
Leakage Assessment Report for First-order Masked

GIFT-COFB

Shuohang Peng Jiangxue Liu Bohan Yang Wenping Zhu Leibo Liu

September 14, 2022

1.Target implementation

(a) Algorithm: GIFT-COFB.

(b) Team: Alexandre Adomnicai.

(c) Variant name: First-order masked ARMv7-M implementations of GIFT-COFB AEAD

scheme

(d) URL: https://github.com/aadomn/giftcofb_adomnicai

(e) GitHub commit hash: 6595c7373d40602e1d6c00f6f73f435d7869efac

(f) Protection method: Boolean masking.

(g) Protection order: 1.

2.Experimental setup

(a) Measurement platform and device-under-evaluation: ChipWhisperer CW308 with

STM32F303 UFO target.

(b) Description of measurements: The design-under-evaluation power consumption is

measured with the voltage drop across the on-board 12 Ω shunt resistor.

(c) Usage of bandwidth limiters, filters, amplifiers, etc. and their specification: N/A.

(d) Frequency of operation: 8 MHz.

(e) Oscilloscope and its major characteristics: Teledyne LeCroy WaveRunner 8404M with

4 GHz bandwidth was used to collect traces.

(f) Sampling frequency and resolution: Sampling rate of 25 MS/s and 8-bit sample

resolution were used.

(g) Are sampling clock and design-under-evaluation clock synchronized? No.

3.Leakage assessment characteristics

(a) Leakage assessment type: Fixed message vs. random message t-test at first order and

fixed key vs. random key t-test at first order. [GGR11]

(b) Number of traces used: 100,000.

(c) Data inputs and performed operations: Tested operation is the

crypto_aead_encrypt_shared/crypto_aead_decrypt_shared. Input test vectors are

generated on PC and sent to the target board.

(d) Source of pseudorandom inputs: The rand() and srand()(Generate random seed

from PC) functions in C.

(e) Trigger location relative to the execution start time of the algorithm: Scope trigger is set

before and after crypto_aead_encrypt_shared/crypto_aead_decrypt_shared.

(f) Time required to collect data for a given leakage assessment: About 90 minutes.

(g) Total time of the assessment: About 90 minutes.

https://github.com/aadomn/giftcofb_adomnicai

(h) Availability of raw measurement results: Per request.

 4.Results of leakage assessment

(a) Since the type of implementation is not specified in the documentation, we first

perform the fixed message vs. random message t-test on the entire implementation.

The result of protected encryption on 100,000 traces is shown in Figure 1(top: trigger

and trace, bottom: t-test result). The result of protected decryption on 100,000 traces

is shown in Figure 2.

Figure 1: First-order t-test results of encryption with the fixed message vs. random

message (100,000 traces).

Figure 2: First-order t-test results of decryption with the fixed message vs. random

message (100,000 traces).

It can be seen that there are leaks in the implementation, and it mainly exists

in the second half of the entire encryption and decryption process(This half of the

algorithm mainly performs encryption and decryption operations.). In the

“api.h”, we find they only divide the key into shares, thus we think this

implementation may be a level implementation, which resists DPA in the subkey

generation stage and resists SPA in the encryption and decryption

stage[M20][PSV15].

Figure 3: Settings of shares number in api.h

Therefore we do the fixed key vs. random key t-test to check for leaks. The result

of protected encryption on 1M traces is shown in Figure 4. The result of protected

decryption on 1M traces is shown in Figure 5.

Figure 4: First-order t-test results of encryption with the fixed key vs. random key (1M

traces).

Figure 5: First-order t-test results of decryption with the fixed key vs. random key (1M

traces).

(b) Leakage analysis: It can be seen that there are leaks in both t-tests, and we have

located the specific locations where these leaks occur. For the fixed message vs.

random message t-test, we placed the trigger on both sides of the code containing m

(decryption corresponds to c) and ad, as shown by the red dashed lines in Figures 6

and 7 below. It can be seen that the leakage mainly occurs in this phase.

Figure 6: The part inside the red line is the computation of the plaintext and ad

(encryption with the fixed message vs. random message)

Figure 7：The part inside the red line is the computation of the ciphertext and ad

(decryption with the fixed message vs. random message)

For the fixed key vs. random key t-test, the keyschedule function is marked

with a red dotted line in Figures 8 and 9 below. It can be seen there are leaks in the

encryption and decryption, except for keyschedule part.

Figure 8: The part inside the red line is the keyschedule function (encryption with the

fixed key vs. random key)

Figure 9: The part inside the red line is the keyschedule function (decryption with the

fixed key vs. random key)

For our input test vector (shown in Table 1), the giftb128_encrypt_block function

needs to be run three times. Through trigger signal localization, we found that two

large leakage spikes appeared between these three giftb128_encrypt_blocks, as

shown in Figure 10.

Table 1: Input/output details of GIFT-COFB

Fixed input/output Value

Key 000102030405060708090A0B0C0D0E0F

Nonce 000102030405060708090A0B0C0D0E0F

PT 00010203

AD 00010203

CT ACA0E4DAA2F7C53C377BD7B30FFC434CD892F909

To find the cause of these two leakage spikes, we check the ASM code inside

giftb128_encrypt_blocks and find that the internal state is unmasked at the end of the

function. This removes the randomness introduced by the round key, resulting in the

intermediate state of the giftb128_encrypt_blocks output being a fixed value for the

fixed input. So between the two giftb128_encrypt_blocks, the linear operation of the

intermediate state shows a large leak.

Figure 10: The three giftb128_encrypt_blocks is marked with a red line (encryption

with the fixed key vs. random key)

Figure 11: The three giftb128_encrypt_blocks is marked with a red line (decryption

with the fixed key vs. random key)

For decryption, an extra spike is shown at the end of the last

giftb128_encrypt_blocks in Figure 11, which is due to verifying that the calculated tag

matches the fixed unshared input tag. At the same time, we also noticed that there is a

leak inside giftb128_encrypt_blocks, which requires ad-hoc analysis.

References

[GGR11] Tunstall M, Goodwill G. Applying TVLA to public key cryptographic algorithms[J].

Cryptology ePrint Archive, 2016.

[M20] Beyond Birthday Bound Secure Fresh Rekeying: Application to Authenticated

Encryption. ASIACRYPT (1) 2020: 630-661

[PSV15] Olivier Pereira, François-Xavier Standaert, Srinivas Vivek: Leakage-Resilient

Authentication and Encryption from Symmetric

Cryptographic Primitives. CCS 2015: 96-108

