Hardware API for Post-Quantum Public Key
Cryptosystems

Ahmed Ferozpuri, Farnoud Farahmand, Viet Dang, Malik Umar Sharif,
Jens-Peter Kaps, and Kris Gaj

Cryptographic Engineering Research Group
George Mason University
Fairfax, Virginia 22030
email: {aferozpu, flarahma, vdang6, msharif2, jkaps, kgaj}@gmu.edu

Abstract. In this paper, we specify the proposed hardware Application
Programming Interface (API) for Post-Quantum Public Key Cryptosys-
tems. This new hardware API intends to meet the diverse requirements of
Post-Quantum Cryptosystems, and includes: minimum compliance cri-
teria, interface, communication protocol, and the timing characteristics
supported by the core. All of them have been defined with the goals of
guaranteeing (a) compatibility among implementations of the same algo-
rithm by different designers, and (b) fair benchmarking of Post-Quantum
Public Key Cryptosystems in hardware. In the rest of this document, we
refer to the core compatible with our API as a Post-Quantum Cryptog-
raphy (PQC) core.

1 Minimum Compliance Criteria

The recommended minimum compliance criteria are listed below:

1.1 Encryption, Decryption, Signature Generation, Signature
Verification, Key Encapsulation and Key Decapsulation

A PQC core can implement either (1) encryption and decryption, or (2) sig-
nature generation and signature verification, or (3) key encapsulation and key
decapsulation. For each of the above three cases, only one operation, e.g., either
encryption or decryption, should be performed at any given time (half-duplex).

This feature demonstrates an algorithm’s ability to use shared resources for:
(1) encryption and decryption, or (2) signature generation and signature verifi-
cation, or (3) key encapsulation and key decapsulation.

Alternatives (not recommended):

a) Separate cores for encryption and decryption, or for signature generation
and signature verification, or for key encapsulation and key decapsulation
(simplex).

b) Encryption and decryption, signature generation and signature verification,
or key encapsulation and key decapsulation within one core, with both op-
erations capable of running in parallel (full-duplex).

Additionally, to facilitate benchmarking and ranking of candidates, only one
type of scheme, i.e., public key encryption or digital signature or KEM, should
be implemented by each hardware module. The rationale for that is that it is ex-
tremely time consuming to implement all possible combinations for all schemes.
If one designer implements only public key encryption for Algorithm A and
the other designer implements public key encryption and digital signature for
Algorithm B (both in one module), then no results concerning these two imple-
mentations can be fairly compared with each other.

1.2 Variants

A PQC core can either implement just one variant of a given algorithm (e.g.,
a variant supporting just one key size) or multiple variants of the same algorithm.

In case multiple variants are implemented within the same core, the choice among
these variants can be made either

a) at synthesis time, using constants or generics, or
b) at run-time, using system parameters provided as inputs.

Allowing choosing parameters at synthesis time would demonstrate the generic
nature of the code and its ability to support various security levels. At the same
time, the corresponding hardware implementation will support only one parame-
ter set at a time, and thus it will have the minimum possible resource utilization
necessary to accomplish a particular security level. Allowing choosing parameters
at run-time will demonstrate the flexibility of hardware implementation, but it
will likely require a larger amount of resources than that required for the variant
with the highest supported security level. An implementer must be careful to
specify the respective approach, a) or b).

1.3 Key Generation

Key generation should be fully implemented outside of the hardware core, e.g.,
in software.

The reason for this choice is that key generation in public key cryptography
is often much more complex than the basic operations, such as encryption and
decryption (or signature generation and signature verification). Implementing
it requires at least a much more complex controller, and often also additional
computational units. At the same time, if the used keys are long-term keys (e.g.,
in signature and encryption schemes), then the time of their generation is not
critical, and the use of hardware resources for their generation unjustified.

Alternatives (not recommended):

a) Key generation should be fully implemented within the hardware core.
b) Key generation may be done either in hardware or in software.

