Side-Channel Evaluation on Protected
Implementations of Several NIST LWC Finalists

Dawu Gu, Pei Cao, Yuhang Ji, Xiangjun Lu, Shipei Qu, Tengfei Wang,
Chi Zhang, Hongyi Zhang, Xiaolin Zhang (sorted alphabetically by last name)
Cryptology and Computer Security Laboratory (LoCCS)

School of Electronic Information and Electrical Engineering
Shanghai Jiao Tong University
Shanghai, China

August 12, 2022



On the Side Channel Leakage Assessment of
First-Order Masked GIFT-COFB

Xiangjun Lu!, Shipei Qu!, Tengfei Wang!, Pei Cao!

School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University,
Shanghai, China

1 Introduction

1.1 Background

GIFT-COFB is an Authenticated Encryption with Associated Data (AEAD) scheme,
based on the GIFT lightweight block cipher and the COFB lightweight AEAD operating
mode[BCIT20]. It has been selected as one of the finalists in the NIST lightweight
cryptography standardization process. The side channel analysis of the native GIFT-
COFB is carried out in [HBB20], while its mask-protected implementation has not yet
been explored.

In power side-channel analysis, the attacker tries to recover secret information from the
hardware running the cryptographic algorithm by recording the power consumption traces.
In order to protect cryptographic algorithms from such attacks, it is often implemented
with boolean masks to hide the real secret information.

In this report, we will perform a side-channel leakage assessment against GIFT-
COFB with first-order boolean masking in both software and hardware implementations.
The collected power traces are going through leakage detection and attack attempts to
investigate the performance of the power side-channel resilience of GIFT-COFB.

1.2 Our Work and Results Overview

Our work in this report and the results of the side-channel leakage assessment on firstorder
masked GIFT-COFB can be summarized as follows.

e We collected two trace sets from the given software and hardware implementations
of GIFT-COFB on an MCU and a side-channel attack evaluation board.

o We performed Welch’s ¢-test [BCD'13] and x%-test [MRSS18] to evaluate the power
leakage of GIFT-COFB. We tried to recover the private keys of GIFT-COFB by
correlational power attack (CPA).

o x2-test applied on the power traces from the given hardware implementations shows
a slight potential power leakage from the input nonce. However, such leakage is
missing in Welch’s ¢-tests or x2-test on software implementations.

e CPA attack cannot recover the private key bytes under the given implementations.



2 On the Side Channel Leakage Assessment of First-Order Masked GIFT-COFB

2 Assessment Strategy

Our assessment strategy on the given GIFT-COFB implementations can be summarized
as the following three phases:
1. Analysis of the target

The initial phase of GIFT-COFB is shown in Figure 1. We consider the known-plaintext
attack scenario, which is a common assumption in side-channel attacks. Then we take the
first block encryption component as the target of the attack, which is a GIFT-128 cipher.

Trunc Al1] 2r|jo™/? A[2] 220"/
Target In J\ l
Y @ Ex 4 N

Xo] Y[ X[ vy X2 Y[

Figure 1: Analysis target

Next, we choose the output of SubCells operation in the second round as the interme-
diate value. The reason for choosing this intermediate value is that it has both a direct
correspondence with the round key and a high degree of non-linearity.

Let’s take the notation in the GIFT-COFB specification[BCIT20]. Specifically, the
128-bit secret key is loaded into the key state KS partitioned into 8 16-bit words:

Wo || WA bior -+ bua || biin -+ bos bor  bog
Wy || Ws bos  --+ bso || bro -+ bes bes bea

KS— - )
Wy || Ws bes -+ bag || bar -+ baa b3z b3 (1)
We || Wr b3r -+ big || bis - b2 b1 b

And the cipher state S is expressed as 4 32-bit segments:

So bigg -+ by by b
Sl b125 e b9 b5 bl

S = — 2
Sa bigg -+ big bg bo 2)
S3 bior --+ b1 by b3

Suppose the cipher state before the AddRoundKey operation in the first round is
{Sy, 51,59, S5}, which can be derived from the nonce N. Then AddRoundK ey will update
the cipher state with the round key and constant in the first round:

"

