
Minerva:​ ​Automated​ ​Hardware
Optimization​ ​Tool

User​ ​Manual

Authors:
Farnoud​ ​Farahmand,​ ​Ahmed​ ​Ferozpuri,

William​ ​Diehl​ ​and​ ​Kris​ ​Gaj

Last​ ​update:​ ​12/08/2017

Image​ ​courtesy​ ​of​ ​Carolyn​ ​Angus

Content

1. Introduction
2. Previous​ ​Work
3. Background
4. Preliminary​ ​Investigation
5. Minerva​ ​Design​ ​Flow
6. Usage
7. Quick​ ​Start
8. Input​ ​Arguments
9. Report​ ​Generation​ ​and​ ​Minerva​ ​Status​ ​XML​ ​File
10. Result​ ​Replication​ ​Package​ ​Generation
11. References

1

 1. Introduction

A common way of determining the maximum clock frequency of a digital system is static
timing analysis provided by CAD toolsets, such as Xilinx Vivado, Xilinx ISE, and Intel
Quartus Prime. Finding the actual maximum clock frequency is difficult, especially in
Xilinx Vivado, due to the multitude of tool options, and a complex dependence between
the requested clock frequency and the actual clock frequency achieved by the tool. For
example, a binary search to find maximum frequency is tedious, time-consuming, and
often does not obtain the correct result. Accordingly, we introduce an automated
hardware optimization tool called Minerva. Minerva determines the close-to-optimal
settings of tools, using static timing analysis and a heuristic algorithm developed by the
authors,​ ​and​ ​targets​ ​either​ ​optimal​ ​throughput​ ​or​ ​throughput-to-area​ ​(TPA)​ ​ratio.

Throughput, area, and throughput to area ratio are some of the most important
metrics used for hardware evaluation. In hardware, the maximum throughput depends
on the maximum clock frequency supported by each algorithm. The maximum clock
frequency that can be achieved by a given RTL (Register-Transfer Level) code can be
estimated or measured at different stages of the implementation process. The main
stages are synthesis, placing and routing (P&R), and actual experimental testing on the
board.

The post-synthesis and post place & route results are determined by the FPGA
tools using static timing analysis. There are two difficulties associated with static timing
analysis of digital systems designed and modeled using hardware description
languages,​ ​and​ ​implemented​ ​using​ ​FPGAs:
1) The latest version of CAD tools provided by Xilinx (Vivado), does not have the
capability to report the maximum frequency achievable for the corresponding code.
Essentially, the user requests a target frequency, and the tool reports either a "pass" or
"fail"​ ​for​ ​its​ ​attempt​ ​to​ ​achieve​ ​this​ ​goal.
2) While there are 25 optimization strategies (i.e., sets of preselected option values)
predefined in the tool, applying them sequentially, especially using the Graphical User
Interface,​ ​is​ ​extremely​ ​tedious​ ​and​ ​time​ ​consuming.

To overcome the aforementioned difficulties and facilitate hardware
benchmarking of algorithms by static timing analysis methods, we introduce Minerva.
Minerva is an automated and comprehensive hardware optimization tool. Minerva
employs a unique heuristic algorithm, which is customized for frequency search using
CAD toolsets, in addition to supporting other standard search techniques. It can
incorporate an arbitrary number of predefined or user-defined strategies to achieve the
highest possible frequency or frequency/area for each design. Moreover, it takes
advantage​ ​of​ ​multithreading​ ​and​ ​multi-core​ ​execution​ ​to​ ​significantly​ ​reduce​ ​run​ ​time.

2

2. Previous​ ​Work

A tool called SUPERCOP, which expedites comparison of software implementations of
cryptographic algorithms, is presented in [1]. This open source tool supports the choice
of the best compilation options from thousands of different combinations. It also
facilitates​ ​execution​ ​time​ ​measurements​ ​on​ ​multiple​ ​computer​ ​systems.

In [2], an open-source environment for fair, comprehensive, automated, and
collaborative hardware benchmarking of algorithms belonging to the same class is
presented. The main part of this environment is the ATHENa tool for optimization of tool
options, requested clock frequency, and the starting point of placement. ATHENa
provides capabilities similar to our Minerva capabilities for designers targeting FPGA
devices from two major vendors, Xilinx and Altera. However, it works only with the
previous-generation Xilinx CAD tool (ISE), which will not support Xilinx FPGAs beyond
the​ ​Series​ ​7​ ​families​ ​(Virtex-7,​ ​Kintex-7,​ ​Artix-7).

3. Background

In this section we provide the definitions of some terms used in the rest of this
document.

1. Slack time: ​The slack associated with each connection is the difference between
the required time and the arrival time. A positive slack s at some node implies
that the arrival time at that node may be increased by s, without affecting the
overall delay of the circuit. Conversely, negative slack implies that a path is too
slow, and it must be sped up (or the reference signal delayed) if the whole circuit
is​ ​to​ ​work​ ​at​ ​the​ ​desired​ ​clock​ ​frequency.

2. WNS (Worst Negative Slack): This value corresponds to the worst slack of all
the timing paths for max delay analysis. WNS can be positive or negative. If it is
positive, then it means that the circuit can work with the requested clock
frequency. If it is negative, then it means that the requested clock frequency is
too​ ​high.

