Side-Channel Evaluation on Protected
Implementations of Several NIST LWC Finalists

Dawu Gu, Pei Cao, Yuhang Ji, Xiangjun Lu, Shipei Qu, Tengfei Wang,
Chi Zhang, Hongyi Zhang, Xiaolin Zhang (sorted alphabetically by last name)
Cryptology and Computer Security Laboratory (LoCCS)

School of Electronic Information and Electrical Engineering
Shanghai Jiao Tong University
Shanghai, China

August 12, 2022

On the Side Channel Leakage Assessment of
First-Order Masked Romulus

Xiaolin Zhang!, Tengfei Wang® and Pei Cao?

School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University,
Shanghai, China

1 Introduction

1.1 Background

Romulus[CIK™22] is a family of tweakable block cipher-based authenticated encryption
(AE) schemes. It has been selected as one of the finalists in the NIST lightweight cryp-
tography standardization process. It consists of a nonce-based AE Romulus-N (the main
variant), a nonce misuse-resistant AE Romulus-M, a leakage-resilient AE Romulus-T, and
a hash function Romulus-H. Romulus achieves beyond-birthday-bound security, and it is
also computationally efficient in both software and hardware implementations. However,
its performance on power side-channel analysis is yet to be explored.

Power side-channel analysis enables attackers to collect the power consumption of a
cryptographic hardware device, which allows them to infer the secrets inside, e.g. private
keys. More precisely, simple power analysis (SPA) refers to interpreting raw power traces
visually to deduce the patterns of cryptographic operations. Differential power analysis
(DPA)[KJJ99] is an advanced technique based on statistical analysis, which helps attackers
to reveal the key through intermediate values of the cryptographic computations. Over
the decade, deep learning (DL) has been developed as a powerful tool for side-channel
attacks.

In this report, we will perform a side-channel leakage assessment against Romulus with
first-order boolean masking in software and hardware implementations. The collected
power traces are going through several tests such as Welch’s t-test and correlation power
analysis (CPA) to demonstrate the actual performance of the side-channel resilience of
Romulus.

1.2 Our Work and Results Overview

Our work in this report and the results of the side-channel leakage assessment on first-
order masked Romulus can be summarized as follows.

e We collected four trace sets from the given software and hardware implementations
of Romulus-N on an MCU and a side-channel attack evaluation board.

o We performed Welch’s t-test, y?-test and DL-LA to evaluate the power leakage of
Romulus. We tried to recover the private keys of Romulus-N by CPA and template
attack.

o Welch’s t-test, y2-test and DL-LA applied on the power traces from the given im-
plementations both show the potential power leakage from the input nonce.

2 On the Side Channel Leakage Assessment of First-Order Masked Romulus

e« CPA and template attack cannot recover the private key bytes under the given
implementations.

The overall experimental results show that there exists potential power leakage related
to the input nonce of Romulus, but the private key and its corresponding intermediate
values do not exhibit noticeable leakage for side-channel analysis.

The rest of this report is organized as follows. Section 2 introduces our assessment
strategy on Romulus. Section 3 gives the detailed experimental settings. Section 4 presents
the basic information about the collected power traces and the main test results are shown
in Section 5.

2 Assessment Strategy

Our assessment strategy on the given Romulus implementations can be boiled down into
the following three phases:

Phase 1: Specify the analysis targets. We choose Romulus-N as the evaluated
algorithm for Romulus since it is the basis of Romulus-M and Romulus-T and shares the
same building block (Skinny-128-384+) with Romulus-H. Therefore, its performance on
the side-channel analysis can be viewed as the general results of the Romulus family.

Next, we chose the output of AddRoundTweakey in the first round of Skinny-128-384+
as the intermediate value. The state matrix in the first round is XORed with the tweak
key (TK1,TK2,TK3) and we have TKs = N and TK3 = K, where N, K denote the
nonce and the encryption key, respectively. Then the operation AddRoundTweakey now
can be written as (1).

state = state STK1®dTK2dTK3

1
=state TK1HO NP K)

The reason that we do not chose the output of SBox in Skinny-128-384+ as inter-
mediate values is that state” needs to go through ShiftRows and MixColumns before it is
fed into the Sbox as shown in Figure 1. Then each byte of the Sbox output can relate to
multiple input bytes, which undermines the efficacy of CPA and other tests.

Therefore, though the non-linearity of Sbox can ease the side-channel analysis, we
select the output of AddRoundTweakey in the first round, the result of a linear operation
XOR, as the analysis targets due to Skinny-128-384+’s special construction.

ART ShiftRows

Intermediate values

—D

Figure 1: One encryption round of Skinny-128-384+ (from Romulus documentation)

Phase 2: Detect side-channel leakage. We then follow the paradigms of TVLA
(Test Vector Leakage Assessment) to determine whether there is noticeable power leakage
in the collected raw traces. Specifically, the main techniques used here are Welch’s t-test
and x? test. They can roughly locate where in the traces the power leakage occurred and
thus indicate which cryptographic operations in Romulus caused that leakage.

Phase 3: Reveal the secret key. Note that if there is power leakage detected in
Phase 2, we can apply CPA here to reveal the private key byte-by-byte. We will also use

Xiaolin Zhang, Tengfei Wang and Pei Cao 3

the template attack (TA), a traditional profiled side-channel analysis approach, and try
to explore more information about the key.

To apply the above assessment strategy, we need to collect enough power traces of
protected implementations of Romulus-N on specific hardware.

3 Experimental Setup

3.1 Overall Procedure

The procedure of out power trace collection experiments is presented in Figure 2.

»

3 Collect High Precision EM Probe w‘
. \ g E (5)Adjust @ 888
Device under evaluation (2Invoke _

el
Host Computer
(1)Download i ©Generate

Romulus-N femmmmmomno oo > I !
Implementations

Raw Power Trace

Oscilloscope

Figure 2: Overall procedure of power trace collection

We first need to download the firmware containing the C/ASM implementation of
Romulus-N into the device’s flash memory. Then we connect the device to the host
computer through a USB serial port so that we can execute the cipher and record its
intput and output. Meanwhile, we use a high-precision electromagnetic probe to capture
the electromagnetic power emitted from the device chip. The captured power is then
transmitted to the oscilloscope to generate and display the waveform of electronic signals.

