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Abstract
The Competition for Authenticated Encryption: Security, Applicability,
and Robustness (CAESAR) requires that all hardware implementations
of candidate algorithms adhere to the CAESAR Hardware API [1]. The
CAESAR Hardware API is supported by a development package which
includes VHDL code for universal pre- and post-processors for
high-speed and recently also for lightweight implementations. These
processors are designed to make a cipher core compliant with the API.
In this work we verify that the lightweight package has a smaller area
footprint than the high-speed package. We also show that the overhead
of using the generic lightweight pre- and post-processors over integrating
their functionality into the cipher core is negligible. As part of these case
studies, we have developed the first lightweight implementations of
Ketje-Sr, Ascon-128, and Ascon-128a.

Introduction and Motivation
I CAESAR evaluates candidates for a final portfolio of new
Authenticated Encryption with Associated Data (AEAD) algorithms.

I All candidates must adhere to the CAESAR hardware (HW)
Application Programming Interface (API).

I The HW API is one component which enables a fair comparison
among algorithms.
I Independent FIFO inputs for public data (PDI) and secret data (SDI) and
FIFO output (DO).

I In-band signaling for commands and data types using a simple protocol.
I CAESAR HW API is supported by an implementer’s guide and
development package [2].
I Includes VHDL code for high-speed (HS) and lightweight (LW)
implementations.

I Pre- and PostProcessor separate protocol from cryptographic algorithm.
I Bypass FIFO stores and passes header information to PostProcessor.

I It is generally assumed that having generic pre-and post-processors
increases the area consumption over merging their functionality with
the cipher cores.

Differences between HS vs. LW Packages

High-Speed
I Supports bus width
32 ≤ w ≤ 256 in multiples of 8.

I PreProcessor expands PDI and
SDI data to full block size for
CipherCore.

I PreProcessor stores one block of
PDI and SDI data.

I PreProcessor contains universal
padding unit.

I Tag comparison has to be
performed in CipherCore.

Lightweight
I Supports bus width w of 8, 16,
and 32.

I PreProcessor, CipherCore,
Bypass FIFO, and PostProcessor
have equal bus width.

I PreProcessor has no data
storage.

I Assumes padding is performed in
CipherCore.

I PostProcessor supports tag
comparison.

CAESAR High-Speed Block Diagram
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Case Study
1. Determine overhead of CAESAR LW package.

I Ketje-Sr implementation with integrated support of CAESAR API.
I Ketje-Sr implementation using new CAESAR lightweight development
package.

2. Determine overhead of CAESAR LW package vs HS package.
I Implementation of Ascon using CAESAR LW package.
I Using existing Ascon HS implementation.

Ketje-Sr
I Ketje [3] is based on round reduced Keccak-f called MonkeyWrap.
I Has four variants Ketje-Jr, Ketje-Sr, Ketje-Minor, and Ketje-Major
which use Keccak-p∗[200], Keccak-p∗[400], Keccak-p∗[800], and
Keccak-p∗[1600] respectively.

I Each round of Keccak-p∗ consists of five steps θ, ρ, π, χ, and ι.
I In θ step, each bit in the state is Xored with two other bits from
two different columns.

I The state bits are rotated for each lane using one of the 25 different
offsets in ρ step

I Lanes are rearranged in π, integer multiplication in χ.
I The last step is ι, where a round constant is added.

Ketje-Sr Datapath

I We implemented a
Ketje-Sr using a 16-bit
datapath and interface.

I Datapath is the same
for integrated CAESAR
API support and using
CAESAR LW package.

I State is stored in a
dual-port memory
(RAM) with one
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I To reduce the complexity of padding for key, the key size is fixed to
128-bits.

I Two memory units (RAMK1, and RAMK2) with pre-stored values
and a register (reg-K) for key storage and KeyPack operations.

I Padding for message and AD using multiplexers.
I Needs 160 clock cycles to process a 32-bit block.
I TP = 32

160 · F

Ascon
I Ascon[4] is a permutation based authenticated cipher.
I Ascon-128, and Ascon-128a - two variants with block sizes of 64
and 128 respectively.