3. TNS (Total Negative Slack): ​The sum of all WNS violations, when considering
only​ ​the​ ​worst​ ​violation​ ​for​ ​each​ ​timing​ ​path​ ​endpoint.​ ​Its​ ​value​ ​is:

a. Zero​ ​when​ ​all​ ​timing​ ​constraints​ ​are​ ​met​ ​for​ ​max​ ​delay​ ​analysis.
b. Negative​ ​when​ ​there​ ​are​ ​some​ ​violations.

3

 4. Preliminary​ ​Investigation

In order to observe the behavior of the Vivado Design Suite in static timing analysis,
synthesis and implementation were performed for the VHDL code of 5 CAESAR Round
2 candidates [3]. At first, the same requested clock frequency constraint was used for
each algorithm. The target clock frequency was set to 333 MHz, and the theoretically
achievable frequency (further referred to as the reference frequency) was calculated
based​ ​on​ ​WNS​ ​(Worst​ ​Negative​ ​Slack),​ ​utilizing​ ​the​ ​following​ ​formula:

inimum Clock Period Target Clock Period WNS (1)M = −

In the next step, WNS results were generated for the requested clock frequency varying
in range of -64 to +64 MHz of the reference frequency, with a precision of 1 MHz. In
other words, the authors generated WNS results for 128 different target clock
frequencies in order to observe a trend. Fig. 1, Fig. 2 and Fig. 3 show this trend for
AES-GCM, SCREAM and ICEPOLE, respectively. The GraphGen function provided by
Minerva​ ​accommodated​ ​the​ ​aforementioned​ ​process.

As observed in Fig. 2 and Fig. 3, there are fluctuations around the calculated reference
clock frequency. This fluctuation is much higher in case of ICEPOLE. As a result, it
would be very hard to find the actual maximum clock frequency without automation. In
contrast,​ ​there​ ​are​ ​fewer​ ​fluctuations​ ​for​ ​AES-GCM.

Fig.​ ​1:​ ​Dependence​ ​of​ ​the​ ​Worst​ ​Negative​ ​Slack​ ​(WNS)​ ​on​ ​the​ ​Requested​ ​Clock​ ​Frequency
(Req​ ​Freq)​ ​for​ ​the​ ​high-speed​ ​implementation​ ​of​ ​AES-GCM.

4

Fig.​ ​2:​ ​Dependence​ ​of​ ​the​ ​Worst​ ​Negative​ ​Slack​ ​(WNS)​ ​on​ ​the​ ​Requested​ ​Clock​ ​Frequency
(Req​ ​Freq)​ ​for​ ​the​ ​high-speed​ ​implementation​ ​of​ ​SCREAM.

Fig.​ ​3:​ ​Dependence​ ​of​ ​the​ ​Worst​ ​Negative​ ​Slack​ ​(WNS)​ ​on​ ​the​ ​Requested​ ​Clock​ ​Frequency
(Req​ ​Freq)​ ​for​ ​the​ ​high-speed​ ​implementation​ ​of​ ​ICEPOLE,​ ​and​ ​the​ ​graphical​ ​representation​ ​of
the​ ​binary​ ​search​ ​scheme.

Based on Xilinx documentation [4], the only acceptable target frequency is the one that
gives us positive slack. Therefore, based on the aforementioned graphs, we cannot rely
on (1) to calculate the actual maximum clock frequency. Instead, we need a more
complex procedure. In addition, these results are generated using only default options
of Vivado for all implementation steps, such as mapping, placing and routing. The
Vivado Design Suite ships with 25 predefined optimization strategies, which can be
used to achieve a higher maximum frequency and a more optimized design. Hence,
incorporating​ ​all​ ​of​ ​these​ ​strategies​ ​leads​ ​to​ ​an​ ​even​ ​more​ ​tedious​ ​process.

One way to find the maximum frequency in a given frequency range is to use a
binary search algorithm. However, there are two problems associated with this method:
1) We cannot easily cover 25 optimization strategies, and 2) Based on the fluctuations
observed in the generated graphs, different results will be achieved for different input

5

ranges. Also, it is possible that none of the results will be the actual maximum clock
frequency.

Fig. 3 indicates how the binary search scheme works to find the maximum
achievable clock frequency between the graph generation input ranges. At first we
check the lower bound and upper bound (number 1 and number 2 in the figure) to make
sure we search in a correct range. In other words, we receive positive WNS for lower
bound and negative WNS for upper bound frequencies; otherwise the input range
should be updated. Then, we find the middle point of the aforementioned range (number
3 in the figure) and generate the timing result for that frequency. If the resultant WNS is
positive, we will update the lower bound frequency with the middle point. Otherwise, the
upper bound frequency should be reduced to the middle frequency. The aforementioned
binary search scheme continues until we reach a precision of 1 MHz. As we can
observe in Fig. 3, the binary search result in case of ICEPOLE is 346 MHz (number 8 in
the figure), which is not the correct maximum frequency. Based on the ICEPOLE
graph, the maximum frequency is 389 MHz. As a result, we equip Minerva with a
heuristic​ ​algorithm​ ​aimed​ ​at​ ​addressing​ ​this​ ​problem.

