Post-Quantum Cryptography Standardization, As Driven by NIST, Summarized

Thank You!

Great thanks to

Prof. Bertrand Cambou & the entire VICEROY Symposium Organizing Committee

for the kind invitation to give this talk!

CERG: Cryptographic Engineering Research Group

Cryptographic Engineering Research Group

- 3 faculty members
- 7 Ph.D. students
- 5 MS students
- 10 affiliated scholars

Recent and Current CERG Group Members supporting PQC

Recent Graduates

Bakry

SW/HW Codesign RTL Accelerators Experimental Setup for Timing Measurements CAD Tools

Farnoud

Experimental Setup for Side-Channel Analysis Lightweight Architectures

RTL Design of HW Accelerators for Lattice-based & Code-based PQC

Viet

Duc

HLS Design of HW Accelerators for Lattice-based PQC

NEON-based SW implementations

RTL Design of HW Accelerators for Lattice-based PQC

Kamyar

PhD Students

Side-Channel Analysis

Luke

RTL Design of HW Accelerators for Lattice-based PQC

> Power & Energy Measurements

Apple

PQSecure

Qualcomm

CERG Participation in Cryptographic Contests 2007-Present

Quantum Computers

 Substantial investments by: Google, IBM, Intel, Microsoft, and governments of multiple countries

Photos: https://www.technologyreview.com

- Jan 2018: Intel's 49-qubit "Tangle Lake" processor
- Mar 2018: Google's 72-qubit "Bristlecone" processor
- 2020-2021: Three quantum computers developed at the University of Science and Technology of China reach quantum supremacy
- Nov 2022: IBM's 433-qubit "Ospray" processor

Source: https://en.wikipedia.org/wiki/Timeline_of_quantum_computing_and_communication

Development Roadmap |

Executed by IBM 🥪 On target 🏷

IBM 2022Roadmap

IBM Quantum

	2019 🥝	2020 🤡	2021 🥝	2022 🤡	2023	2024	2025	2026+
	Run quantum circuits on the IBM cloud	Demonstrate and prototype quantum algorithms and applications	Run quantum programs 100x faster with Qiskit Runtime	Bring dynamic circuits to Qiskit Runtime to unlock more computations	Enhancing applications with elastic computing and parallelization of Qiskit Runtime	Improve accuracy of Qiskit Runtime with scalable error mitigation	Scale quantum applica- tions with circuit knitting toolbox controlling Qiskit Runtime	Increase accuracy and speed of quantum workflows with integratid of error correction into Qiskit Runtime
Model Developers					Prototype quantum software applications ${ { > } } \longrightarrow$		Quantum software applica	tions
							Machine learning Natura	science Optimization
Algorithm Developers		Quantum algorithm and ap	plication modules	\bigcirc	Quantum Serverless 🕃			
Developers		Machine learning Natural	science Optimization			Intelligent orchestration	Circuit Knitting Toolbox	Circuit libraries
Kernel	Circuits	\bigcirc	Qiskit Runtime					
			Dynamic circuits 🖌 🖌		Threaded primitives 🕹	Error suppression and mitigation Error corre		Error correction
System Modularity	Falcon 27 qubits	Hummingbird 65 qubits	Eagle (*) 127 qubits	Osprey 433 qubits	Condor 1,121 qubits	Flamingo 1,386+ qubits	Kookaburra 4,158+ qubits	Scaling to 10K-100K qubits with classical and quantum communication
Source: <u>https://www.ibm.com/quantum/roadmap</u>				Heron 133 qubits x p	Crossbill 408 qubits			

Progress in Quantum Computing

Google and IBM quantum computers based on superconducting circuits operating in the temperature close to absolute 0 (~0.01 K)

Photos: https://www.technologyreview.com

System Layer Approach

What Quantum Computers Can Do?

Nobel 2012 citation: "The quantum computer may **change our everyday lives** in this century in the same radical way as the classical computer did in the last century."