With the help of the oscilloscope, we can acquire enough raw power traces of protected
Romulus-N in the host computer for later assessment.

3.2 Experimental Setting

We can follow the above procedure to build an automatic power trace collection platform
for Romulus. However, several practical problems need to be considered here.

3.2.1 Trigger location

Apart from the equipment mentioned in Figure 2, another probe attached to the oscillo-
scope can receive trigger signals to help us locate the timing when Romulus-N is executed.
Thus, we need to modify the original Romulus-N implementations so that they can control
the corresponding pins of the device to send trigger signals to the oscilloscope.

Software implementation. The C/ASM codes to control the pin and send the
trigger signals are inserted into the the following two locations.

e Prior and after the call to crypto_aead_ encrypt_ shared;

4 On the Side Channel Leakage Assessment of First-Order Masked Romulus

e Prior and after the call to the first quadruple_ round instruction of Skinny encryption
function in skinnyl28 core.s.

These code snippets to manipulate pins of the target device are shown in Figure 3.

(1LL trigg R (push {re-ri12, ria})
. . mov.w R1, #0x1000
HAL_GPIO_ TogglePin(Trigger GPIO_Port, vy RO, #0x48000000
Trigger_Pin); BL HAL_GPIO_TogglePin ,
encryptio pop {re-ri12, ria}
quadruple_round
crypto_aead_encrypt_shared(..); push {re-ri2, ria}
mov.w R1, #0x1000
. . mov.w RO, #0x48000000
HAL_GPIO_TogglePin(Trigger_GPIO_Port, BL HAL_GPIO_TogglePin // call trigger
KTr‘igger‘_Pin);) o {re-r12, ri4}
(a) Codes around Romulus encryption function (b) Codes around Skinny encryption round in-
struction

Figure 3: Code snippets to set triggers in the software implementation

Note that the function that we insert trigger codes in Figure 3(b) into is skinny128_38
4_plus_enc, a copy from the original skinny128_384_plus. Then we let romulusn_proce
ss_msg call skinny128_384_plus_enc instead of skinny128_384_plus. In other words,
plaintext encryption would call different functions from the associated data. Thus, we can
isolate the target for side-channel analysis.

Hardware implementation. The verilog code snippets in Figure 4(a) shows the
trigger signals we assigned in the hardware implementation. Figure 4(b) gives the settings
of Romulus-N verilog module instantiations.

(R (inst_rom inst_rom_0(D
.addr(rom_addr), .din(blk_din),

.dout (rom_dout));

LWC_SCA LWC_SCA_0 (

assign gpio_startn = ~drdy;
assign gpio_endn = ~pdi_valid;
assign gpio_exec = ~sdi_valid;

.pdi_ready(pdi_ready), .sdi_ready(sdi
_ready),

assign pdi_valid = (state & (rom_addr == Trdi_ready(rdi_ready), ...

| (rom_addr > 6 & rom_addr < 23)))? 1 : 0;

gsiég”azgi—ﬁlg‘;; iSTag‘? & (rom_addr > 0 .pdi_valid(pdi_valid), .sdi_valid(sdi

_) _valid),)} P,
(a) assigned trigger signals (b) verilog module instantiation

Figure 4: Code snippets to set triggers in the hardware implementation

Through the indication of gpio_exec, we can adjust the oscilloscope to sample raw
power trace with any range.

3.2.2 Input and output of Romulus-N

During the experiments of power trace collection, the input of Romulus-N encryption
consists of three parts: a 16-byte nonce, 16-byte associated data and 16-byte plaintext.
The output consists of 16-byte ciphertext and a 16-byte authenticated tag. The 16-byte
encryption key is fixed throughout the collection. The specific information about the fixed
input is shown in Table 1.

According to the analysis in Section 2, changing either the input nonce or plaintext
will change the intermediate values. Here we choose to alter the nonce in each encryption.
Then the intermediate values will change under the same key, thereby generating different
but related power consumption patterns. This allows us to perform CPA and other tests.

Xiaolin Zhang, Tengfei Wang and Pei Cao 5

Table 1: Input details of Romulus-N

Platform Fixed Input Value
Private key 000102030405060708090A0BOCODOEQOF
Software implementation Plaintext 000102030405060708090A0BOCODOEOQF

Associated data 000102030405060708090A0BOCODOEOF

Private key 4535819F13209B89C4C604385A87FATE

Hardware implementation Plaintext BFFE6A4BD1DFE787E9OD9ESACSAEFFC74
Associated data 2B71FF688E9188E145FB95AB12BF19C9

3.2.3 Experimental environments

The details of devices and analyzing suites used for Romulus are presented in Table 2.

Table 2: Details of experimental environments

Type Items Details
Target MCU STM32F303RCT6
Hardware platform Target evaluation board Saseabo-giii
(with Xilinx Kintex-7 FPGA)
Measuring tools High Precision EM probe Langer RF-U 5-2
Oscilloscope Pico 3203D, LeCroy 610Zi
Sampling parameters Baud rate (USB Serial Port) 115200 bps
Sampling rate 125 MHz, 500 MHz
Random source standard C library rand (), srand() in stdlib.h

We assign GPI0O_12 of STM32F303RCT6 (CN9 of Saseabo-gii) as the pin sending the
trigger signals. The given software and hardware implementations of Romulus-N will be
tested on STM32F303RCT6 and Saseabo-giii, respectively.

4 Description of Collected Raw Traces

We collected four sets of power traces, (S-1), (S-2), (H-1) and (H-2). (S-1) and (S-2) are
sampled from the given software Romulus-N implementations under different trigger set-
tings introduced in Section 3.2.1, and (H-1), (H-2) are from the hardware implementation.

Their basic information is presented in Table 3.

