
Chapter 10
FPGA and ASIC Implementations of AES

Kris Gaj and Pawel Chodowiec

10.1 Introduction

In 1997, an effort was initiated to develop a new American encryption standard to
be commonly used well into the next century. This new standard was given a name
AES, Advanced Encryption Standard.

A new algorithm was selected through a contest organized by the National Insti-
tute of Standards and Technology (NIST). By June 1998, 15 candidate algorithms
had been submitted to NIST by research groups from all over the world. After the
first round of analysis was concluded in August 1999, the number of candidates was
reduced to final five. In October 2000, NIST announced its selection of Rijndael [7]
as a winner of the AES contest. The official standard was published in November
2001 as FIPS (Federal Information Processing Standard) number 197 [1].

The primary criteria used by NIST to evaluate AES candidates included security,
efficiency in software and hardware, and flexibility. In the absence of any major
breakthroughs in the cryptanalysis of the final five candidates, and because of the
relatively inconclusive results of their software performance evaluations, hardware
efficiency evaluations presented during the third AES conference provided a very
substantial quantitative measure that clearly differentiated AES candidates among
each other [9, 10, 12, 17, 21, 42]. The importance of this measure was reflected
by a survey performed among the participants of the AES conference, in which the
ranking of the candidate algorithms coincided very well with their relative speed in
hardware [16, 18].

The AES evaluation process resulted in the first efficient hardware architectures
for AES. The university groups contributed first implementations of AES based
on FPGAs (field programmable gate arrays) [5, 9, 11, 18]. The National Secu-
rity Agency group and industry groups provided the first implementations targeting
ASICs (application-specific integrated circuits) [21, 42].

George Mason University
e-mail: {kgaj,pchodow1}@gmu.edu

Ç.K. Koç (ed.) Cryptographic Engineering, DOI 10.1007/978-0-387-71817-0 10,
c© Springer Science+Business Media, LLC 2009

235

236 Kris Gaj and Pawel Chodowiec

A substantial progress in the development of the new architectures for AES has
been made after the conclusion of the contest, as a result of focusing research efforts
on a single secret-key encryption standard. This progress proceeded in several major
directions.

One direction was the development of high-speed, highly pipelined architec-
tures for non-feedback cipher modes. This direction led to the development of
AES implementations operating with the speeds of tens of Gigabits per second
[22, 23, 25, 26, 29, 32, 34–36, 41]. The second direction was the development
of compact architectures for AES, optimized for the minimum area. This effort
led to the emergence of architectures with 64-, 32-, and even 8-bit data paths
[2, 6, 19, 20, 27, 33, 45].

The third direction was the optimization of basic operations of AES, including
logic-only implementation of SubBytes [3, 4, 28–31, 33, 44] and optimizations and
decompositions of the MixColumns and InvMixColumns transformations [6, 14, 15,
43]. Still, a different direction was the development of new architectures for the
entire encryption/decryption unit [13].

In this chapter, we will review the AES algorithm from the point of view of
knowledge required for efficient hardware implementations. We will then describe
several alternative ways of implementing all basic operations and the entire cipher.
We will conclude with our recommendations regarding the optimum choice of par-
ticular design options and the entire hardware architecture for AES depending on
requirements of a particular application.

10.2 AES Cipher Description

10.2.1 Basic Features

AES is a symmetric-key block cipher. AES operates on 128-bit data blocks and
accepts 128-, 192-, and 256-bit keys. It is an iterative cipher, which means that both
encryption and decryption consist of multiple iterations of the same basic round
function, as shown in Figure 10.1.

In each round, a different round (or internal) key is being used. In AES, the
number of cipher rounds depends on the size of the key. It is equal to 10, 12, or 14
for 128-, 192-, or 256-bit keys, respectively.

Based on the internal structure of a round function, AES belongs to the group
of SP-network block ciphers. This means that the main transformations employed
in this cipher are substitutions and permutations applied to all bits of data block
in every round. Data blocks are internally represented in a square form, called
State, which is shown in Figure 10.2. In this diagram, each field represents one byte
of data.

10 FPGA and ASIC Implementations of AES 237

Fig. 10.1 Flowchart of a generic iterative cipher.

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S0,0 S0,1 S0,2 S0,3S1,0 S1,1 S1,2 S1,3S2,0 S2,1 S2,2 S2,3S3,0 S3,1 S3,2 S3,3

127 0128-bit block of data

State representation

Fig. 10.2 State representation of 128-bit data blocks.

10.2.2 Round Operations

AES encryption round employs consecutively four main operations: SubBytes,
ShiftRows, MixColumns, and AddRoundKey. Since Rijndael is an SP-network ci-
pher, it requires an inversed version of all transformations for decryption. These
inverse transformations are called InvSubBytes, InvShiftRows, InvMixColumns, and
InvAddRoundKey. Please note that the last transformation of an encryption round,
AddRoundKey, is equivalent to a bitwise XOR and therefore is an inverse of itself.
The structure of encryption and decryption rounds is shown in Figure 10.3.

238 Kris Gaj and Pawel Chodowiec

SubBytes

ShiftRows

MixColumns

AddRoundKey

a) encryption round

State'

State

InvSubBytes

InvShiftRows

InvMixColumns

InvAddRoundKey

b) decryption round

State'

State

Fig. 10.3 Structure of AES encryption and decryption round.

10.2.2.1 Operations in the Galois Field GF(28)

Two of the AES round operations, SubBytes and MixColumns, rely on operations
in the Galois field GF(28). Each element of this field can be treated as either an
8-bit string (in the binary or hexadecimal representation) or as a polynomial of de-
gree seven or less, with coefficients in {0,1} (polynomial basis representation). The
coefficients of a polynomial are equal to the respective bits of the binary represen-
tation. For example, {03} in hexadecimal is equivalent to {0000 0011} in binary,
and to

c(x) = 0 · x7 + 0 · x6 + 0 · x5 + 0 · x4 + 0 · x3 + 0 · x2 + 1 · x + 1 ·1 = x + 1 (10.1)

in the polynomial basis representation. The multiplication of elements of GF(28) in
AES is accomplished by multiplying the corresponding polynomials modulo a fixed
irreducible polynomial m(x) = x8 + x4 + x3 + x + 1.

For example, multiplying a variable element a = a7a6a5a4a3a2a1a0 by a constant
element {03} is equivalent to computing

b(x) = b7x7 + b6x6 + b5x5 + b4x4 + b3x3 + b2x2 + b1x + b0

= (a7x7 + a6x6 + a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0) · (x + 1)
mod (x8 + x4 + x3 + x + 1) (10.2)

After several simple transformations

b(x) = (a7 + a6) · x7 +(a6 + a5) · x6 +(a5 + a4) · x5 +(a7 + a4 + a3) · x4

+(a7 + a3 + a2) · x3 +(a2 + a1) · x2 +(a7 + a1 + a0) · x +(a7 + a0)

10 FPGA and ASIC Implementations of AES 239

where “+” represents an addition modulo 2, i.e., an XOR operation. Each bit of a
product b can be represented as an XOR function of at most three variable input
bits, e.g., b7 = (a7 + a6) , b4 = (a4 + a3 + a7), etc.

10.2.2.2 SubBytes and InvSubBytes

The SubBytes operation transforms individual bytes of the internal state as shown in
Figure 10.4. Internally, it is composed of two basic operations:

1. Multiplicative inversion in the Galois field GF(28) with the reduction polynomial
m(x) specified by Equation (10.3). Element {00} is mapped onto itself.

m(x) = x8 + x4 + x3 + x + 1 (10.3)

2. Affine transformation over GF(2):

b′i = bi + b(i+4) mod 8 + b(i+5) mod 8 + b(i+6) mod 8 + b(i+7) mod 8 + ci (10.4)

where byte c has value {63} or {01100011}.
Equation (10.5) shows the affine transformations in the matrix form.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b′0
b′1
b′2
b′3
b′4
b′5
b′6
b′7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0

b1

b2

b3

b4

b5

b6

b7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0
0
0
1
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.5)

The inversed version of SubBytes, called InvSubBytes, employs identical multi-
plicative inversion in GF(28) and an inversed affine transformation. Equation (10.6)
shows the inverse affine transformations in the matrix form:

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S'0,0 S'0,1 S'0,2 S'0,3

S'1,0 S'1,1 S'1,2 S'1,3

S'2,0 S'2,1 S'2,2 S'2,3

S'3,0 S'3,1 S'3,2 S'3,3

SubBytes

Fig. 10.4 Application of SubBytes to State.

240 Kris Gaj and Pawel Chodowiec⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b′0
b′1
b′2
b′3
b′4
b′5
b′6
b′7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0

b1

b2

b3

b4

b5

b6

b7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.6)

The corresponding equation in GF(2) is given in (10.7) as

b′i = b(i+2) mod 8 + b(i+5) mod 8 + b(i+7) mod 8 + di (10.7)

The internal structure of SubBytes and InvSubBytes is shown in Figure 10.5.

10.2.2.3 ShiftRows and InvShiftRows

The ShiftRows and InvShiftRows cyclically shift three bottom rows of the State by
a different number of positions, one, two, and three, respectively, as shown in Fig-
ure 10.6. Without those operations all-round transformations would be limited only
to the columns of the State.

10.2.2.4 MixColumns and InvMixColumns

MixColumns and InvMixColumns operations are defined over 4-byte words that rep-
resent a column of the State as shown in Figure 10.7. These 4-byte words are con-
sidered as polynomials (of degree of at most 3) with coefficients in K = GF(28),
defined in the ring of polynomials K[X] modulo M(X) = X4 + 1 and denoted as

Inverse in GF(28)

affine
transformation

inverse affine
transformation

Inverse in GF(28)

SubBytes InvSubBytes

Fig. 10.5 Composition of SubBytes and InvSubBytes.

10 FPGA and ASIC Implementations of AES 241

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S'0,0 S'0,1 S'0,2 S'0,3

S'1,0 S'1,1 S'1,2 S'1,3

S'2,0 S'2,1 S'2,2 S'2,3

S'3,0 S'3,1 S'3,2 S'3,3

ShiftRows

Fig. 10.6 ShiftRows transforming rows of a State.

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S'0,0 S'0,1 S'0,2 S'0,3

S'1,0 S'1,1 S'1,2 S'1,3

S'2,0 S'2,1 S'2,2 S'2,3

S'3,0 S'3,1 S'3,2 S'3,3

MixColumns

Fig. 10.7 MixColumns transforming a column of a State.

R = K[X]/(X4 +1). Addition of these polynomials corresponds to bit-wise XOR of
their coefficients. Their multiplication is reduced modulo M(X) = X4 + 1.

Since X j mod (X4 + 1) = X j mod 4, the operation consisting of multiplication of
a(X) = a3X3 +a2X2 +a1X +a0 by a fixed polynomial c(X) = c3X3 +c2X2 +c1X +
c0 gives a product

B(X) = b3X3 + b2X2 + b1X + b0

= (c3a0 + c2a1 + c1a2 + c0a3)X3

+(c2a0 + c1a1 + c0a2 + c3a3)X2

+(c1a0 + c0a1 + c3a2 + c2a3)X
(c0a0 + c3a1 + c2a2 + c1a3) (10.8)

This operation can be written as a multiplication of a vector [A] by a circular
matrix [C]: ⎡

⎢⎢⎣
b0

b1

b2

b3

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

c0 c3 c2 c1

c1 c0 c3 c2

c2 c1 c0 c3

c3 c2 c1 c0

⎤
⎥⎥⎦ ·
⎡
⎢⎢⎣

a0

a1

a2

a3

⎤
⎥⎥⎦ (10.9)

The polynomial M(X) was selected such that it effectively shifts rows of the
State. From the cryptographical point of view, this operation mixes bytes across the
State and creates a strong dependence between all input bytes a0 . . .a3 and an output
byte bi.

