Evaluation of the CAESAR Hardware API for Lightweight Implementations

Panasya Yalla, Jens-Peter Kaps

Department of Electrical and Computer Engineering, George Mason University, Fairfax, Virginia 20304, USA

Abstract

The Competition for Authenticated Encryption: Security, Applicability, and Robustness (CAESAR) requires that all hardware implementations of candidate algorithms adhere to the CAESAR Hardware API [1]. The CAESAR Hardware API is supported by a development package which includes VHDL code for universal pre- and post-processors for high-speed and recently also for lightweight implementations. These processors are designed to make a cipher core compliant with the API. In this work we verify that the lightweight package has a smaller area footprint than the high-speed package. We also show that the overhead of using the generic lightweight pre- and post-processors over integrating their functionality into the cipher core is negligible. As part of these case studies, we have developed the first lightweight implementations of Ketje-Sr, Ascon-128-, and Ascon-128a.

Introduction and Motivation

- **CAESAR** evaluates candidates for a final portfolio of new Authenticated Encryption with Associated Data (AEAD) algorithms.
- All candidates must adhere to the CAESAR hardware (HW) Application Programming Interface (API).
- The HW API is a component which enables a fair comparison among algorithms.
 - Independent FIFO inputs for public data (PDI) and secret data (SDI) and FIFO outputs (ODI).
 - Independent control for commands and data types using a simple protocol.
 - CAESAR HW API is supported by an implementer’s guide and development package [2].
 - Includes VHDL code for high-speed (HS) and lightweight (LW) implementations.
 - Pre- and PostProcessor separate protocol from cryptographical algorithms.
 - By using FIFOs and burst modes, header information to PostProcessor.
 - It is generally assumed that having generic pre- and post-processors increases the area consumption over merging their functionality with the cipher cores.

Differences between HS vs. LW Packages

High-Speed
- Supports bus width
 - **32 ≤ w ≤ 256** in multiples of 8.
 - PreProcessor expands PDI and SDI data to full block size for CipherCore.
 - PreProcessor stores one block of PDI and SDI data.
 - PreProcessor contains universal padding unit.
 - Tag comparison has to be performed in CipherCore.

Lightweight
- Supports bus width of w, 16, and 32.
- PreProcessor, CipherCore, Bypass FIFO, and PostProcessor have equal bus width.
- PreProcessor has no data storage.
- Assumes padding is performed in CipherCore.
- PostProcessor supports tag comparison.

Case Study 1: Integrated vs. LW Package

CAESAR High-Speed Block Diagram

CAESAR Lightweight Block Diagram

Case Study 1: Integrated vs. LW Package

Protocol: Instruction

States for Processing Instruction

Protocol: Segment Header

With w=8, 16, and 16

States for Processing Header

sdi_valid sdi_ready sdi_valid sdi_data

msg_auth_valid msg_auth_ready msg_auth_valid msg_auth

bdo_type bdo_valid bdo_valid bdo_bytes

Key comparison has to be performed in CipherCore.

Conclusions

- **The graph shows implementation results of Ketje-Sr on Spartan-6.**
 - Using the CAESAR LW Package leads to a small area increase over integrated designs.
 - This small increase can easily be mitigated.

- **The graph shows the overhead incurred for implementations of Ascon on Spartan-6.**
 - Using the CAESAR LW Package leads to a much larger area increase than the LW Package as it expands the data and key buses to the full block size.

- **CAESAR LW Package allows for bus widths of 8 and 16 bits, which are not currently supported by CAESAR HS Package.**
 - The CAESAR LW-Package reduces the design time for LW implementations.
 - The CAESAR LW Package will be included in the next release of the Development Package for the CAESAR Hardware API.
 - The usage will be documented in the next release of the Implementer’s Guide to the CAESAR Hardware API.

Acknowledgment

The CAESAR Lightweight Support Package was developed in collaboration with Fabio De Santis and Michael Tempelmeyer from Technische Universität München.

References