Table 3: Basic information of the collected power traces of Romulus-N

Source Software Implementation Hardware Implementation
Trace set ID S-1 S-2 H-1 H-2
Skinny rounds contained 40 4 40 3
No. of traces 100000 100000 100000 1000000
No. of points per trace 20000 1800 100000 5000
Precision =215 ~ 215 215 215 2T o7 —27 ~ 27
Sampling time 3h 2h 1h 10h

The sample graphs of trace set (S-1) and (H-1) are presented in Figure 5. As seen
from Figure 5(b), we can easily distinguish 40 rounds in Skinny encryption from (H-1).

6 On the Side Channel Leakage Assessment of First-Order Masked Romulus

10000 100

-100

0 2500 5000 7500 10000 12500 15000 17500 20000 3 20000 40000 60000 80000 100000

(a) (5-1) (b) (H-1)

Figure 5: Sample graph of trace set (S-1) and (H-1)

Though it is hard to acquire useful information from (S-1) visually, (S-2) could show
the first four rounds of encryption as shown in Figure 6(a).

20000

10000

-10000

—20000 1 . : : : : . . -80
0 250 500 750 1000 1250 1500 1750

T T T T T T
0 1000 2000 3000 4000 5000

(@) 52 (b) (H-2)
Figure 6: Sample graph of trace set (S-2) and (H-2)

We can see that (S-2) and (H-2) both show the clear power consumption tracks of
Romulus-N. Then we can perform different tests mentioned in Section 2 on them to
evaluate the power leakage of the given implementations.

5 Main Results

Since (S-2) and (H-2) has better sampling quality and smaller dimensions, all the tests
below will be performed on them.

5.1 Welch’s t-test

Welch’s t-test is a statistical hypothesis test used to compare the means of two groups,
especially when the two groups have unequal sample sizes and variances. In terms of
side-channel analysis, we can divide the power traces into two groups according to the
difference in intermediate values.

More precisely, when the private key is fixed, we can divide the power traces of
Romulus-N by the following two cases.

o Case(A): The last bit of the first byte of the input nonce is 0 or 1.

o Case(B): The last bit of the first byte of the intermediate value is 0 or 1.

Xiaolin Zhang, Tengfei Wang and Pei Cao 7

t-statistics vs time steps t-statistics vs time steps

10

~

©

t-statistic values
o

t-statistic values

Y -

-4 -10
0 250 500 750 1000 1250 1500 1750 0 1000 2000 3000 4000 5000
Time Steps Time Steps
(a) (5-2) (b) (H-2)

Figure 7: Welch’s t-test results of (S-2) and (H-2) (divided by Case (A))

t-statistics vs time steps t-statistics vs time steps

t-statistic values
o

t-statistic values
o

-2 -2

-4 -4
T T T T T T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 0 1000 2000 3000 4000 5000
Time Steps Time Steps
(a) (5-2) (b) (H-2)

Figure 8: Welch’s t-test results of (S-2) and (H-2) (divided by Case (B))

The test results are shown in Figure 7 and 8. We can see that the results of (S-2)
fail to achieve the confidence level of Welch’s t-test, but there is significant power leakage
detected from (H-2) in Figure 7(b) when the traces are divided by nonce. Moreover, the
overall range causing leakage matches the position where TK is involved in the first two
encryption rounds. However, such leakage is missing in Figure 8(b).

5.2 x>-test

x2-test is a statistical hypothesis test to determine whether there is a significant difference
between the expected and observed frequencies. It can also test the null hypothesis of
independence of a pair of random variables. Therefore, like t-test, we need to divide these
power traces by the following two cases and observe their statistical differences.

o Case (A): The last bit of the first byte of the input nonce is 0 or 1.

o Case (B): The last bit of the first byte of the intermediate value is 0 or 1.

Figure 9(b) shows that x2-test can also detect significant power leakage from (H-2),
and the time steps causing leakage are approximately the same as Figure 7(b). It suggests
that there exist potential power side-channel issues for the given hardware implementation
of Romulus-N. However, when the traces are divided by the intermediate values, 2 — test
cannot find statistically significant differences of two trace groups.

8 On the Side Channel Leakage Assessment of First-Order Masked Romulus

Chi2-statistics vs time steps Chi2-statistics vs time steps
5 200
175
4 w 150
e
E
S 1s

w

~

Chi2-statistic p values

Chi2-statistic p
~
n

50
1
0 00
0 250 500 750 1000 1250 1500 1750 0 1000 2000 3000 4000 5000
Time Steps Time Steps
(a) (8-2) (b) (H-2)

Figure 9: Y2-test results of (S-2) and (H-2) (divided by Case (A))

Chi2-statistics vs time steps Chi2-statistics vs time steps

S w
S w

w
w

~
~

Chi2-statistic p values
Chi2-statistic p values

-
-

=)
o

0 250 500 750 1000 1250 1500 1750 0 1000 2000 000 4000 5000
Time Steps Time Steps
(a) (8-2) (b) (H-2)

Figure 10: x2-test results of (S-2) and (H-2) (divided by Case (B))

5.3 DL-LA

DL-LA (Deep Learning Leakage Assessment) [MWM21] is based on the concept of super-
vised learning and uses neural networks to build a binary classifier on power side-channel
measurements. The power traces are first separated into the training and validation set.
Then we need to divide them as in Section 5.1 and 5.2 for labeling. The "labels" of each
power trace would stand for which group the trace belongs to.

0.025

0.020

2
g
§ 092 3 0015
090 &
088 0010
086 :
~— train acc
084 —— valacc 0.005
0 10 2 2 P 5 0 250 500 750 1000 1250 1500 1750
epoch point
(a) accuracy of the CNN model (b) overall accumulated gradients of (S-2)

Figure 11: Assessment results of DL-LA on (S-2) (divided by Case (A))

After the classifier model is built with the labeled training set, it can be applied to

Xiaolin Zhang, Tengfei Wang and Pei Cao 9

the validation set to predict which group each trace belongs to. DL-LA also introduces
sensitivity analysis to calculate the accumulated gradients, thereby showing where in each
trace cause the bias of different groups. Here we chose the traditional CNN (Convolutional
Neural Network) model and the assessment results of (S-2) are shown in Figure 11 and
12.