Minerva is used to execute Vivado in batch mode, utilizing the Vivado batch
mode Tcl scripts provided by Xilinx. An XML-based Python program is used to manage
runs. This program launches Vivado with Tcl scripts that are dynamically created during
run-time and later modified to perform each step of the optimization algorithm. Minerva
is designed to be used to automate the task of finding optimized results for each
directory​ ​of​ ​a​ ​source​ ​code​ ​repository,​ ​and​ ​works​ ​with​ ​any​ ​device​ ​that​ ​Vivado​ ​supports.

5. Minerva​ ​Design​ ​Flow

Minerva supports multiple frequency search algorithms, and supports addition of new
algorithms in the future. In this work we implement three modes of Minerva frequency
searches. The first mode ​Minerva_TP_Opt is designed specifically to find the maximum
frequency achievable by a given hardware design. ​Minerva_TP_Opt function receives
the​ ​following​ ​parameters​ ​as​ ​input:

● fmin and fmax: these are the lower and upper bounds of the frequency range that
we span to find the maximum frequency. These values can be updated during
run-time.

● n: indicates the number of runs to be performed in parallel. Minerva can run on
multiple​ ​CPU​ ​cores​ ​and​ ​take​ ​advantage​ ​of​ ​multithreading.

● p: represents the number of optimization strategies to be considered during the
search.

6

● r (precision range size): is the maximum number of frequency targets (higher
than the last achieved maximum clock frequency) to be explored. If we achieve
positive slack for a frequency in this range, we will continue the search; otherwise
we​ ​will​ ​terminate​ ​the​ ​process.

This​ ​function​ ​generates​ ​an​ ​output​ ​report​ ​that​ ​contains​ ​the​ ​following​ ​information:

1. WNS result for all test cases with the corresponding optimization strategy ID and
target​ ​clock​ ​frequency.

2. WNS​ ​and​ ​Area​ ​results​ ​for​ ​all​ ​target​ ​frequencies​ ​with​ ​positive​ ​slack.
3. Maximum​ ​frequency​ ​with​ ​WNS​ ​≥​ ​0,​ ​f_pass_max
4. Minimum Area in the number of LUTs achievable for f_pass_max (denoted by

min_LUTs(f_pass_max)), the corresponding ratio
f_pass_max/min_LUTs(f_pass_max), and the corresponding optimization
strategy​ ​ID.

5. Minimum Area in the number of Slices achievable for f_pass_max (denoted by
min_Slices(f_pass_max)), the corresponding ratio
f_pass_max/min_Slices(f_pass_max), and the corresponding optimization
strategy​ ​ID.

Please​ ​note​ ​that​ ​the​ ​Strategy​ ​IDs​ ​may​ ​be​ ​different​ ​for​ ​the​ ​outputs​ ​4​ ​and​ ​5.
Fig. 4 (a)-(f) completely describes how ​Minerva_TP_Opt algorithm works. This figure is
drawn assuming the following values of the Minerva parameters: fmin=50, fmax=200,
n=8, r=8, and p=8. Each column illustrates one requested clock frequency value, and
square blocks in that column correspond to optimization strategies. Each square block
represents one test case with the optimization strategy ID mentioned inside it. Colors of
these blocks are white or gray, indicating positive or negative WNS, respectively. The
runs​ ​that​ ​execute​ ​in​ ​parallel​ ​at​ ​each​ ​step​ ​are​ ​represented​ ​using​ ​dotted​ ​boxes.

7

Fig.​ ​4​ ​(a):​ ​Step​ ​1

Fig.​ ​4​ ​(b):​ ​Step​ ​2

Fig.​ ​4​ ​(c):​ ​Step​ ​3

8

Fig.​ ​4​ ​(d):​ ​Step​ ​4

Fig.​ ​4​ ​(e):​ ​Step​ ​5

Fig.​ ​4​ ​(f):​ ​Step​ ​6

9

Fig. 4 (a) shows the first step in ​Minerva_TP_Opt ​algorithm. In the first step, the
given frequency range (50 to 200) is divided by (r-1) to have 8 frequencies including 50
and 200, with the same distance between each other, as shown in Fig. 4 (a) Freq axis.
Then, WNS results are generated for all of these 8 target frequencies and the default
optimization strategy. It is feasible to run all of these target frequencies at the same
time, as n is equal to 8 in this example. After WNS results are generated, if the upper
bound frequency (fmax) gives us positive slack, we update fmin and fmax values using
(2)​ ​and​ ​(3),​ ​and​ ​repeat​ ​the​ ​previous​ ​process​ ​(step​ ​forward).

min(new) fmax(old) (2)f =
max(new) fmax(old) 100 (3)f = +

If all of the first 8 target clock frequencies give us negative slack, we step
backward by a frequency range of 100 MHz. Accordingly, fmin and fmax are updated
using​ ​(4)​ ​and​ ​(5),​ ​and​ ​the​ ​first​ ​step​ ​is​ ​repeated.

min(new) fmin(old) 00 (4)f = − 1
max(new) fmin(old) (5)f =

The aforementioned process leads to finding the maximum frequency, less than

fmax, that gives us positive slack using only the default optimization strategy. As we can
observe in Fig. 4 (a), in the first step, positive slack is achieved for fmax (200 MHz).
Hence, we step forward and update fmin and fmax to 200 and 300 MHz respectively,
see Fig. 4 (b). As shown in this figure, 242.9 MHz is the highest frequency that leads to
positive​ ​slack​ ​with​ ​the​ ​default​ ​optimization​ ​strategy.

