
Evaluation of the CAESAR Hardware API for Lightweight
Implementations

Panasayya Yalla, Jens-Peter Kaps
Department of Electrical and Computer Engineering, George Mason University, Fairfax, Virginia 22030, USA

Abstract
The Competition for Authenticated Encryption: Security, Applicability,
and Robustness (CAESAR) requires that all hardware implementations
of candidate algorithms adhere to the CAESAR Hardware API [1]. The
CAESAR Hardware API is supported by a development package which
includes VHDL code for universal pre- and post-processors for
high-speed and recently also for lightweight implementations. These
processors are designed to make a cipher core compliant with the API.
In this work we verify that the lightweight package has a smaller area
footprint than the high-speed package. We also show that the overhead
of using the generic lightweight pre- and post-processors over integrating
their functionality into the cipher core is negligible. As part of these case
studies, we have developed the first lightweight implementations of
Ketje-Sr, Ascon-128, and Ascon-128a.

Introduction and Motivation
I CAESAR evaluates candidates for a final portfolio of new
Authenticated Encryption with Associated Data (AEAD) algorithms.

I All candidates must adhere to the CAESAR hardware (HW)
Application Programming Interface (API).

I The HW API is one component which enables a fair comparison
among algorithms.
I Independent FIFO inputs for public data (PDI) and secret data (SDI) and
FIFO output (DO).

I In-band signaling for commands and data types using a simple protocol.
I CAESAR HW API is supported by an implementer’s guide and
development package [2].
I Includes VHDL code for high-speed (HS) and lightweight (LW)
implementations.

I Pre- and PostProcessor separate protocol from cryptographic algorithm.
I Bypass FIFO stores and passes header information to PostProcessor.

I It is generally assumed that having generic pre-and post-processors
increases the area consumption over merging their functionality with
the cipher cores.

Differences between HS vs. LW Packages

High-Speed
I Supports bus width
32 ≤ w ≤ 256 in multiples of 8.

I PreProcessor expands PDI and
SDI data to full block size for
CipherCore.

I PreProcessor stores one block of
PDI and SDI data.

I PreProcessor contains universal
padding unit.

I Tag comparison has to be
performed in CipherCore.

Lightweight
I Supports bus width w of 8, 16,
and 32.

I PreProcessor, CipherCore,
Bypass FIFO, and PostProcessor
have equal bus width.

I PreProcessor has no data
storage.

I Assumes padding is performed in
CipherCore.

I PostProcessor supports tag
comparison.