100

0.030
095
0.025
0.90

acc

0.020

gradient

0.85

0.015
0.80

— train acc 0,010
val acc

0.75

0 10 2 B0 2 50 0 250 500 750 1000 1250 1500 1750
epoch point
(a) accuracy of the CNN model (b) overall accumulated gradients of (S-2)

Figure 12: Assessment results of DL-LA on (S-2) (divided by Case (B))

We can see that the CNN classifier can achieve over 98% accuracy in both cases,
which shows that the divided two groups indeed have a distinctive statistical difference.
Figure 11(b) and 12(b) show the distribution of overall gradients during the training of
the CNN model. They can only roughly indicate the positions that cause the leakage.
Thus, like Welch’s t-test and y2-test, DL-LA can also detect power leakage from the given
Romulus-N implementations.

54 CPA

CPA is an efficient side-channel analysis technique to reveal the private keys using power
leakage of a cryptographic device. It usually involves modelling the simulated power con-
sumption under a fixed key. For each subkey byte, it computes all 28 possible intermediate
values and then uses the hamming weight model to simulate the corresponding power con-
sumption. The correct guess will exhibit the greatest level of correlation between the
simulation and real power trace, which indicates the correct subkey byte.

For trace set (S-2), we perform CPA on all 16 key bytes of Romulus-N. The CPA guess
results for each byte is presented in Table 4.

Table 4: CPA guess result of key bytes in (S-2)

Target byte index 0 1 2 3 4 5 6 7
Target byte value 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07
Guess rank 2 8 7 0 98 225 89 235
Actual best guess 0xDF 0x21 O0xDF 0x03 0x4B 0x69 O0xBF 0x3D
Target byte index 8 9 10 11 12 13 14 15
Target byte value 0x08 0x09 0x0A 0x0B 0x0C 0xOD O0xOE 0xOF
Guess rank 191 20 90 183 90 162 88 178

Actual best guess 0x6F O0xOF O0xDF 0x81 0xF4 0xC4 0x53 0x4A

Note that first four bytes have a relatively higher rank and their correlation results
are shown in Figure 13. We can also see that the key byte 0x03 can be guessed correctly
using CPA. The rest of the bytes can be regarded as secure in the protected Romulus-N
implementation.

10 On the Side Channel Leakage Assessment of First-Order Masked Romulus

00175
00150
00150
00125
00125
00100
00100
00075 00075
00050 0.0050
0.0025 0.0025
0.0000 0.0000
0 250 500 750 1000 1250 1500 1750 0 250 500 750 1000 1250 1500 1750
(a) byte index =0 (b) byte index =1
0025 0020
0020 0015
0015
0010
0010
0005
0,005
0,000 0.000
0 250 500 750 1000 1250 1500 1750 0 250 500 750 1000 1250 1500 1750
(c) byte index = 2 (d) byte index =3

Figure 13: CPA correlation result of (S-2)

For (H-2), we have the following key guess results in Table 5.

Table 5: CPA guess result of key bytes in (H-2)

Target byte index 0 1 2 3 4 5 6 7
Target byte value 0x45 0x35 0x81 O0x9F 0x13 0x20 0x9B 0x89
Guess rank 136 165 57 110 105 15 36 22
Actual best guess 0x72 O0xF9 0xB7 O0x3F 0xC9 O0xE0 OxEC 0x36
Target byte index 8 9 10 11 12 13 14 15
Target byte value 0xC4 0xC6 0x04 0x38 Ox5A 0x87 O0xF4 Ox7E
Guess rank 7 231 58 195 186 252 122 144

Actual best guess 0xCC 0x8F 0x03 0xD8 0x1B 0x61 0x47 0x5C

The correlation results of bytes 0x20, 0x9B, 0x89 and 0xC4 that have higher guess
ranks are shown in Figure 14. According to Table 5 and Figure 14, We can see that
the fizslicing masking scheme[BDCU17] applied in the Romulus-N implementations can
prevent an attacker from recovering the correct key bytes using CPA. Thus, the power leak-
age presented in Section 5.1 and 5.2 could be brought by nonce rather than intermediate
values.

55 TA

Template attack (TA) is an advanced type of side-channel attack, which needs attackers to
create a power consumption template of the target device (Profiling Phase) and applies
this template to recover the secret key efficiently (Attacking/Predicting Phase).

To create a template, the attacker could first perform correlation analysis on the
intermediate values to acquire some points of interest (POI). Then he/she can build a

Xiaolin Zhang, Tengfei Wang and Pei Cao

11

0.0200
0.0175
0.0150
0.0125
0.0100
0.0075
0.0050
0.0025

0.0000

0.020

0.015

0.010

0.005

0.000

0 1000 2000 3000 4000 5000
(a) byte index =5

1000 2000 3000 4000 5000
(c) byte index =7

o

0.0200

0.0175

0.0150

00125

0.0100

0.0075

0.0050

0.0025

0.0000

0.020

0.015

0.010

0.005

0.000

1000 2000 3000 4000 5000
(b) byte index = 6

P

1000 2000 3000 4000 5000
(d) byte index =8

o

Figure 14: CPA correlation result of (H-2)

targeted template using enough power traces. Therefore, according to the results in Table
4, we can apply TA to the key byte 0x30 and 0xC4 (the highest guess rank in each trace

set).

Table 6: TA prediction results of (S-2) and (H-2)

Target bytes

Accuracy
Predicted value

0x30 0xC4
27.33% 26.99%
0x02 0x51

Note that we do not consider other key bytes in TA, otherwise the built template
cannot generate correct statistical features about the right intermediate values. As shown
in Table 6, the accuracies of TA can only achieve 27.33% and 26.99% on the two bytes,
respectively, which is close to random guessing. Therefore, the given boolean-masking
implementations can protect the inside private key of Romulus-N against TA.

References

[BDCU17] Alex Biryukov, Daniel Dinu, Yann Le Corre, and Aleksei Udovenko. Opti-
mal first-order boolean masking for embedded iot devices. In International
Conference on Smart Card Research and Advanced Applications, pages 22—-41.

[CIK+22]

Springer, 2017.

Guo Chun, Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and

Thomas Peyrin. Romulus authenticated encryption/hash, 2022. https:
//romulusae.github.io/romulus.