At this point, the optimization runs are started for the remaining frequencies in
this range higher than 242.9 MHz. In this example 257.2 MHz, with optimization strategy
number 3 has positive slack, so the maximum frequency is updated to 257.2 MHz. In
case of higher frequencies, all 8 optimization strategies fail. Therefore, 257.2 MHz
becomes our starting point to begin the next step of frequency search considering 8
optimization​ ​strategies​ ​and​ ​a​ ​precision​ ​of​ ​1​ ​MHz.

The next step is illustrated in Fig. 4(c). In this step we go forward by 1 MHz. As
soon as we find a frequency with positive slack, the lower frequencies and the
remaining​ ​optimization​ ​strategies​ ​corresponding​ ​to​ ​these​ ​frequencies​ ​are​ ​eliminated.
The aforementioned procedure is continued until 8 (precision range size) consecutive
frequencies fail to provide positive slack for all possible optimization strategies (8 in this
example), as shown in Fig. 4(d) and Fig. 4(e). Therefore, in this example, the maximum
frequency with WNS=0, f_pass_max, is 268 MHz, using the optimization strategy
number​ ​4.

Let us assume that the number of LUTs for Strategy 4 is 1000, and the number

10

of Slices 300. Based on Fig. 4(d), only the first 5 optimization strategies were tested for
f_pass_max=268 MHz. Therefore, in the next step, shown in Fig. 4(f), we perform runs
for the remaining three strategies at the same maximum clock frequency of 268 MHz.
As we can see in this figure, only one of these runs passes with WNS=0, for the
strategy ID=7. Now let us assume that the corresponding areas for Strategy 7 are 970
LUTs​ ​and​ ​310​ ​Slices.​ ​Then,​ ​the​ ​algorithm​ ​returns​ ​two​ ​sets:
{f_pass_max=268 MHz, Minimum number of LUTs achievable for f_pass_max,
min_LUTs(268 MHz)=970, the corresponding ratio
f_pass_max/min_LUTs(f_pass_max)=268/970, and the corresponding optimization
strategy​ ​ID=7}​ ​as​ ​well​ ​as
{f_pass_max=268 MHz, Minimum number of Slices achievable for f_pass_max,
min_Slices(268 MHz)=300, the corresponding ratio
f_pass_max/min_Slices(f_pass_max)=268/300, and the corresponding optimization
strategy​ ​ID=4}.

The second mode of Minerva frequency search (​Minerva_TPA_Opt​) targets
further optimization of the frequency to #LUTs ratio (Throughput to area ratio). This
mode can be used after ​Minerva_TP_Opt search generates the maximum frequency.
Minerva_TPA_Opt receives the following parameters as input: 1) f_pass_max
(maximum frequency achieved by ​Minerva_TP_Opt ​mode), 2) n (number of runs in
parallel) and 3) p (number of optimization strategies). The output report contains the
same information as the first mode (​Minerva_TP_Opt​). In this mode, we generate the
results for all the frequencies between 96% of f_pass_max and f_pass_max, with a
precision of 1 MHz. We also try all possible optimization strategies. At the end, the
requested frequency and optimization strategy combination that leads to the best TPA is
reported.

The third mode of Minerva frequency search (​Minerva_Fast_Opt​) is designed to
achieve proper results in terms of both throughput and throughput to area ratio in a
short amount of time compared to the first and second modes. Based on the results
generated for 30 benchmarked authenticated ciphers, we arrived at the optimization
strategy that gave us the best throughput to area ratio in most cases, and utilized it as a
single optimization strategy. This optimization strategy focused on reducing area by
ExploreArea​ ​command.

Therefore, ​Minerva_Fast_Opt works similar to ​Minerva_TP_Opt ; the only
difference is the number of optimization strategies, i.e., two optimization strategies in
case of ​Minerva_Fast_Opt​, namely, the default one and the one based on the
ExploreArea​ ​command.

11

 6. Usage

Minerva source code can be downloaded from the GMU ATHENa website page
available​ ​at​ ​the​ ​following​ ​address:
https://cryptography.gmu.edu/athena/index.php?id=Minerva

Here​ ​are​ ​the​ ​requirements​ ​for​ ​running​ ​Minerva:

1. Linux​ ​or​ ​Windows​ ​operating​ ​systems
2. Python​ ​version​ ​2​ ​(Minerva​ ​fully​ ​tested​ ​with​ ​Python​ ​2.7)
3. Vivado​ ​Design​ ​Suite​ ​(Minerva​ ​fully​ ​tested​ ​with​ ​Vivado​ ​2015​ ​and​ ​newer)

Note: Make sure to source vivado environmental variable before running minerva
(settings64.sh​ ​in​ ​case​ ​of​ ​Linux​ ​and​ ​settings64.bat​ ​in​ ​case​ ​of​ ​Windows)