The MixColumns transformation multiplies each column of the State by a con-
stant polynomial c(X) in the ring R. The c(X) is defined as follows:

242 Kris Gaj and Pawel Chodowiec

c(X) = (x + 1)X3 + X2 + X + x (10.10)

The InvMixColumns transformation is the inverse of the MixColumns operation.
InvMixColumns multiplies each column of the State by

d(X) = (x3 + x + 1)X3 +(x3 + x2 + 1)X2 +(x3 + 1)X +(x3 + x2 + x) (10.11)

where d(X) = c−1(X) is the inverse of c(X) in R. Polynomials c(X) and d(X) are
often expressed with coefficients in the hexadecimal format:

c(X) = 03 ·X3 + 01 ·X2 + 01 ·X + 02 (10.12)

d(X) = 0B ·X3 + 0D ·X2 + 09 ·X + 0E (10.13)

Multiplication of one column of the State by c(X) in R (part of the MixColumns
operation) can be written in a matrix form:⎡

⎢⎢⎣
b0

b1

b2

b3

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤
⎥⎥⎦ ·
⎡
⎢⎢⎣

a0

a1

a2

a3

⎤
⎥⎥⎦ (10.14)

The expression of the InvMixColumns operation in a matrix form is as follows:⎡
⎢⎢⎣

b0

b1

b2

b3

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E

⎤
⎥⎥⎦ ·
⎡
⎢⎢⎣

a0

a1

a2

a3

⎤
⎥⎥⎦ (10.15)

Polynomials representing columns of a State have coefficients which are con-
sidered as polynomials (of degree of at most 7) with coefficients in Galois field
GF(2). A byte a(x) (or a in simplified notation) is a sum a(x) = ∑0≤i≤7 αixi, where
αi ∈ {0,1}. In other words, bytes a are elements of the Galois field K = GF(28)
constructed using the reduction polynomial m(x) = x8 + x4 + x3 + x + 1.

K = GF(2)[x]/(x8 + x4 + x3 + x + 1) (10.16)

Addition of polynomials in K corresponds to simple bit-wise exclusive OR (XOR)
of the polynomial coefficients. Multiplication of polynomials in the field K corre-
sponds to their multiplication modulo irreducible polynomial m(x) from Equation
(10.3). The same polynomial is used in the SubBytes operation for calculation of a
multiplicative inverse.

10.2.3 Iterative Structure

A flowchart describing AES encryption in terms of basic operations—SubBytes,
ShiftRows, MixColumns, and AddRoundKey—is shown in Figure 10.8. Please note

10 FPGA and ASIC Implementations of AES 243

Fig. 10.8 AES encryption flowchart.

that the number of cipher rounds, Nr, depends on the size of an encryption key. The
first round is preceded by an initial transformation AddRoundKey, in agreement with
a generic structure of an iterative block cipher shown in Figure 10.1. The last round,
number Nr, is slightly different from the remaining Nr − 1 rounds, in that it does
not contain the MixColumns operation.

By a straightforward inversion of the order of operations and by replacing all ba-
sic operations by their respective inverses, we obtain the AES decryption flowchart
shown in Figure 10.9. Simple regrouping of basic operations leads to an equivalent
decryption flowchart, shown in Figure 10.10, which has the same basic structure as
an encryption flowchart. The differences amount to providing round keys in the re-
verse order, replacing all basic operations by their inverses, and swapping the order
of operations one and two, and three and four within each round. The operations
number one and two during each round of encryption, SubBytes and ShiftRows,
can be performed in an arbitrary order, as shown in Figure 10.11a. Similarly, the
operations number one and two during each round of decryption InvShiftRows and
InvSubBytes can be swapped without affecting the result (see Figure 10.11b). By ap-
plying this last change, we obtain the decryption flowchart, shown in Figure 10.12,
which is most often used as a basis of hardware implementation.

10.2.4 Key Scheduling

Key scheduling in AES is a process aimed at generating (Nr + 1) round keys based
on a single external key. This process consists of two phases called KeyExpansion

244 Kris Gaj and Pawel Chodowiec

Fig. 10.9 AES decryption flowchart obtained by the straightforward inversion of the encryption
flowchart.

Fig. 10.10 AES decryption flowchart after regrouping of basic operations.

10 FPGA and ASIC Implementations of AES 245

Fig. 10.11 Equivalence between two sequences of basic operations: (a) SubBytes followed by
ShiftRows, (b) InvSubBytes followed by InvShiftRows.

Fig. 10.12 AES decryption flowchart after regrouping of basic operations and swapping InvSub-
Bytes with InvShiftRows.

and RoundKeySelection, as shown in Figure 10.13. Please note that all rectan-
gular fields in this and two subsequent figures correspond to 32-bit words (and not
single bytes).

The pseudocode of KeyExpansion is shown in Figure 10.16. The output ar-
ray of words k[i] is first initialized with the Nk words of the external key, Key.
For majority of subsequent values of i, k[i] is computed by simply XORing an
immediately preceding word k[i-1] with a word Nk positions earlier k[i-Nk],
as shown in Figure 10.14. If an index i is a multiple of Nk, a different transfor-

246 Kris Gaj and Pawel Chodowiec

Fig. 10.13 Decomposition of key scheduling into KeyExpansion and RoundKeySelection for the
case of Nk = 6 (192-bit key) and Nb = 4 (128-bit data block).

Fig. 10.14 Formula for KeyExpansion for i mod Nk �= 0.

Fig. 10.15 Formula for KeyExpansion for i mod Nk = 0.

10 FPGA and ASIC Implementations of AES 247

KeyExpansion(byte Key[4*Nk], word k[Nb*(Nr+1)], Nk)
begin

word temp

i=0
while (i < Nk)

k[i] = word(Key[4*i], Key[4*i+1], Key[4*i+2], Key[4*i+3])
i = i+1

end while

i = Nk

while (i < Nb * (Nr+1))
temp = k[i-1]
if (i mod Nk = 0)
temp = SubWord(RotWord(temp)) xor Rcon[i/Nk]

else if ((Nk > 6) and (i mod Nk = 4))
temp = SubWord(temp)

end if
k[i] = k[i-Nk] xor temp
i = i + 1

end while

end

Fig. 10.16 Pseudocode for the KeyExpansion phase of KeyScheduling.

mation, shown in Figure 10.15, is used. In this transformation, RotWord is a cyclic
rotation of bytes within a word, SubWord is a SubBytes transformation applied inde-
pendently to each byte of an input word, and Rcon[i] is an array of four constants
defined in GF(28). If (Nk > 6) and (i mod Nk) = 4, a simplified version
of the same transformation is applied.

10.3 FPGA and ASIC Technologies

Cryptographic transformations can be implemented in both software and hardware.
Software implementations are designed and coded in programming languages, such
as C, C++, Java, and assembly language, to be executed, among others, on gen-
eral purpose microprocessors, digital signal processors, and smart cards. Hardware
implementations are designed and coded in hardware description languages, such
as VHDL and Verilog HDL, and are intended to be realized using two major im-
plementation approaches: application-specific integrated circuits (ASICs) and field
programmable gate arrays (FPGAs).

Application-specific integrated circuits (ASICs) are designed all the way from
the behavioral description to the physical layout and then sent for a fabrication in
a semiconductor foundry. Field programmable gate array (FPGA) can be bought
off the shelf and reconfigured by designers themselves. With each reconfiguration,

248 Kris Gaj and Pawel Chodowiec

which takes only a fraction of a second, an integrated circuit can perform a com-
pletely different function.

FPGA consists of thousands of universal reconfigurable logic blocks, connected
using reconfigurable interconnects and switches, as shown in Figure 10.17. Addi-
tionally, modern FPGAs contain embedded higher-level components, such as mem-
ory blocks, multipliers, multipliers–accumulators, and even microprocessor cores.
Reconfigurable input/output blocks provide a flexible interface with the outside
world. Reconfiguration, which typically lasts only a fraction of a second, can change
a function of each building block and interconnects among them, leading to a func-
tionally new digital circuit.

In Table 10.1, we collect and contrast features of implementations of crypto-
graphic transformations based on ASICs and FPGAs (hardware) and microproces-
sors (software). The performance characteristics of ASICs and FPGAs are almost
identical, as demonstrated by the first group of features, and substantially differ-
ent from the performance characteristics of general purpose microprocessors. Both
ASICs and FPGAs can make a full use of parallel processing and pipelining and op-
erate on arbitrary size words. In general purpose microprocessors, parallel process-
ing and pipelining are limited by the number and internal structure of the processor
functional units and by the instruction level parallelism. Additionally, all functional
units operate on the fixed-size arguments only.

The primary difference between ASICs and FPGAs in terms of the performance
characteristics is a smaller speed of FPGAs caused by the delays introduced by the
circuitry required for reconfiguration. As a result of this speed penalty, any digital
circuit implemented in an FPGA is typically slower than the same circuit imple-
mented in an ASIC, assuming that both integrated circuits are fabricated using the
same semiconductor technology (in particular, using the same transistor size).

Fig. 10.17 General structure and main building blocks of an FPGA.

10 FPGA and ASIC Implementations of AES 249

Table 10.1 Characteristic features of implementations of cryptographic transformations in ASICs,
FPGAs, and microprocessors.

ASICs FPGAs Microprocessors

Performance characteristics
Parallel processing Yes Yes Limited
Pipelining Yes Yes Limited
Word size Variable Variable Fixed
Speed Very fast Fast Moderately fast

Functionality
Algorithm agility No Yes Yes
Tamper resistance Strong Limited Weak
Access control Strong Moderate Weak
to keys

Development process
Description VHDL, VHDL, C, C++, Java,
languages Verilog HDL Verilog HDL assembly language
Design cycle Long Moderately long Short
Design tools Very expensive Moderately expensive Inexpensive
Maintenance and Expensive Inexpensive Inexpensive
upgrades

The recent study performed at the University of Toronto [24] quantified the per-
formance differences between the current generation of ASICs and FPGAs. A set
of 23 benchmarks covering applications in the area of cryptography, digital signal
processing, and communications were included in the study. The study concluded
that for circuits containing only combinational logic and flip-flops, the ratio of sil-
icon area required to implement them in FPGAs and ASICs is on average 40. For
circuits that could take advantage of dedicated blocks present in modern FPGAs,
such as multiplier/accumulators and block memories, these blocks reduced the av-
erage area gap significantly to as little as 21. The ratio of critical path delay, from
FPGA to ASIC, was found to be roughly 3–4, with less influence from embedded
memories and embedded logic blocks. The dynamic power consumption ratio was
approximately 12 times and, with hard blocks, this gap generally became smaller.

The common features of FPGAs and microprocessors concern mostly function-
ality and do not affect performance. Both general purpose microprocessors and FP-
GAs can be easily reconfigured in real time to perform a different algorithm. The
disadvantage of this feature is a limited tamper resistance; the contents of an FPGA
can be, at least in theory, modified by an unauthorized user. In practice, the contents
of an FPGA are typically downloaded during the initialization from the read-only
memory, such as EPROM, which cannot be easily tampered with, at least remotely.
The access control to cryptographic keys in FPGAs is also stronger than in software,
but weaker than in ASICs.

The development process in both hardware implementation approaches is very
similar. In both FPGAs and ASICs, the circuit is described using a hardware de-
scription language, verified using a digital circuit simulator, and then tested us-
ing a prototyping board. The primary difference between FPGAs and ASICs is
that FPGAs do not require the physical design (layout), fabrication, and testing for

250 Kris Gaj and Pawel Chodowiec

physical defects. As a result, the design cycle is significantly shorter and the design
tools and testing much less expensive. The interesting similarity between FPGAs
and software is a possibility of remote maintenance and upgrading, based on elec-
tronic patches.

10.4 Parameters of Hardware Implementations

Hardware implementations of secret-key ciphers can be characterized using several
performance parameters. Below we provide our definitions of major parameters and
derive formulas that demonstrate mutual dependencies among these parameters.

10.4.1 Throughput and Latency

Encryption (decryption) throughput is defined as the number of bits encrypted (de-
crypted) in a unit of time. Typically, the encryption and decryption throughputs are
equal, and therefore only one parameter is reported. A typical unit of throughput is
Mbit/s (megabit per second) or Gbit/s (gigabit per second). It is worth mentioning
that 1 Mbit/s = 106 bit/s, and not 220 bit/s, and 1 Gbit/s = 109 bit/s, and not 230 bit/s.

Encryption (decryption) latency is defined as the time necessary to encrypt (de-
crypt) a single block of plaintext (ciphertext). The typical unit of latency in the
current technology is ns (nanosecond).

The encryption (decryption) latency and throughput are related by

T hroughput =
block size ·number o f blocks processed simultaneously

latency
(10.17)

In applications where large amounts of data are encrypted or decrypted, through-
put determines the total encryption/decryption time and thus is the best measure
of the cipher speed. In applications where a small number of plaintext (ciphertext)
blocks is processed, the total encryption/decryption time depends on both through-
put and latency.

