monitor the stress and inform the authorities
in case of emergency. Wireless sensors might monitor plant
growth, moisture and PH-value on a farm. For this purpose,
digital signature schemes have been proposed [12]. However,
on low-end computing platforms where processing speed and
communication bandwidth is critical, digital signatures may
not be the best available choice. Instead, efficientMessage
Authentication Codes(MACs) [13] may be preferable due to
their high encryption throughput and short authentication tags.
A disadvantage for both digital signature schemes and MACs
is that they provide only computational security. This means
that an attacker with sufficient computational power may break
the scheme. More severely, the lack of a formal security proof
makes these schemes vulnerable to possible shortcut attacks.

Universal hash functions, first introduced by Carter and

Wegman [14], provide a unique solution to the aforementioned
security problems. Roughly speaking, universal hash functions
are collections of hash functions that map messages into short
output strings such that the collision probability of any given
pair of messages is small. A universal hash-function family
can be used to build an unconditionally secure MAC. For this,
the communicating parties share a secret and randomly chosen
hash function from the universal hash-function family, and a
secret encryption key. A message is authenticated by hashing
it with the shared secret hash function and then encrypting the
resulting hash using the key. Carter and Wegman [15] showed
that when the hash-function family is strongly universal, i.e. a
stronger version of universal hash functions where messages
are mapped into their images in a pairwise independent
manner, and the encryption is realized by a one-time pad, the
adversary cannot forge the message with probability better
than that obtained by choosing a random string for the
MAC. The one-time pad encryption and the hash function
selection (from the hash function family) require many key
bits, which may be too demanding for certain applications.
In [16] Brassard observed that combining a universal hash
function with a pseudo-random string generator provides a
computationally secure message authentication tag with short
keys. In this scheme the security of the MAC is dependent on
the security of the encryption with the pseudo-random string
and the strength of the pseudo-random key used for selecting
the hash function.

To our knowledge not much work has been done on
improving the performance of universal hashing in hardware.
Ramakrishna published a study on the performance of hash-
ing functions in hardware based on universal hashing [17].
However, the main emphasis was on using hash functions
for table organization and address translation. In an early
work Krawczyk [18] proposed efficient hash functions from
a hardware point of view. Considering that a linear feedback
shift register (LFSR) can be implemented quite efficiently in
hardware, the author’s work introduced two constructions: a
CRC-based cryptographic hash function, and a construction
based on Toeplitz matrix multiplication. The reference gives
a sketch for hardware implementation, which includes a key
spreader. However, it is difficult to estimate the power con-
sumption of this function from a sketch. There have been no
implementations reported so far. In the past decade we have
seen many new hash constructions being proposed, constantly
improving in speed and collision probability [1], [19]–[23].
For a survey see [24]. However, most of these constructions
have targeted efficiency in software implementations, with
particular emphasis on matching the instruction set architec-
ture of a particular processor or taking advantage of special
instructions made available for multimedia data processing
(e.g. Intel’s MMX technology). While such high end platforms
are essential for everyday computing and communications,
in numerous embedded applications space and power limi-
tations prohibit their employment. Smart dust sensor nodes
employ a 4-bit or 8-bit low end microprocessor, run the
operating system TinyOS [25] and are battery powered. These

microprocessors do not provide efficient multiplication or
variable rotate / shift instructions [11] which are used by many
cryptographic functions. Therefore additional ultra-low power
hardware specifically tailored to perform these functions might
be useful. In this paper we are also targeting self-powered
sensor nodes which do not contain a microprocessor but rather
a simple control logic as it is also common in RFID tags [26].

In [1] a new hash function familyNH for the UMAC
message authentication code was introduced. AlthoughNH
was intended for efficient and fast implementation in software
we realized that it seems promising for implementation in
hardware as well. Therefore, we implementedNH in hardware
with an emphasis on low-power and modified it to improve
its performance and minimize its power consumption. The
resulting three hash functions are shown to be either universal
or almost universal, i.e., no security is sacrificed as compared
to NH. At the same time, we envision stringent power limi-
tations (less than20 µW) in order to make universal hashing
practical in systems powered by scavenger units. We present
our implementations of these functions andNH and compare
the results.