1.4 Incomplete blocks

The core must properly handle incomplete blocks of message.

An alternative (not recommended):

a) handling only messages composed of full blocks.

1.5 Padding

Padding in hardware, assuming that an unused portion of the last input data
word s filled with zeros.

The padding type must be specified using either:

a) Generics, or
b) Inputs (system parameters)

Padding cost, in terms of area, is algorithm dependent, and not negligible.

Alternatives (not recommended):

a) Padding in hardware, assuming that an unused portion of the last block is
filled with zeros.

b) Padding in software, followed, if needed, by modifications of the last blocks
in hardware.

1.6 Empty message

Empty messages are allowed only as an input to signature generation and signa-
ture verification.

Alternatives (not recommended):

a) Allowing an empty message for encryption.
b) Not allowing empty messages for signature generation and signature verifi-
cation.

1.7 Supported maximum size of a message

A PQC core should support at least one full block and no more than 2'°-1 bytes
of a message. A limit on the number of blocks and bytes of a message that can
be processed by a given core should be clearly provided in the documentation of
the core, taking into account that the size of one block of message in bits depends
on a particular algorithm and an algorithm variant.

1.8 Fractions of bytes

The size of all inputs is assumed to be expressed in bytes. As a result, the core
should support only inputs composed of full bytes. No fractions of bytes should
be allowed.

An alternative (not recommended):
a) the size of inputs expressed in bits.

Allowing inputs of arbitrary size in bits would substantially increase the area
required for handling of incomplete blocks.

1.9 Maximum number of independent inputs processed in parallel

A PQC core should process only one input at a time. The core may still take
advantage of parallel processing of blocks belonging to the same input.

An alternative (not recommended):

a) an implementation that supports processing of multiple independent inputs
in parallel.

1.10 External memory

Ezxternal memory may be used only to store intermediate values, and not for
look-up tables or calculations.
Additionally, the use of this memory is totally optional.

1.11 One clock domain

A PQC core should have only one clock input. This clock should be operating
at the mazimum clock frequency determined by the critical path located entirely
inside of the hardware module.

An alternative (not recommended):

a) multiple clock domains, e.g., for input module, output module, and the main
cipher core.

1.12 Permitted widths of data ports (in bits)
Public Data Input (PDI) and Public Data Output (PDO) ports:

Lightweight implementations: w = 8,16,32
High-speed implementations: 32 <w < 128.

Secret Data Input (SDI) ports:

Lightweight implementations: w = 8,16,32
High-speed implementations: 32 < swi < 64.

Secret Data Output (SDO) ports:

Lightweight implementations: w = 8,16,32
High-speed implementations: 32 < swo < 128

See Section [2 and Fig. [I] for the exact meaning of PDI, SDI, PDO, SDO, w, swi,
swo.

Implementations of a particular Post-Quantum Public Key algorithm, with the
same data port widths, following all other minimum compliance criteria, should
be mutually compatible. Implementations with different values of data port
widths should be compatible under the assumption that all inputs and out-
puts are reformatted in software or hardware (from one word width to another)
using a universal function/circuit, common for all ciphers.

2 Interface

The general idea of a PQC core interface is shown in Fig. [T} This interface is
composed of six major data buses for:

Public Data Inputs (PDI)

— Secret Data Inputs (SDI)

Random Data Inputs (RDI)

— Public Data Outputs (PDO)

Secret Data Outputs (SDO), and

External Memory Inputs/Outputs (MEM), respectively.

Necessary data buses for Public-Key Encryption, Digital Signature, and Key
Encapsulation Mechanism (KEM) are shown in Table

The first five of these six buses are accompanied by the corresponding hand-
shaking control signals, named valid and ready. The valid signal indicates that
the data is ready at the source, and the ready signal indicates that the destina-
tion is ready to receive them.

The External Memory Inputs/Outputs have a different set of accompanying
ports. The memory control signals support multiple memory configurations. The
mem_addr signal is used to specify a memory address. The mem_do and mem_di
signals are used to send and receive data from memory, respectively. Multiple
memory blocks can be written to by using multiple mem_wr signals.