10.4.2 Area

The area required for the cipher implementation is an important parameter for the
following reasons:

• Cost
The area of an integrated circuit is a primary factor determining its cost. It is
traditionally assumed that the cost of an integrated circuit is directly proportional

10 FPGA and ASIC Implementations of AES 251

to the circuit area. This dependence is not always accurate, especially taking into
account the cost of a package, which is determined by the number of the circuit
inputs and outputs.

• Limit on the maximum area
In certain hardware environments, there exists a limit on the maximum area of a
cryptographic unit. This limit may be imposed by the cost, available fabrication
technology, power consumption, or any combination of these factors. For exam-
ple, in smart cards and microcontrollers, both cost and power consumption limit
the area of the embedded encryption units; in FPGAs, the area is limited by the
available fabrication technology and the cost of a programmable device.

In ASIC implementations, the area required by the cryptographic unit is typically
expressed in μm2. Two related measures are the transistor count and the logic gate
count. Values of all three measures are closely correlated, but not necessarily strictly
proportional to each other. All three measures are reported by the tools used for the
automated logic synthesis of ASICs. In the semi-custom design methodology, these
values are a function of the standard cell library used during logic synthesis.

In FPGA implementations, the only circuit size measures reported by the CAD
tools are the number of basic configurable logic blocks and the number of equivalent
logic gates. It is commonly believed that out of these two measures, the number
of basic configurable logic blocks approximates the circuit area more accurately.
Measuring and comparing circuit area in FPGAs are additionally complicated by the
existence of embedded logic blocks and embedded memories. The specifications of
FPGA devices typically do not provide any information about the relative ratio of
the areas used by embedded blocks and basic reconfigurable logic blocks.

10.5 Hardware Architectures of Symmetric Block Ciphers

10.5.1 Hardware Architectures vs. Block Cipher Modes
of Operation

Symmetric-key block ciphers are used in several operating modes. From the point
of view of hardware implementations, these modes can be divided into two major
categories:

1. Non-feedback modes, such as electronic code book mode (ECB) and counter
mode (CTR).

2. Feedback modes, such as cipher block chaining mode (CBC), cipher feedback
mode (CFB), and output feedback mode (OFB).

In the non-feedback modes, encryption of each subsequent block of data can
be performed independently from processing other blocks. In particular, all blocks
can be encrypted in parallel. In the feedback modes, it is not possible to start en-
crypting the next block of data until encryption of the previous block is completed.

252 Kris Gaj and Pawel Chodowiec

As a result, all blocks must be encrypted sequentially, with no capability for par-
allel processing. The limitation imposed by the feedback modes does not concern
decryption, which can be performed on several blocks of ciphertext in parallel for
both feedback and non-feedback operating modes.

In the old security standards, the encryption of data was performed primarily us-
ing feedback modes, such as CBC and CFB. Using these standards did not permit to
fully utilize the performance advantage of the hardware implementations of secret-
key ciphers, based on parallel processing of multiple blocks of data. The situation
has been partially remedied by including a counter mode in the NIST recommenda-
tions on the AES modes of operation. Other non-feedback modes of operation are
currently under investigation by the cryptographic community.

10.5.2 Basic Iterative Architecture

The basic hardware architecture used to implement an encryption/decryption unit
of a typical secret-key cipher is shown in Figure 10.18. One round of the cipher is
implemented as a combinational logic and supplemented with a single register and
a multiplexer. In the first clock cycle, input block of data is fed to the circuit through
the multiplexer and stored in the register. In each subsequent clock cycle, one round
of the cipher is evaluated, the result is fed back to the circuit through the multiplexer,
and stored in the register. The two characteristic features of this architecture are

• Only one block of data is encrypted at a time.
• The number of clock cycles necessary to encrypt a single block of data is equal

to the number of cipher rounds, #rounds.

The throughput and latency of the basic iterative architecture,
Throughputiterative and Latencyiterative, are given by

Fig. 10.18 Basic iterative architecture of a block cipher.

10 FPGA and ASIC Implementations of AES 253

T hroughputiterative =
block size

#rounds ·TCLKiterative

(10.18)

Latencyiterative = #rounds ·TCLKiterative (10.19)

where TCLKiterative is a clock period of the basic iterative architecture.

10.5.3 Loop Unrolling

An architecture with partial loop unrolling is shown in Figure 10.19b. The only
difference compared to the basic iterative architecture is that the combinational part
of the circuit implements K rounds of the cipher, instead of a single round. K must
be a divisor of the total number of rounds, #rounds.

The number of clock cycles necessary to encrypt a single block of data decreases
by a factor of K. At the same time the minimum clock period increases by a factor
slightly smaller than K, leading to an overall relatively small increase in the encryp-
tion throughput, and decrease in the encryption latency, as shown in Figure 10.20.
Because the combinational part of the circuit constitutes the majority of the circuit
area, the total area of the encryption/decryption unit increases almost proportionally
to the number of unrolled rounds, K. Additionally, the number of internal keys used
in a single clock cycle increases by a factor of K, which in hardware implemen-
tations typically implies the almost proportional growth in the area used to store
internal keys.

Fig. 10.19 Three hardware architectures suitable for feedback cipher modes: (a) basic iterative,
(b) with partial loop unrolling, (c) with full loop unrolling.

254 Kris Gaj and Pawel Chodowiec

Fig. 10.20 Throughput vs. area characteristics of hardware architectures suitable for feedback ci-
pher modes.

Architecture with full loop unrolling is shown in Figure 10.19c. The input mul-
tiplexer and the feedback loop are no longer necessary, leading to a small increase
in the cipher speed and decrease in the circuit area compared to the partial loop
unrolling with the same number of rounds unrolled.

In summary, loop unrolling enables increasing the circuit speed in both feedback
and non-feedback operating modes. Nevertheless this increase is relatively small
and incurs a large area penalty. As a result, choosing this architecture can be jus-
tified only for feedback cipher modes, where none other architecture offers speed
greater than the basic iterative architecture, and only for implementations where
large increase in the circuit area can be tolerated.

10.5.4 Pipelining

A traditional methodology for design of high-performance implementations of
secret-key block ciphers operating in non-feedback cipher modes is shown in Fig-
ure 10.21. The basic iterative architecture, shown in Figure 10.21a, is implemented
first and its speed and area determined. Based on these estimations, the number of
rounds K that can be unrolled without exceeding the available circuit area is found.
The number of unrolled rounds, K, must be a divisor of the total number of cipher
rounds, #rounds. If the available circuit area is not large enough to fit all cipher
rounds, architecture with partial outer-round pipelining, shown in Figure 10.21b, is
applied. The difference between this architecture and the architecture with partial
loop unrolling, shown in Figure 10.19b, is the presence of registers inside of the
combinational logic on the boundaries between any two subsequent cipher rounds.
As a result, K blocks of data can be processed by the circuit at the same time, with
each of these blocks stored in a different register at the end of a clock cycle. This
technique of parallel processing of multiple streams of data by the same circuit is
called pipelining. The throughput and area of the circuit with partial outer-round

10 FPGA and ASIC Implementations of AES 255

Fig. 10.21 Three hardware architectures used traditionally to implement non-feedback cipher
modes: (a) basic iterative, (b) with partial outer-round pipelining, (c) with full outer-round
pipelining.

pipelining increase proportionally to the value of K, as shown in Figure 10.23, the
encryption/decryption latency remains the same as in the basic iterative architec-
ture, as shown in Figure 10.24. If the available area is large enough to fit all cipher
rounds, the feedback loop is no longer necessary and full outer-round pipelining,
shown in Figure 10.21c, can be applied.

An optimized design methodology for implementing non-feedback cipher modes
is shown in Figure 10.22. Before loop unrolling, the optimum number of pipeline
registers is inserted inside of a cipher round, as shown in Figure 10.22b. The en-
tire round, including internal pipeline registers is then repeated K times (see Fig-
ure 10.22c). The number of unrolled rounds K depends on the maximum available
area or the maximum required throughput.

The primary advantage of the latter methodology is shown in Figure 10.23. In-
serting registers inside of a cipher round significantly increases cipher throughput at
the cost of only marginal increase in the circuit area. As a result, the throughput to
area ratio increases until the number of internal pipeline stages reaches its optimum
value kopt . Inserting additional registers may still increase the circuit throughput, but
the throughput to area ratio will deteriorate. The throughput to area ratio remains
unchanged during the subsequent loop unrolling. The throughput of the circuit is
given by

T hroughputpipelined(K,k) =
K ·block size

#rounds ·TCLKinner round (k)
(10.20)

256 Kris Gaj and Pawel Chodowiec

Fig. 10.22 Four hardware architectures suitable for non-feedback cipher modes: (a) basic iterative,
(b) with inner-round pipelining, (c) with partial inner- and outer-round pipelining, (d) with full
inner- and outer-round pipelining.

Fig. 10.23 Throughput vs. area characteristics of hardware architectures suitable for non-feedback
cipher modes.

where k is the number of inner-round pipeline stages, K is the number of outer-
round pipeline stages, and TCLKinner round (k) is the clock period in the architecture
with the k-stage inner-round pipelining. For a given limit in the circuit area, mixed
inner- and outer-round pipelining shown in Figure 10.22c offers significantly higher
throughput compared to the pure outer-round pipelining (see Figure 10.23).

10 FPGA and ASIC Implementations of AES 257

Fig. 10.24 Latency vs. area characteristics of hardware architectures suitable for non-feedback
cipher modes.

When the limit on the circuit area is large enough, all rounds of the cipher can be
unrolled, as shown in Figure 10.22d, leading to the throughput given by

T hroughput f ully pipelined(K,kopt) =
block size

TCLKinner round (kopt)
(10.21)

where kopt is the number of inner-round pipeline stages optimum from the point of
view of the throughput to area ratio. The only side effect of our methodology is the
increase in the encryption/decryption latency. This latency is given by

Latency f ully pipelined(K,k) = #rounds · k ·TCLKinner round (k) (10.22)

This latency does not depend on the number of rounds unrolled, K. The increase
in the encryption/decryption latency, typically in the range of single microseconds,
usually does not have any major influence on the operation of the high-volume cryp-
tographic system optimized for maximum throughput. This is particularly true for
applications with a human operator present on at least one end of the secure com-
munication channel.

The input/output timing characteristics of three basic secret-key cipher architec-
tures are shown in Figure 10.25. In the basic iterative architecture, a new block
of data must be fed into the system only once per #rounds clock cycles. In case
of the inner-round pipelining, there are periods of time when the input must be
fed into the cryptographic core every clock cycle, even though an average in-
put/output throughput is much lower (Figure 10.25b). In the full mixed inner- and
outer-round pipelining, input blocks are fed to the encryption unit every clock cycle
(Figure 10.25c).

258 Kris Gaj and Pawel Chodowiec

Fig. 10.25 Input/output timing characteristics of various architectures: (a) basic iterative architec-
ture, (b) inner-round pipelining, (c) full inner- and outer-round pipelining.

10.5.5 Limits on the Maximum Clock Frequency of Pipelined
Architectures

Throughput of the architecture with the mixed inner- and outer-round pipelining is
directly proportional to the maximum clock frequency for the inner-round pipelin-
ing (see Equation (10.20)). The following factors may limit the maximum clock
frequency,

fCLKinner round (k) =
1

TCLKinner round (k)
(10.23)

in this architecture:

1. delay of a single round divided by k
For small values of k, it is usually possible to divide the combinational portion of
a single round into k stages with equal (or at least approximately equal) delays.
The delay of a single stage, equal to the delay of a single round divided by k,

10 FPGA and ASIC Implementations of AES 259

determines the minimum clock period of the circuit, TCLKinner round (k), as shown
in Figure 10.26a.

2. delay of the largest indivisible operation
For some ciphers, when the number of internal pipeline stages k increases, it be-
comes more and more difficult to divide the combinational portion of a single
round into stages with equal delays. At certain point, introducing additional in-
ternal registers to the circuit may require dividing an elementary operation of the
cipher, such as an S-box or addition, into several stages. This division may be
difficult to accomplish if the operation is performed using a standard library cell,
look-up table, special carry propagate circuitry, or if the operation is so simple
that it cannot be easily divided into less-complex atomic operations. This case is
shown in Figure 10.26b.