II. PRELIMINARIES

A. Notations

Let {0, 1}∗ represent all binary strings, including the empty
string. The setH = h : A → B, associated with some distri-
bution, is a family of hash functions with domainA ⊆ {0, 1}∗
of sizea and rangeB ⊆ {0, 1}∗ of sizeb. The setC ⊆ {0, 1}∗
denotes the finite set of key strings.HK denotes a single hash
function chosen from the set of hash functionsH according
to a random keyK ∈ C. In the text we will seth = HK to
denote a hash functionh selected randomly from the setH.

The elementM ∈ A stands for a message string to be
hashed and is partitioned into blocks asM = (m1, · · · ,mn),
where n is the number of message blocks of lengthw.
Similarly the keyK ∈ C is partitioned asK = (k1, · · · , kn),
where each blockki has lengthw. We use the notationH[n,w]
to refer to a hash function family wheren is the number of
message (or key) blocks andw is the number of bits per block.

Let Uw represent the set of nonnegative integers less than
2w, and Pw represent the set of polynomials overGF (2)
of degree less thanw. Note that each message blockmi

and key blockki belongs to eitherUw, Pw or GF (2w).
HereGF (2w) denotes the finite field of2w elements defined
by GF (2)[x]/(p), where p is an irreducible polynomial of
degreew over GF (2). Note that, in this setting the bits of a
message or key block are associated with the coefficients of a
polynomial. Finally, the addition symbol ‘+’ is used to denote
both integer and polynomial addition (in a ring or finite field).
The meaning should be obvious from the context.

B. Universal Hashing

A universal hash function, as proposed by Carter and
Wegman [14], is a mapping from the finite setA with sizea to
the finite setB with sizeb. For a given hash functionh ∈ H
and for a message pair(M, M ′) whereM 6= M ′ the following

function is defined:δh(M,M ′) = 1 if h(M) = h(M ′), and
0 otherwise, that is, the functionδ yields 1 when the input
message pairs collide. For a given finite set of hash functions
δH(M, M ′) is defined as

∑
h∈H δh(M,M ′), which tells us

thatδh(M,M ′) yields the number of functions inH for which
M and M ′ collide. When h is randomly chosen fromH
and two distinct messagesM andM ′ are given as input, the
collision probability is equal toδh(M,M ′)/|H|. We give the
definitions of the two classes of universal hash functions used
in this paper from [24]:

Definition 1: The set of hash functionsH = h : A → B is
said to beuniversal if for every M,M ′ ∈ A whereM 6= M ′,

|h ∈ H : h(M) = h(M ′)| = δH(M,M ′) =
|H|
b

.

Definition 2: The set of hash functionsH = h : A → B is
said to beε-almost universal(ε−AU) if for everyM,M ′ ∈ A
whereM 6= M ′,

|h ∈ H : h(M) = h(M ′)| = δH(M, M ′) = ε|H| .
In this definitionε is the upper bound for the probability of
collision. Observe that the previous definition might actually
be considered as a special case of the latter withε being equal
to 1/b. The smallest possible value forε is (a−b)/(b(a−1)).

In the past many universal and almost universal hash fam-
ilies were proposed [1], [19]–[23]. Black et al introduced an
almost universal hash function family calledNH in [1]. The
definition of NH is given below.

Definition 3: ([1]) Given M = (m1, · · · ,mn) and K =
(k1, · · · , kn), wheremi andki ∈ Uw, and for any evenn ≥ 2,
NH is computed as follows:

NHK(M) =

n/2∑

i=1

((m2i−1 + k2i−1) mod 2w)

·((m2i + k2i) mod 2w)

 mod 22w .

In the same paperNH was shown to have a tight bound of
2−w on the collision probability.

III. O UR CONTRIBUTION

We introduce three variations to theNH construction. Each
one improves upon the previous one in terms of efficiency, but
diverges further fromNH:

NH - Polynomial (PH) In this constructionNH is redefined
with message and key blocks as polynomials overGF (2)
instead of integers:

Definition 4: Given M = (m1, · · · ,mn) and K =
(k1, · · · , kn), wheremi and ki ∈ Pw, for any evenn ≥ 2,
PH is defined as follows:

PHK(M) =
n/2∑

i=1

(m2i−1 + k2i−1)(m2i + k2i) .