The status_ready signal is high when a status code is available at the (PDO)
port upon completion of a the corresponding instruction, and can be used for
synchronization purposes.

Table 1: Data buses for PQC cores
Public-Key Encryption
Required|PDI, SDI, PDO
Optional | RDI, MEM
Not used|SDO
Digital Signature
Required|PDI, SDI, PDO
Optional | RDI, MEM
Not used|SDO
Key Encapsulation Mechanism

Required|PDI, SDI, PDO, SDO, RDI
Optional | MEM

Not used
T(rst
clk rst
w w
PDI —{ pdi_data pdo_data ——p PDO
Public Data Input — pdi_valid pdo_valid — Public Data Output
Ports 4— pdi_ready QC pdo_ready 4—— Ports
swi SWo
SDI —){ sdi_data sdo_data ——p SDO
Secret Data Input —)sdi_valid sdo_valid — Secret Data Output
Ports 44— sdi_ready sdo_ready ¢—— Ports
rw| amw
RDI — rd{_dat.a mem_addr --r-n-W} MEM
Random Data Input —| rd!_vahd mem_dg 7oy Memory
Ports 4— rdi_ready mem_di (¢ e Ports
mem_wr >~-)
status_ready F---§

Fig.1: PQC Interface

clk rst
clk rst l clk st
clk rst
w w
AXI-4 data pdi_data pdo_data data AXI-4
Stream i pdi_valid pdo_valid vali ~ Stream
Master tready pdi_ready PQC pdo_ready tready Slave
SWi SWO
AXI-4 data sdi_data sdo_data data AXI-4
Stream valid sdi_valid sdo_valid valid Stream
Master tready sdi_ready sdo_ready tready Slave
T 1
—4){ rdi_data mem_addr
ck rst 3yl rdi_valid mem_do ck st
44— rdi_ready mem_di
mem_wr
status_ready
Fig. 2: Typical external circuits: AXI4-Stream IPs
rd_clk = clk rst wr_clk =
wr_clk rst l clk rst rd_clk
l l l clk rst l l l
w w .
PDI dout pdi_data pdo_data din PDO
empty pdi_valid pdo_valid write
FIFO read K pdi_ready PQC pdo_ready full FIFO
il o Swo
SDI dout Al sdi_data sdo_data din SDO
ty sdi_valid sdo_valid write
FIFO ™" : >
0 read [4— | sdi_ready sdo_ready full FIFO
. mem_addr
T T T rdi_data mem_do
wr_clk rst rd_clk= rdi_valid di wr_clk=rst rd_clk
clk di d mem_dl clk
rdi_ready mem_wr

status_ready

Fig. 3: Typical external circuits: FIFOs

The physical separation of Public Data Inputs (such as the public key, mes-
sage, ciphertext, etc.) from Secret Data Inputs (such as the private key) is dic-
tated by the resistance against any potential attacks aimed at accepting public
data, manipulated by an adversary, as a new private key.

The optional Secret Data Outputs are dedicated for shared secret data in
key encapsulation and key decapsulation.

The handshaking signals are a subset of major signals used in the AXI4-
Stream interface [1]. As a result, a PQC core can communicate directly with the
AXI4-Stream Master through the Public Data Inputs and Secret Data Inputs,
and with the AXI4-Stream Slave through the Public Data Outputs and Secret
Data Outputs, as shown in Fig. 2] At the same time, PQC is also capable of
communicating with much simpler external circuits, such as FIFOs, as shown in
Fig.

An additional advantage of using FIFOs at all data ports is their potential
role as suitable boundaries between the two clock domains, used for communica-
tion and computations, respectively. This role is facilitated by the use of separate
read and write clocks, shown in Fig. |3| as rd_clk and wr_clk, accordingly. For
a better compatibility with the AXI communication interface, all FIFOs men-
tioned in our description are assumed to operate in the First-Word Fall-Through
mode (as opposed to the standard mode).