3. delay of the control unit
The control unit determines the data flow in the circuit. This unit is responsi-
ble for generating enable signals for all registers and memories in the circuit
and address inputs for all memories and major multiplexers. The time neces-
sary to generate and distribute these signals, counted from the rising edge of the
clock, may be greater than the time necessary to propagate data between two ad-
jacent registers in the pipeline, as shown in Figure 10.26c. This is especially true

Fig. 10.26 Limits on the minimum clock period in the architecture with inner-round pipelining: (a)
ideal situation, evenly divided round; (b) clock period limited by the largest indivisible operation;
(c) clock period limited by the control unit, i.e., the time necessary to generate and distribute control
signals.

260 Kris Gaj and Pawel Chodowiec

for control signals with large fanouts distributed globally to every stage of the
pipeline.

4. limit on the maximum latency
Increasing the number of inner-round pipeline stages, k, increases the overall la-
tency of the cipher, by a factor of approximately (k−1) · (tP + tsu), where tP and
tsu denote the propagation delay and the setup time of a register, respectively.
This approximation does not take into account any changes in the routing (inter-
connect) delays. If the specification of the cryptographic system imposes a limit
on the maximum latency, Latencymax, this limit may determine the maximum
possible number of inner-round pipeline stages, kmax.

kmax ≤
(Latencymax −Latencyiterative)

#rounds · (tP + tsu)
(10.24)

5. limit on the maximum input/output bandwidth
We define the input/output bandwidth as a frequency of an external clock used
to control the transmission of data between the integrated circuit and an exter-
nal environment. The input/output bandwidth necessary to sustain the through-
put of the circuit working in the mixed inner- and outer-round pipelining is
given by

Bandwidth =
T hroughput(K,k)

bus width
=

K
#rounds

· block size
bus width

· fCLKinner round (k)
(10.25)

where fCLKinnerr ound (k) is a frequency of the clock for a k-round inner-round
pipelining. The circuit is assumed to have two independent ports of the width
bus width used for input and output, respectively. In case of using the same bus
for both input and output, the bandwidth must be at least twice as high to sustain
the same throughput. The maximum bandwidth may limit the maximum value
of the product K · fCLKinner round (k) and thus the maximum number of inner- and
outer-round pipeline stages.

10.5.6 Compact Architectures with Resource Sharing

For majority of ciphers, it is possible to significantly decrease the circuit area by
time sharing of certain resources (e.g., S-boxes in AES). This is accomplished by
using the same functional unit to process two (or more) parts of the data block in
different clock cycles, as shown in Figure 10.27.

In Figure 10.27a, two parts of the data block, D0 and D1, are processed in par-
allel, using two independent functional units F . In Figure 10.27b, a single unit F
is used to process two parts of the data block sequentially, during two subsequent

10 FPGA and ASIC Implementations of AES 261

Fig. 10.27 Basic idea of resource sharing: (a) parallel execution of two instantiations of the func-
tional unit F, no resource sharing; (b) resource sharing of the functional unit F.

clock cycles. This technique can be used to reduce the basic datapath in AES from
128 bits to 64 bits, 32 bits, and even 8 bits.

10.6 Implementation of Basic Operations of AES in Hardware

10.6.1 SubBytes and InvSubBytes

10.6.1.1 Look-Up Table

SubBytes is composed of 16 identical 8× 8 S-boxes working in parallel. InvSub-
Bytes is composed of the same number of 8× 8-bit inverse S-boxes. Each of these
S-boxes can be implemented independently using a 256× 8-bit look-up table. A
look-up table is implemented in digital systems using ROM (read-only memory). In
this memory, input to an S-box is connected to the address lines, and the output is
obtained at the data out bus.

Each of the AES SubBytes look-up tables is of the size of 256 bytes = 2048 bits
= 2 kilobits. If encryption and decryption are implemented together within the same
circuit, both uninverted and inverted 256 byte look-up tables can be placed within
one 512 byte memory block. In this case, the most significant bit of an address is a
control bit that distinguishes between encryption and decryption.

If a dual port ROM memory is available, which is often the case in FPGAs, the
same memory can implement two S-boxes working in parallel.

In Xilinx FPGAs embedded memories are typically implemented as memories
with synchronous output. This feature means that the output of the memory does
not change until the next rising edge of the clock. This kind of synchronous ROM
(read-only memory) is equivalent to a regular asynchronous ROM followed by a
register. This feature of Xilinx Block RAMs determines uniquely the location of a
register in the basic iterative architecture of AES.

262 Kris Gaj and Pawel Chodowiec

10.6.1.2 Look-Up Table and Logic

The total size of the look-up tables necessary to implement both encryption and de-
cryption can be reduced by a factor of two using knowledge of an internal structure
of SubBytes and InvSubBytes, shown in Figure 10.5. In this case, only inversion in
GF(28) is implemented using look-up tables. These look-up tables are shared be-
tween the encryption and decryption units. The affine transformation and the inverse
affine transformation can be implemented easily using an array of XOR gates. Up
to 6-input (4-input) XOR gates are required in order to implement affine (inverse
affine) transformation using one level of gates. If only 2-input XOR gates are avail-
able, up to three (two) layers of such gates might be necessary to implement the
same transformations.

10.6.1.3 Logic Only

The amount of memory required to implement SubBytes and InvSubBytes can be
reduced to zero by utilizing the internal logic structure of inversion in GF(28). This
approach makes particular sense for ASIC implementations, in which memory is
typically costly in terms of the circuit area.

In FPGAs, memory blocks are always present independently whether they are
used or not, but their replacement by logic may be still justified. For example, mem-
ory might be already used to implement some other functions, such as input/output
buffers. Additionally, in case of deeply pipelined architectures (see Section 10.5.4),
memory-based implementation can impose an artificial restriction on the minimum
clock period (as described in Section 10.5.5), while the logic-based implementation
can be further pipelined.

The basic idea of the logic-only implementation is to notice that inversion in
GF(28) can be decomposed into a sequence of operations in GF(24) (including
addition, multiplication, and inversion), as shown in Figure 10.29. Similarly, op-
erations in GF(24) can be expressed in terms of operations in GF(22) (see Fig-
ures 10.30, 10.32, and 10.35) and operations in GF(22) in terms of operations in
GF(2) (see Figures 10.33, 10.34, 10.36, and 10.37). The operations in GF(2) can
be implemented using simple XOR gate (addition) and AND gate (multiplication).
An inverse of 1 in GF(2) is 1, and the inverse of 0 does not exist. Thus, the entire
inversion in GF(28) can be decomposed into a logic circuit composed of XOR and
AND gates only.

The complexity (number of equivalent logic gates) and critical path (delay) of
this circuit depend on the choice of the specific representation for each field GF(22k)
using components of the underlying field GF(2k), for k = 4,2, and 1. The initial
choice of the specific representations was provided by Satoh et al. [33]. This choice
was later examined by Mentens et al. [28]. The authors compared 64 different poly-
nomial basis representations, and found a representation giving a 5% improvement
over [33].

10 FPGA and ASIC Implementations of AES 263

Canright [3, 4] has extended this comparison to include normal basis representa-
tions of the components of the fields GF(22k). He investigated a total of 432 differ-
ent representation choices and concluded that his best choice gives a 20% improve-
ment in terms of the total gate count compared to [33].

The details of the optimum design are shown in the hierarchical form in
Figures 10.28, 10.29, 10.30, 10.31, 10.32, 10.33, 10.34, 10.35, 10.36 and 10.37.
The top level design of the SubBytes/InvSubBytes circuit is shown in
Figure 10.28.

X is an 8× 8 basis conversion matrix, which changes the Galois field represen-
tation from the optimum representation used for internal computations within the
GF(28) inverter to the standard AES polynomial representation used in the remain-
ing calculations. X−1 is a matrix describing the conversion in the opposite direction.
M is an 8× 8 matrix and b ={63} is an 8× 1 bit vector, where y′ = M · y + b is an
equation describing the affine transformation of SubBytes.

Fig. 10.28 Implementation of SubBytes and InvSubBytes using logic only, according to [3, 4]. The
notation follows conventions introduced in [3]. enc dec is a select signal equal to 0 for encryption
and 1 for decryption. X is an 8×8 basis conversion matrix, M is an 8×8 matrix, and b is an 8×1
bit vector, where y′ = M · y+b, with b ={63}, is an equation describing the affine transformation
of SubBytes.

264 Kris Gaj and Pawel Chodowiec

Fig. 10.29 GF(28) inverter, GF INV 8. Notation: GF INV 4—GF(24) inverter (see Fig-
ure 10.30), GF MUL 4—GF(24) multiplier (see Figure 10.32), and GF SQ SCL 4—GF(24)
squarer and scaler (see Figure 10.35).

The data path for encryption (see Figure 10.28) includes conversion from the
standard polynomial representation to the internal representation, X−1, inversion
in GF(28), conversion back to the standard representation, X , combined with the
multiplication by matrix M of affine transformation, MX , followed by the addition
of the vector b of the affine transformation. Thus, the entire SubBytes transformation
can be described by the equation

s′ = (MX) · (X−1s)−1 + b (10.26)

The data path for decryption starts from adding the vector b, followed by the
multiplication by M−1 and X−1, combined into a product X−1M−1 = (MX)−1, fol-
lowed by inversion in GF(28), and multiplication by X . Thus, the entire InvSubBytes
transformation can be described by the equation

s′ = X · ((MX)−1(s+ b))−1 (10.27)

In both cases, the convention for the order of bits within vectors s′ and s is as
given below in Equation (10.28).

10 FPGA and ASIC Implementations of AES 265

Fig. 10.30 GF(24) inverter, GF INV 4. Notation: GF INV 2—GF(22) inverter (see Fig-
ure 10.31), GF MUL 2—GF(22) multiplier (see Figure 10.33), and GF SQ SCL 2—GF(22)
squarer and scaler (see Figure 10.36).

Fig. 10.31 GF(22) inverter, GF INV 2; equivalent to GF(22) squarer, GF SQ 2.

s′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s′7
s′6
s′5
s′4
s′3
s′2
s′1
s′0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s7

s6

s5

s4

s3

s2

s1

s0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.28)

266 Kris Gaj and Pawel Chodowiec

Fig. 10.32 GF(24) multiplier, GF MUL 4. Notation: GF MUL 2—GF(22) multiplier (see Fig-
ure 10.33) and GF MUL SCL 2—GF(22) multiplier and scaler (see Figure 10.34).

Fig. 10.33 GF(22) multiplier, GF MUL 2.

10 FPGA and ASIC Implementations of AES 267

Fig. 10.34 GF(22) multiplier and scaler, GF MUL SCL 2. It performs multiplication Nxy, where
x, y, N ∈ GF(22), x and y are input variables, and N is a constant.

Fig. 10.35 GF(24) squarer and scaler, GF SQ SCL 4. It performs operation νx2, where x, ν ∈
GF(24), x is an input variable, and ν is a constant, ν = 0 · z + N2. Notation: GF SQ 2—GF(22)
squarer (see Figure 10.31) and GF SCL 2—GF(22) scaler (see Figure 10.37).

268 Kris Gaj and Pawel Chodowiec

Fig. 10.36 GF(22) squarer and scaler, GF SQ SCL 2. It performs operation Nx2, where x, N
∈ GF(22), x is an input variable, and N is a constant.

Fig. 10.37 GF(22) scaler, GF SCL 2. It performs operation Nx, where x, N ∈ GF(22), x is an
input variable, and N is a constant.

The exact forms of matrices X−1, (MX)−1, MX , and X are given by
Equations 10.29–10.32.

X−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 1 1 1
0 1 1 1 0 0 0 1
0 1 1 0 0 0 1 1
1 1 1 0 0 0 0 1
1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 1
0 1 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.29)

10 FPGA and ASIC Implementations of AES 269

(MX)−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0 0 0
0 1 0 1 0 0 1 1
0 1 0 1 0 0 0 0
0 1 0 0 1 0 1 1
1 1 0 1 0 0 0 0
1 0 1 0 0 1 0 0
0 0 0 1 1 0 0 1
0 1 1 1 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.30)

MX =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 1 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1
1 0 1 0 1 0 0 0
1 1 1 1 1 0 0 0
0 1 1 0 1 1 0 1
0 0 1 1 0 0 1 0
0 1 0 1 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.31)

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 1 0
1 1 1 0 1 0 1 1
1 1 1 0 1 1 0 1
0 1 0 0 0 0 1 0
0 1 1 1 1 1 1 0
1 0 1 1 0 0 1 0
0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.32)

As shown in Figure 10.29, the GF(28) inverter can be decomposed into one
GF(24) inverter, three GF(24) multipliers, two GF(24) adders (4-bit XOR gates),
and one GF(24) squarer and scaler. The GF(24) inverter (see Figure 10.30) looks
almost the same as GF(28) inverter, with component operations in GF(24) replaced
by operations in GF(22). The GF(22) does not involve any logic, as it is equiv-
alent to squaring and thus to a circular rotation by one bit position, as shown in
Figure 10.31.