CAESAR High-Speed Block Diagram

24 24

sdi_valid

sdi_readysdi_ready

sdi_valid

sdi_data sdi_data
sw

DBLK_SIZE
Datapath

CipherCore

DBLK_SIZE DBLK_SIZE

din_valid

din_ready

din FIFO

CMD

dout

dout_ready

dout_valid

key_update

bdi_eot

bdi_eoi

bdi_type

bdi_ready

3

bdi_valid

key_update

bdi_eot

bdi_eoi

bdi_type

bdi_ready

bdo_size

bdo_ready

Controller

CipherCorebdi_valid bdo_valid

bdo_size

bdo_ready

bdo_valid

key_valid

key_ready

key_valid

key_ready

LBS_BYTES+1

decrypt decrypt

bdi_valid_bytes

bdi_pad_loc

DBLK_SIZE/8

DBLK_SIZE/8

bdi_size

bdi_pad_loc

bdi_valid_bytes

bdi_size
LBS_BYTES+1

CipherCore

pdi_valid

pdi_readypdi_ready

pdi_valid

OptionalRequired

do_valid do_valid

pdi_data

do_datado_data

pdi_data
w

w

c
m

d
_
v
a
lid

c
m

d
_
re

a
d
y

c
m

d

c
m

d
_
v
a

lid

c
m

d
_

re
a
d

y

c
m

d

bdi

key

bdo

bdi

key

DBLK_SIZE
bdo

KEY_SIZE

AEAD_TP

fd
o
_
v
a
lid

fd
i_

re
a
d
y

d
o
u
t_

v
a
lid

d
o
u
t_

re
a
d
y

d
in

_
v
a
lid

d
in

_
re

a
d
y

d
o
u
t

d
in

bdi_partialbdi_partial

fd
i_

d
a
ta

fd
o
_
d
a
ta

fd
i_

v
a
lid

fd
o
_
re

a
d
y

Two−Pass

FIFO

msg_auth_valid msg_auth_valid

msg_authmsg_auth

msg_auth_ready msg_auth_ready

Processor

Pre

Processor

Post

do_ready do_ready

CAESAR Lightweight Block Diagram

sdi_valid

sdi_readysdi_ready

sdi_valid

sdi_data sdi_data

Processor

Pre

sw

w

w/8

w/8

w/8+1

w w

w

4

Processor

Post

w/8

Tag

Comparator

w

pdi_valid

pdi_readypdi_ready

pdi_valid

pdi_data pdi_data

do_ready do_ready

do_valid do_valid

do_datado_data
w

4

bdi

AEAD

bdi_eoi

bdi_eot

key_valid

key_ready

key

cmd_valid

cmd_ready

Required Optional

bdi_type

decrypt

key_update

CipherCore

key

key_valid

key_ready

bdi

bdi_ready

bdi_valid bdi_valid

bdi_ready

bdi_partial

bdi_eot

bdi_eoi

bdi_type

decrypt_in

key_update

bdo

bdo_valid

bdo_ready

din_valid

din_ready

dout_valid

dout_ready

doutHeader/Tag

FIFO cmd_valid

cmd_ready

din

end_of_block

bdo_ready

bdo_valid

bdo

end_of_block

cmd cmd

bdi_partial

bdi_size bdi_size

bdi_valid_bytes bdi_valid_bytes

bdi_pad_locbdi_pad_loc bdo_valid_bytes bdo_valid_bytes

msg_auth_readymsg_auth_ready

msg_auth_valid msg_auth_valid

msg_authmsg_auth

bdo_type bdo_type

sw

Protocol: Instruction
LSB

Status

Opcode
or

4 12

MSB

Reserved

16-bit Instruction with w=16
LSB

4

2

Reserved

Reserved

Opcode

Status
or

MSB

4

16-bit Instruction with w=8

Rd−Inst Rd−Rsvd

Rd−Hdr w=16, 32
w=8

States for Processing
Instruction

Protocol: Segment Header

EOI

8

1 1 1 14

16

ReservedInfo Segment Length

MSB

Type
Segment

LSB

EOT

Partial

Last

8

32-bit Header

(LSB)

4

Info

Reserved

MSB LSB

Segment Length
(MSB)

Segment Length

8

Segment Length

8

2

Info Reserved

MSB LSB

8

With w= 8, and 16

Rd−Hdr Rd−Rsvd

Seglen1SegLen

Seglen2Ld−Data

w=8
w=16

w= 32

States for
Processing Header

Case Study
1. Determine overhead of CAESAR LW package.

I Ketje-Sr implementation with integrated support of CAESAR API.
I Ketje-Sr implementation using new CAESAR lightweight development
package.

2. Determine overhead of CAESAR LW package vs HS package.
I Implementation of Ascon using CAESAR LW package.
I Using existing Ascon HS implementation.

Ketje-Sr
I Ketje [3] is based on round reduced Keccak-f called MonkeyWrap.
I Has four variants Ketje-Jr, Ketje-Sr, Ketje-Minor, and Ketje-Major
which use Keccak-p∗[200], Keccak-p∗[400], Keccak-p∗[800], and
Keccak-p∗[1600] respectively.

I Each round of Keccak-p∗ consists of five steps θ, ρ, π, χ, and ι.
I In θ step, each bit in the state is Xored with two other bits from
two different columns.

I The state bits are rotated for each lane using one of the 25 different
offsets in ρ step

I Lanes are rearranged in π, integer multiplication in χ.
I The last step is ι, where a round constant is added.

Ketje-Sr Datapath

I We implemented a
Ketje-Sr using a 16-bit
datapath and interface.

I Datapath is the same
for integrated CAESAR
API support and using
CAESAR LW package.

I State is stored in a
dual-port memory
(RAM) with one

Keypack

<<<1

Port−B

Port−A

RAM

Rho

16

RAMK2
(LSB)

8

15

RAMK1
(MSB)

0

7 reg−K

15

8

7

0

Padding

reg−Arcon
16

16

16

sdi_data

pdi_data

do_data

read/write and one read-only ports.
I To reduce the complexity of padding for key, the key size is fixed to
128-bits.

I Two memory units (RAMK1, and RAMK2) with pre-stored values
and a register (reg-K) for key storage and KeyPack operations.

I Padding for message and AD using multiplexers.
I Needs 160 clock cycles to process a 32-bit block.
I TP = 32

160 · F

Ascon
I Ascon[4] is a permutation based authenticated cipher.
I Ascon-128, and Ascon-128a - two variants with block sizes of 64
and 128 respectively.

I In each round, three sub transformations called constant-addition,
substitution, and linear diffusion are applied.

I Constant-addition is the first operation in the round, where a
constant is added to one of the five words. Twelve round constants
are used.

I Substitution layer uses 5x5 S-boxes.
I Linear diffusion layer for diffusion across each of the five 64-bit
words using circular shifts and an XOR.

Ascon Datapath

I A 64-bit datapath is
used in this design and
a 32-bit interface.

I The state is stored in a
dual-port RAM.

I Key is stored in a RAM.
I The substitution layer
is implemented in a
bit-slice fashion.

I Due to the contention
on the RAM ports, 18
operations take 33
clock cycles.

31

0
63

32

32

Padding

31

0 RAMK

63

32

R1

32

32

64

32

32

pdi_data

sdi_data

LDiff

63

1
0

00

0

63

8

rcon7

0

do_data

64

1

0

0

64

Port−B

Port−A

RAM

I The round constants are generated using two 4 bit registers and
adders.

I Two 5-to-1 multiplexers are used to perform circular shifts in linear
diffusion step (LDiff).

