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Abstract 

Reconfigurable Hardware resources or FPGA’s can 
accelerate and improve the performance of a lot of 
applications, but these resources are very expensive. Job 
management systems (JMS) are used in resource management 
and job scheduling. They allow users to execute jobs on a 
non-dedicated cluster of workstations with a minimum impact 
on owners of these workstations. By using JMS we can 
Increase utilization of costly resources, and create a Unified 
interface to all computing resources. 

In our experiments we used LSF Job Management System 
to manage and utilize the SLAAC-1V FPGA boards. In order 
to extend LSF to support SLAAC-1V FPGA boards, we need 
to develop an external resource monitor (External Load 
Information Manager – ELIM). 

We developed the external resource monitor (ELIM). This 
system permits sharing these FPGA boards. The architecture 
was verified experimentally for the case of LSF and SLAAC-
1V FPGA boards. The utilization of the idle boards was 
demonstrated to reach up to 95% in our experimental setting 
which include Linux and Windows NT workstations. 

 

I.  INTRODUCTION 
This paper reports on a research effort to extend the LSF 

job management system to support slaac1-v reconfigurable 
boards [1-5]. The objective is to construct a system that can 
leverage underutilized resources at a given time to serve other 
users who currently have the needs, in a grid computing like 
style. The targeted type of resources are workstations and 
clusters that are equipped with Field Programmable Arrays 
(FPGA) boards serving as reconfigurable coprocessors. 

Our paper is organized as follows. In Section 2, and 
section3 we give an introduction to Job Management Systems. 
In Section 4, we describe our experimental work. Finally, in 
Sections 5 we present experimental results, and we draw 
conclusions. 

 
 
 

2. JOB MANAGEMENT SYSTEMS 

2.1. General architecture of a JMS 
The objective of a JMS, investigated in this paper, is to let 

users execute jobs in a non-dedicated cluster of workstations 
with a minimum impact on owners of these workstations by 
using computational resources that can be spared by the 
owners. The system should be able to perform at least the 
following tasks:  

a. monitor all available resources, 
b. accept jobs submitted by users together with resource 

requirements for each job, 
c. perform centralized job scheduling that matches all 

available resources with all submitted jobs according to the 
predefined policies, 

d. allocate resources and initiate job execution, 
e. monitor all jobs and collect accounting information.  
To perform these basic tasks, a JMS must include at least 

the following major functional units shown in Fig. 1: 
1. User server – which lets user submit jobs and their 

requirements to a JMS (task b), and additionally may allow 
the user to inquire about the status and change the status of a 
job (e.g., to suspend or terminate it). 

2. Job scheduler – which performs job scheduling and 
queuing based on the resource requirements, resource 
availability, and scheduling policies (task c). 

3. Resource manager, including 
• Resource monitor – which collects information about all 

available resources (tasks a and e), and 
• Job dispatcher – which allocates resources and initiates 

execution of jobs submitted to JMS (task d). 
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Figure 1. Major functional blocks of a Job 
Management System 

2.2. LSF Job Management Systems 
LSF  (Load Sharing Facility ) is one of the most 

commonly used commercial JMSs. The common feature of 
LSF JMS is that it is based on a central Job Scheduler running 
in a single computational node. LSF (Load Sharing Facility) is 
a commercial JMS from Platform Computing Corp. It evolved 
from the operating systems, job types, and features included in 
the table. 

The most important functional characteristics LSF are 
presented and contrasted in Table 1. From this table, it can be 
seen that LSF supports all operating systems, job types, and 
features included in the table. 

 
 
3. Extending a JMS to support reconfigurable 

hardware 
 

3.1. JMS features supporting extension 
 
The specific features of Job Management Systems that 

support extension to reconfigurable hardware include  
o capability to define new dynamic resources, 
o strong support for stage-in and stage-out in order to allow 

an easy transfer of the FPGA configuration bitstreams, 
data inputs, and results between the submission host and 
the execution host with reconfigurable hardware; 

 
 
 
 

Table 1. Features of LSF JMS 
 

Feature Availability 
Distribution commercial 
Linux, Solaris  Yes 
Tru64 Yes 
Windows NT Yes 
Interactive jobs Yes 
Parallel jobs Yes 
Stage-in and stage-out Yes 
Process migration Yes 
Dynamic load balancing Yes 
Checkpointing Yes 
Daemon fault recovery master and execution hosts 

 
o support for Windows NT and Linux, which are two 

primary operating systems running on PCs that can be 
extended with commercially available FPGA-based 
accelerator boards with the PCI interface. 