The GF(24) multiplier can be decomposed into two GF(22) multipliers, one
GF(22) multiplier/scaler, and four GF(22) adders (2-bit XOR gates), as shown in
Figure 10.32. The GF(22) multiplier (see Figure 10.33) has the same structure,
with the multipliers and the multiplier/scaler in GF(22) replaced by AND gates
(multipliers in GF(2)).

The GF(24) squarer and scaler, shown in Figure 10.35, is an optimized version
of the circuit that performs squaring in GF(24) followed by multiplication by a spe-
cially chosen constant, ν (see [3] for more information about the optimum choice
of ν). Similarly, the GF(22) multiplier and scaler, shown in Figure 10.34, combines
multiplication of two variables in GF(22) followed by multiplication by a specif-
ically chosen constant N. The GF(22) squarer and scaler, shown in Figure 10.36,

270 Kris Gaj and Pawel Chodowiec

combines squaring with multiplication by N. The multiplication by a constant N
can be implemented using just one XOR gate, as shown in Figure 10.37.

Without any further optimizations, the GF(28) inverter includes 88 two-input
XOR gates and 36 two-input AND gates, and its critical path passes through 14
two-input XOR gates and 4 two-input AND gates. In an FPGA implementation
based on 4-input look-up tables (LUTs), GF(24) inverter, GF(24) squarer and
scaler, the GF(22) multiplier, and the GF(22) multiplier and scaler can all be im-
plemented using look-up tables, so no lower level operations are required. The to-
tal number of look-up tables (LUTs) required to implement the GF(28) inverter
becomes 58, and its critical path delay is equal to the delay of eight logic levels
(LUTs).

As explained in [3], multiple further optimizations based on resource sharing and
optimum gate type choice can be used to further reduce circuit area. The derivation
of the minimum-area circuit, together with a detailed justification of design choices
can be found in [3, 4]. The appendices of [3] contain the corresponding C program,
which can be used as a source of test vectors, and the manually optimized Verilog
code, which can be used as a starting point for a hardware implementation.

10.6.2 MixColumns and InvMixColumns

10.6.2.1 Basic Implementation

The MixColumns transformation can be expressed as a matrix multiplication in the
Galois field GF(28) as shown in Equation (10.14). Each symbol in this equation
(such as bi, ai, 03) represents an 8-bit element of the Galois field. Each byte of
the result of a matrix multiplication (10.14) is an XOR of four bytes representing
the Galois field product of a byte a0, a1, a2, or a3 by a respective constant. As a
result, the entire MixColumns transformation can be performed using two layers of
XOR gates, with up to 3-input gates in the first layer and 4-input gates in the second
layer. In FPGAs, each of these XOR operations requires only one 4-bit look-up
table.

The InvMixColumns transformation can be expressed as a matrix multiplication
in the Galois field GF(28) as shown in Equation (10.15).

The primary differences, compared to MixColumns, are the larger hexadecimal
values of the matrix coefficients. Multiplication by these constant elements of the
Galois field leads to the more complex dependence between the bits of a variable
input and the bits of a respective product.

The entire InvMixColumns transformation can be performed using two layers of
XOR gates, with up to 6-input gates in the first layer and 4-input gates in the second
layer. Because of the use of gates with larger number of inputs, the InvMixColumns
transformation has a longer critical path compared to the MixColumns transforma-
tion, and as a result, the decryption circuit imposes a limit on the minimum clock
period of the entire encryption/decryption unit.

10 FPGA and ASIC Implementations of AES 271

10.6.2.2 Implementations with Resource Sharing

Coefficients of d(X) are more complex than coefficients of c(X); therefore, decryp-
tion is always slower than encryption [8]. Moreover, hardware structures implement-
ing InvMixColumns are always larger. To reduce hardware cost, the InvMixColumns
matrix can be decomposed in such a way that some portion of the hardware will be
re-used for MixColumns implementation. Since MixColumns and InvMixColumns
functions are defined on 32-bit words, we will call this decomposition the word-
level resource sharing. There are two possible approaches: parallel and serial In-
vMixColumns decomposition. In addition to word-level sharing, resources can be
shared on a byte level and on a bit level [14].

Parallel InvMixColumns Decomposition

Parallel InvMixColumns decomposition was first proposed by J. Wolkerstorfer in
[43]. It is based on the observation that d(X) can be expressed using c(X) in the
following way:

d(X) = c(X)+ e(X) (10.33)

where e(X) is an extension polynomial defined as

e(X) = x3X3 +(x3 + x2)X2 + x3X +(x3 + x2) (10.34)

or in hexadecimal format

e(X) = {08}X3 +{0C}X2 +{08}X +{0C} (10.35)

Equation (10.15) can thus be written in the form

⎡
⎢⎢⎣

b0

b1

b2

b3

⎤
⎥⎥⎦= ([C]+ [E]) ·

⎡
⎢⎢⎣

a0

a1

a2

a3

⎤
⎥⎥⎦ (10.36)

where

[C] =

⎡
⎢⎢⎣

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤
⎥⎥⎦ (10.37)

and

[E] =

⎡
⎢⎢⎣

0C 08 0C 08
08 0C 08 0C
0C 08 0C 08
08 0C 08 0C

⎤
⎥⎥⎦ (10.38)

272 Kris Gaj and Pawel Chodowiec

When both MixColumns and InvMixColumns have to be implemented in the
same piece of hardware, the matrix [E] from Equation (10.36) is added to the ma-
trix [C] only during decryption, and thus the matrix [C] is shared by both encryp-
tion and decryption processes. Implementation of such a structure in the hardware
can be viewed as implementation of four identical blocks A (see Figure 10.38),
each giving an output of one byte of b(X). Inputs of these blocks are permuted in
the same way as coefficients of the MixColumns (or InvMixColumns) matrix (see
Figure 10.38b).

Serial InvMixColumns Decomposition

MixColumns and InvMixColumns are derived as mutual inverses, and therefore, they
are related such that c(X) ·d(X) = 1. There exists another relationship between c(X)
and d(X): the inverse d(X) of the polynomial c(X) in the ring R is given by the
formula

d(X) = c−1(X) = c3(X) (10.39)

Equation (10.39) suggests that the InvMixColumns operation can be realized by re-
peating MixColumns three times. For hardware implementations, Equation (10.39)
can be expressed as

d(X) = c(X) · c2(X) (10.40)

Fig. 10.38 Resource sharing based on parallel InvMixColumns decomposition: (a) line multiplica-
tion block A, (b) overall structure.

10 FPGA and ASIC Implementations of AES 273

where

c2(X) = x2X2 + x2 + 1 (10.41)

Therefore, the InvMixColumns function can be implemented using the MixColumns
function and the c2(X) polynomial. The c2(X) polynomial can be expressed with
coefficients in hexadecimal format:

c2(X) = {00}X3 +{04}X2 +{00}X +{05} (10.42)

Following Equation (10.40) the Equation (10.15) can be expressed as

⎡
⎢⎢⎣

b0

b1

b2

b3

⎤
⎥⎥⎦= ([C] · [F]) ·

⎡
⎢⎢⎣

a0

a1

a2

a3

⎤
⎥⎥⎦ (10.43)

where [C] has the same meaning as in Equation (10.37) and

[F] =

⎡
⎢⎢⎣

05 00 04 00
00 05 00 04
04 00 05 00
00 04 00 05

⎤
⎥⎥⎦ (10.44)

Comparing c(X) and c2(X) we see that c2(X) is much simpler in implementation
than c(X) because two of its coefficients are equal to zero. Multiplication of matrices
represents a serial arrangement of corresponding modules with common input (see
Figure 10.39a) or common output (see Figure 10.39b). Using the same approach
as for the parallel InvMixColumns decomposition, the hardware structure with a
common input can be implemented using four instances of two types of blocks A
and B (see Figure 10.40). This structure implements multiplication of the 4-byte
input by one line of c(X) and c2(X).

Fig. 10.39 Resource sharing based on serial InvMixColumns decomposition with (a) common
input, (b) common output.

274 Kris Gaj and Pawel Chodowiec

Fig. 10.40 Serial InvMixColumns decomposition with common input: (a) line multiplication block
A, (b) line multiplication block B, (c) overall structure.

10.7 Hardware Architectures of a Single Round of AES

10.7.1 S-Box-Based Architecture

The block diagrams of the encryption/decryption unit based on S-boxes in the ba-
sic iterative architecture is shown in Figure 10.41. Only register R1 is present in
the basic iterative architecture. The best placement for this register is either before
or after the combined SubBytes and InvSubBytes transformation, where encryption
and decryption data paths converge. The critical path is located in the decryption
circuit and includes InvShiftRows (interconnects), AddRoundKey (XOR operation),
InvMixColumns, a 3-to-1 multiplexer, and InvSubBytes. In this architecture, 11, 13,
and 15 clock cycles are required in order to process one block of data for 128-, 192-,
and 256-bit keys, respectively.

In Figure 10.42 several registers have been added in order to create an archi-
tecture with two stages of inner-round pipelining. The location of these registers
has been chosen in such a way to divide the critical path into two approximately
equal paths. This way the minimum clock period should be equal to approxi-
mately half of the clock period for the basic iterative architecture, allowing process-
ing of data with approximately twice as high throughput in non-feedback cipher
modes.

10 FPGA and ASIC Implementations of AES 275

Fig. 10.41 Typical S-box-based AES basic iterative architecture.

Fig. 10.42 S-box-based AES architecture with two stages of inner-round pipelining.

276 Kris Gaj and Pawel Chodowiec

10.7.2 T-Box-Based Architecture

T-box-based algorithm for implementing AES was first proposed in [7] for a soft-
ware implementation using 32-bit microprocessors. In [13], this approach was
adapted for hardware implementations.

The T-box approach allows the computation of the entire round of AES using
only table look-ups and XOR operations. In Figure 10.43, we show the mathematical
description of AES round operations. This representation leads to the derivation of
the T-box representation of an AES encryption round, as shown in Figure 10.44.
The precomputed tables, called T-boxes, represent the combined application of the
SubBytes and MixColumns transformations. They are defined as follows:

T0[a] =

⎡
⎢⎢⎣

02 ·S[a]
S[a]
S[a]

03 ·S[a]

⎤
⎥⎥⎦ T1[a] =

⎡
⎢⎢⎣

03 ·S[a]
02 ·S[a]

S[a]
S[a]

⎤
⎥⎥⎦ (10.45)

T2[a] =

⎡
⎢⎢⎣

S[a]
03 ·S[a]
02 ·S[a]

S[a]

⎤
⎥⎥⎦ T3[a] =

⎡
⎢⎢⎣

S[a]
S[a]

03 ·S[a]
02 ·S[a]

⎤
⎥⎥⎦ (10.46)

Fig. 10.43 Mathematical description of AES round operations.

10 FPGA and ASIC Implementations of AES 277

Fig. 10.44 Mathematical derivation of the T-box representation of an AES encryption round.

Compared to the S-box tables, which are of the size of 8× 8 bits, the T-box tables
are of the size of 8×32 bits. The entire 32-bit column of an output of a single round
of AES, e j, can be computed using the following formula:

e j = T0[a0, j]⊕T1[a1, j+1]⊕T2[a2, j+2]⊕T3[a3, j+3]⊕Kj (10.47)

where T0, T1, T2, T3 are the precomputed 8× 32-bit look-up tables, and Kj is a jth
word of a round key K. All indices j + 1, j + 2, j + 3 are computed modulo 4. For
example,

e2 = T0[a0,2]⊕T1[a1,3]⊕T2[a2,0]⊕T3[a3,1]⊕K2 (10.48)

In Figure 10.45, we show in a graphical form an example of computing the value of
the column e2 of the encryption round output using T-box approach.