In a hardware implementation this completely eliminates the
carry chain and thereby improves all three efficiency metrics
(i.e. speed, space, power) simultaneously. That is, due to

the elimination of carry propagations, the operable clock
frequency (and thus the speed of the hash algorithm) is dra-
matically increased. Likewise, the area efficiency is improved
since the carry network is eliminated. Finally, due to the
reduced switching activity, the power consumption is reduced.

NH-Polynomial with Reduction (PR) The size of the au-
thentication tag is a concern for two reasons. The tag needs
to be transmitted along with the data therefore the shorter the
tag, the less energy will be consumed for its transmission. The
energy consumed by transmitting a single bit can be as high
as the energy needed to perform the entire hash computation
on the node. The energy needed for transmitting the tag is
proportional to its bit-length. Secondly, the size of the tag
determines the number of flip-flops needed for storing the tag.
The original NH as well asPH introduced above require a
large number of flip-flops for the double length hash output.
In this construction, the storage and transmission requirement
is improved by introducing a reduction polynomial of degree
matching the block size, hence reducing the size of the
authentication tag by half.

Definition 5: Given M = (m1, · · · ,mn) and K =
(k1, · · · , kn), wheremi andki ∈ GF (2w), for any evenn ≥ 2,
and a polynomialp of degreew irreducible overGF (2), PR
is defined as follows:

PRK(M) =
n/2∑

i=1

(m2i−1 + k2i−1)(m2i + k2i) (mod p) .

Note that the originalNH construction eliminates the modular
reductions used in the previously proposed hash constructions
(e.g. MMH proposed in [20], SQUARE proposed in [23])
since reductions are relatively costly to implement in software.
In hardware, however, reductions (especially those with fixed
low-weight polynomials) can be implemented quite efficiently.

Weighted NH-Polynomial with Reduction (WH) While
processing multiple blocks, it is often necessary to hold the
hash value accumulated during the previous iterations in a
temporary register. This increases the storage requirement and
translates into a larger and slower circuit with higher power
consumption. As a remedy we introduce a variation ofNH
where each processed block is scaled with a power ofx. This
function is derived from the changes we make toPR which
are described in Section V-D.

Definition 6: Given M = (m1, · · · ,mn) and K =
(k1, · · · , kn), wheremi andki ∈ GF (2w), for any evenn ≥ 2,
and an irreducible polynomialp ∈ GF (2w), WH is defined
as follows:

WHK(M) =
n/2∑

i=1

(m2i−1 + k2i−1)

·(m2i + k2i)x(n
2−i)w (mod p) .

Due to the scaling with the factorx(n
2−i)w, perfect seri-

alization is achieved in the implementation where the new
block product is accumulated in the same register holding the

hash of the previously processed blocks. This eliminates the
need for an extra temporary register as well as other control
components required to implement the data path.

IV. A NALYSIS

In this section we give three theorems establishing the
security of theNH variants. The proofs of the first two follow
easily from the proof ofNH given in [1]. Therefore, we include
the proof of Theorem 3 forWH only.

Theorem 1:For any evenn ≥ 2 and w ≥ 1, PH[n,w] is
2−w-almost universal onn equal-length strings.

Theorem 2:For any evenn ≥ 2 and w ≥ 1, PR[n, w] is
universal onn equal-length strings.

Theorem 3:For any evenn ≥ 2 and w ≥ 1, WH[n,w] is
universal on n equal-length strings.

Proof: For brevity we denote(m2i−1 + k2i−1)(m2i +
k2i) = mk2i, (m′

2i−1 +k2i−1)(m′
2i +k2i) = m′k2i and so on.

Let M, M ′ be distinct members of the domain A with equal
lengths. We are required to show that

Pr [WHK(M) = WHK(M ′)] = 2−w .

