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Introduction



Introduction

* Lightweight cryptography suitable for Internet of Things (loT)
» Small devices constrained by resources, power, energy

 CAESAR Competition
» Lightweight authenticated ciphers in resource-constrained platforms
» Evaluation of resistance to side-channel attack
* NIST Lightweight Cryptography Project
» Evaluate algorithms based on physical, performance, security
 Side-channel attack

» Measurement of physical phenomena used to recover sensitive information
» Power analysis side-channel attack (e.g. Differential Power Analysis DPA)



Introduction (cont’d)

* Implement AES, SIMON, SPECK, PRESENT, LED & TWINE
» Primitives for CAESAR Round 3 Candidate Authenticated Ciphers

« Show that ciphers vulnerable to DPA through t-test

* Protect against 15t order DPA with equivalent level of protection
« Verify protection against 15t DPA

« Compare costs of protection (area, throughput, power, energy)



Contributions of this Research

 Large-scale comparison of side-channel resistance and evaluation of
countermeasures in lightweight block ciphers

« Supports CAESAR Competition & NIST Lightweight Cryptography Project
* Moderate speed/Moderate area optimization target (TP/A ratio)

 Validates Use-case of T-test leakage detection methodology in lieu of
attack-based testing

* Not feasible (at budget) through attack-based testing
 Quantification of effects of anti-optimization constraints in FPGA
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Block Ciphers in this Research

Cipher Block Size Key Size Rounds Type Authenticated Ciphers
AES 128 128 10 SPN CLOC, SILC, JAMBU
SIMON 96/96 96 96 52 Feistel, ARX JAMBU

SPECK96/96 96 96 28 Feistel, ARX

PRESENT 64/80 64 80 31 SPN SILC

LED 64/80 64 80 48 SPN SILC

TWINE 64/80 64 80 36 SPN CLOC

Block cipher versions match primitives used in CAESAR Round 3 Authenticated Cipher Candidates



Block Ciphers in this Research (cont’d)
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Differential Power Analysis

 Look for correlations of a guessed sub key to
intermediate values at a vulnerable point

» Measure statistical outcomes of many power
analyses

» Test hypothesis outcomes to reveal presence of 0 or
1in a single bit

 1storder DPA: Examining statistical correlation of
1 intermediate bit'2

1 —P. C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” 1999
2 - P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “Introduction to Differential Power Analysis,” 2011

Current (uA)

(mA)

5 i
50 ‘i 17K ”‘nl
4.5 ’
20
15
10
5
o V'
5

5
=8
A

0 40 5 60

T .BO 0 1o 0 120 130 7
Time (uS)

University of Colorado “Side Channel Attacks”

10



Countermeasure to DPA: Threshold Implementations’

» Data separated into two or more “shares”

 To share function of degree d, d+1 shares are required (i.e., z = xy has
algebraic degree 2, needs 3 shares)

* Secure in presence of glitches, but can be costly and complex

* Properties

» Non-completeness. Every function is independent of at least one share of
each of the input variables.

» Correctness. The sum of the output shares gives the desired output.
» Uniformity. Output distribution should preserve input distribution.

1 -S. Nikova, C. Rechberger and V. Rijmen, “Threshold Implementations Against Side-Channel Attacks and Glitches,” 2006 11



Leakage Detection using Welch’s t-test’

Advantages Disadvantages

-ind leakage without attack Doesn'’t recover key o P Hh

Don't need power model Doesn’t show difficulty of attack So* | 517

Don't need to know architecture o T

- | o p =27 f(tv)de

WL o ] p=2F(—45,v >1000)
! < —0.00001
(a) probability density function (b) cumulative distribution function

T. Schneider, A. Moradi, “Leakage Assessment Methodology — a clear roadmap for side-channel evaluations,” 2015

Null hypothesis (H,): “Distributions Q, and Q, are not distinguishable.”