Best known attack using quantum computers

1996: Grover's Algorithm, reduces the time of the exhaustive-key search for secret key ciphers

from 2^k to 2^{k/2} operations, for a k-bit key, e.g., from 2¹²⁸ to 2⁶⁴ operations, for a 128-bit key or from 2²⁵⁶ to 2¹²⁸ operations, for a 256-bit key

assuming

a sufficiently powerful and reliable quantum computer available

Easy Countermeasure: Double the size of a key

Effect on Public-Key Cryptography

1994: Shor's Algorithm, breaks major public key cryptosystems based on

Factoring: RSA

Discrete logarithm problem (DLP): DSA, Diffie-Hellman

Elliptic Curve DLP:

Elliptic Curve Cryptosystems

independently of the key size assuming a sufficiently powerful and reliable quantum computer available

Bases of the traditional public cryptosystems security

	Factorization	Discrete Logarithm	Elliptic Curve Discrete Logarithm
Given:	$\mathbf{N} = \mathbf{p} \cdot \mathbf{q}$	$\mathbf{y} = \mathbf{g}^{x} \mod \mathbf{p} =$ $\underbrace{\mathbf{g} \cdot \mathbf{g} \cdot \mathbf{g} \cdot \dots \cdot \mathbf{g}}_{x \text{ times}}$	$\mathbf{Q} = \mathbf{x} \cdot \mathbf{P} =$ $= \underbrace{\mathbf{P} + \mathbf{P} + \dots + \mathbf{P}}_{\mathbf{x} \text{ times}}$
		constants p , g	P - point of an elliptic curve
Unknown:	p, q	X	X

Underlying Mathematical Problem - RSA

N =P*Q (P, Q random primes)

*

> Record Using Classical Computers, 250 decimal digits, 829 bits Announced on February 28, 2020

How Real Is the Danger?

"There is a 1 in 5 chance that some fundamental public-key crypto will be broken by quantum by 2029." Dr. Michele Mosca Deputy Director of the Institute for Quantum Computing, University of Waterloo 2020

Source: Vandersypen, PQCrypto 2017; Lily Chen, seminar, 2020

2022 Experts' Estimates of Likelihood of a Quantum Computer Able to Break RSA-2048 in 24 hours

Source: 2022-Quantum/Threat/Timeline/Reportenters//globalriakinstitute/pro/publication/2022-quantum/threat-timeline-reported

2022 Opinion-Based Estimates of the Probability of a Quantum Computer Being Able to Break RSA-2048 in 24 hours

Figure 8 One way of reducing the set of likelihood estimates provided by the experts to some aggregate likelihood is Source: 2022 QuantumeThreatpTimelitierReporto<u>Ittepsdtikebalpskinistitutecdbg/publication/2022-quantumethoteattimithinctheptike</u>lihood

17

If z < y + x, then worry!

Post-Quantum Cryptography (PQC)

- Public-key cryptographic algorithms for which there are no known attacks using quantum computers
 - Capable of being implemented using any traditional methods, including software and hardware
 - Running efficiently on any modern computing platforms: PCs, tablets, smartphones, servers with FPGA accelerators, etc.
- Based entirely on traditional semiconductor VLSI technology!

The biggest revolution in cryptography, since the invention of public-key cryptography in 1970s!!!

Underlying Mathematical Problem – Lattice-Based PQC

Underlying Mathematical Problem – Multivariate PQC

Solving a system of *m* quadratic equations with *n* unknowns

$$p^{(1)}(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=i}^n p_{ij}^{(1)} \cdot x_i x_j + \sum_{i=1}^n p_i^{(1)} \cdot x_i \left(+p_0^{(1)}\right)$$

$$p^{(2)}(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=i}^n p_{ij}^{(2)} \cdot x_i x_j + \sum_{i=1}^n p_i^{(2)} \cdot x_i \left(+p_0^{(2)}\right)$$

$$\vdots$$

$$p^{(m)}(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=i}^n p_{ij}^{(m)} \cdot x_i x_j + \sum_{i=1}^n p_i^{(m)} \cdot x_i \left(+p_0^{(m)}\right)$$