Expanding the terms inside the probability expression, we
obtain

Pr

n/2∑

i=1

mk2i

(
x(n

2−i)w
)

=

n/2∑

i=1

(m′k2i

(
x(n

2−i)w
)

(mod p)

 = 2−w . (1)

The probability is taken over uniform choices of(k1, . . . , kn)
with eachki ∈ GF (2w) and the arithmetic is overGF (2w).
SinceM andM ′ are distinct,mi 6= m′

i for some1 ≤ i ≤ n.
Let m2l 6= m′

2l. For any choice ofk1, . . . , k2l−2, k2l, . . . , kn

having

Prk2l−1∈GF (2w)

n/2∑

i=1

mk2i

(
x(n

2−i)w
)

=

n/2∑

i=1

m′k2i

(
x(n

2−i)w
)

(mod p)

 = 2−w (2)

satisfied for all1 ≤ l ≤ n/2 implies (1). Settingy andz as

y =

[
l−1∑

i=1

m′k2ix
(n

2−i)w −
l−1∑

i=1

mk2ix
(n

2−i)w

]
(mod p)

and

z =

n/2∑

i=l+1

m′k2ix
(n

2−i)w −
n/2∑

i=l+1

mk2ix
(n

2−i)w

 (mod p)

we rewrite the probability bound in (2) as

Prk2l−1

[
x(n

2−l)w [mk2l −m′k2l)] = y + z(mod p)
]

= 2−w .

Since x(n
2−l)w is invertible in GF (2w), the equation inside

the probability expression can be rewritten as follows.

k2l−1(m2l −m′
2l) + m2l−1(m2l + k2l)−m′

2l−1(m
′
2l + k2l)

= x−(n
2−l)w(y + z) (mod p)

Solving the equation fork2l−1, we end up with the following

k2l−1 = (m2l −m′
2l)
−1

(
(x−(n

2−l)w)(y + z)

−m2l−1(m2l + k2l) + m′
2l−1(m

′
2l + k2l)

)
(mod p) .

Note that(m2l −m′
2l) is invertible since in the beginning of

the proof we assumed thatm2l 6= m′
2l. This proves that for

any m2l, m′
2l (with m2l 6= m′

2l) and y, z ∈ GF (2w) there
exists exactly onek2l−1 ∈ GF (2w) which causes a collision.
Therefore,

Pr [WHK(M) = WHK(M ′)] = 2−w .

V. I MPLEMENTATION DETAILS

The power dissipation in CMOS devices can be summarized
by the following formula [27]:

P =
(

1
2
· C · V 2

DD + Qse · VDD

)
· f ·N

︸ ︷︷ ︸
PDynamic

+ Ileak · VDD︸ ︷︷ ︸
PLeakage

(3)

The term PDynamic represents the power required to charge and
discharge circuit nodes as well as the power dissipation during
output transitions. The termsC, Qse, andVDD are technology
dependent [27]. The switching activity, i.e. the number of
gate output transitions per clock cycle, is represented byN
and the operating frequency byf . The second term PLeakage

represents the static power dissipation due to the leakage
current Ileak. The leakage current is directly determined by
the number of gates and the fabrication technology. For more
information about low-power design see [28]. In order to
minimize the power consumption, we designed our CMOS
circuits according to the following rules:

• The number of transitions (‘0’ to ‘1’ and ‘1’ to ‘0’) has
to be minimal.

• The circuit size should be minimized.
• Glitches cause unnecessary transitions and therefore

should be avoided.

A. NH

The algorithm forNH is described in [1] and is given in this
paper in Definition 3. It leads to the simplified block diagram
shown in Figure 1. The actual block diagram for the circuit
is much more complex and can be found in Figure 2. The
message and the key are assumed to be split inton blocks of
w bits. Messages that are shorter than a multiple of2 · w are
padded. All odd message blocks are applied to inputm1, all
even message blocks to inputm2. The blocks of the key are
applied similarly tok1 and k2. The final adder accumulates
all n/2 products.

Adder 1 Adder 2

Multiplier

Adder 3

64 64 64

64 64

128

64

128

m1 k1 m2 k2

ma mb

sum

mout

Fig. 1. Simplified Functional diagram for NH

The output ofAdder 1 is ma = m1 + k1 mod 2w, the
output ofAdder 2 is mb = m2+k2 mod 2w. These are integer
additions where the carry out is discarded. The multiplication
results inmout = ma · mb. For each multiplication of two
w-bit numbers,w partial products need to be computed and
added:mout =

∑w
j=1 ma·mb[j]·2j−1. As power consumption

is our main concern and not speed we chose to implement a
bit serial multiplier. It computes one partial product during
each clock cycle and adds it to the sum of the previous partial
products using the Right Shift Algorithm [29].