An ease of defining new dynamic resources appears to be a 
minor factor in comparison. LSF seems to be easily 
extendable with new dynamic resources without the need for 
any changes in their source code. Stage-in and stage-out are 
supported by LSF. LSF is fully supports Windows NT 

 

3.2. General architecture of the extended system 
 
General architecture of the extended system is shown in 

Fig. 2. The primary component of this extension is an external 
resource monitor that controls the status of an accelerator 
board, and periodically communicates this status to a resource 
monitor. The resource monitor transfers this information 
periodically or by request to a Job scheduler, which uses this 
information to match each job that requires acceleration with 
an appropriate host. Job requirements regarding the new 
reconfigurable resource are specified during a job submission 
to a user server, and are enforced by a job scheduler the same 
way as requirements regarding default built-in resources. 
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Figure 2. Extension of a JMS to recognize, monitor, and schedule reconfigurable resources 
 

 
3.3. Extending LSF 
Capability of defining new dynamic resources can be 

used to extend LSF to manage FPGA-based accelerator 
boards. The new resource that needs to be added to a given 
JMS represents the availability of the accelerator board for 
JMS users. 

o An external resource monitor (ELIM, External 
Load Information Manager in LSF) needs to be 
written according to the specification. 

This daemon is started by a local resource manager 
(LIM in LSF and communicates with the resource monitor 
using standard output. 

This ELIM tries to open the board in exclusive mode, 
and if it succeed, this mean that the board is available, then 
it closes it again and reports that the board is available, else 
if fail this means that the board is not available and it 
reports that the board is not available. The flow diagram of 
ELIM is shown in Fig. 3. 

 
 

 
Figure 3. Operation of ELIM 

 



4. Experimental Work 
 

4.1. Extending LSF to support reconfigurable 
hardware 

 
The general architecture of LSF is shown in Fig. 4. 

Load Information Monitors (LIMs), running on all 
execution hosts in the system, monitor and collect 
information about the current status of all static and 
dynamic resources available on the execution hosts. This 
information is periodically forwarded from every LIM to 
a single Master Load Information Monitor (MLIM) 
residing on the master host. The combined report about 
the current status of all system resources, collected by 
MLIM, is used by the Master Batch Daemon (MBD) to 
match available resources with resource requirements 
specified during the job  submission.   When  a  job  
waiting   in  the   queue  is  
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Figure 4. General architecture of LSF 
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Figure 5. General architecture of LSF after 
extension to support reconfigurable hardware 
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Figure 6. Experimental testbed  

 

matched with an execution host containing the 
required resources, this job is being dispatched by MBD 
to the appropriate execution host. The job is prepared for 
execution by the Slave Batch Daemon (SBD), and started 
by the Remote Execution Server (RES). SBD is 
responsible for enforcing local LSF policies and 
maintaining the status of the job. 

To support reconfigurable resources, such as FPGA-
based accelerator boards, the LSF system needs to be 
extended with two extra components: External Load 
Information Monitor (ELIM) and an FPGA Board 
Application Programming Interface (API), as shown in 
Fig. 5. ELIM is a program or script that must be run on 
each execution host that contains a non-standard dynamic 
resource, such as an FPGA board. The task of ELIM is to 
monitor the availability of the FPGA board and to report 
this availability in the predefined format to LIM. To 
perform this task, ELIM uses functions of the FPGA 
Board API. These functions communicate with the FPGA 
board driver in order to determine whether the board is 
currently occupied by any job. If this is the case, ELIM 
reports through LIM to Master LIM (MLIM) that the 
FPGA board is temporarily unavailable. Otherwise, the 
information about the availability of the FPGA board is 
passed to MLIM.  

Each user job that makes use of reconfigurable 
resources needs at the beginning of its execution check 
the availability of the board. If the board is unavailable, 
the job exits with an error code, and is resubmitted by 
LSF at a later time. If the board is available, the job 
reserves the board for exclusive use, and then configures 
the board using the configuration bitstream residing on 
the execution host or downloaded from the submission 
host using the stage-in capability of LSF. As soon as the 
board is configured, its clock is started and the FPGA 



circuit starts communicating with the job running on the 
execution host. Inputs are sent to the board, and outputs 
generated by the FPGA circuit are sent back to the job. 
After the FPGA circuit completes execution, it 
communicates this fact to the job, which makes final 
postcomputations, frees the board for use by other jobs, 
and finishes execution. All described above operations 
are facilitated by the FPGA board APIs. 

 
4.2 Experimental setup 
 
Our testbed consists of two Windows machines 

configured as execution hosts, and one Linux machine 
configured as a job submitter as shown in Fig. 5. Both 
execution hosts are extended with the SLAAC1-V FPGA 
accelerator board from the USC-Information Sciences 
Institute [8, 9]. 

 The benchmark used in our experiments is a hardware 
implementation of an exhaustive key search attack against 
Data Encryption Standard (DES).  Exhaustive  key  
search is an attack aimed at breaking a cipher by checking 
all possible keys one by one. To be able to perform this 
attack, an opponent must know a short fragment of the 
message and a corresponding fragment of the ciphertext 
(encrypted message). By decrypting a fragment of the 
ciphertext with a given key, and comparing the result 
with a known fragment of the message, a single key can 
be verified. By repeating the same operation with all 
possible key values, one is guaranteed to find the correct 
key. The number of all possible keys in DES is 256 ≈ 7.2 ⋅ 
1016. This large number of repetitions calls for 
parallelization of computations. Additionally, since DES 
was designed to be efficient in hardware rather than in 
software, an FPGA based hardware accelerator can speed 
up the required computations by orders of magnitude 
compared to the purely software parallel implementation.  