Sy Sy

Sy« S) @ Ws||Wr,
S; « Sé © Wa||Ws,
Sy < S @ 0x80000001

(3)

In order to perform side channel attacks such as CPA, we must be able to compute
the corresponding intermediate value from parts of the key we guessed. In typical side-
channel attacks (e.g. AES), one byte is often guessed and another byte is obtained as an
intermediate value. However, this strategy does not work for the GIFT-128, because Sf
and Sg affects multiple bytes in the output of the second round’s SubClells:



Xiangjun Lu, Shipei Qu, Tengfei Wang, Pei Cao 3

S; S @ (S{,’&S;’)
So ¢ So @ (51&5;’)
Sy Sy @ (So | S1)
S3 + S;;/ @S (4)
S1+ S1®S3
53 v Sg
SQ — SQ D (SQ&S])
{80, 51,52, 53} + {S3,51,52,50}

Noting that the bit position of each byte does not change, so we can solve this problem
by guessing 1 byte in Si/ and 1 byte in S;, and calculate the corresponding 1 byte in the
result. For example, if we choose the last byte of the output Ss as the intermediate value,
the calculation can be expressed as:

$510] = Sy 10] @ ((SV10] @ (5101885 [0]) ) &S5 [0])

where the index 0 indicates the position of the byte, S;, can be obtained from Eq. 1 (2
bytes from Wy 6/W5 7 is guessed). Based on the same principle, we can also use bit-level
intermediate values, which can help to verify the leakage of side-channels more quickly.

2. Side-channel leakage detection

Next, we applied TVLA (Test Vector Leakage Assessment) to determine whether the
collected power traces had noticeable plaintext or intermediate value leaks. Specifically,
the main techniques used here are Welch’s ¢-test and x? test. They can roughly locate
where in the traces the power leakage occurred.

3. Key recovery attack evaluation

Note that if there is power leakage detected in Phase 2, we can apply CPA here to
reveal half of the key (W5 36,7). The other half of the master key needs to attack the third
round of SubClells with the same strategy based on the success of the first half of the key.

3 Experimental Setup

In this section, we will describe the details of power traces acquisition process.

3.1 Overall Procedure

The procedure of out power trace collection experiments is presented in Figure 2.

As shown in the figure, we first need to download the firmware which including the
implementation of GIFT-COFB and our custom communication protocol into the device
under evaluation. Then we connect the device to the host computer through a USB serial
port so that we can invoke the cipher and record its input and output. Meanwhile, we use
a high-precision electromagnetic probe to capture the electromagnetic power emitted from
the device chip. The captured power is then transmitted to the oscilloscope to generate
and display the waveform of electronic signals. With the help of the oscilloscope, we can
acquire enough raw power traces of protected GIFT-COFB in the host computer for later
assessment.



4 On the Side Channel Leakage Assessment of First-Order Masked GIFT-COFB

Device under evaluation Oscilloscope
Probe
'0'0'0_ —
o.—|_ ﬁ @ Collect @ Display [-—/\/\_o
o 3 — >
— . @ 000
a3 | 000
el | =

@ Invoke ® Adjust ® Save
@ Download gmy
GIFT-128 D -«A/\/v—
implementations Host Computer

Figure 2: Overall procedure of power trace collection

3.2 Experimental Setting
3.2.1 Experimental environments

The details of devices and analyzing suites used for GIFT-COFB are presented in Table 1.

Table 1: Details of experimental environments
Type Ttems Details
Target MCU STM32F303RCT6
Target evaluation board  Saseabo-giii(Kintex-7)
High Precision EM probe Langer RF-U 5-2
Oscilloscope Pico 3203D, LeCroy 610Zi
Sampling rate for MCU 125 MHz
Sampling rate for FPGA 500 MHz
Random source standard C library rand(), srand () in stdlib.h

Hardware platform

Measuring tools

Sampling parameters

We assign GPIO__12 of STM32F303RCT6 (CN9 of Saseabo-gii) as the pin sending the
trigger signals. The given software and hardware implementations of GIFT-COFB will be
tested on STM32F303RCT6 and Saseabo-giii, respectively.