A bit serial adder produces one bit of the result with each
clock cycle, starting with the LSB and it has minimal glitching.
We used a bit serial adder forAdder 2 as its result can
directly be used by the bit serial multiplier. However, the
multiplicand has to be available immediately. Therefore we
used a simple ripple carry adder to implementAdder 1. Its
main disadvantage is that it takes a long time until the carries
propagate through the adder, causing a lot of glitching and
therefore a high power consumption. However,Adder 1 needs
to compute a new result only every 64 clock cycles, hence its
dynamic power consumption is tolerable. The addition of the
partial products is accomplished using a carry-save adder. This
adder uses the redundant carry-save notation which results
in minimal glitching as the carries are not fully propagated.
However, 64 additional flip-flops are required to store the carry
bits.

After one multiplication has been computed, its result has to
be added to the accumulation of the previous multiplications
as indicated byAdder 3 in Figure 1. Rather than having a
separate multiplier and adder, in the actual implementation we
add the partial products of the next multiplication immediately
to the result of the previous additions. This technique stores
the result ofAdder 3 in the Multiplier thus saving a 128 bit
register and a 128 bit multiplexer.

The control logic manages the switching of the multiplexers,
loading of the next data set and resetting the carry registers.
Due to the iterations of the multiplication, the control logic
requires a counter. Traditionally, counters are built using a
register and a combinational incrementer. The incrementer re-
quires carry propagations which cause glitching. Furthermore,
the delay of the incrementer contributes to the critical path

Bit Multiplier

Carry−Save Adder

64

Operand Isolation

Ripple Carry Adder

Swap

64

128

64 64

128

Multiplexer Multiplexer

128

128 64

6464

64

64

128

R1

Sum Register Carry Register

64

64

Right Shift Register Right Shift Register

Full Adder

64 64

MuxSum Register

Ripple Carry Adder

64

64 64

64128

Swap

128

128

128

Reg.

a

s_sft1 c_in

c_outs_out

s_oi

rcasum

s_sum

s_swap

c_oi

c_null

c_loop

s_loop c_loop

saout sbout

a b

k2

cout

ccin

0

m1 k1

rcasout

ma sout

mult

0

sout

b

cin

m2
Bit Serial Adder

s_loop

Fig. 2. Block diagram forNH

delay of the circuit. Hence optimization of this unit is essential.
Instead of an integer counter, we use a linear feedback shift
register (LFSR) with 6 flip-flops, enhanced to “count” up to
64. LFSRs have minimal glitching and therefore make power
efficient and fast counters.

We use this implementation of the originalNH algorithm as
a reference for comparison with its variations described below.

B. NH-Polynomial (PH)

The main power consumers in the implementation ofNH are
the ripple carry adders and flip-flops needed for the multiplier
and the bit serial adder.PH is a variation onNH in that it uses
polynomials overGF (2) instead of integers. This replaces
the costly adders with simple XOR gates which consume
significantly less power.Adder 1 is replaced by 64 XOR gates.
The bit-serial adder (Adder 2) is replaced by XORs and a
64 bit shift register which reduces the complexity of this unit
by 64 flip-flops. TheMultiplier and Adder 3 are combined
as in NH but the carry-save adders are replaced by XORs.
As there are no carries another 64 flip-flops are saved. Just
changingNH from using integers to polynomials reduces the
number of cells by 65%, the dynamic power consumption by
38% and the leakage power by more than a half.

C. NH-Polynomial with Reduction (PR)

The main difference betweenPR andPH is that the result
is reduced to 64 bits using an irreducible polynomial. In our
hardware implementation the multiplication and the reduction
are interleaved. This makes the reduction very efficient. More-
over, using low Hamming-weight polynomials the reduction
can be achieved with only a few gates and minimal extra delay.
However, theMultiplier andAdder 3 can no longer be merged.

Therefore, we are not able to reduce the number of flip-flops
in our implementation but we reduced the switching activity
as Adder 3 computes a new result only once every 64 clock
cycles. The number of cells for this implementation is slightly
higher than forPH and thus the leakage power is increased.
Due to the reduced switching activity, however, the dynamic
power consumption is now 50% less then that ofNH.