The inputs to each benchmark are the message block, 
the ciphertext block, the beginning of the key range, and 
the key range size. The output is the number and the list 
of matching keys. The time of the benchmark execution 
can be set to an arbitrary value, since it is directly 
proportional to the key range size, and almost 
independent of other parameters. In our experiments, key 
range was set to values that guaranteed the execution 
times listed in Table 2.  

Our implementation consists of two parts. Hardware 
part was written in VHDL, and was transformed into the 
FPGA configuration bitstream using Xilinx tools. 
Software part is responsible for reserving an FPGA board 
for an exclusive use, downloading the configuration 
bitstream to the board, transferring input parameters to 
the hardware part, collecting results generated by the 

board, and releasing the board. During the majority of the 
time, the program is idle and its only function is to wait 
for a board to complete execution. This way, the only 
resource of the execution hosts which is fully utilized 
during the benchmark execution is the time of the FPGA-
based accelerator.  

 
Table 2 Features and parameters of performed 

experiments 
 

Exp. 
No. 

No. of 
execution 

hosts 

Number 
and execution 
times of jobs 

Delay 
between job 
submissions 

1 2 40 x 20 s 5 s 
2 2 8 x 20 s,  

8 x 30 s, 
8 x 40 s,  
8 x 50 s, 
8 x 60 s 

5 s 

3 2 40 x 120 s 5 s 
4 2 40 x 300 s 5 s 
5 2 3 x 20 s 

3 x 40 s 
3 x 60 s 
3 x 80 s 

3 x 100 s 
3 x 120 s 
3 x 140 s 
3 x 160 s 
3 x 180 s 
3 x 200 s 
3 x 220 s 
3 x 240 s 
3 x 260 s 
3 x 280 s 
3 x 300 s 

5 s 

 
Each experiment consisted of running N jobs chosen from the 

given set of benchmarks, and submitted one at a time to LSF in the 
pseudorandom time intervals. All jobs were submitted from the 
same Linux machine, and belonged to a single user of the system. 
The rate of the job submissions was chosen to have a Poisson 
distribution. The submission rate was relatively high with an 
average interval between consecutive job submissions equal to 5 
seconds.  

All jobs on the lists were the instances of the 
exhaustive key search benchmark, and differed only with 
values of input parameters. All these jobs required 
acceleration by the SLAAC1-V board. The same Linux 
machine was used as the submission host and the master 
host. The primary job requirement specified during the 



job submission was an availability of the specific type of 
the FPGA board. The second parameter specified during 
the job submission was the estimated execution time of 
the job. 

The total number of jobs submitted to a system, N, 
was chosen based on the expected total time of the 
experiment, the average execution time of jobs from the 
given list, and the number of machines in our testbed. 

 
5. Experimental Results 
 
The behavior and performance of the extended Job 

Management System is shown in Figs. 7-10 and Table 3. 
For each execution host (Machine 1 and Machine 2) three 
timing traces are presented. The bottom trace shows 
timing intervals when jobs dispatched to the given 
execution host are executed. The numbers above these 
intervals are the numbers of jobs in the order of their 
submission. The middle trace shows time intervals when 
ELIM reports to LIM that the FPGA board is free for use 
by another job. The top timing trail represents intervals 
when MLIM is aware that the board is available for use 
by another job waiting in the queue. The very bottom 
trace in each figure is common for the entire system, and 
shows points in time when jobs were being submitted to 
LSF from the submission host. 

In all experiments, all jobs are being submitted to JMS 
shortly after the beginning of the experiment, and as a 

result spend most of the time waiting in the queue for 
their turn to execute. At the beginning of every 
experiment both ELIM and MLIM report that all FPGA-
boards are available for scheduling. As soon as a job is 
dispatched to the given machine for execution, ELIM 
running on the same machine becomes aware that the 
FPGA board is not any longer available. Similarly, as 
soon as any job completes its execution, ELIM reports to 
LIM that the board is available for use by another job.   
FPGA board utilization is summarized in Table 3.  

Table 3. Results of experiments 
 

Experiment 
No. 

Utilization 
[%] 

 iteration 
1 

iteration 
2 

iteration 
3 

1 65.9 78.7 62.8 

2 75.6 86.4 84.4 

3 90.8 91.6 92.3 

4 95 93.6 94 

5 91.9 96.2 93.9 
 

 

 
Figure. 7 Utilization of machines in Experiment 1, Iteration 1 



 
Figure. 8 Utilization of machines in Experiment 2, Iteration 1 

 

 
Figure. 9 Utilization of machines in Experiment 3, Iteration 1 



 
Figure. 10 Utilization of machines in Experiment 4, Iteration 1 

6. Conclusions 
 
An extension of LSF, supporting SLAAC-1V FPGA 

accelerator boards was developed and experimentally 
tested in a testbed consisting of Windows and Linux 
workstations. The utilization of the extended system has 
been improved to reach up to 96%.  
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