If |f| > 4.5 we reject H, (with 99.999% probability) and conclude “Q, and Q, are distinguishable” (i.e., (some sort of)
information leaks)

1 — G. Goodwill, B. Jun, J. Jaffe and P. Rohatgi, “A testing methodology for side channel resistance validation,” 2011. 12
2 - T. Schneider and A. Moradi, "Leakage Assessment Methodology", 2016



Leakage Assessment using t-test

T-test fails; |t|>4.5;
design leaks
information

T-test does not fail;
|t|<4.5;
leakage not detected

0000000000
SSSSSSSSS

0000000000000000000000000000000

Measure of Effectiveness:
“Leaks or doesn't leak”
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Methodology
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Approach

« Start with unprotected full-width datapath, basic iterative architectures'
» Optimization target: TP/A ratio

 Perform t-tests on unprotected ciphers using FOBOS test bench

 Protected with maximum of 3-share Threshold Implementation
» If full-width/basic-iterative not feasible, change architecture

» Retest W/FOBOS; verify resistance to 15t order DPA

* Benchmark in FPGA, compare in terms of area, throughput,
throughput-to-area (TP/A), power, energy-bit

» Ensure comparison of analogous architectures

1 - W. Diehl, F. Farahmand, P. Yalla, J. P. Kaps and K. Gaj, "Comparison of hardware and software implementations of selected lightweight block ciphers," 2017 15



Flexible Open-source workBench fOr Side-channel analysis
(FOBOS)
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Additional detail available at https://cryptography.gmu.edu/fobos/ 16



Protection of AES' -4
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1 - D. Canright and L. Batina, “A Very Compact ‘Perfectly Masked’ S-Box for AES, 2008 ;‘?/ 8
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Threshold Implementation of AES,” 2011



Protection of SPECK
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1 - T. Schneider, A. Moradi and T. Guneysu, “Arithmetic Addition over Boolean Masking,” 2015 18
2 - P. Kogge and H. Stone, "A Parallel Algorithm for the Efficient Solution of a General Class of Recurrence Equations,” 1973



Protection of SIMON, PRESENT, LED and TWINE

SIMON PRESENT & LED TWINE
» Simplest 3-share Tl protection' | * 4-bit S-Box of degree 3 * 4-bit S-Box of degree 3
+ 1 2-input 48-bit AND gate » Decomposed into two * x'* =x"1in GF(2Y)
» Uniformity satisfied by quadratic functions?* « Refresh randomness required
inclusion of round keys » Permutations — no refresh

randomness required
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Successful full-width datapaths with basic iterative architectures for protected versions

1 - A. Shahverdi, M. Taha and T. Eisenbarth, "Lightweight Side Channel Resistance: Threshold Implementations of Simon,* 2017
2 - A. Poschmann, A. Moradi, K. Khoo, C. Lim, H. Wang and S. Ling, “Side-Channel Resistant Crypto for Less than 2,300 GE,” 2011
3 - S. Kutzner, P. Nguyen, A. Poschmann and H. Wang, “On 3-Share Threshold Implementations for 4-Bit S-boxes,” 2013 19
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T-tests on AES
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T-tests on SPECK
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T-tests on Remaining Ciphers
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Benchmarking of Unprotected Ciphers

Results shown for Virtex-7 FPGA
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Benchmarking of Protected Ciphers

Smallest (LUTSs)
» PRESENT
» SIMON
» LED
Highest Throughput (Mbps)
» SIMON
» PRESENT
» TWINE
Highest TP/A ratio (Mbps/LUT)
» SIMON
» PRESENT
» TWINE
Area growth: 4.3x
TP reduction: 2.2x

TP/A reduction: 9.5x
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Comparison of Power & Energy

B
Power Energy
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Cost of Anti-optimization Constraints

Change in area, throughput, and throughput-to-area ratio in

° Keep H|ERARCHY and Keep S|GNA|_ Virtex-7 and Spartan-3E FPGAs due to KEEP Constraints

, , , FPGA Area Throughput TP/A
« Supports algorithmic DPA protection, (LUTs)  (Mbps) Ratio
but cost in area & throughput Virtex-?  +22% 4% 21%
Spartan-3E  +5% -16% -20%
Change in BEL distribution in SIMON due to KEEP Constraint Change in BEL distribution in SPECK due to KEEP Constraint
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Conclusions

 All unprotected cipher implementations vulnerable to DPA
» Achieved versions of all 6 ciphers protected against 15t order DPA

>
>

. P
. S
. S
. S

SIMON, PRESENT, LED, TWINE full-width, basic-iterative architectures
AES protected using 8-bit pipelined, SPECK with full-width multi-cycle

RESENT, SIMON, LED smallest protected ciphers
MON, PRESENT, TWINE highest Throughput, TP/A Ratios

MON lowest power, PRESENT lowest energy-per-bit

MON lowest relative reduction in TP/A, TWINE largest reduction

» 20% reduction in TP/A ratios due to FPGA anti-optimization constraints
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Questions?