In this section we will go through a simple example and describe all common steps
involved in the process. The source code used as an example in this section is the
VHDL​ ​implementation​ ​of​ ​AES-GCM,​ ​and​ ​can​ ​be​ ​downloaded​ ​using​ ​the​ ​following​ ​link:
https://cryptography.gmu.edu/athena/sources/2016_06_30/AES_GCM_GMU.zip

The first step is to create a new directory as a workspace that contains the source code.
Here​ ​is​ ​the​ ​workspace​ ​address​ ​in​ ​this​ ​example:

/nhome/ffarahma/projects/CAESAR_freq_search/

Each design should have a top directory with a specific name (AES-GCM_GMU in this
example) under the workspace directory (e.g., CAESAR_freq_search). Under each
design top directory, there is another directory called ​src_rtl ​t​hat contains the entire
source code, including a text file ​source_list.txt, ​which includes all source file names in
the​ ​compilation​ ​order.

The​ ​directory​ ​structure​ ​is​ ​as​ ​follows:

12

https://cryptography.gmu.edu/athena/index.php?id=Minerva
https://cryptography.gmu.edu/athena/sources/2016_06_30/AES_GCM_GMU.zip

source_list.txt​ ​contains​ ​the​ ​following​ ​information:

13

The workspace directory (CAESAR_freq_search) may contain one or more designs that
have the same directory structure, where each design has a src_rtl folder containing the
corresponding​ ​source_list.txt.

At first, the user should run the following command to generate the ​runs.xml ​config file
based​ ​on​ ​the​ ​available​ ​designs​ ​and​ ​source​ ​code​ ​under​ ​the​ ​workspace​ ​directory.

14

$​ ​python​ ​run.py​ ​--gen_runs​ ​/nhome/ffarahma/projects/CAESAR_freq_search/

The​ ​output​ ​runs.xml​ ​looks​ ​like​ ​in​ ​the​ ​following​ ​example:

All​ ​config​ ​files​ ​are​ ​placed​ ​at​ ​the​ ​following​ ​location:

/Minerva/config/

Available parts and their corresponding id can be found in the parts.xml, which is
located​ ​under​ ​the​ ​config​ ​directory.

Note:​​ ​​Both​ ​runs.xml​ ​and​ ​parts.xml​ ​can​ ​be​ ​configured​ ​manually​ ​as​ ​well.

15

The default part id is 0 (Zynq7000 xc7z020clg484-z) and can be changed using the
following​ ​command:

$​ ​python​ ​run.py​ ​--part_id​ ​<id_number>
Or
$​ ​python​ ​run.py​ ​--change_part

Minerva_TP_Opt, Minerva_TPA_Opt and Minerva_Fast_Opt mode can be run by
executing​ ​the​ ​following​ ​commands,​ ​respectively:

$​ ​python​ ​run.py​ ​-tp
$​ ​python​ ​run.py​ ​-tpa
$​ ​python​ ​run.py​ ​-fast

In addition, a single run can be executed based on the frequency and optimization id
specified​ ​by​ ​the​ ​user:

$​ ​python​ ​run.py​ ​-sr​ ​--req_freq​ ​150​ ​--opt_id​ ​7

All​ ​detailed​ ​reports​ ​will​ ​be​ ​generated​ ​at​ ​the​ ​following​ ​location:

/Minerva/reports/

A​ ​short​ ​report​ ​may​ ​be​ ​generated​ ​using​ ​the​ ​following​ ​command.

$​ ​python​ ​run.py​ ​--short_report

All runs included in the ​runs.xml ​will be executed sequentially by default. However, the
user can specify the run id range to run a specific number of runs from the ​runs.xml
configuration​ ​file.​ ​It​ ​can​ ​be​ ​done​ ​using​ ​the​ ​following​ ​command:

16

$​ ​python​ ​run.py​ ​--run_id_range​ ​3​ ​7

In this example, run ids 3, 4, 5, 6 and 7 will be put in the queue and will be run
sequentially. The first argument value should be less than or equal to the second
argument value. If you plan to generate a result only for one run id, use the same value
for both inputs (lower bound and upper bound). For example, if you want to execute
only​ ​run​ ​id​ ​5,​ ​you​ ​should​ ​use​ ​a​ ​​--run_id_range​ ​5​ ​5​​ ​command.

Parallel execution configuration: ​The default number of runs in parallel is 6. The user
should modify this value based on the available resources on the host machine to
achieve the best performance. The estimated suggestion for different platforms is as
follows:

● Laptop:​ ​4​ ​to​ ​8
● Desktop​ ​PC:​ ​​ ​8​ ​to​ ​16
● Server:​ ​16​ ​and​ ​above

Note: All aforementioned values depend on the amount of memory and available
CPU​ ​cores.

This​ ​configuration​ ​can​ ​be​ ​done​ ​using​ ​​-n​​ ​argument.