Imagine *m* and *n* in the range of 70 and above

Three Types of PQC Schemes

Five Security Levels

Level	Security Description
1	At least as hard to break as AES-128 using exhaustive key search
2	At least as hard to break as SHA-256 using collision search
3	At least as hard to break as AES-192 using exhaustive key search
4	At least as hard to break as SHA-384 using collision search
5	At least as hard to break as AES-256 using exhaustive key search

Leading PQC Families

Family	Encryption/ KEM	Signature
Symmetric-based		XX
Code-based	XX	X
Lattice-based	XX	XX
Multivariate	X	XX
Isogeny-based	X	

XX – high-confidence candidates, X – medium-confidence candidates

Two Major Types of Schemes & Corresponding Families

Post-Quantum Public Key Exchange Post-Quantum Digital Signatures

Lattice-based

Code-based

lsogeny-based

Symmetric-based

Multivariate

Informal Call for Submissions – PQCrypto 2016

Fukuoka, Japan, February 24-26, 2016

NIST PQC Standardization Process

Round 1 Submissions as of May 2018

69 Submissions accepted to Round 1, 26 Countries, 278 co-authors

BIG QUAKE. BIKE. CFPKM. Classic McEliece. Compact LWE. CRYSTALS-DILITHIUM. CRYSTALS-KYBER. DAGS. Ding Key Exchange. DME. DRS. DualModeMS. Edon-K. EMBLEM and R.EMBLEM. FALCON. FrodoKEM. GeMSS. Giophantus. Gravity-SPHINCS. Guess Again. Gui. HILA5. HiMQ-3. HK17. HQC. KINDI. LAC. LAKE. LEDAkem. LEDApkc. Lepton. LIMA. Lizard, LOCKER, LOTUS, LUOV, McNie, Mersenne-756839. MQDSS. NewHope. NTRUEncrypt. NTRU-HRSS-KEM. NTRU Prime. NTS-KEM. Odd Manhattan. OKCN/AKCN/CNKE. Ouroboros-R. Picnic. pgNTRUSign. pgRSA encryption. pgRSA signature. pqsigRM. QC-MDPC KEM. qTESLA. RaCoSS. Rainbow. Ramstake. RankSign. RLCE-KEM. Round2. RQC. RVB. SABER. SIKE. SPHINCS+. SRTPI. Three Bears. Titanium. WalnutDSA.

Some attack scripts already posted causing total break or serious tweaks. Many more receiving detailed analysis.

Round 1 Candidates

69 accepted as complete, 5 withdrawn within the first 6 months

Family	Signature	Encryption/KEM	Overall
Lattice-based	5	21	26
Code-based	2	17	19
Multivariate	7	2	9
Symmetric- based	3		3
Isogeny-based		1	1
Other	2	4	6
Total	19	45	64

Round 2 Candidates (announced Jan. 30, 2019)

3

• Encryption/KEMs (17)

- CRYSTALS-KYBER
- FrodoKEM 9
- LAC
- NewHope
- NTRU (merger of NTRUEncrypt/NTRU-HRSS-KEM)
- NTRU Prime
- Round5 (merger of Hila5/Round2)
- SABER
- Three Bears
- Digital Signatures (9)
- CRYSTALS-DILITHIUM
- FALCON
- qTESLA

٠

- Picnic
 - SPHINCS+

- BIKE
 - Classic McEliece
 - HQC

Lattice-based

Code-based Isogenies

.

LEDAcrypt (merger of LEDAkem/pkc)

4

- NTS-KEM
- ROLLO (merger of LAKE/LOCKER/Ouroboros-R)
- RQC
- SIKE 1
- GeMSS
- LUOV
- MQDSS
- Rainbow

NIST Report on the 1st Round: <u>https://doi.org/10.6028/NIST.IR.8240</u>

- Lattice-based
- Symmetric-based
- Multivariate

Sources: Moody, PQCrypto May 2019

2

Round 3 Candidates (announced July 22, 2020)

NSA's Cybersecurity Perspective on PQC July 29, 2020

- Strong preference for Lattice-Based Cryptography
 - "fairly well-studied"
 - "secure when well-parameterized"
 - "among the most efficient"
- Lattice-based KEM and digital signature scheme to be approved for National Security Systems (NSS)
- Stateful signature schemes, LMS and XMSS,
 - "have a limited number of allowable signatures per key"
 - "require the signer to maintain an internal state"
 to be approved for NSS solutions for certain niche applications
- NSA CSD does not anticipate the need to approve other PQC schemes for NSS usage
 - "circumstances could change"

