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–	 Even if implementations are clearly not optimized towards efficiency (such as the ETHZ implementations in this 
work), the results can reveal the range of the possible implementations of algorithms in hardware when used in 
comparison with more systematic implementations. 

–	 Results from an actual ASIC will always be the ultimate proof of implementation. However any such implemen
tation will have various compromises that will result in some performance loss which can not easily be quantified. 
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A Individual Results 

The design process that we have employed in this project consists of several distinct steps as explained in section 4. 
Algorithms were first optimized individually (steps A and B). The results therefore evolved throughout this process 
and in this section we would like to present the progression of the individual results. This is relevant because any single 
performance result is likely to have a rather substantial error associated with it. The solution space with results from 
multiple design steps as we have presented here could give a slightly more refined idea about where the actual limits 
of individual algorithms may lie. 

For each algorithm we show two graphs, one for GMU and one for ETHZ implementations. These graphs have 
been constructed the same way as Figure 3. To obtain these graphs we followed these steps: 

–	 In step A we synthesized the circuits with different maximum clock period constraints, and examined the perfor
mance for each resulting netlist. For GMU implementations we selected the implementation with the highest TpA 
figure, while for ETHZ implementations the main goal was to choose an implementation with a Throughput of at 
least 2.488 Gbit/s. The point Default Wireload (A), in all graphs represents this chosen point. 
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(crosses). For both implementations, the circuit that was used in the ASIC (step C denoted by the circle) is about the 
same size as the netlist obtained through the synthesis step B, it is only slightly slower. 

Around one third of the area in SHA-2 is spent for the registers holding the state (see Table 2. This is a pretty large 
proportion and limits the options for possible optimizations in hardware, as the number of FFs (barring implementation 
mistakes) can not be reduced further. 

A.2 BLAKE 
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Fig. 5. AT plot for BLAKE implementations: GMU (left) and ETHZ (right). Note that the X axis is scaled differently. 

The core of the BLAKE algorithm is the G function, a 128-bit combinational function that is evaluated 8 times 
per round. The basic architectural choice for BLAKE is the number of G-functions that will be evaluated in parallel. 
Practical choices are 1, 2, 4 and 8 parallel G-functions. The GMU implementation uses 4 G-functions in parallel, 
whereas the ETHZ implementation chose only 2 parallel G-functions. 

Results in Fig. 5 prove that the algorithm scales pretty well in throughput but not so much in area. At first, this 
might be surprising. After all, the ETHZ implementation has half the amount of G-functions. There are two main 
reasons for this discrepancy. First of all, similar to SHA-2, comparatively a large portion of the area (25-35%) is used 
for the state registers, less area is used for the function itself, resulting in less saving. Secondly, in order to achieve the 
timing constraints, ETHZ implementations had to be constrained harder, resulting in hardware that is less efficient16. 

The most interesting part about these results is that for the GMU implementation, the results from step B seem 
to be further away from the real back-end solutions (in contrast to the ETHZ implementations). It can also be seen 
that the final circuit is very close to the maximum that was obtained in the later back-end experiments (step D). Since 
the constraints for the final stage were derived from the results of step B GMU BLAKE was over constrained in the 
process. The difference in the results for these two implementations is actually alarming, as the descriptions of the 

16 This is a common phenomenon. If you apply stricter timing constraints, these are more difficult to attain, the tools will sacrifice 
more area to achieve the timing constraint. In the end, perhaps the timing will be met, however the result will be less efficient. 
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two implementations are very similar to each other, yet the extracted wireload for step B produced two very different 
results. 

BLAKE is one of the functions with the longest critical path mainly because several 32-bit additions are used in 
one G-function. This is actually a mixed blessing. On the positive side, there are several well-known implementations 
for a binary adder with different area-speed trade-offs, allowing the algorithm a wider range of implementations in 
general. On the other hand, long critical paths translate to slower clock rates, and limit the maximum throughput in 
iteratively decomposed implementations. 

A.3 Grøstl 
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Fig. 6. AT plot for Grøstl implementations: GMU (left) and ETHZ (right). Note that both axes are scaled differently. 

Throughout the results it can be seen that, Grøstl consistently demands the largest circuits. Furthermore, at least 
in the GMU implementation, the differences between results in step A to the rest are very high (see Fig 6), suggesting 
that the implementations incur significant overhead in the back-end flow. Part of this is due to the many AES look
up tables needed for the core functions of Grøstl called P and Q. Both functions require in total 64 AES SubBytes 
functions per round. The GMU implementation uses a combined block that can be configured to run as both P and Q, 
with 64 look-up tables. 

Although P and Q functions are both very similar, the differences add non-negligible hardware. As an example, 
the AddRoundConstant function in essence requires sixty-four, 2-input XOR gates for both P and Q. However, since 
different bits of the state are involved for each function, a straightforward implementation requires 128 XOR gates and 
128 2-input multiplexers. The ETHZ implementation uses two specialized units P and Q each with 8 look-up tables. 
This allows simpler units, but has a significant drawback when implementing the finalization step, which uses only the 
P function, as only half of the look-up tables are available, doubling the time needed for the finalization step. 

In theory, Grøstl offers a wide range of implementations, when the number of look-up tables per round is consid
ered. A fully parallel implementation would use up to 128 look-up tables, and an implementation could be designed 
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using only a single look-up table. However, our results show a different story. Although the ETHZ implementation 
has only one fourth of the look-up tables it is only around half the size. The increased critical path in the ETHZ 
implementation is due to the logic required to share the look-up tables. 

One other problem with Grøstl is the relatively long run times required for synthesis. Table 5 shows that Grøstl for 
both implementations is among the most demanding algorithms in terms of CPU time. It must be noted that some of 
this extra effort is clearly due to the size of the circuits. 

A.4 JH 
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Fig. 7. AT plot for JH implementations: GMU (left) and ETHZ (right). Note that the X axis is scaled differently. 

JH is generally a very fast algorithm when implemented in hardware. Similar to Keccak we were unable to find 
a version that would trade off speed with smaller area. This is why the ETHZ and GMU implementations are very 
similar in style, each implementing one full round in hardware. The main difference between the two implementations 

Table 5. Synthesis times for all candidate algorithms on an Intel Core2 Duo CPU running at 3.16 GHz with 8 Gbytes of memory, 
using a single core 

Algorithm GMU implementation ETHZ implementation 

SHA-2 262 s 179 s 
BLAKE 240 s 942 s 
Grøstl 2’076 s 632 s 
JH 565 s 343 s 
Keccak 671 s 171 s 
Skein 348 s 1’182 s 