The following example indicates the command that runs Minerva_TP_Opt mode
for​ ​run​ ​id​ ​3​ ​to​ ​7​ ​with​ ​8​ ​runs​ ​in​ ​parallel:
$​ ​python​ ​run.py​ ​-tp​ ​--run_id_range​ ​3​ ​7​ ​-n​ ​8

7. Quick​ ​Start

In this section we provide a set of commands that you can execute to generate results
for​ ​AES-GCM.​ ​AES-GCM​ ​and​ ​Minerva​ ​source​ ​link​ ​were​ ​provided​ ​in​ ​the​ ​usage​ ​section.

Linux​ ​users:
$​ ​source​ ​​ ​<Vivado​ ​location>/Vivado/<Vivado_version>/settings64.sh

Windows​ ​users:
$​ ​<Vivado​ ​location>/Vivado/<Vivado_version>/settings64.bat

Linux​ ​and​ ​Windows​ ​users:
$​ ​cd​ ​<Minerva​ ​directory​ ​address​ ​on​ ​your​ ​pc>

17

$ python run.py --gen_runs <Workspace directory address that contains AES-GCM
sources>
$​ ​python​ ​run.py​ ​-tp

Note: The default number of parallel runs is 6. You can modify this value based on your
available​ ​resources​ ​on​ ​the​ ​host​ ​machine​ ​using​ ​the​ ​following​ ​argument:
-n​ ​<number_of_parallel_runs>

Wait until Minerva be done with the Minerva_TP_Opt mode. In the meantime you can
check the status of the current run by checking the Minerva status XML file available in
the​ ​following​ ​location:
<AES-GCM​ ​sources​ ​directory>/minerva_status/AES-GCM_MS.xml

Also,​ ​you​ ​can​ ​access​ ​the​ ​full​ ​report​ ​available​ ​in​ ​the​ ​following​ ​address:
<AES-GCM​ ​sources​ ​directory>/minerva_status/full_reports/AES-GCM_ID0.txt

When​ ​the​ ​Minerva​ ​run​ ​is​ ​done,​ ​you​ ​can​ ​see​ ​a​ ​short​ ​report​ ​using​ ​the​ ​following​ ​command:
$​ ​python​ ​run.py​ ​--short_report
(follow​ ​the​ ​instruction​ ​printed​ ​on​ ​the​ ​terminal​ ​window​ ​to​ ​see​ ​the​ ​report)

The​ ​result​ ​replication​ ​package​ ​can​ ​be​ ​generated​ ​using​ ​the​ ​following​ ​command:
$​ ​python​ ​run.py​ ​-respkg
(follow the instruction printed on the terminal window to generate the result replication
package)

The​ ​generated​ ​package​ ​can​ ​be​ ​found​ ​in​ ​the​ ​following​ ​address:
<AES-GCM directory>/result_repl_AES-GCM_<date and time the package
generated>.zip

18

 8. Input​ ​Arguments

Argument Default
value

Description

-tp
--Minerva_TP_Opt

False Run​ ​Minerva​ ​in​ ​Minerva_TP_Opt​ ​mode​ ​to​ ​maximize​ ​the
frequency

-tpa
--Minerva_TPA_Opt

False Run​ ​Minerva​ ​in​ ​Minerva_TPA_Opt​ ​mode​ ​to​ ​maximize​ ​the
frequency/LUT​ ​ratio

-fast
--Minerva_Fast_Opt

False Run​ ​Minerva​ ​in​ ​Minerva_Fast_Opt​ ​mode.

-sr
--single_run

False Execute​ ​a​ ​single​ ​Vivado​ ​run​ ​for​ ​the​ ​specific​ ​frequency​ ​and
opt​ ​id

--short_report False Print​ ​out​ ​short​ ​reports

--req_freq 150 Specify​ ​the​ ​requested​ ​frequency​ ​required​ ​for​ ​a​ ​single​ ​run

--opt_id 2 Specify​ ​the​ ​optimization​ ​id​ ​required​ ​for​ ​a​ ​single​ ​run

--run_id 0 Specify​ ​the​ ​run​ ​id​ ​based​ ​on​ ​the​ ​runs​ ​specified​ ​in​ ​runs.xml
(this​ ​argument​ ​is​ ​only​ ​available​ ​in​ ​single_run)

--part_id 0 Specify​ ​Part​ ​ID​ ​based​ ​on​ ​the​ ​device​ ​list​ ​available​ ​in
config/parts.xml

--init_l_f 100 Specify​ ​the​ ​frequency​ ​range​ ​starting​ ​value​ ​(lower​ ​bound)​ ​in
MHz

--init_u_f 500 Specify​ ​the​ ​frequency​ ​range​ ​end​ ​value​ ​(upper​ ​bound)​ ​in​ ​MHz

-r
--range_size

12 Specify​ ​range​ ​size

-n
--num_runs

6 Specify​ ​max​ ​number​ ​of​ ​runs​ ​in​ ​parallel

-p
--num_opts

23 Specify​ ​number​ ​of​ ​optimization​ ​strategies

-fo
--fast_opt_ids

[11] Specify​ ​optimization​ ​strategies​ ​to​ ​be​ ​used​ ​for
Minerva_Fast_Opt​ ​mode.

-gr
--gen_runs

“” Specify​ ​workspace​ ​location​ ​to​ ​generate​ ​runs.xml​ ​config​ ​file
automatically.