I TP = 128
33·8 · f

Case Study 1: Integrated vs. LW Package

Implementation Results on Xilinx Spartan-6 FPGA using ATHENa [5]

Flip- Freq TP TP/Area
Design Slices LUTs Flops [MHz] [Mbps] [Mbps/slice]

KETJE-SR1 140 436 98 122.4 24.48 0.17
KETJE-SR2 155 450 114 120.1 24.03 0.16
Overhead 15 14 16
ASCON-1282 231 684 268 216.0 60.10 0.26
ASCON-128a2 231 684 268 216.0 119.16 0.52
Joltik [6]3 168 534 381 200.0 426.67 2.54
ACORN [6]4 202 540 383 231.6 1,852.80 9.17

1 ⇒ Dedicated CAESAR API; 2 ⇒ CAESAR LW Package; 3 ⇒ Not compliant to CAESAR API;
4 ⇒ Tweaked CAESAR HS Package

I Using CAESAR LW Package leads to a small area increase.
I Three separate counters for sdi, pdi and do buses are used for simplicity and
parallel operation.

I Counter for sdi can be dropped if cipher core provides end_of_key signal.
I Comparing our designs which each other and other reported
implementations.
I Ascon-128a has 4 times the TP while consuming only 50% more slices.
I Joltik implementation is not compliant with CAESAR API but performs
significantly better.

I ACORN is based on a stream cipher which typically perform very well in
lightweight implementations.

Case Study 2: Area Overhead HS vs. LW Pkg.

Area Overhead High-Speed (HS) vs. LightWeight (LW) Packages
Implementation Results on Xilinx Spartan-6 FPGA using ATHENa [5]

Design Top-level Slices LUTs Filp-Flops
AEAD1 231 684 268

LW Ascon CipherCore 196 606 212
Overhead 35 78 56

AEAD2 416 1282 792
HS Ascon [6] CipherCore 379 1033 529
Overhead 37 249 263

1 ⇒ CAESAR LW Package; 2 ⇒ CAESAR HS Package

I Adding CAESAR API support to
I LW core using LW Package leads to a small area increase,
I HS core using HS Package leads to a larger area increase.

Conclusions
I The graph shows
implementation results of
Ketje-Sr on Spartan-6.

I Using the CAESAR LW
Package leads to a small area
increase over integrated
designs.

I This small increase can easily
be mitigated. Slices LUTs FFs 

0
50

100
150
200
250
300
350
400
450
500

Case Study 1

Integrated
LW Package

I The graph shows the overhead
incurred for implementations
of Ascon on Spartan-6.

I CEASAR HS Package leads to
a much larger area increase
than the LW Package as it
expands the data and key
buses to the full block size.

Slices LUTs FFs 
0

50

100

150

200

250

300
Case Study 2

LW Overhead
HS Overhead

I CAESAR LW Package allows for bus widths of 8 and 16 bits, which are
not currently supported by CAESAR HS Package.

I The CAESAR LW-Package reduces the design time for LW
implementations.

I The CAESAR LW Package will be included in the next release of the
Development Package for the CAESAR Hardware API.

I The usage will be documented in the next release of the Implementer’s
Guide to the CAESAR Hardware API.

Acknowledgment
The CAESAR Lightweight API Sup-
port Package was developed in collab-
oration with Fabrizio De Santis and
Michael Tempelmeier from

References
[1] E. Homsirikamol, W. Diehl, A. Ferozpuri, F. Farahmand, P. Yalla, J.-P. Kaps, and K. Gaj, “CAESAR

hardware API,” Cryptology ePrint Archive, Report 2016/626, 2016, http://eprint.iacr.org/2016/626.
[2] “Development package for the CAESAR hardware APIv1.2,”

https://cryptography.gmu.edu/athena/AEAD/GMU_AEAD_HW_API_v1_2.zip, accessed:
2017-06-30.

[3] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer, “CAESAR submission:Ketje v2,”
Submission to CAESAR (Round3), September 2016,
https://competitions.cr.yp.to/round3/ketjev2.pdf.

[4] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer, “ASCON v1.2,” Submission to CAESAR
(Round3), September 2016.

[5] K. Gaj, J.-P. Kaps, V. Amirineni, M. Rogawski, E. Homsirikamol, and B. Y. Brewster, “ATHENa –
automated tool for hardware evaluation: Toward fair and comprehensive benchmarking of cryptographic
hardware using FPGAs,” in 20th International Conference on Field Programmable Logic and
Applications - FPL 2010. IEEE, 2010, pp. 414–421, winner of the FPL Community Award.

[6] “ATHENa database of FPGA results for authenticated ciphers,”
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/table_view, accessed: 2017-07-30.

Cryptographic Engineering Research Group (CERG) Department of Electrical and Computer Engineering George Mason University http://cryptography.gmu.edu

http://eprint.iacr.org/2016/626
 https://cryptography.gmu.edu/athena/AEAD/GMU_AEAD_HW_API_v1_2.zip 
https://competitions.cr.yp.to/round3/ketjev2.pdf
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/table_view