D. WeightedNH-Polynomial with Reduction (WH)

This design was inspired by the bottlenecks we observed
in the implementation ofPR. For instance, theMultiplier
and Adder 3 (Figure 1) could not be merged as inPH. We
removed fromPR’s implementation a 64 bit register, a 64 bit
multiplexer and the XOR gates ofAdder 3. The function of the
resulting design is characterized by the construction shown in
Definition 6. Compared toNH, the removal of the mentioned
components reduced the dynamic power consumption by 59%,
the leakage power consumption by 66%, and the number of
cells by 74%. This dramatic savings become more obvious
when the block diagrams forNH in Figure 2 and forWH in
Figure 3 are compared.

XORXOR

6464 64 64

Modulo Reduction

Left Shift

64+1msft

64b

Bit Multiplier Left Shift Register

64ma 64mb

Sum Register

XOR

64

64sout
64

64a

m1 k1 m2 k2

0
sin

mult

m_out

m_loop

Fig. 3. Block diagram forWH

VI. I MPLEMENTATION RESULTS

For synthesizing our designs we used the Synopsys tools
Design Compiler [30] and Power Compiler [31], and the
TSMC 0.13 µm ASIC library. The results of the simulation
on many input sets were verified with the Maple package [32]
for consistency. Table I lists power, area, and delay results of
the hash function implementations, synthesized for operation
at 100 MHz. Themaximum delaydetermines the highest
operable frequency.

The dynamic power consumption ofWH is 452.3 µW at
100 MHz. This is much higher than our aim of20 µW. The
CMOS power formula in Equation 3 shows that the dynamic
power consumption is directly proportional to the operating
frequency. Hence, the implementations consume1/200th of
the dynamic power when clocked at 500 kHz, however, the
leakage power remains the same. This lower frequency is used
in sensor node implementations [8]. Table II demonstrates that
at low speeds the leakage power becomes the limiting factor
for ultra-low-power implementations.WH can operate with as

TABLE I

COMPARISON OFHASH IMPLEMENTATIONS AT 100 MHZ

Dynamic Leakage Number Delay/
Power Power of Cells Speedup

µW % µW % % ns x
NH 1093.9 100 28.1 100 1576 100 9.92 1.0
PH 682.7 62 12.1 43 557 35 1.35 7.4
PR 549.9 50 14.0 50 616 39 1.35 7.4
WH 452.3 41 9.4 33 412 26 1.35 7.4

little as 11.6 µW. This is in the range of the power produced
by a MEMS scavenger [9]. We would like to note that we
used an ASIC standard cell library to obtain these results. A
full custom IC-design would yield even higher power savings.

TABLE II

POWER CONSUMPTION AT 500 KHZ

Dynamic Leakage Total
µW % µW % µW %

NH 5.47 100 28.1 100 33.6 100
PH 3.41 62 12.1 43 15.5 46
PR 2.75 50 14.0 50 16.8 50
WH 2.26 41 9.4 33 11.6 35

VII. C ONCLUSION

In this paper, we propose three variations onNH (the
underlying hash function of UMAC), namelyPH, PR and
WH. Our main motivation was to prove that universal hash
functions can be employed to provide provable security in
ultra-low-power applications such as next generation sensor
networks. More specifically, hardware implementations of
universal hash functions with an emphasis on low-power and
reasonable execution speed are considered. We implemented
NH for the first time in hardware and presented its simulation
results in comparison to those of our newly proposed hash
functions.

The first hash function we propose, i.e.PH, produces a hash
of length 2w and is shown to be2−w-almost universal. The
other two hash functions, i.e.PR and WH, reach optimality
and are shown to be universal hash functions with a much
shorter hash length ofw. Since their combinatorial properties
are mathematically proven, there is no need for making
cryptographic hardness assumptions and using a safety margin
in practical implementations. In addition, these schemes are
simple enough to allow for efficient constructions.