19

-rir
--run_id_range

False Specify​ ​custom​ ​run​ ​id​ ​range​ ​corresponding​ ​to​ ​runs.xml​ ​config
file​ ​to​ ​run.​ ​This​ ​argument​ ​receives​ ​exactly​ ​2​ ​integers​ ​(lower
bound​ ​and​ ​upper​ ​bound)​ ​as​ ​input.

-top
--top_name

-1 Specify​ ​custom​ ​top​ ​level​ ​module​ ​name.
Note:​ ​​this​ ​name​ ​will​ ​be​ ​applied​ ​to​ ​all​ ​runs​ ​in​ ​the​ ​runs.xml.

-respkg
--gen_resrep_pkg

False Generates​ ​a​ ​package​ ​for​ ​result​ ​replication​ ​in​ ​zip​ ​format

-chpart
--change_part

False Select​ ​Part​ ​ID​ ​based​ ​on​ ​the​ ​device​ ​list​ ​available​ ​in
config/parts.xml

--debug False Debugging​ ​mode

--help False Print​ ​out​ ​the​ ​argument​ ​table​ ​and​ ​the​ ​corresponding
description​ ​for​ ​each​ ​argument

-tp,​ ​--Minerva_TP_Opt
Minerva_TP_Opt is designed specifically to find the maximum frequency achievable by
a​ ​given​ ​hardware​ ​design.

-tpa,​ ​--Minerva_TPA_Opt
Minerva_TPA_Opt targets further optimization of the frequency to #LUTs ratio
(Throughput​ ​to​ ​area​ ​ratio).

-fast,​ ​--Minerva_Fast_Opt
Minerva_Fast_Opt is designed to achieve proper results in terms of both throughput and
throughput​ ​to​ ​area​ ​ratio​ ​in​ ​a​ ​short​ ​amount​ ​of​ ​time​ ​compared​ ​to​ ​the​ ​other​ ​modes.

-r,​ ​--range_size
r (precision range size) is the maximum number of frequency targets (higher than the
last achieved maximum clock frequency) to be explored. If we achieve positive slack for
a frequency in this range, we will continue the search; otherwise we will terminate the
process.

-n,​ ​--num_runs
Indicates the number of runs to be performed in parallel. Minerva can run on multiple
CPU cores and take advantage of multithreading. The default number of parallel runs is
6. But, the user should modify this parameter based on the available resources on the
host​ ​machine.

20

-p,​ ​--num_opt
Represents​ ​the​ ​number​ ​of​ ​optimization​ ​strategies​ ​to​ ​be​ ​considered​ ​during​ ​the​ ​search.

-fo,​ ​--fast_opt_ids
Represents specific optimization IDs to be considered in Minerva_Fast_Opt mode. The
default value contains only one strategy (11), but the user can specify a new set of
strategies​ ​to​ ​be​ ​considered​ ​in​ ​Fast​ ​mode​ ​using​ ​this​ ​argument.
Example: the following command runs Minerva_Fast_Opt mode considering
optimization​ ​strategies​ ​6,​ ​9,​ ​4​ ​and​ ​15:
$​ ​python​ ​run.py​ ​-fast​ ​-fo​ ​6​ ​9​ ​4​ ​15

-gr,​ ​--gen_runs
Generates the runs.xml configuration file based on the specified address for the working
directory​ ​and​ ​all​ ​source​ ​code​ ​available​ ​in​ ​that​ ​location.
Example:
$​ ​python​ ​run.py​ ​-gr​ ​/nhome/ffarahma/projects/CAESAR_freq_search/

-rir,​ ​--run_id_range
By using this argument you can select a custom run id range corresponding to runs.xml
config file to run. So Minerva puts the selected runs in a queue and run them
sequentially.
Example:
$​ ​python​ ​run.py​ ​-rir​ ​3​ ​8

-top,​ ​--top_name
Specifies a custom top level entity. The default top level is the last name specified in the
source_list.txt. If the user use this argument, the new top level name will be used for all
runs​ ​in​ ​the​ ​queue.
Example:
$​ ​python​ ​run.py​ ​-top​ ​AEAD

-respkg,​ ​--gen_resrep_pkg
Generates a package for result replication in zip format. The full description can be
found​ ​in​ ​Result​ ​replication​ ​package​ ​generation​ ​section.
Example:
$​ ​python​ ​run.py​ ​-respkg

21

-sr,​ ​--single_run
Runs a customized single run by requesting specific frequency and optimization
strategy. The frequency and optimization id can be specified by ​--req_freq ​and --opt_id
respectively.