For full interoperability and the capability to develop a universal testbench,
the reset input is assumed to be synchronous and active high.

3 Communication Protocol

All parts of a typical input and a typical output of a PQC core are shown
in Fig. 4] for encryption (Encrypt), decryption (Decrypt), signature generation
(Sign), signature verification (Verify), key encapsulation (Encap) and key decap-
sulation (Decap), respectively. System parameters can be omitted for all cases,
assuming that only one set of these parameters is supported. Public key may be
omitted as an input to decryption, signature generation, and decapsulation, if
this key is not required by a given algorithm. An empty message can be used
for signature generation and verification, but in this case, the message cannot
be simply omitted; it must be provided in the form of a message segment with
the Segment Length equal to zero.

Figures 5] [6] and [7] illustrate the allowed format of Public Data Input
(PDI), Secret Data Input (SDI), Random Data Input (RDI), Public Data Output
(PDO), and Secret Data Output (SDO), specific for each type of scheme. All
inputs consist of instructions and segments, all outputs consist of status codes
and segments. Each segment starts with a header, describing its type and size.

All instructions, status codes, segment headers, and segments start on a
boundary of a word. If the word size is greater than the instruction, status, or
header size, than only the most significant bits of a given word are used. All
remaining bits are filled with zeros. If the instruction, status code, or header are
bigger than a single word, then they are divided into multiple words (starting

Params Key Msg Rand Params _Key Ciphertext
H Priv l
Key
Encrypt Decrypt
I
Ciphertext Status Msg Status
Sys Pub Sys Pub
Params Key Msg Rand Params Key Msg Sgn
S A R | |
Priv l H ,

K
- Sign [Verify j

Sgn Status Status
Sys Pub Sys Pub
Params Key Rand Params Key Ciphertext

1 i L]

________ l Priv

|]
Encap] - [Decap j
: | ﬁ

| . —

Ciphertext Status Shared Status Shared
Secret Secret

Fig.4: Input and Output of a PQC core. Notation: Sys Params - System Pa-
rameters, Pub Key - Public Key, Msg - Message, Priv Key - Private Key, Sgn -
Signature, Rand - Random bits

seg_l=PubKey ! seg 0_header
Instruction = ENC I::> seg 0 = Ciphertext
seg_2 header Status
seg 2 =Msg (PDO)
(PDI)

Encryption

seg_1=Pub Key |

Instruction = DEC seg 0 _header

seg_2_header I::> seg 0= Msg
seg 2 = Ciphertext Status
(PDI) (PDO)

seg_0_header
seg_0 = Priv Key

(SDI)

Decryption

Fig.5: Format of Public Data Input (PDI), Secret Data Input (SDI), Random
Data Input (RDI) and Public Data Output (PDO) for encryption and decryp-
tion.

10

seg_1=Pub Key

=]
@
—
-
C
o
=
o
S
1}
—
o
Y
=
<
~
m
<

Instruction = SGN

seg 2 header

seg_2 = Msg

(PDI)

seg 0 header

seg 0= Priv Key

(SDI)

! seg_1=Pub Key

Instruction = VER

seg_2 header

seg 2 =Msg

seg_3 header

seg_3=Sgn

(PDI)

seg_0_header

seg 0 =Signature

Status

(PDO)

seg_0_header

seg 0=Msg

Status

(PDO)

Signature Verification

Fig.6: Format of Public Data Input (PDI), Secret Data Input (SDI), Random
Data Input (RDI) and Public Data Output (PDO) for signature generation and
signature verification.