To our knowledge the proposed hash functions are the first
ones specifically designed for efficient hardware implementa-
tions. Designing the new algorithms with efficiency guidelines
in mind and applying optimization techniques, we achieved
drastic power savings of up to 59% and speedup of up to
7.4 times overNH. Note that the speed improvement and
the power reduction are accomplished simultaneously. We also
observed that at lower operating frequencies the leakage power
becomes the dominant part in the overall power consump-
tion. Our implementation ofWH consumes only11.6 µW at

500 kHz. It could therefore be integrated into a self-powered
device. This enables the use of universal hash functions in
ultra-low-power applications such as “Smart Dust” motes,
RFIDs. By virtue of the security and implementation features
mentioned above, we believe that the proposed universal hash
functions will fill an important gap in cryptographic hardware
applications.

VIII. F UTURE WORK

As mentioned in Section VI when clocked at 500 kHz the
leakage power is the dominant part of the power consumption.
The most effective way to reduce the leakage power is to
reduce the circuit size. The circuit size scales with the data
path width, i.e. the block sizew of the message and the
key. As the collision probability is upper bounded by2−w

(see Section IV), reducing the block sizew will significantly
increase the bound. A possible solution to reduce the circuit
size while still preserving the security level is to employ
multiple hashing. For this, each message block is hashed
multiple times using independent key blocks and the individual
hash values are concatenated to form the hash output. For
instance, to obtain the collision probability of2−w with a
block size of w/4 bits, each message block is hashed4
times with independent keys. The computed hash outputs are
concatenated to form thew bit hash result. The drawback
of this method is that it requires4 times the amount of key
material. As a remedy one can employ the well-known Toeplitz
approach [1], [18], [33] in which shifted versions of one
key rather than independent keys are used. We identify the
application of the Toeplitz construction to the proposed hash
functions with security analysis and implementation as future
work.

REFERENCES

[1] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway, “UMAC:
Fast and secure message authentication,” inAdvances in Cryptology
- CRYPTO ’99, ser. Lecture Notes in Computer Science, vol. 1666.
Springer-Verlag, 1999, pp. 216–233.

[2] B. Fulford, “Sensors gone wild,” Forbs Global, Oct 2002,
http://www.forbes.com/global/2002/1028/076print.html.

[3] J. Polastre, “Design and implementation of wireless sensor networks
for habitat monitoring,” Master’s Thesis, University of California at
Berkeley, Spring 2003.

[4] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson,
“Wireless sensor networks for habitat monitoring,” inFirst ACM Work-
shop on Wireless Sensor Networks and Applications, Atlanta, GA, USA.,
Sep 2002.

[5] R. Burneet al., “Self-organizing cooperative sensor network for remote
surveillance: improved target tracking results,” inProceedings of the
SPIE - The International Society for Optical Engineering, vol. 4232,
SPIE. Boston: SPIE-Int. Soc. Opt. Eng, USA, 2001, pp. 313–321.

[6] J. Kahn, K. R. H., and K. Pister, “Next century challenges: mobile net-
working for ”smart dust”,” inProceedings of the fifth annual ACM/IEEE
international conference on Mobile computing and networking. ACM,
1999, pp. 271–278.

[7] P. Gorder, “Sizing up smart dust,”Computing in Science & Engineering,
vol. 5, no. 6, pp. 6–9, Nov.-Dec. 2003.

[8] R. Amirtharajah and A. P. Chandrakasan, “Self-powered signal process-
ing using vibration-based power generation,”IEEE Journal of Solid-
State Circuits, vol. 33, no. 5, pp. 687–695, May 1998.

[9] S. Meininger, J. O. Mur-Miranda, R. Amirtharajah, A. P. Chandrakasan,
and J. H. Lang, “Vibration-to-electric energy conversion,”IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 9, no. 1,
pp. 64–76, Feb 2001.

[10] D. Carman, P. Kruus, and B. Matt, “Constraints and approaches for dis-
tributed sensor network security,” NAI Labs, Secutity Research Division,
Glenwood, MD, Technical Report, Sep 2000.

[11] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler, “SPINS:
security protocols for sensor networks,”Wireless Networks, vol. 8, no. 5,
pp. 521–534, Sep 2002.

[12] W. Diffie and M. E. Hellman, “New Directions in Cryptography,”IEEE
Transactions on Information Theory, vol. IT-22, pp. 644–654, 1976.