12 On the Side Channel Leakage Assessment of First-Order Masked Romulus

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Annual international cryptology conference, pages 388-397. Springer, 1999.

[MWM21] Thorben Moos, Felix Wegener, and Amir Moradi. Dl-la: Deep learning leakage
assessment: A modern roadmap for sca evaluations. TACR Transactions on
Cryptographic Hardware and Embedded Systems, pages 552-598, 2021.

Side-channel Evaluation of ISAP

Yuhang Jit

School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University,
Shanghai, China

1 Introduction

1.1 Background

ISAP is a family of nonce-based authenticated ciphers with associated data (AEAD) de-
signed with a focus on robustness against passive side-channel attacks. All ISAP family
members are permutation-based designs that combine variants of the sponge-based ISAP
mode with one of several published lightweight permutations.

Power side-channel analysis enables attackers to collect the power consumption of a
cryptographic hardware device, which allows them to infer the secrets inside, e.g. private
keys. More precisely, simple power analysis (SPA) refers to interpreting raw power traces
visually to deduce the patterns of cryptographic operations. Dierential power analysis
(DPA) is a more advanced technique based on statistical analysis, which helps attackers
to reveal the original key through intermediate values of the cryptographic computations.
Over the decade, deep learning (DL) has been developed as a powerful tool for side-channel
attacks.

ISAP is known for its resilience against DPA attacks. Until the day of this report,
there is no published work regarding ISAP’s side-channel security. In this report, we
perform a side-channel leakage assessment against ISAP. The collected power traces are
going through several tests such as Welchs t-test and correlation power analysis (CPA) to
demonstrate the actual performance of the side-channel resilience of ISAP.

1.2 Our Work and Results Overview

Our work in this report and the results of the side-channel leakage assessment on ISAP
can be summarized as follows.

e We collected three trace sets from the given software and hardware implementations
of ISAP-Ascon on an MCU and a side-channel attack evaluation board.

o We performed side-channel leakage assessment on ISAPRk procedure of an ISAP
encryption. Welchs t-test and x2-test were used to evaluate the power leakage of
ISAP-Ascon.

e CPA attack cannot recover the private key bytes under the given implementations.
The overall assessment reveals that power leakage mainly comes from associated data

input of the ISAPRk procedure, while the actual private key and permutation does not
induce any leakage.

2 Side-channel Evaluation of ISAP

Initialize B crypt Plaintext

Figure 1: Authenticated Encryption of ISAP

2 Assessment Strategy

2.1 Specify the Targets

Side-channel analysis towards a cryptography algorithm normally requires three essential
elements: a random variable x that’s visible to attacker, a fixed secret value k the attacker
wants to recover, and a non-linear operation f which takes x and k as inputs and generates
sensitive values c. ¢ is known as the sensitive intermediate values to k. Operation f on the
crypto hardware generates side-channel leakages, which is know as traces. Normally the
power leakage increases by the non-linearity of operation f. Side-channel analysis heavily
relies on the selection of these three elements.

The ISAP algorithm provides several modes, such as authenticated encryption/decryption
and MAC. All of the modes are designed to sponge-based constructions. The basic opera-
tion unit of ISAP is permutation. The states of the opted permutation are used to absorb
data and squeeze data. Permutation used in ISAP can be either Ascon or Keccak. The
selection of the permutation leverages on the environment the ISAP needs to be and does
not pose any discrepancy in the scenarios of Side-Channel analysis. In this paper, Ascon
is opted for the permutation as illustration.

Below we will analyze each component of ISAP and find out which component has
a potential side-channel vulnerability. The ultimate goal is to recover the master key of
Ascon based ISAP with 128 bit security parameter.

2.1.1 Authenticated Encryption

Authenticated encryption and decryption with associated data have the same structure
in ISAP. In this section we focus on the encryption.

As illustrated in Figure 1, ISAP encryption takes three inputs: nonce N, master key
K and message M. Nonce and master key is used to derive encryption key Kj, using
ISAP component ISAPRk. And K7, and nonce jointly forms the initial state of the Ascon
permutation. Nonce N must vary from each encryption and is visible to the attacker. Any
bit change on N will result in different K}, and different initial states thus affecting the
ciphertexts C' by avalanche effect.

What is visible to the attacker is IV, M; and C;. Note that nonce should be assumed not
to reuse in each encryption so initial states of permutation varies constantly, rendering the
recovery of K} impossible and meaningless. To achieve cipher text forgery, the attacker
must be able to recover master key K to compute Kj, using ISAPREk.

Due to the discarding of states variables in the end, the attacker will not be able to
recover the input of final permutation pg, thus K7, is invisible.

We’ll dive into the ISAPRk component later.

Yuhang Ji 3

As G Ci ‘

T'u : Tu)I‘“ :
b d :

Pu Pu " Pu Pu ‘
Cu 1 :‘ Cu Cu :

']

' '

Figure 2: Message Authentication Code of ISAP

2.1.2 Message Authentication Code

As shown in Figure 2, the ISAPMAC takes nonce N, fixed public parameter IV 4, public
associated data A, cipher C' and master key K as inputs, generates tag T using part of
the states and discards unused states in the end.

Due to the discarding of states variables in the end, the attacker will not be able to
recover the input of final permutation pg, thus K% is invisible. By changing A and C,
the attacker can change and compute ISAPRk parameter Y.

2.1.3 Rekey

Rekey component (ISAPRKk) serves as a key derivation function using fixed master key.
As we have discussed in 2.1.1 and 2.1.2, it is obvious that the attacker should target on
ISAPRk to recover master key K.

K|V

[nitialize Re-keving Squeeze
Figure 3: ISAPRk

The ISAPRk takes three inputs: the fixed master key K, the publicly visible initial
vector IV and associated data Y. From both scenarios where ISAPRK is used, the attacker
is always able to observe Y and IV, and always unable to observe K*. Since the K and
IV are both fixed, the state outputs by initialization stage are fixed as well. A recovery on
initial states will also enable the attacker to compute K*, thus compromising the security
of ISAPEnc and ISAPMAC.