3.2.2 Input and output of GIFT-COFB

For the experiments of power trace collection on software implementation, the input
of GIFT-COFB encryption consists of three parts: a 16-byte nonce, 16-byte associated
data and 16-byte plaintext. The output consists of 16-byte ciphertext and a 16-byte
authenticated tag. For the hardware implementation, it requires the input to be already
masked data and thus twice as long as the original ones. The 16-byte encryption key is
fixed throughout the collection. The specific information about the fixed input is shown
in 2. All the fixed value are directly copied from the official test vectors provided in the
implementer’s code repository.

According to the analysis in 2, changing either the input nonce N or plaintext will
change the intermediate values. Here we choose to alter the nonce in each encryption.
Then the intermediate values will change under the same key, thereby generating different
but related power consumption patterns. This allows us to perform CPA and other tests.



Xiangjun Lu, Shipei Qu, Tengfei Wang, Pei Cao 5

Table 2: Input details of GIFT-COFB

Implementation Fixed Input Value
Master key 000102030405060708090A0BOCODOEOF
Software Plaintext 000102030405060708090A0BOCODOEOF

Associated data  000102030405060708090A0B0OCODOEOF
B54F97F73F0716B75845D3D652C015A7
FEA43B246C15EAG6E619601 E3FACC42A7
Hardware(masked) Plaintext C5F8D832CBF8D832

Associated data A25D267C615D267C

Master key

3.2.3 Trigger setting

Apart from the equipment mentioned in 2, another probe attached to the oscilloscope can
receive trigger signals to help us locate the timing when GIFT-COFB is executed. Thus,
we need to modify the original GIFT-COFB implementations so that they can control the
corresponding pins of the device to send trigger signals to the oscilloscope.

For the software implementation, the codes to control the pin and send the trigger signals
are inserted into prior and after the call to the first call to giftb128_encrypt_block, as
shown in Figure 3.

int giftcofb_crypt(

gift128_keyschedule(key, m_rkey.rkey, key_m);

// Call trigger
HAL_GPIO_TogglePin(Trigger_GPIO_PORT, Trigger_Pin);
giftb128 encrypt_block(y, m_rkey.rkey, nonce);

// Call trigger
HAL_GPIO_TogglePin(Trigger_GPIO_PORT, Trigger_Pin);

Figure 3: Code snippet to set triggers in the software implementation

For the hardware implementation, we use a passive way to set the trigger signal, i.e.
the algorithm will block until we supply a high level to a certain pin. The trigger is set as
an external signal that enables the hardware to start executing the algorithm by pulling
up for 1 clock cycle. This signal is also connected to the oscilloscope as a trigger control
for the trace acquisition.

4 Description of Collected Raw Traces
We collected two sets of power traces, (S) and (H). (S) is acquired from the given software

GIFT-COFB implementations under settings described in Section 3, and (H) is from the
hardware implementation. Their basic information is presented in Table 3.

Table 3
Item Software Implementation Hardware Implementation
Trace set ID S H
Rounds contained 40 7
No. of traces 20,000 1,000,000
No. of points per trace 8,000 10,000
Precision —215 ~ 215 —27 ~ 27

Sampling time 5h 12h




6 On the Side Channel Leakage Assessment of First-Order Masked GIFT-COFB

The sample plots of trace set (S) and (H) are presented in Figure 4. As seen from
Figure 4a, we can easily distinguish the rounds in GIFT-128 encryption from (H).

4 Data loadin:
15000 100 N

10000 4 Single round

50 4
5000 q

—5000
—50 4

—10000 -

—-100
—15000 -

0 1000 2000 3000 4000 5000 6000 7000 8000 0 2000 4000 6000 8000 10000

(a) () (b) (H)
Figure 4: Sample graph of trace set (S) and (H)

Then we can perform different tests mentioned in Section 2 on them to evaluate the
power leakage of the given implementations.