Since MixColumns operation is not performed in the last round of encryption, the
last round needs to be treated in a special way. In this round, S-boxes need to be used
instead of T-boxes. Fortunately, no additional memory space is needed to implement
S-boxes, as 1-byte outputs of the S-box transformation can be easily extracted from
the 4-byte outputs of the T-box transformation corresponding to the same 1-byte
input. For example,

S[a] = byte(1,T0[a]) = byte(2,T1[a]) = byte(3,T2[a]) = byte(0,T3[a]) (10.49)

where byte(n,X) represents the nth byte of a variable X .
In Figure 10.46, a block diagram of the encryption function based on the use of

T-box look-up tables is shown. The encryption input consists of 16 bytes, arranged
as follows:

278 Kris Gaj and Pawel Chodowiec

Fig. 10.45 An example of computing the value of the column e2 of the encryption round output
using T-box approach.

Fig. 10.46 Block diagram of the T-box-based AES encryption round.

a0,0,a1,0,a2,0,a3,0,a0,1,a1,1,a2,1,a3,1,a0,2,a1,2,a2,2,a3,2,a0,3,a1,3,a2,3,a3,3

(10.50)

Each of these bytes is an input to the appropriate look-up table Ti[ai, j], with an index
the same as a row index of the byte ai, j. Sixteen such look-up tables working in
parallel form a functional block called T tables. Encryption XOR Network is a block

10 FPGA and ASIC Implementations of AES 279

that based on 16 T-box tables outputs Ti[ai, j] (j = 0...3, i = 0...3) and four words
of the round key K, Kj (j = 0...3) computes four 32-bit columns of the encryption
round output e j. The exact dependence between inputs and outputs of this block
is given by Equation 10.47. Finally, the Multiplication Elimination extracts values
of the S-box outputs S[ai, j] based on the values of the T-box outputs Ti[ai, j]. The
operation of this block is given by Equation 10.49, and the block itself does not
involve any logic, just routing.

A similar derivation can be performed in order to represent decryption using a
separate set of inverse T-boxes, T0

−1, T1
−1, T2

−1, T3
−1. These inverse T-box tables

are defined as follows:

T−1
0 [a] =

⎡
⎢⎢⎣

0E ·S[a]
09 ·S[a]
0D ·S[a]
0B ·S[a]

⎤
⎥⎥⎦ T−1

1 [a] =

⎡
⎢⎢⎣

0B ·S[a]
0E ·S[a]
09 ·S[a]
0D ·S[a]

⎤
⎥⎥⎦ (10.51)

T−1
2 [a] =

⎡
⎢⎢⎣

0D ·S[a]
0B ·S[a]
0E ·S[a]
09 ·S[a]

⎤
⎥⎥⎦ T−1

3 [a] =

⎡
⎢⎢⎣

09 ·S[a]
0D ·S[a]
0B ·S[a]
0E ·S[a]

⎤
⎥⎥⎦ (10.52)

The equation describing an output of the decryption round is given below:

d j = T−1
0 [a0, j]⊕T−1

1 [a1, j+3]⊕T−1
2 [a2, j+2]⊕T−1

3 [a3, j+1]⊕ IMC(Kj) (10.53)

where T−1
0 , T−1

1 , T−1
2 , T−1

3 are the precomputed 8×32-bit look-up tables, Kj is a jth
word of a round key K, and IMC is the InvMixColumns transformation. All indices
j + 3, j + 2, j + 1 are computed modulo 4.

In the last round of decryption the InvMixColumns operation is not executed. As
a result, the outputs of the InvSubBytes transformation, S−1[a], must be computed.
In this case, however, the computation of S−1[a] as a function of Ti

−1[a] requires
some extra logic that implements multiplication by a constant in GF(28) [13]. For
example, given the value of T−1

0 [a], S−1[a] can be computed as follows:

S−1[a] = 0E−1 ·byte(0,T−1
0 [a]) = 09−1 ·byte(1,T−1

0 [a])

= 0D−1 ·byte(2,T−1
0 [a]) = 0B−1 ·byte(3,T−1

0 [a])
= E5 ·byte(0,T0[a]) = 4F ·byte(1,T0[a])
= E1 ·byte(2,T0[a]) = C0 ·byte(3,T0[a]) (10.54)

where byte(n,X) represents the nth byte of a variable X . Based on the above equa-
tions, each bit of S−1[a] can be computed using four different equations, each
giving exactly the same value. As a result, for each bit, we can choose an equa-
tion with the smallest number of terms. If we do that, we can express the bits of
S−1[a] = (s−1

7 s−1
6 s−1

5 s−1
4 s−1

3 s−1
2 s−1

1 s−1
0) as follows:

280 Kris Gaj and Pawel Chodowiec

x = byte(0,T−1
0 [a])

y = byte(1,T−1
0 [a])

z = byte(3,T−1
0 [a]) (10.55)

s−1
7 = y7 ⊕ y4 ⊕ y1

s−1
6 = y6 ⊕ y3 ⊕ y0

s−1
5 = y5 ⊕ y2

s−1
4 = y4 ⊕ y1

s−1
3 = z3 ⊕ z2 ⊕ z1

s−1
2 = x6 ⊕ x5 ⊕ x0

s−1
1 = x7 ⊕ x5 ⊕ x4

s−1
0 = y5 ⊕ y2 ⊕ y0 (10.56)

For the computations using outputs from tables T−1
1 , T−1

2 , and T−1
3 , the input

word must be rotated by one, two, and three byte positions, respectively, before
applying the same transformation. This rotation is equivalent to defining variables
x, y, and z as follows:

x = byte(1,T−1
1 [a]) = byte(2,T−1

2 [a]) = byte(3,T−1
3 [a])

y = byte(2,T−1
1 [a]) = byte(3,T−1

2 [a]) = byte(0,T−1
3 [a])

z = byte(0,T−1
1 [a]) = byte(1,T−1

2 [a]) = byte(2,T−1
3 [a]) (10.57)

and then applying transformation given by Equation 10.56. The entire Decryp-
tion Round Circuit is shown in Figure 10.47. The functional block T−1 tables
consists of sixteen 8 × 32-bit look-up tables working in parallel. The operation
of the Decryption XOR Network is given by Equation 10.53 and the operation
of the Inverse Multiplication Elimination is given by Equation 10.55, 10.57, and
10.56.

In Figure 10.48, a circuit capable of performing both encryption and decryption
using T-box approach is shown. The exact location of the register may depend on
specific technology. For example, in Xilinx FPGAs, T tables are likely to be im-
plemented using Block RAMs, which have synchronous outputs. Thus, the register
would need to be placed at the output of the T tables and T−1 tables blocks, in-
side of the encryption and decryption rounds, shown in Figures 10.46 and 10.47,
respectively.

Independently of the exact location of the register, the critical path is likely to
be of the same length for the encryption and decryption circuits and includes two
functional blocks: T/T−1 tables and Encryption/Decryption XOR Network.

Compared to the S-box-based implementation, the T-box-based implementation
requires four times larger memory space, but fewer logic resources. In the T-box
implementation the critical path is longer for encryption, but shorter for decryption,

10 FPGA and ASIC Implementations of AES 281

Fig. 10.47 Block diagram of the T-box-based AES decryption round.

Fig. 10.48 Block diagram of the T-box-based AES encryption/decryption circuit.

compared to the S-box-based implementation. For example, in [13], the T-box-based
approach was shown to produce a 8% speed-up for decryption, a 22% slowdown for
encryption, and a 22% speed-up for encryption/decryption (a single-clock circuit ca-
pable of performing both operations) vs. equivalent implementations following the

282 Kris Gaj and Pawel Chodowiec

S-box approach. All compared implementations targeted Altera FPGAs. The exact
ratios of the costs and speeds for both approaches depend on the choice of a specific
technology (FPGA vs. ASIC, specific FPGA family, specific ASIC standard-cell
library, etc.) used for the implementation.

10.7.3 Compact Architectures

The AES round shown in Figure 10.49 reveals a great deal of parallelism. The data
bytes are ordered from the most significant (byte 0) to the least significant (byte F)
assuming big-endian representation. The round is composed of sixteen 8-bit S-boxes
computing SubBytes and four 32-bit MixColumns operations, working independent
of each other. The only operation that spans throughout the entire 128-bit block is
ShiftRows.

It is possible to implement only four SubBytes and one MixColumns in order to
compact the AES implementation. Ideally, the resources should be cut by four, while
execution of one round should take four clock cycles. This approach would result in
approximately four times lower performance than for the basic architecture.

Cutting the resources by 75% may not appear easy. The folded round, as we call
the modified round, still must transform 128 bits, and storage for all 128 bits of the
data block must exist. Another complication is related to the implementation of the
ShiftRows operation. The data bytes processed in the AES round cannot return to
the same positions in the block register because it would not execute the ShiftRows
operation. On the other hand, those same bytes cannot be placed into locations in-
dicated by ShiftRows because those locations are occupied by other bytes that have
not yet been processed. Therefore, additional bits of intermediate results must be
stored, and more logic resources are needed.

One of the possible architectures for a folded implementation is shown in
Figure 10.50a. This architecture requires one 128-bit register, one 96-bit regis-
ter, and one 32-bit-wide 4-to-1 multiplexer on top of the main cipher operations.
The multiplexer becomes even bigger when both ShiftRows and InvShiftRows are

ShiftRows

AddRoundKey

SubBytes

MixColumns

0 1 2 3 4 5 6 7 8 9 A B C D E F Data Bytes

Fig. 10.49 Operations within AES encryption round.

10 FPGA and ASIC Implementations of AES 283

implemented using same logic resources. The execution of one round takes four
clock cycles. The authors believe that this, or very similar architecture, was im-
plemented by A. Satoh et al. [33]. Their results show that the 4-cycle round takes
50% of the resources required by the 1-cycle round and yields four times lower
throughput.

Another possible architecture is shown in Figure 10.50b. The 96-bit register
is implemented as three 32-bit registers inserted into round operations creating a
pipeline. In the case of FPGAs, those 32-bit registers will most likely be placed in
the same Slices as logic operations yielding better resource utilization. The critical
path is also shortened which permits the execution at a higher clock rate; however,
the execution of the entire round requires seven, instead of four, clock cycles. The
authors believe that this architecture was implemented by S. McMillan et al. [27],
but no sufficient details are provided in this chapter. S. McMillan et al. reported only
slight difference of 48 Slices (16%), and large difference of 24 Block RAMs (75%),
between one-round unrolled and folded architecture.

10.7.3.1 Folded Register

The two folded architectures described above are very straightforward and resulted
in small logic savings. In order to create a folded architecture with better parameters,
we need to explore fine details of FPGA devices. Let us arrange data bytes into rows
as shown in Figure 10.51. This data arrangement is consistent with a state introduced
in [8]. The following exercise can now be executed in steps:

1. Read input bytes: 0, 5, A, F; execute SubBytes, MixColumns, and AddRoundKey
on them; write results to the output at locations 0, 1, 2, 3. This step is highlighted
in Figure 10.51.

2. Repeat above operations for input bytes 4, 9, E, 3; write results at output locations
4, 5, 6, 7.

3. Repeat above operations for bytes 8, D, 2, 7; write results at locations 8, 9, A, B.
4. Repeat above operations for bytes C, 1, 6, B; write results at locations C, D, E,

F. Output now becomes input for the next step.

SubBytes

MixColumns +
AddRoundKey

32 SubBytes

MixColumns +
AddRoundKey

32

ShiftRows
ShiftRows

a) b)

Fig. 10.50 Folded architectures (a) by A. Satoh et al. [33]; (b) by S. McMillan et al. [27].

284 Kris Gaj and Pawel Chodowiec

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

In
pu

t m
em

or
y

Add
Rou

nd
Key

Sub
Byte

s

M
ixC

olu
m

ns

Out
pu

t m
em

or
y

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Fig. 10.51 Data arrangement in the folded architecture. Data bytes involved in the first step of
calculation are highlighted.

In those four steps the entire AES round was executed including ShiftRows op-
eration. At each step only one byte was read from each input row, and one byte
was written to each output row. A similar exercise with identical conclusions can be
executed for decryption transformation. Each row can be viewed as an addressable
8-bit-wide memory. The correct execution of ShiftRows and InvShiftRows is now
resolved to the proper addressing of each of the memories at the consecutive clock
cycles. At the fourth clock cycle output memories become input memories and vice
versa.