Y is split into blocks of size rp, indicating only rp bits of Y are absorbed by each
permutation. In our scenario, rg = 1 and the state bit length of 320.

Since the goal of the attacker is to recover K, she may manipulate Y and observe
side-channel leakages on pp and tries to recover the state variables.

2.2 Specify the Strategy

We will focus on the permutation pp used in ISAPRK.

4 Side-channel Evaluation of ISAP

The non-linearity of Ascon is induced by the internal SBox construction. In the typical
implementation, 320 bit state is split into 5 state variables of 64 bit, and data to be
absorbed only influence the leading rp bits.

X oD P Py X
Y I
X2 \V} ! =(i}=X2
X3 lwz;& Lo x,
G 1’é’?¥ ECX,,

Figure 4: SBox of Ascon permutation

Before the SBox, the Ascon permutation only performs a linear constant addition to
the state. And the constant is public so the attacker can calculate SBox input giving the
data to be absorbed and initial state. As shown in Figure 4, state variables zg to x4 to be
passed to SBox are 64 bit each. All the operations are bit-wise, indicating the calculation
is on bits of the same position of x;.

For each absorption, only leading rp bits of zy are randomizable. The attacker will
not be able to recover trailing fixed 320 — rp bits.

To recover the leading rp bits of each z;, the attacker can randomize leading rp bits
of Y and cause leading rp bits of input x(to change and choose same bits of SBox output
To to x5 as intermediate values.

Since SBox is a highly non-linear operation on input bits, any leakage will be amplified
on hardware, which constitutes a target of side-channel analysis. Although only recover
leading rp bits of five state variables can be recovered, the attacker will gather sufficient
information regarding of the permutation state after sufficient rounds of permutation.
Having correctly recovered sufficient leading rp bits of multiple intermediate states, the
attacker can utilize a linear solver (like z3) to solve the initial state mathematically.

Our analysis strategy uses a rp bit visible random value to recover 5 x rp fixed values
by exploiting non-linear SBox which takes them as input, and the intermediate values are
output leading rp bits of five state variables. It is hard to achieve such 1 : 5 information
ratio under side-channel analysis, but it’s worth trying.

3 Experiments

3.1 Setting

We rst need to download the rmware containing the C/ASM implementation of Ascon-
ISAP into the devices ash memory. Then we connect the device to the host computer
through a USB serial port so that we can execute the cipher and record its input and
output. Meanwhile, we use a high-precision electromagnetic probe to capture the electro-
magnetic power emitted from the device chip. The captured power is then transmitted to
the oscilloscope to generate and display the waveform of electronic signals. With the help
of the oscilloscope, we can acquire enough raw power traces of ISAP in the host computer
for later assessment.

The hardware platform we use to flash code into is STM32F303RCT6 with Xilinx
Kintex-7 FPGA. The power consumption traces are acquired by a high precision LeCroy

Yuhang Ji 5

610Zi ossciliscope.

The assessment we have conducted for each implementation is listed in Table 1.

Table 1: Assessment scenarios

Implementation Assessment Strategy
Software impl. by ISAP team CPA
Hardware impl. by TAIK CPA

Hardware impl. by Ruhr-University Bochum CPA, t-test, x2-test

Since the associated data input in both ISAPEnc and ISAPMAC are visible to attacker,
so the analysis on ISAPRk precedure are expected to present the same results on them.
In our experiment, we decided to run ISAPEnc and collected nonce inputs and master
key for further analysis.

The acquisition triggers were placed on entering ISAPRk for each implementation.

3.2 Software Implementation by ISAP team

CPA is a side-channel analysis technique to reveal the private keys using the power leakage
of a cryptographic device. We conducted CPA on the ISAP software implementation.

0.5 A

0.0 1 AAMvapady

—0.5

0.5 1

vy A
0.0 1 I

—0.5 1

0 1000 2000 3000 4000 5000
sample points

Figure 5: CPA on Software Implementation. The upper one is a random guess, and the
lower one is the correct guess

The CPA result on random guess and correct guess of corresponding 5 bits of initial
state does not present any notable discrepancy. So the software CPA can not effectively
distinguish the correct initial state from wrong ones.

3.3 Hardware Implementation by IAIK

The results on figure 6 presents exactly the same phenomenon as software implementation.
There is also no notable discrepancy between random guess and correct initial states.

6 Side-channel Evaluation of ISAP

—
—

-
}

0.0 A

E:

N 4l {
.ll

—0.1 A

0.1 A
l ._Iu |

0.0 A

-

———
—
-4

—0.1 A

0 1000 2000 3000 4000 5000 6000 7000 8000
sample points

Figure 6: CPA on IAIK hardware implementation. The upper one is a random guess,
and the lower one is the correct guess

0.2 1
0.1
L |
007 1 |
_0.1 .
011
| | Ll
0.0 1 r.-l
_0'1 E
-0.21

0 2000 4000 6000 8000 10000 12000 14000
sample points

Figure 7: CPA on ISAP second order hardware implementation. The upper one is a
random guess, and the lower one is the correct guess

Yuhang Ji 7

3.4 Hardware implementation by Ruhr-University Bochum
34.1 CPA

The CPA result depicted in Figure 7 leads to the same conclusion that CPA can not make
a correct guess value distinguishable from incorrect ones for ISAP ISAPRk procedure.

3.4.2 t-test and x2-test

t-statistics vs time steps

75
50
wn
g 254
©
>
9 0
]
-~
8 251
0
&
_50 -
_75 .
-100 1

0 2000 4000 6000 8000 10000 12000 14000
Time Steps

Figure 8: t{-test result, the red line indicates the £4.5 threshold

For a further leakage analysis, we conducted t-test and y2-test on collected hardware
implementations.

Welchs t-test is a statistical hypothesis test used to compare the means of two groups,
especially when the two groups have unequal sample sizes and variances. In terms of
side-channel analysis, we can divide the power traces into two groups according to the
dierence in intermediate values.

More precisely, when the private key is xed, we can divide the power traces of by a bit
of selected intermediate SBox output bits. Here we select the second bit for illustration.

As shown in Figure 8, both t-test and y2-test are able to detect obvious leakage on
ISAP hardware implementation.