[13] G. J. Simmons, Ed.,Contemporary Cryptology. IEEE Press, 1992.
[14] J. L. Carter and M. Wegman, “Universal classes of hash functions,”

Journal of Computer and System Sciences, vol. 18, pp. 143–154, 1978.
[15] J. Carter and M. Wegman, “New hash functions and their use in authen-

tication and set equality,”Journal of Computer and System Sciences,
vol. 22, pp. 265–279, 1981.

[16] G. Brassard, “On computationally secure authentication tags requiring
short secret shared keys,” inAdvances in Cryptology - CRYPTO ’82,
ser. Lecture Notes in Computer Science, D. Chaum, R. L. Rivest, and
A. T. Sherman, Eds. New York: Springer-Verlag, 1983, pp. 79–86.

[17] M. Ramakrishna, E. Fu, and E. Bahcekapili, “A performance study of
hashing functions for hardware applications,” inProceedings of the
ICCT ’94 International Conference on Computing and Information,
1994, pp. 1621–1636.

[18] H. Krawczyk, “LFSR-based hashing and authentication,” inAdvances in
Cryptology - Crypto’94, ser. Lecture Notes in Computer Science, vol.
839. Springer-Verlag, 1994, pp. 129–139.

[19] V. Shoup, “On fast and provably secure message authentication based
on universal hashing,” inAdvances in Cryptology - CRYPTO ’96, ser.
Lecture Notes in Computer Science, vol. 1109. New York: Springer-
Verlag, 1996, pp. 74–85.

[20] S. Halevi and H. Krawczyk, “MMH: Software message authentication
in the gbit/second rates,” in4th Workshop on Fast Software Encryption,
ser. Lecture Notes in Computer Science, vol. 1267. Springer, 1997, pp.
172–189.

[21] P. Rogaway, “Bucket hashing and its applications to fast message
authentication,” inAdvances in Cryptology - CRYPTO ’95, ser. Lecture
Notes in Computer Science, vol. 963. New York: Springer-Verlag,
1995, pp. 313–328.

[22] H. Krawczyk, “New hash functions for message authentication,” in
EUROCRYPT’95, ser. Lecture Notes in Computer Science, vol. 921.
Springer-Verlag, 1995, pp. 301–310.

[23] M. E. S. Patel and Z. Ramzan, “SQUARE HASH: Fast message
authentication via optimized universal hash functions,” inAdvances in
Cryptology - CRYPTO ’99, ser. Lecture Notes in Computer Science,
M. Wiener, Ed., vol. 1666. New York: Springer-Verlag, 1999, pp.
234–251.

[24] W. Nevelsteen and B. Preneel, “Software performance of universal hash
functions,” inEUROCRYPT’99, ser. Lecture Notes in Computer Science,
vol. 1592. Berlin: Springer-Verlag, 1999, pp. 24–41.

[25] P. Levis and D. Culler, “Mat: a tiny virtual machine for sensor networks,”
in Proceedings of the 10th international conference on architectural
support for programming languages and operating systems (ASPLOS-
X). San Jose, California: ACM Press, 2002, pp. 85–95.

[26] S. Sarma, D. L. Brock, and K. Ashton, “The networked physical world -
proposals for engineering the next generation of computing, commerce
& automatic identification,” MIT: Auto-ID Center,” White Paper, Oct
2000.

[27] S. Devadas and S. Malik, “A survey of optimization techniques target-
ing low power vlsi circuits,” inProceedings of the 32nd ACM/IEEE
Conference on Design Automation, 1995, pp. 242–247.

[28] J. Rabaey and M. Pedram,Low Power Design Methodologies. Norwell,
Massachusetts: Kluwer Academic Publishers, 1996.

[29] B. Parhami,Computer Arithmetic: Algorithms and Hardware Designs.
Oxford University Press, 2000.

[30] Design Compiler User Guide, Version 2002.05 ed., Synopsys Inc., Jun
2002.

[31] Power Compiler User Guide, Release 2002.05 ed., Synopsys Inc., May
2002.

[32] K. M. Heal, M. L. Hansen, and K. M. Rickard,Maple V Learning Guide.
New York: Springer Verlag, 1998.

[33] Y. Mansour, N. Nissan, and P. Tiwari, “The computational complexity
of universal hashing,” in22nd Annual ACM Symposium on Theory of
Computing. ACM Press, 1990, pp. 235–243.