Classical Attack on Rainbow

When: Feb. 25, 2022

Time of the attack on 8 cores of an Intel i9-10885H CPU, running at 2.5 GHz:

Claimed security level 1: 53 hours

Paper: Cryptology ePrint Archive, Report 2022/214

Ward Beullens

Postdoc IBM Research, Zurich, Switzerland

Sage Code: https://github.com/WardBeullens/BreakingRainbow

Developments During Round 3

Round 3 Candidates

Breaking Rainbow Takes a Weekend on a Laptop

by Ward Beullens, https://eprint.iacr.org/2022/214, received 21 Feb 2022

PQC Families and Subfamilies

Round 3 PQC Key Exchange + Classical PKE

Round 3 + Classical Digital Signature Schemes

Favorites for first-generation standards

Key Exchange (Key Encapsulation Mechanism – KEM)

Based on structured lattices	CRYSTALS-KYBER	SABER	NTRU
Based on classical codes	Classic McEliece		
	Digital Signatures		
Based on structured lattices	CRYSTALS-DILITHIUN	M FALCON	J
Symmetric-based (hash-based)	SPHINCS+		

Certificate Size Ratio

Evaluation Criteria

Evaluation Criteria – Other Desired Properties

- Drop-in replacements Compatibility with existing protocols and networks
- Perfect forward secrecy
- Resistance to side-channel attacks
- Misuse resistance
- Ease of implementation (challenging features: decryption failures, floating-point arithmetic, Gaussian sampling)

CERG Major Contributions

High-Speed Hardware Implementations of KEMs:

- NTRU (first)
- CRYSTALS-Kyber (fastest)
- Saber (fastest)

Lightweight Hardware Implementations of KEMs Resistant Against Side-Channel Attacks

• Saber (first)

High-Speed Hardware Implementations of Digital Signatures:

- CRYSTALS-Dilithium (2nd fastest)
- Falcon (verification only) (first)

NEON-Based Software Implementations

- NTRU (first)
- CRYSTALS-Kyber (first)
- Saber (first)
- Falcon (first)

Results for KEMs in Hardware

Level 1: Key Generation on Artix-7

Level 1 - Key Generation

Level 1: Encapsulation on Artix-7

Level 1: Decapsulation on Artix-7

Level 1 - Decapsulation

Results for Digital Signatures in Hardware

Level 5: All Operations on Artix-7: Latency

TW– This Work = GMU

Level 5: All Operations on Artix-7: Resource Utilization

49

Level 5: All Operations on Kintex-7: Latency

50

Level 5: All Operations on Kintex-7: Resource Utilization

Level 5: Signature Verification: Artix-7: Latency vs. Certificate Size

Hardware Benchmarking Summary

Summary

- High-speed hardware for KEMs:
 - CRYSTALS-Kyber and Saber comparable; Saber more flexible
 - NTRU and Classic McEliece significantly slower for key generation and somewhat slower for decapsulation and encapsulation
 - SIKE, BIKE, HQC, and FrodoKEM orders of magnitude slower
- High-speed hardware for Digital Signatures:
 - CRYSTALS-Dilithium efficient and easy to implement
 - FALCON Verify operation the fastest, but KeyGen and Sign prohibitively complicated
 - SPHINCS+ and Picnic outperformed by CRYSTALS-Dilithium

Software Benchmarking Summary

KEM Benchmarks on x86-64 processors with AVX2

KEM Benchmarks on x86-64 processors with AVX2 with 2000 cycles/byte transmission costs

Source: Status Report on the Third Round of the NIST Post-Quantum Cryptography Standardization Process 57

Digital Signature Benchmarks on x86-64 processors with AVX2

Digital Signature Benchmarks on x86-64 processors with AVX2 with 2000 cycles/byte transmission costs