10.7.3.2 FPGA Dual-Port RAM-Based Implementation

Each CLB Slice in Xilinx FPGAs contains two look-up tables (LUT), which are the
primary resources for logic implementation. Typically LUTs are configured as small
16×1 ROM tables implementing logic functions of up to four inputs; however, other
configurations are also possible. Two LUTs within the same Slice can implement a
16× 1 dual-port RAM. An 8-bit-wide dual-port RAM can be implemented using
eight CLB Slices. This memory can be divided into two banks, each addressed by
a different port. One port is used for reading data from the memory, while the other
one writes results back to the same memory. The switching between banks can be
achieved by flipping one address bit in both ports every fourth clock cycle.

The dual-port RAM-based solution has major advantages over solutions pre-
sented in Figure 10.50:

• The logic resources required for storing intermediate results are far smaller.
• The multiplexer used before for ShiftRows and InvShiftRows is no longer needed.

10 FPGA and ASIC Implementations of AES 285

• The complicated routing resulting from implementation of ShiftRows and In-
vShiftRows is avoided, yielding better performance.

10.7.3.3 FPGA Shift Register-Based Implementation

A better solution may result from the following observation: all bytes from the out-
put of AddRoundKey are written into consecutive locations in the output memory
in consecutive clock cycles. Therefore, we could use a simple shift register to shift
computed data in without generating any addresses. Fortunately, LUTs can also be
configured as 16-bit shift registers with variable taps, as shown in Figure 10.52.
Four Slices can implement an 8-bit-wide, 16-bit-long shift register. The input of the
shift register is used for shifting results in while the output, selected dynamically by
changing tap address, is used for reading data out. This solution encompasses all of
the advantages of the dual-port RAM-based solution and requires less than half of
the logic resources than the dual-port RAM.

10.7.3.4 Encryption/Decryption Unit

The optimized circuit is capable of performing encryption and decryption. The
AES encryption and decryption rounds substantially differ from the point of view
of hardware implementations. One of the inconveniences arises from the fact that
the AddRoundKey is executed after MixColumns in the case of encryption and be-
fore InvMixColumns in the case of decryption. Therefore, a switching logic is re-
quired to select appropriate data paths, which affect the performance, as shown in
Figure 10.53.

4

input

clock
address

output

LUT

D Q D Q D Q D Q
1

1

Fig. 10.52 Look-up table (LUT) configured as a shift register.

d

2(x)

Input

Folded
register

SubBytes c(x)

Output
Subkey Subkeyforwarding

Fig. 10.53 Implementation of the encryption/decryption unit.

286 Kris Gaj and Pawel Chodowiec

10.8 Implementation of Key Scheduling

An AES key scheduling unit can either generate round keys on the fly or it can store
them in an internal key memory during the key setup phase and then read them from
this memory whenever they are required by the encryption/decryption unit.

An AES key scheduling unit can support just one external key size, e.g., 128-bit
key, or it can support all three key sizes described in the standard, i.e., 128-, 192-,
and 256-bit keys. In the latter case, the unit is referred to as a 3-in-1 design.

Both kinds of units can be constructed in such a way that they produce 32 bits
(one word = 1

4 th of a round key), 64 bits (two words = 1
2 of a round key), or 128 bits

(the entire round key) per clock cycle.
In the basic iterative architecture, only the last of these three designs allows

the generation of round keys on the fly. The remaining designs require the key
setup phase, during which the round keys are computed and stored in internal
memory.

As an example, in Figure 10.54, we present a 3-in-1 key scheduling unit that
produces 64-bits (a half of a round key) per clock cycle. The operation of the circuit
is described by formulas given in Figure 10.54b that follow the pseudocode from
Figure 10.16. The unit is capable of computing two 32-bit words of the key material
(ki and ki+1) per one clock cycle, independently of the size of the main key.

Since each round key is 128-bit long (the size of the input block), two clock
cycles are required to calculate each round key. Therefore, this key scheduling unit is
not designed for computing subkeys on the fly. Instead, all round keys corresponding
to the new main key are computed in advance and stored in the key memory. This
computation can be performed in parallel with encrypting data using previous main
key, therefore key scheduling does not impose any performance penalty.

The implementation of the key schedule suitable for a more compact encryp-
tion/decryption architecture supporting only 128-bit AES keys is shown in
Figure 10.55. This architecture computes 32 bits of the key material per clock cycle,
therefore, full key schedule execution for a 128-bit key takes 44 clock cycles. The
computed round keys are stored in RAM.

The key schedule uses SubBytes operation that is identical to the one used
in the encryption circuit. Since key schedule does not have to work simultane-
ously with the encryption unit, it is possible to time share S-boxes between both
circuits.

10.9 Optimum Choice of a Hardware Architecture for AES

The choice of an optimum hardware architecture for AES depends on the following
major factors:

1. Optimization criteria, such as minimum area, minimum power consumption,
maximum throughput, maximum throughput to area ratio, etc.

10 FPGA and ASIC Implementations of AES 287

Fig. 10.54 The 3-in-1 key scheduling unit of AES: (a) main circuit, (b) formulas describing the
operation of the circuit.

2. Support for feedback modes of operation, such as CBC and CFB, or non-
feedback modes of operation, such as ECB and CTR modes.

3. Support for AES encryption only (e.g., in the block cipher modes of operation
that require encryption only, such as CTR and CFB modes) or encryption and
decryption (e.g., in the modes that require both operations, such as ECB and
CBC).

4. Semiconductor technology of choice, such as ASIC or FPGA.
5. Resistance to side channel attacks, such as differential power analysis, timing

analysis, etc.

In case area and/or power consumption are primary concerns, compact archi-
tectures described in Section 10.7.3 or the basic iterative architecture, described in
Section 10.5.2, should be considered. This choice is independent of the require-
ments for feedback vs. non-feedback cipher modes and encryption only vs. en-
cryption/decryption. S-box-based architectures will be preferred in this case, and

288 Kris Gaj and Pawel Chodowiec

rot

SubBytes

Rcon 3-deep
shift

register

input output

Fig. 10.55 Implementation of the key schedule.

S-boxes may be implemented using logic only (especially in ASIC implementa-
tions). In case both encryption and decryption are required, the resource sharing
between MixColumns and InvMixColumns, based on the parallel or serial InvMix-
Columns, decomposition should be considered, as described in Section 10.6.2.

In case the maximum throughput is of primary concern, the choice of the hard-
ware architecture depends on the operating modes that need to be supported.

As shown in Figure 10.20, the basic iterative architecture of AES assures the
maximum throughput to area ratio for feedback operating modes such as CBC and
CFB. It also guarantees near-optimum throughput and near-optimum area for these
operating modes. Therefore, it is very likely to be commonly used in many prac-
tical implementations of AES targeting feedback cipher modes. In case only en-
cryption needs to be supported (in the operating modes such as CFB), S-box-based
architecture, described in Section 10.7.1, is preferred. In case both encryption and
decryption need to be supported (e.g., in the CBC mode) the T-box-based architec-
ture, described in Section 10.7.2, assures the maximum overall clock speed and data
throughput.

In the non-feedback cipher modes of operation, such as counter mode, the ar-
chitecture with the mixed inner- and outer-round pipelining, described in Section
10.5.4, offers the maximum circuit throughput. The S-box-based architecture with
S-boxes implemented using logic only (see Sections 10.7.1 and 10.6.1) leads to the
highest clock frequency. The throughput in the full mixed inner- and outer-round
pipelining is given by

T hroughput f ull mixed =
block size

TCLKinner round (kopt)
(10.58)

where TCLKinner round (kopt) is the delay of a single pipeline stage for the optimum num-
ber of registers introduced inside of a single round. In FPGA implementations, this

10 FPGA and ASIC Implementations of AES 289

delay is determined by the delay of a single CLB Slice and delays of interconnects
between CLBs. As a result, the throughput does not depend on the complexity of a
cipher round and tend to be similar for a large number of block ciphers, including
AES. Therefore, the full mixed inner- and outer-round pipelining should be the ar-
chitecture of choice for the implementations of AES targeting the highest possible
throughput.

The choice of a hardware architecture depending on the resistance to side channel
attacks is beyond the scope of this chapter. However, it should be noted that if the
countermeasures against the side channel attacks are introduced at the circuit or
logic levels, as proposed in multiple papers, such as [37–40], then all hardware
architectures presented in this chapter might be equally secure.

10.10 Exercises

1. Using your knowledge about the internal structure of the SubBytes and InvSub-
Bytes transformations, verify the correctness of the following entries of the AES
S-box and AES Inverse S-box:

a. S-box[89] = A7
b. InverseS-box[89] = F2

2. Compute an output of the MixColumns transformation for the following sequence
of input bytes “12 45 78 AB”. Apply the InvMixColumns transformation to the
obtained result to verify your calculations. Change the first byte of the input from
“12” to “02”, perform the MixColumns transformation again for the new input,
and determine how many bits have changed in the output.

3. Compute the first two round keys of AES corresponding to the 128-bit key of all
ones.

4. Draw a block diagram of the modified basic iterative architecture capable of en-
crypting messages in the counter mode using the minimum number of clock cy-
cles. Compute the total time necessary to encrypt a message of the length of 1
MB using hardware implementation of Rijndael with a 128-bit input block and
a 256-bit key, working in the counter mode with the size of a message block k
= 8, assuming the modified basic iterative architecture operating with the clock
frequency of 25 MHz.

5. Compute the total time necessary to encrypt a message of the length of 1 kB
using hardware implementation of Rijndael with 128-bit input block and 192-
bit key, working in the CFB mode with the size of a message block k = 32,
assuming the basic iterative architecture operating with the clock frequency
of 30 MHz.

6. Derive a formula for the contents of the look-up tables T0
−1, T1

−1, T2
−1, T3

−1

used for the decryption in the T-box-based implementation of AES. Compute the
contents of the following components of these tables: T0

−1[1], T1
−1[2], T3

−1[254].

290 Kris Gaj and Pawel Chodowiec

10.11 Projects

1. Develop and compare three different implementations of the SubBytes InvSub-
Bytes operations using look-up tables, look-up tables and logic, and logic only.

• compare the minimum clock period and use of logic resources (CLB Slices,
Block RAMs, etc.) among the three designs

• pipeline each design in order to obtain
– minimum possible clock period and
– maximum throughput to area ratio
compare the three designs in terms of these parameters.

2. Develop and compare three different implementations of the MixColumns In-
vMixColumns operations using

a. basic implementation
b. compact implementation with parallel InvMixColumns decomposition
c. compact implementation with serial InvMixColumns decomposition

Compare the three designs in terms of the total resource usage, minimum latency
for the MixColumns operation, and minimum latency for the InvMixColumns op-
eration. Determine how suitable is each of the three designs for a hardware ar-
chitecture with deep inner-round pipelining.

3. Develop and compare two different high-level implementations of AES in the
basic iterative architecture

a. based on S-boxes
b. based on T-boxes

Compare both implementations in terms of the maximum throughput, area, and
throughput to area ratio.

4. Develop and compare three different implementations of the AES key scheduling
unit with the number of output bits per clock cycle equal to

a. 32 bits
b. 64 bits
c. 128 bits

Compare all three implementations in terms of the minimum clock period and
area.

5. Develop and compare three different implementations of the compact architec-
ture of AES with the datapath width equal to

a. 8 bits
b. 32 bits
c. 64 bits
d. 128 bits (basic iterative architecture)

Compare all four implementations in terms of the minimum clock period and
area.

10 FPGA and ASIC Implementations of AES 291

References

1. FIPS 197: Advanced Encryption Standard. National Institute of Stan-
dards and Technology, 2001, available at http://csrc.nist.gov/publications/
fips/fips197/fips-197.pdf

2. Amphion. Documentation of cryptographic cores, available at http://www.
amphion.com

3. D. Canright. A very compact Rijndael S-box. Technical Report NPS-MA-05-
001, 2005.

4. D. Canright. A very compact S-box for AES. In J. R. Rao and B. Sunar,
editors, Proc. International Workshop on Cryptographic Hardware and
Embedded Systems (CHES’05), LNCS, vol. 3659, pp. 441–455. Springer-
Verlag, 2005.

5. P. Chodowiec. Comparison of the hardware performance of the AES candi-
dates using reconfigurable hardware. Master’s thesis, George Mason Univer-
sity, Mar. 2002.