11

!]
e 0= Sysparam
:l seg 1 header i seg_0 = Ciphertext
i seg_1 = Pub Key | Status
Instruction = ENCAP | |:> (PDO)
(PDI) seg 0 _header
seg_0 = Shared Secret
(SDO)
Rand |
(RDI)

Encapsulation

" seg 1 =Pub Key '
Instruction = DECAP |
seg 2 header

seg_ 2 = Ciphertext l::> (PDO)
(PDI) seg_0 header

seg_0 = Shared Secret
(SDO)

Status |

seg_0_header
seg_0 = Priv Key

(SDI)

Decapsulation

Fig. 7: Format of Public Data Input (PDI), Secret Data Input (SDI), Random
Data Input (RDI), Public Data Output (PDO) and Secret Data Output (SDO)
for key encapsulation and key decapsulation.

12

MSB LSB

Opcode
or Reserved
Status
<+—4 >« 12 >
Opcode Status
1110 — Success
0000 - Encrypt (ENC) 1111 — Failure

0001 - Decrypt (DEC)

0010 - Sign (SGN)

0011 - Verify (VER)

0100 — Encapsulation (ENCAP)

0101 — Decapsulation (DECAP)

0110 - Load Private Key (LDPRIVKEY)

Others — Reserved

Note: if w < 16, more than one word should be used

Fig. 8: Instruction/Status Format

from the leftmost word), and the last (rightmost) word is supplemented with
Z€ros.

For Secret Data Input, the entire input consists of the Private Key segment.
For Public Data Input, the System Parameters segment, the Load Private Key
instruction (LDPRIVKEY), and the Public Key segment can be omitted in case
the same values of these respective input components apply to two consecutive
inputs. Each input must include one of the following six instructions: Encryption
(ENC), Decryption (DEC), Signature Generation (SGN), Signature Verification
(VER), Key Encapsulation (ENCAP), or Key Decapsulation (DECAP). The rest
of the PDI input consists of data segments, specific to a particular operation, such
as Message, Ciphertext, and Signature. Any segment type can be omitted, if it
is not required by a given algorithm. However, in cases of signature generation
and signature verification, empty messages must be provided using a separate
segment, with the Segment Length field of the respective header set to zero.

An optional Random Data Input can be used to feed the core with random
inputs, required by some Post-Quantum Public Key Cryptosystems. The entire
word is read when a new random word is present, as indicated by the control
signals of RDI, and the read operation is requested by the PQC core. There are
no segment types necessary to meet the minimum compliance criteria, and every
random word of width rw denotes a string of bits carrying a random value used
by the PQC. In this fashion, both a fixed number of random inputs and an
indefinite stream of random inputs can be accommodated.

The proposed Memory Port (MEM) offers a large degree of flexibility in order
to support many different memory configurations. A single or multiple memory
modules can be configured as required by splitting and connecting the mem_addr,
mem_do, mem_di, and mem_wr signals, accordingly. Additionally, the memory can
have either synchronous or asynchronous output.

13

8 8 16

Info Reserved Segment Length
\ 171
MSB L LSB
Se Last - . lei —‘ .
gment EOI Divided into Iceil(32/w)l words, starting from MSB
Type
Reserved

Fig.9: Segment Header Format

The instruction/status format of the PQC HW API is shown in Fig. [8| For
instruction, the Opcode field determines which operation should be executed
next. Alternatively, for status, the Opcode field is replaced by the Status field,
which can be set to only two values, PASS or FAIL.

Table 2: Segment Type Encoding
lEncoding‘Type ‘

000 Reserved

001 Message

010 Signature

011 Ciphertext

100 System Parameters

101 Public Key

110 Private Key

111 Shared Secret

The segment header format is shown in Fig. [0] The segment header consists
of:

— 3-bit Segment Type, which indicates the type of data that the current segment
contains. The type encoding is defined in Table

— 1-bit EOI (End-Of-Input) indicates that the current segment is the last
segment of input other than an empty segment.

— 1-bit Last indicates that the current segment is the last segment, i.e., no
more segments are associated with the given instruction.

— 11 reserved bits for future extensions (3 as a part of the Info field, and 8 as
a part of the Reserved field)

— 16-bit Segment Length to specify the size of data in the given segment in
bytes.