I In each round, three sub transformations called constant-addition,
substitution, and linear diffusion are applied.

I Constant-addition is the first operation in the round, where a
constant is added to one of the five words. Twelve round constants
are used.

I Substitution layer uses 5x5 S-boxes.
I Linear diffusion layer for diffusion across each of the five 64-bit
words using circular shifts and an XOR.

Ascon Datapath

I A 64-bit datapath is
used in this design and
a 32-bit interface.

I The state is stored in a
dual-port RAM.

I Key is stored in a RAM.
I The substitution layer
is implemented in a
bit-slice fashion.

I Due to the contention
on the RAM ports, 18
operations take 33
clock cycles.
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I The round constants are generated using two 4 bit registers and
adders.

I Two 5-to-1 multiplexers are used to perform circular shifts in linear
diffusion step (LDiff).

I TP = 128
33·8 · f

Case Study 1: Integrated vs. LW Package

Implementation Results on Xilinx Spartan-6 FPGA using ATHENa [5]

Flip- Freq TP TP/Area
Design Slices LUTs Flops [MHz] [Mbps] [Mbps/slice]

KETJE-SR1 140 436 98 122.4 24.48 0.17
KETJE-SR2 155 450 114 120.1 24.03 0.16
Overhead 15 14 16
ASCON-1282 231 684 268 216.0 60.10 0.26
ASCON-128a2 231 684 268 216.0 119.16 0.52
Joltik [6]3 168 534 381 200.0 426.67 2.54
ACORN [6]4 202 540 383 231.6 1,852.80 9.17

1 ⇒ Dedicated CAESAR API; 2 ⇒ CAESAR LW Package; 3 ⇒ Not compliant to CAESAR API;
4 ⇒ Tweaked CAESAR HS Package

I Using CAESAR LW Package leads to a small area increase.
I Three separate counters for sdi, pdi and do buses are used for simplicity and
parallel operation.

I Counter for sdi can be dropped if cipher core provides end_of_key signal.
I Comparing our designs which each other and other reported
implementations.
I Ascon-128a has 4 times the TP while consuming only 50% more slices.
I Joltik implementation is not compliant with CAESAR API but performs
significantly better.

I ACORN is based on a stream cipher which typically perform very well in
lightweight implementations.

Case Study 2: Area Overhead HS vs. LW Pkg.

Area Overhead High-Speed (HS) vs. LightWeight (LW) Packages
Implementation Results on Xilinx Spartan-6 FPGA using ATHENa [5]

Design Top-level Slices LUTs Filp-Flops
AEAD1 231 684 268

LW Ascon CipherCore 196 606 212
Overhead 35 78 56

AEAD2 416 1282 792
HS Ascon [6] CipherCore 379 1033 529
Overhead 37 249 263

1 ⇒ CAESAR LW Package; 2 ⇒ CAESAR HS Package

I Adding CAESAR API support to
I LW core using LW Package leads to a small area increase,
I HS core using HS Package leads to a larger area increase.

Conclusions
I The graph shows
implementation results of
Ketje-Sr on Spartan-6.

I Using the CAESAR LW
Package leads to a small area
increase over integrated
designs.

I This small increase can easily
be mitigated. Slices LUTs FFs 
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I The graph shows the overhead
incurred for implementations
of Ascon on Spartan-6.

I CEASAR HS Package leads to
a much larger area increase
than the LW Package as it
expands the data and key
buses to the full block size.
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I CAESAR LW Package allows for bus widths of 8 and 16 bits, which are
not currently supported by CAESAR HS Package.

I The CAESAR LW-Package reduces the design time for LW
implementations.

I The CAESAR LW Package will be included in the next release of the
Development Package for the CAESAR Hardware API.

I The usage will be documented in the next release of the Implementer’s
Guide to the CAESAR Hardware API.
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