The t-test and y2-test shows tremendous leakage but the CPA fails to distinguish
correct state guesses. For CPA, the correct guess and incorrect guess plot are either
exactly the same or symmetric against x-axis. And t¢-test result shown in Figure 8 looks
like amplification of y-scale of figure 7. It is bizarre that CPA result and ¢-test result look
the same shape. We leave the explanation of this to the next section.

4 Results
4.1 Analysis

The anomaly of CPA results and t-test drove us into reviewing the ISAP permutation
construction. The data to be absorbed Y; each permutation is a single bit, thus only
affecting a single bit of total 320 bit state. The linearity of SBox resides in operations of
bits of the same position in five state variables. When the five bits are all XORed with

8 Side-channel Evaluation of ISAP

associate data Y, a side-channel analysis could take place because all the bits of Y will be
spread through SBox output. But in our selected ISAP’s scenario, only first bit is XORed.
This greatly reduces the leakage induced by SBox. When the attacker chooses a five-bit
state initial state to guess, the SBox output is only determined by the bit to be absorbed.

Let x; be bits of initial state to be guessed, and y be the bit to be absorbed, b; be the
SBox output bits. When x; is fixed, whether our guess is correct or not, the b; is only
determined by y. The b; = y @ ¢! + ¢? where ¢} and ¢? are fixed combination of zy to
x5. When conducting side-channel analysis on b;, we’re actually conducting on single-bit
XOR. The non-linearity of SBox is significantly reduced by only absorbing a single bit
each permutation. Any leakage on b; actually comes from bit y rather than initial state
x;. For a single bit absorption scenario, there is no exploitable non-linearity of ISAP.

CPA results of correct guessing value and incorrect ones are the same because the
intermediate values of each guess, which only determined by nonce bit, are either the same
or opposite. Traces divided by the selected intermediate bit are also actually divided by
the nonce bit, thus showing tremendous leakage.

4.2 Conclusion

In this report we have shown that ISAP is resilient against DPA-based Side-Channel
Analysis. The attacker is unable to find a proper attack target in all components of
ISAP. We further show that the leakage-resilience critically depends on the choice of rp
in the ISAPRk component. rp indicates how many bits of data to be absorbed in the
permutation. A small choice of rg will lead the power leakage of master key to be covered
by the leakage of publicly visible data. As a conclusion, for Ascon-based ISAP, the data
to be absorbed has to be longer than 64 bit to conduct side-channel analysis.As a result,
the current ISAP algorithm does not present any side-channel leakage with regard to the
master key.

On the Side Channel Leakage Assessment of
First-Order Masked GIFT-COFB

Xiangjun Lu!, Shipei Qu!, Tengfei Wang!, Pei Cao!

School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University,
Shanghai, China

1 Introduction

1.1 Background

GIFT-COFB is an Authenticated Encryption with Associated Data (AEAD) scheme,
based on the GIFT lightweight block cipher and the COFB lightweight AEAD operating
mode[BCIT20]. It has been selected as one of the finalists in the NIST lightweight
cryptography standardization process. The side channel analysis of the native GIFT-
COFB is carried out in [HBB20], while its mask-protected implementation has not yet
been explored.

In power side-channel analysis, the attacker tries to recover secret information from the
hardware running the cryptographic algorithm by recording the power consumption traces.
In order to protect cryptographic algorithms from such attacks, it is often implemented
with boolean masks to hide the real secret information.

In this report, we will perform a side-channel leakage assessment against GIFT-
COFB with first-order boolean masking in both software and hardware implementations.
The collected power traces are going through leakage detection and attack attempts to
investigate the performance of the power side-channel resilience of GIFT-COFB.

1.2 Our Work and Results Overview

Our work in this report and the results of the side-channel leakage assessment on firstorder
masked GIFT-COFB can be summarized as follows.

e We collected two trace sets from the given software and hardware implementations
of GIFT-COFB on an MCU and a side-channel attack evaluation board.

o We performed Welch’s ¢-test [BCD'13] and x%-test [MRSS18] to evaluate the power
leakage of GIFT-COFB. We tried to recover the private keys of GIFT-COFB by
correlational power attack (CPA).

o x2-test applied on the power traces from the given hardware implementations shows
a slight potential power leakage from the input nonce. However, such leakage is
missing in Welch’s ¢-tests or x2-test on software implementations.

e CPA attack cannot recover the private key bytes under the given implementations.

2 On the Side Channel Leakage Assessment of First-Order Masked GIFT-COFB

2 Assessment Strategy

Our assessment strategy on the given GIFT-COFB implementations can be summarized
as the following three phases:
1. Analysis of the target

The initial phase of GIFT-COFB is shown in Figure 1. We consider the known-plaintext
attack scenario, which is a common assumption in side-channel attacks. Then we take the
first block encryption component as the target of the attack, which is a GIFT-128 cipher.

Trunc Al1] 2r|jo™/? A[2] 220"/
Target In J\ l
Y @ Ex 4 N

Xo] Y[X[vy X2 Y[

Figure 1: Analysis target

Next, we choose the output of SubCells operation in the second round as the interme-
diate value. The reason for choosing this intermediate value is that it has both a direct
correspondence with the round key and a high degree of non-linearity.