Example:
$​ ​python​ ​run.py​ ​-sr​ ​--req_freq​ ​100​ ​--opt_id​ ​5

--part_id
Changes the default part id specified in the runs.xml config file. After using this
argument all subsequent runs will use the new part id and the corresponding target
device. To find the available part ids and their information or adding a new device, the
user​ ​should​ ​refer​ ​to​ ​the​ ​parts.xml​ ​config​ ​file​ ​available​ ​in​ ​the​ ​following​ ​location:
<Minerva_sources_loc>/config/parts.xml
Example:
$​ ​python​ ​run.py​ ​--part_id​ ​3

-chpart,​ ​--change_part
Prints the list of all available parts in the parts.xml config file and the user can select
which part they want to be targeted by Minerva. After using this argument all
subsequent​ ​runs​ ​will​ ​use​ ​the​ ​new​ ​part​ ​id​ ​and​ ​the​ ​corresponding​ ​target​ ​device.
Example:
$​ ​python​ ​run.py​ ​-chpart
--init_l_f
Specifies the frequency range starting value (lower bound) in MHz that is used by
Minerva optimization algorithms. The default value is 100 MHz and the user can change
it​ ​by​ ​the​ ​aforementioned​ ​argument.
Example:
$​ ​python​ ​run.py​ ​--init_l_f​ ​50

--init_u_f
Specifies the frequency range end value (upper bound) in MHz that is used by Minerva
optimization algorithms. The default value is 500 MHz and the user can change it by the
aforementioned​ ​argument.
Example:
$​ ​python​ ​run.py​ ​--init_u_f​ ​650

22

 9. Report​ ​Generation​ ​and​ ​Minerva​ ​Status​ ​XML​ ​File

Minerva status xml file will be created in the following folder for each design after the
first​ ​run:
<design_sources_loc>/minerva_status/<design_name>_MS.xml
This xml file keeps track of all runs initiated so far by Minerva and their corresponding
latest​ ​status.​ ​The​ ​following​ ​picture​ ​indicates​ ​the​ ​minerva​ ​status​ ​file​ ​for​ ​ACORN_128:

23

By looking at this file, the user can see latest status of all runs for each design in real
time.
In addition, a full report corresponding to each Minerva Result id is available in the
following​ ​file:
<design_sources_loc>/minerva_status/full_reports/<design_name>_ID<result_id>.txt
The​ ​full​ ​reports​ ​are​ ​also​ ​updated​ ​in​ ​real​ ​time.

10. Result​ ​Replication​ ​Package​ ​Generation

In this section we provide the instruction required to generate a package that let the
user to replicate the results generated by Minerva. This package contains all sources
and scripts that are needed to produce the same results with a single run and without
using​ ​Minerva​ ​tool.

The​ ​following​ ​argument​ ​let​ ​us​ ​generate​ ​the​ ​result​ ​replication​ ​package:
-respkg,​ ​--gen_resrep_pkg

By​ ​executing​ ​the​ ​following​ ​command:
$​ ​python​ ​run.py​ ​-respkg

The tool prints out the available designs based on the runs.xml config file and you can
enter your desired run id. Then, the tool prints out the available results for that specific
design. It also indicates whether each result is based on a completed Minerva run or an
incomplete run. Thus, the user can choose his desired result. Next, the user will be
asked​ ​to​ ​choose​ ​one​ ​of​ ​the​ ​following​ ​options​ ​for​ ​source​ ​code​ ​inclusion​ ​in​ ​the​ ​package:

1. Include​ ​all​ ​source​ ​code​ ​in​ ​the​ ​package
2. Include​ ​source​ ​code​ ​url​ ​in​ ​the​ ​package
3. Do​ ​not​ ​include​ ​source​ ​code​ ​in​ ​the​ ​package

Finally, tool will generate a Zip file that contains all data that you need to replicate the
same result without using Minerva tool. In addition, a readme text file (included in the
package)​ ​contains​ ​the​ ​instruction​ ​needed​ ​to​ ​run​ ​the​ ​scripts​ ​included​ ​in​ ​the​ ​package.
All​ ​result​ ​replication​ ​packages​ ​can​ ​be​ ​found​ ​in​ ​the​ ​following​ ​location:
<design sources directory>/result_repl_<design name>_<date and time the package
generated>.zip

Note: ​before running the top level script, the user should copy all required source code
to the src_rtl directory if they have chosen source code inclusion mode 3 during
package​ ​generation.

24

 11. References

[1] D. J. Bernstein and T. Lange. eBACS: ECRYPT Benchmarking of Cryptographic
Systems.​ ​Accessed​ ​August​ ​1,​ ​2017.​ ​[Online].​ ​Available:​http://bench.cr.yp.to

[2] K. Gaj, J.-P. Kaps, V. Amirineni, M. Rogawski, E. Homsirikamol, andB. Y. Brewster,
“ATHENa - automated tool for hardware evaluation: Toward fair and comprehensive
benchmarking of cryptographic hardware using FPGAs,” in20th International
Conference on Field Programmable Logic and Applications, FPL 2010, Milano, Italy,
Aug.​ ​31st​ ​-​ ​Sep.​ ​2nd,2010,​ ​pp.​ ​414–421.

[3] GMU Source Code of Round 3 & Round 2 CAESAR Candidates, AES-GCM, AES,
AES-HLS, and Keccak Permutation F. Accessed August 8, 2017. [Online].
Available:​https://cryptography.gmu.edu/athena/index.php?id=CAESAR_source_codes

[4] Xilinx. Vivado Design Suite User Guide. [Online]. Available:
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug973-vivado-r
elease-notes-install-license.pdf

25

http://bench.cr.yp.to/
https://cryptography.gmu.edu/athena/index.php?id=CAESAR_source_codes
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug973-vivado-release-notes-install-license.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug973-vivado-release-notes-install-license.pdf