5 Main Result
5.1 Welch’s t-test

Welch’s t-test is a statistical hypothesis test used to compare the means of two groups,
especially when the two groups have unequal sample sizes and variances. In terms of
side-channel analysis, we can divide the power traces into two groups according to the
difference in intermediate values. More precisely, when the master key is fixed, we can
divide the power traces of GIFT-COFB by the following two cases.

o Case(I): The last bit of the first byte of the input nonce is 0 or 1.

o Case(II): The last bit of the first byte of the intermediate value is 0 or 1.

t-statistics vs time steps t-statistics vs time steps

t-statistic values
o

t-statistic values
o

-2 -2
-4 -4
0 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000 4000 5000 6000
Time Steps Time Steps
(a) (S) (b) (H)

Figure 5: Welch’s t-test results of (S) and (H) (divided by Case (1))

The test results are shown in Figure 5 and Figure 6. We can see from the figure that
the results failed to reach the threshold of the Welch’s t-test for either the software or
the hardware implementation, suggesting that no significant leakage information can be
detected using this test approach.



Xiangjun Lu, Shipei Qu, Tengfei Wang, Pei Cao 7

t-statistics vs time steps t-statistics vs time steps

N)
)

t-statistic values
o

t-statistic values
o

-2

!
)

-4 -4
0 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000 4000 5000 6000
Time Steps Time Steps
(a) (5) (b) (H)

Figure 6: Welch’s t-test results of (S) and (H) (divided by Case (II))

5.2 x3-test

x2-test is another statistical hypothesis test to determine whether there is a significant
difference between the expected and observed frequencies, which is a natural complement
to Welch’s t-test for black box leakage detection, especially in the case of higher-order
masked implementations. It can also test the null hypothesis of independence of a pair of
random variables. Therefore, like t-test, we divide the power traces by the following two
cases and observe their statistical differences.

o Case(I): The last bit of the first byte of the input nonce is 0 or 1.

o Case(II): The last bit of the first byte of the intermediate value is 0 or 1.

Chi2-statistics vs time steps Chi2-statistics vs time steps

w

w o~

~

Chi2-statistic p values
Chi2-statistic p values

-

o

(I) 10'00 2600 30‘00 40'00 SObO 60‘00 70'00 aobo (I) 10'00 ZdOO 30‘00 40'00 SObO 60‘00 70'00 aobo
Time Steps Time Steps
(a) (5) (b) (H)

Figure 7: x2-test results of (S) and (H) (divided by Case (1))

The test results are shown in Figure 7 and Figure 8. We can see from the figure that
the results failed to reach the confidence level of thex?-test in 7a, but there is slight power
leakage detected from (H) in Figure 7b when the traces are divided by nonce. However,
when the traces are divided according to the intermediate values, y2-test cannot find
statistically significant differences of two trace groups.

5.3 Correlational power attack (CPA)

CPA is an efficient side-channel analysis method to reveal the secret from power leakage
of a cryptographic device. According to the analysis in Section 2, we will guess 1 bit (or 1



8 On the Side Channel Leakage Assessment of First-Order Masked GIFT-COFB

Chi2-statistics vs time steps Chi2-statistics vs time steps

Chi2-statistic p values
Chi2-statistic p values

6 10'00 20‘00 30‘00 40‘00 50‘00 60‘00 70‘00 80‘00 6 10'00 20‘00 30‘00 40‘00 50‘00 60‘00 70‘00 80‘00

(a) () (b) (H)

Figure 8: y2-test results of (S) and (H) (divided by Case (IT))

byte, using more computational resources) from two different subkeys W5 /W3 7 at a time
and compute the corresponding intermediate value. Taking the bit model for example, we
can get a sequence of bits from the calculation of intermediate value. The correct guess
will exhibit the greatest level of correlation between the bit sequence and real power trace,
which indicates the correct subkey bit.