The EOI and Last fields contain typically the same value. The only exception
is the case of the last segment being an empty segment, which may happen for
example when an encrypted or signed message is empty. In this case, the header
of a segment preceding the empty segment should have EOI=1 and Last=0. The
following, empty message segment should have EOI=0 and Last=1.

14

The system parameter segment, Sys Params, should be sent first to setup
the PQC core. The format of this segment is specific to a given algorithm and is
beyond the scope of this specification. In the future, with the emergence of the
first implementations of post-quantum algorithms compliant with the proposed
API, the concrete proposals in this area are likely to be published as independent
documents.

4 Timing Characteristics

Figures and [11] specify the timing characteristics of the ports PDI and PDO,
respectively. Input ports are shown in blue and the output ports in red. The
contents of data buses are read and acknowledged when *_valid and its corre-
sponding *_ready are both asserted. Data is assumed to be present at the output
of the source module when *_valid is asserted.

ok [L[[| [R
pdi_valid / \
pdi_data % 10] X 1] V
pdi_ready / \ _/

Fig. 10: Example timing diagram for PDI

e | L | [| L L1
pdo_valid /
pdo_data X om X o1 X oz X om

pdo_ready / \ / \

Fig. 11: Example timing diagram for PDO

Additionally, the assumed order of bytes in memory and in 32-bit words is
shown in Fig.
5 Conclusions
We have defined the full specification of the hardware API for Post-Quantum

Public Key Cryptosystems, suitable for hardware benchmarking and evaluation
of candidates for new Post-Quantum Cryptography standards.

15

Addr Value
0

n

n+1
n+2
n+3
n+4
n+5
n+6
n+7

31 0
word 0 | D[0] D[1] D[2] D[3
word 1 | D[4] D[5] D[6] D[7

(b) 32-bit word representation

0|0|0|0|0|0 00
~| O O B[W N —

(a) Memory

Fig. 12: Data representation

Our proposal meets one of the fundamental properties of every properly
defined API:

If a given algorithm is implemented independently by two different groups
using the same API, one should be able to

— encrypt, sign a message or do key encapsulation using the first implementa-
tion, and

— decrypt, verify the result or do key decapsulation using the second imple-
mentation.

To be exact, this feature should hold under the following two assumptions:

1. Either both implementations use the same format of system parameters or
this segment is converted from one representation to another.

2. Either both implementations use the same values of the data port widths w,
swi and swo, or simple reformatting (word width conversion) of the input
to decryption (verification, decapsulation) is performed outside of the cipher
core (in software or hardware).

A similar API, described in [2], has been widely adopted and successfully
used to implement and benchmark almost all authenticated ciphers competing
in Round 2 and Round 3 of the CAESAR contest [3] [4].

References

1. ARM. AMBA Specifications. [Online|. Available: http://www.arm.com/products,/
system-ip/amba-specifications.php

2. E. Homsirikamol, W. Diehl, A. Ferozpuri, F. Farahmand, P. Yalla, J.-P. Kaps, and
K. Gaj, “CAESAR Hardware API,” Cryptology ePrint Archive, Report 2016,/626,
2016, |http://eprint.iacr.org/2016/626.

3. Cryptographic Engineering Research Group (CERG) at GMU. (2016, Oct.)
Benchmarking of Round 2 CAESAR Candidates. [Online]. Available: |https:
/ /cryptography.gmu.edu/athena/index.php?id=CAESAR

. (2017, Aug.) Benchmarking of Round 3 CAESAR Candidates. [Online|.

Available: https: //cryptography.gmu.edu/athena/index.php?id=CAESAR

16

http://www.arm.com/products/system-ip/amba-specifications.php
http://www.arm.com/products/system-ip/amba-specifications.php
http://eprint.iacr.org/2016/626
https://cryptography.gmu.edu/athena/index.php?id=CAESAR
https://cryptography.gmu.edu/athena/index.php?id=CAESAR
https://cryptography.gmu.edu/athena/index.php?id=CAESAR

	Hardware API for Post-Quantum Public Key Cryptosystems