6. P. Chodowiec and K. Gaj. Very compact FPGA implementation of the AES
algorithm. In Ç. K. Koç and C. Paar, editors, Proc. International Work-
shop on Cryptographic Hardware and Embedded Systems (CHES’03), LNCS
vol. 2779, pp. 319–333. Springer-Verlag, 2003.

7. J. Daemen and V. Rijmen. AES proposal: Rijndael. Technical Report, 1999,
available at http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf

8. J. Daemen and V. Rijmen. The design of Rijndael: AES - The Advanced En-
cryption Standard. Number ISBN 3-540-42580-2. Springer-Verlag, 2002.

9. A. Dandalis, V. K. Prasanna, and J. D. Rolim. A comparative study of per-
formance of AES final candidates using FPGAs. In Ç. K. Koç and C. Paar,
editors, Proc. Cryptographic Hardware and Embedded Systems Workshop
(CHES’00), LNCS, vol. 1965 pp. 125–140. Springer-Verlag, 2000.

10. A. J. Elbirt, W. Yip, B. Chetwynd, and C. Paar. An FPGA implementation and
performance evaluation of the AES block cipher candidate algorithm finalists.
In Proc. Third Advanced Encryption Standard Candidate Conference (AES3),
pp. 13–27. New York, USA, Apr. 13–14, 2000.

11. A. J. Elbirt, W. Yip, B. Chetwynd, and C. Paar. An FPGA-based performance
evaluation of the AES block cipher candidate algorithm finalists. IEEE Trans-
actions on VLSI Systems, 9(4):545–557, 2001.

12. V. Fischer. Realization of the round 2 candidates using Altera FPGA. Com-
ments for The Third Advanced Encryption Standard Candidate Conference
(AES3), New York, USA Apr. 13–14, 2000.

13. V. Fischer and M. Drutarovský. Two methods of Rijndael implementation
in reconfigurable hardware. In Ç. K. Koç and C. Paar, editors, Proc. Cryp-
tographic Hardware and Embedded Systems (CHES’01), LNCS vol. 2162,
pp. 81–96. Springer-Verlag, 2001.

14. V. Fischer, M. Drutarovský, P. Chodowiec, and F. Gramain. InvMixColumn
decomposition and multilevel resource sharing in Rijndael implementation.
IEEE Transactions on VLSI Systems, 13(8):989–992, 2005.

292 Kris Gaj and Pawel Chodowiec

15. V. Fischer and F. Gramain. Resource sharing in a Rijndael implementation
based on a new MixColumn and InvMixColumn relation. unpublished.

16. K. Gaj and P. Chodowiec. Hardware performance of the AES finalists-survey
and analysis results. Technical Report, George Mason University, 2000, avail-
able at http://ece.gmu.edu/crypto/AES survey.pdf

17. K. Gaj and P. Chodowiec. Comparison of the hardware performance of the
AES candidates using reconfigurable hardware. In Proc. Third Advanced En-
cryption Standard Candidate Conference (AES3), pp. 40–54. New York, USA,
Apr. 13–14, 2000.

18. K. Gaj and P. Chodowiec. Fast implementation and fair comparison of the final
candidates for Advanced Encryption Standard using Field Programmable Gate
Arrays. In Proc. The Cryptographer’s Track at the RSA Security Conference
(CT-RSA’01), LNCS vol. 2020, pp. 84–99. Springer-Verlag, 2001.

19. T. Good and M. Benaissa. AES FPGA from the fastest to the smallest. In J. R.
Rao and B. Sunar, editors, Proc. International Workshop on Cryptographic
Hardware and Embedded Systems (CHES’05), LNCS, vol. 3659, pp. 427–440.
Springer-Verlag, 2005.

20. Helion. Documentation of cryptographic cores. Available at
http://www.heliontech.com

21. T. Ichikawa, T. Kasuya, and M. Matsui. Hardware evaluation of the AES
finalists. In Proc. Third Advanced Encryption Standard Candidate Conference
(AES3), pp. 279–285. New York, USA, Apr. 13–14, 2000.

22. K. U. Järvinen, M. T. Tommiska, and J. O. Skyttä. A fully pipelined mem-
oryless 17.8 Gbps AES-128 encryptor. In Proc. ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA 2003), pp. 207–215.
Monterey, CA, Feb. 23–25, 2003.

23. H. Kuo and I. Verbauwhede. Architectural optimization for a 1.82Gbits/sec
VLSI implementation of the AES Rijndael algorithm. In Ç. K. Koç and
C. Paar, editors, Proc. Cryptographic Hardware and Embedded Systems
(CHES’01), LNCS, vol. 2162, pp. 51–64. Springer-Verlag, 2001.

24. I. Kuon and J. Rose. Measuring the gap between FPGAs and ASICs. IEEE
Trans. Computer-Aided Design, 62(2), Feb. 2007.

25. A. Lutz, J. Treichler, F. Gürkaynak, H. Kaeslin, G. Basler, A. Erni, S. Reich-
muth, P. Rommens, S. Oetiker, and W. Fichtner. 2Gbit/s hardware realizations
of RIJNDAEL and SERPENT: A comparative analysis. In Ç. K. Koç and
C. Paar, editors, Proc. International Workshop on Cryptographic Hardware
and Embedded Systems (CHES’02), LNCS, vol. 2523, pp. 144–158. Springer-
Verlag, 2002.

26. U. Mayer, C. Oelsner, and T. Köhler. Evaluation of different Rijndael imple-
mentations for high end servers. In Proc. IEEE International Symposium on
Circuits and Systems (ISCAS 2002), vol. 2, pp. 348–351. Scottsdale, Arizona,
USA 2002.

27. S. McMillan and C. Patterson. JBits implementations of the Advanced En-
cryption Standard (Rijndael). In Proc. Field-Programmable Logic and Appli-
cations (FPL’01), LNCS, vol. 2147, pp. 162–171. Springer-Verlag, 2001.

http://ece.gmu.edu/crypto/AES_survey.pdf
http://www.heliontech.com

10 FPGA and ASIC Implementations of AES 293

28. N. Mentens, L. Batina, B. Preneel, and I. Verbauwhede. A systematic evalu-
ation of compact hardware implementations for the Rijndael S-box. In J. R.
Rao and B. Sunar, editors, Proc. (CT-RSA’05), LNCS, vol. 3376, pp. 323–333.
Springer-Verlag, 2005.

29. S. Morioka and A. Satoh. A 10 Gbps full-AES crypto design with a twisted-
BDD S-Box architecture. In Proc. IEEE International Conference on Com-
puter Design: VLSI in Computers and Processors, pp. 98–103. Freiburg,
Germany, 2002.

30. S. Morioka and A. Satoh. An optimized S-Box circuit architecture for low
power AES design. In Ç. K. Koç and C. Paar, editors, Proc. International
Workshop on Cryptographic Hardware and Embedded Systems (CHES’02),
LNCS, vol. 2523, pp. 172–186. Springer-Verlag, 2002.

31. A. Rudra, P. K. Dubey, C. S. Jutla, V. Kumar, J. Rao, and P. Rohatgi. Effi-
cient Rijndael encryption implementation with composite field arithmetic. In
Ç. K. Koç and C. Paar, editors, Proc. Cryptographic Hardware and Embedded
Systems (CHES’01), LNCS, vol. 2162, pp. 171–184. Springer-Verlag, 2001.

32. G. Saggese, A. Mazzeo, N. Mazzocca, and A. Strollo. An FPGA-based
performance analysis of the unrolling, tiling, and pipelining of the AES al-
gorithm. In Proc. International Conference on Field-Programmable Logic
and Applications (FPL’03), LNCS, vol. 2778, pp. 292–302. Springer-Verlag,
2003.

33. A. Satoh, S. Morioka, K. Takano, and S. Munetoh. A compact Rijndael hard-
ware architecture with S-Box optimization. In Proc. Theory and Application
of Cryptology and Information Security (ASIACRYPT’01), LNCS, vol. 2248,
pp. 239–254. Springer-Verlag, 2001.

34. P. R. Schaumont, H. Kuo, and I. M. Verbauwhede. Unlocking the design
secrets of a 2.29 Gb/s Rijndael processor. In Proc. ACM Conference on De-
sign Automation (DAC 2002), pages 634–639. New Orleans, Louisiana, USA,
2002.

35. N. Sklavos and O. Koufopavlou. Architectures and VLSI implementations
of the AES-Proposal Rijndael. IEEE Transactions on Computers, 51(12):
1454–1459, 2002.

36. F.-X. Standaert, G. Rouvroy, J.-J. Quisquater, and J.-D. Legat. Efficient imple-
mentation of Rijndael encryption in reconfigurable hardware: improvements
and design tradeoffs. In Ç. K. Koç and C. Paar, editors, Proc. International
Workshop on Cryptographic Hardware and Embedded Systems (CHES’03),
LNCS, vol. 2779, pp. 334–350. Springer-Verlag, 2003.

37. K. Tiri, D. Hwang, A. Hodjat, B. Lai, S. Yang, P. Schaumont, and I. Ver-
bauwhede. Prototype IC with WDDL and differential routing - DPA resistance
assessment. In J. R. Rao and B. Sunar, editors, Cryptographic Hardware and
Embedded Systems – CHES 2005, LNCS, vol. 3659, pp. 354–365. Springer-
Verlag, 2005.

38. K. Tiri and I. Verbauwhede. Securing encryption algorithms against dpa
at the logic level: next generation smart card technology. In Ç. K. Koç,
C. Paar, and C. D. Walter, editors, Cryptographic Hardware and Embedded

294 Kris Gaj and Pawel Chodowiec

Systems - CHES 2003, LNCS, vol. 2779, pp. 125–136, Cologne, Germany,
2003. Springer-Verlag.

39. K. Tiri and I. Verbauwhede. A logic level design methodology for a secure
DPA resistant ASIC or FPGA implementation. In Proc. of Design Automation
and Test in Europe (DATE 2004), pp. 246–251. Paris, France, 2004.

40. K. Tiri and I. Verbauwhede. A VLSI design flow for secure side-channel attack
resistant ICs. In Proc. of Design Automation and Test in Europe (DATE 2005),
pp. 58–63, 2005.

41. I. Verbauwhede, P. Schaumont, and H. Kuo. Design and performance test-
ing of a 2.29-GB/s Rijndael processor. IEEE Journal of Solid-State Circuits,
38(3):569–572, 2003.

42. B. Weeks, M. Bean, T. Rozylowicz, and C. Ficke. Hardware performance sim-
ulations of Round 2 Advanced Encryption Standard algorithms. In Proc. Third
Advanced Encryption Standard Candidate Conference (AES3). New York,
USA, Apr. 13–14, 2000.

43. J. Wolkerstorfer. An ASIC implementation of the AES MixColumn operation.
In Proc. Austrochip 2001, pp. 129–132. Vienna, Austria, Oct. 12, 2001.

44. J. Wolkerstorfer, E. Oswald, and M. Lamberger. An ASIC implementation of
the AES SBoxes. In Proc. The Cryptographer’s Track at the RSA Security
Conference (CT-RSA 2002), LNCS, vol. 2271, pp. 67–78. Springer-Verlag,
2002.

45. A. C. Zigiotto and R. d’Amore. A low-cost FPGA implementation of the
Advanced Encryption Standard algorithm. In Proc. Symposium on Integrated
Circuits and Systems Design (SBCCI’02), pp. 191–196. Porto Alegre, Brazil,
2002.

	FPGA and ASIC Implementations of AES
	Kris Gaj and Pawel Chodowiec
	Introduction
	AES Cipher Description
	Basic Features
	Round Operations
	Iterative Structure
	Key Scheduling

	FPGA and ASIC Technologies
	Parameters of Hardware Implementations
	Throughput and Latency
	Area

	Hardware Architectures of Symmetric Block Ciphers
	Hardware Architectures vs. Block Cipher Modes of Operation
	Basic Iterative Architecture
	Loop Unrolling
	Pipelining
	Limits on the Maximum Clock Frequency of Pipelined Architectures
	Compact Architectures with Resource Sharing

	Implementation of Basic Operations of AES in Hardware
	SubBytes and InvSubBytes
	MixColumns and InvMixColumns

	Hardware Architectures of a Single Round of AES
	S-Box-Based Architecture
	T-Box-Based Architecture
	Compact Architectures

	Implementation of Key Scheduling
	Optimum Choice of a Hardware Architecture for AES
	Exercises
	Projects
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