Table 4: CPA guess result of key bits in (S)

Target bit index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Target bit value (W2[|lW3) 0 o0 o0 0 0 1 0 0 O O O O O 1 o0 1
Target bit value (W6|lW7) 0 o o0 0 1 1 0 0 0 O O O 1 1 o0 1
Real key rank(/4) 3 2 3 3 4 3 1 3 1 1 2 4 2 4 1 1
Best guess 01 10 01 10 00O 0O 00 11 00 00 01 10 00O OO0 00 11
Real key 00 00 00 00 01 11 00 OO0 00O 00 00 00 01 11

Target bit index 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Target bit value (W2||lW3) 0 o o o0 o0 1 1 0 0 O O O 0O 1 1 1
Target bit value (W6|lW7) 0 o o o0 1 1 1 0 0 O O o0 1 1 1 1
Real key rank(/4) 2 3 1 3 4 4 3 1 4 1 1 2 1 2 3 1
Best guess 10 11 00 01 10 10 10 00 10 00 00 01 01 01 00 11
Real key 00 00 00 00 01 11 11 00 0O 00O 00 0O O1 11 11 11

Table 5: CPA guess result of key bits in (H)

Target bit index 0 1 2 3 4 5 6 7T 8 9 10 11 12 13 14 15
Target bit value (W2[W3) 1 1 0 o 1 1 0 0 1 0 1 0 0 1 0 1
Target bit value (W6[|W7) 0 1 o 1 1 1 1 1 1 1 1 0 1 1 0 0
Real key rank 4 2 3 2 4 3 3 1 2 2 4 4 1 3 1 1
Best guess 1 01 11 11 10 00 10 01 00 10 01 10 01 10 00 O1
Real key 10 11 00 01 11 11 01 01 11 11 11 00 01 11 00 O1
Target bit index 16 17 18 19 20 21 22 23 24 25 26 27 28 29 31
Target bit value (W2W3) 0 o0 o0 1 1 o0 o0 1 1 o0 o O 1 1 1 1
Target bit value (W6[|W7) 0 1 o 1 1 0 o0 1 1 1 0 1 1 1 0 1
Real key rank 1 2 1 2 1 2 3 1 1 2 2 1 3 3 3 2
Best guess 00 11 00 10 11 01 11 11 11 10 01 01 00 10 01 O1
Real key 0o 01 00O 11 11 00 00O 11 11 01 00 O1 11 11 10 11

For trace set (S), we perform CPA on Ws g and W3 7, including half of all key bits of
GIFT-128. The CPA guess results for each bit is presented in Table 4.

Note that we are guessing 2 bits of 2 different subkeys each time, hence the guessed
bits and real key bits are expressed as (W2||W3)[i]||(Ws||W7)][¢], where ¢ indicates the bit
location from the lowest. In the result above, the average ranking of the correct key is
2.3125, which is similar to the theoretical result of 2.5 for any random guess. Furthermore,



Xiangjun Lu, Shipei Qu, Tengfei Wang, Pei Cao 9

the success rate of key guessing over all bits is 34.375%, which is a slight increase compared
to the random guess of 25%, but still far from restoring the real master key.

For trace set (H), we have the following CPA results in Table 5.

The hardware implementation results are similar to the previous ones overall. The
average rank order of correct keys in the correlation results is 2.1875, and the percentage
of correct guessed keys is 28.125%. In general, CPA fails to perform effective attacks on
the given software and hardware implementations.

References

[BCD*13] Georg T. Becker, Jim Cooper, Elizabeth K. DeMulder, Gilbert Goodwill,

[BCI+20]

[HBB20]

[MRSS18]

Joshua Jaffe, Gary Kenworthy, T. Kouzminov, Andrew J. Leiserson, Mark E.
Marson, Pankaj Rohatgi, and Sami Saab. Test vector leakage assessment ( tvla
) methodology in practice. 2013.

Subhadeep Banik, Avik Chakraborti, Akiko Inoue, Tetsu Iwata, Kazuhiko
Minematsu, Mridul Nandi, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and
Yosuke Todo. Gift-cofb. Cryptology ePrint Archive, Paper 2020/738, 2020.
https://eprint.iacr.org/2020/738.

Xiaolu Hou, Jakub Breier, and Shivam Bhasin. Dnfa: Differential no-fault
analysis of bit permutation based ciphers assisted by side-channel. Cryptology
ePrint Archive, Paper 2020/1554, 2020. https://eprint.iacr.org/2020/
1554.

Amir Moradi, Bastian Richter, Tobias Schneider, and Frangois-Xavier Standaert.
Leakage detection with the x2-test. TACR Transactions on Cryptographic
Hardware and Embedded Systems, 2018(1):209-237, Feb. 2018.