NIST The-end-of-Round 3 Announcement

Before the End of Round 3

Round 3 Candidates

NIST Decision Published on July 5, 2022

Complete Break of SIKE

Classical Attack on SIKE (1)

When: July 30, 2022

Who:

Wouter Castryck Research Fellow COSIC, KU Leuven 2007-present

Thomas Decru Postdoc COSIC, KU Leuven 2022-present

Classical Attack on SIKE (2)

Time of the attack using Magma code and Intel Xeon CPU @ 2.60GHz:

SIKEp434 (claimed security level 1): SIKEp503 (claimed security level 2): SIKEp610 (claimed security level 3): SIKEp751 (claimed security level 5): 1 hours 02 minutes 2 hours 19 minutes 8 hours 15 minutes 20 hours 37 minutes

Paper: Cryptology ePrint Archive, Report 2022/975

Magma code: <u>https://homes.esat.kuleuven.be/~wcastryc</u>

NIST Call for New Signature Schemes

An On-Ramp for Signatures

Call for Additional Digital Signature Schemes issued on Sep. 6, 2022; updated in Oct. 2022

- Deadline: June 1, 2023
- Main reason: diversify signature portfolio
- Candidates on a different track than Round 4 KEMs
- Focus on general-purpose signatures that are not based on structured lattices (e.g., code-based signatures)
- Schemes with certain unique features may be considered as well, e.g., schemes with very short signatures
- The more mature the scheme, the better

Standardization in Other Countries

Countries with Independent Standardization Efforts

Germany:

At the beginning of 2020, the Federal Office for Information Security (BSI) recommended:

- FrodoKEM based on unstructured lattices
- Classic McEliece based on classical codes

China:

The Chinese Association for Cryptologic Research (CACR) held a national cryptographic algorithm design competition in 2018-2019. **79 candidates.**

Winners announced in January 2020:

Digital signatures:Aigis-sigPublic-key encryption:LAC-PKE and Aigis-enc

Transition Plans for National Security Systems

Informal Definition & Recent Developments

Most systems run by the Department of Defense or Intelligence Community fall under the "National Security System" classification.

<u>May 2022:</u>

National Security Memo 10 (NSM-10) signed making it an aim of US to be off quantum vulnerable crypto by 2035

- Calls out to several cybersecurity agencies across the US Government to work in their area of responsibility to ensure a timely transition:
- Calls out NSA to make standards for NSS and give a timeline for deprecation of quantum vulnerable systems

September 2022:

Commercial National Security Algorithm Suite 2.0 (CNSA 2.0) released laying out how to achieve quantum resistance in NSS

Commercial National Security Algorithm (CNSA) 2.0 Suite

Function	Algorithm	Specification
Symmetric block cipher for information protection	AES-256	FIPS 197
Cryptographic hash	SHA-384 or SHA-512	FIPS 180-4
Asymmetric algorithm for key establishment	CRYSTALS-Kyber	TBD
Asymmetric algorithm for digital signature	CRYSTALS-Dilithium	TBD
Asymmetric algorithm for digitally signing firmware and software	Leighton-Micali Signature (LMS) with SHA-256/192, Xtended Merkle Signature Scheme (XMSS)	NIST SP 800-208
CNSA 2.0 Transition Timeline

Source: Morgan Stern (NSA), Transitioning National Security Systems to a Post-Quantum Future, Fourth PQC Standardization Conference, Nov. 29-Dec. 1, 2022

Last Thoughts

PQC Opportunities and Challenges

- The biggest revolution in cryptography since the invention of public-key cryptography in 1970s
- Very fast changing field
- A lot of work remaining to be done in terms of developing new standards and practical validation procedures and labs
- New candidates for future standardization still in the pipeline
- Long and laborious transition period (easily 10-15 years)
- Many applications require resistance to side-channel and fault attacks
- Likely extensions to Instruction Set Architectures of multiple major microprocessors
- Excellent employment opportunities, especially for U.S. Citizens
- Start-up and new-product opportunities

Once in a life-time opportunity! Get involved!

Cryptographic Engineering Research Group CERG: http://cryptography.gmu.edu ATHENa: http://cryptography.gmu.edu/athena

Menu Field: PQC