Let’s take the notation in the GIFT-COFB specification[BCIT20]. Specifically, the
128-bit secret key is loaded into the key state KS partitioned into 8 16-bit words:

Wo || WA bior -+ bua || biin -+ bos bor bog
Wy || Ws bos --+ bso || bro -+ bes bes bea

KS— -)
Wy || Ws bes -+ bag || bar -+ baa b3z b3 (1)
We || Wr b3r -+ big || bis - b2 b1 b

And the cipher state S is expressed as 4 32-bit segments:

So bigg -+ by by b
Sl b125 e b9 b5 bl

S = — 2
Sa bigg -+ big bg bo 2)
S3 bior --+ b1 by b3

Suppose the cipher state before the AddRoundKey operation in the first round is
{Sy, 51,59, S5}, which can be derived from the nonce N. Then AddRoundK ey will update
the cipher state with the round key and constant in the first round:

"

Sy Sy

Sy« S) @ Ws||Wr,
S; « Sé © Wa||Ws,
Sy < S @ 0x80000001

(3)

In order to perform side channel attacks such as CPA, we must be able to compute
the corresponding intermediate value from parts of the key we guessed. In typical side-
channel attacks (e.g. AES), one byte is often guessed and another byte is obtained as an
intermediate value. However, this strategy does not work for the GIFT-128, because Sf
and Sg affects multiple bytes in the output of the second round’s SubClells:

Xiangjun Lu, Shipei Qu, Tengfei Wang, Pei Cao 3

S; S @ (S{,’&S;’)
So ¢ So @ (51&5;’)
Sy Sy @ (So | S1)
S3 + S;;/ @S (4)
S1+ S1®S3
53 v Sg
SQ — SQ D (SQ&S])
{80, 51,52, 53} + {S3,51,52,50}

Noting that the bit position of each byte does not change, so we can solve this problem
by guessing 1 byte in Si/ and 1 byte in S;, and calculate the corresponding 1 byte in the
result. For example, if we choose the last byte of the output Ss as the intermediate value,
the calculation can be expressed as:

$510] = Sy 10] @ ((SV10] @ (5101885 [0])) &S5 [0])

where the index 0 indicates the position of the byte, S;, can be obtained from Eq. 1 (2
bytes from Wy 6/W5 7 is guessed). Based on the same principle, we can also use bit-level
intermediate values, which can help to verify the leakage of side-channels more quickly.

2. Side-channel leakage detection

Next, we applied TVLA (Test Vector Leakage Assessment) to determine whether the
collected power traces had noticeable plaintext or intermediate value leaks. Specifically,
the main techniques used here are Welch’s ¢-test and x? test. They can roughly locate
where in the traces the power leakage occurred.

3. Key recovery attack evaluation

Note that if there is power leakage detected in Phase 2, we can apply CPA here to
reveal half of the key (W5 36,7). The other half of the master key needs to attack the third
round of SubClells with the same strategy based on the success of the first half of the key.

3 Experimental Setup

In this section, we will describe the details of power traces acquisition process.

3.1 Overall Procedure

The procedure of out power trace collection experiments is presented in Figure 2.

As shown in the figure, we first need to download the firmware which including the
implementation of GIFT-COFB and our custom communication protocol into the device
under evaluation. Then we connect the device to the host computer through a USB serial
port so that we can invoke the cipher and record its input and output. Meanwhile, we use
a high-precision electromagnetic probe to capture the electromagnetic power emitted from
the device chip. The captured power is then transmitted to the oscilloscope to generate
and display the waveform of electronic signals. With the help of the oscilloscope, we can
acquire enough raw power traces of protected GIFT-COFB in the host computer for later
assessment.

4 On the Side Channel Leakage Assessment of First-Order Masked GIFT-COFB

Device under evaluation Oscilloscope
Probe
'0'0'0_ —
o.—|_ ﬁ @ Collect @ Display [-—/\/_o
o 3 — >
— . @ 000
a3 | 000
el | =

@ Invoke ® Adjust ® Save
@ Download gmy
GIFT-128 D -«A/\/v—
implementations Host Computer

Figure 2: Overall procedure of power trace collection

3.2 Experimental Setting
3.2.1 Experimental environments

The details of devices and analyzing suites used for GIFT-COFB are presented in Table 1.

Table 1: Details of experimental environments
Type Ttems Details
Target MCU STM32F303RCT6
Target evaluation board Saseabo-giii(Kintex-7)
High Precision EM probe Langer RF-U 5-2
Oscilloscope Pico 3203D, LeCroy 610Zi
Sampling rate for MCU 125 MHz
Sampling rate for FPGA 500 MHz
Random source standard C library rand(), srand () in stdlib.h

Hardware platform

Measuring tools

Sampling parameters

We assign GPIO__12 of STM32F303RCT6 (CN9 of Saseabo-gii) as the pin sending the
trigger signals. The given software and hardware implementations of GIFT-COFB will be
tested on STM32F303RCT6 and Saseabo-giii, respectively.

3.2.2 Input and output of GIFT-COFB

For the experiments of power trace collection on software implementation, the input
of GIFT-COFB encryption consists of three parts: a 16-byte nonce, 16-byte associated
data and 16-byte plaintext. The output consists of 16-byte ciphertext and a 16-byte
authenticated tag. For the hardware implementation, it requires the input to be already
masked data and thus twice as long as the original ones. The 16-byte encryption key is
fixed throughout the collection. The specific information about the fixed input is shown
in 2. All the fixed value are directly copied from the official test vectors provided in the
implementer’s code repository.

According to the analysis in 2, changing either the input nonce N or plaintext will
change the intermediate values. Here we choose to alter the nonce in each encryption.
Then the intermediate values will change under the same key, thereby generating different
but related power consumption patterns. This allows us to perform CPA and other tests.

Xiangjun Lu, Shipei Qu, Tengfei Wang, Pei Cao 5

Table 2: Input details of GIFT-COFB

Implementation Fixed Input Value
Master key 000102030405060708090A0BOCODOEOF
Software Plaintext 000102030405060708090A0BOCODOEOF

Associated data 000102030405060708090A0B0OCODOEOF
B54F97F73F0716B75845D3D652C015A7
FEA43B246C15EAG6E619601 E3FACC42A7
Hardware(masked) Plaintext C5F8D832CBF8D832

Associated data A25D267C615D267C

Master key

3.2.3 Trigger setting

Apart from the equipment mentioned in 2, another probe attached to the oscilloscope can
receive trigger signals to help us locate the timing when GIFT-COFB is executed. Thus,
we need to modify the original GIFT-COFB implementations so that they can control the
corresponding pins of the device to send trigger signals to the oscilloscope.

For the software implementation, the codes to control the pin and send the trigger signals
are inserted into prior and after the call to the first call to giftb128_encrypt_block, as
shown in Figure 3.

int giftcofb_crypt(

gift128_keyschedule(key, m_rkey.rkey, key_m);

// Call trigger
HAL_GPIO_TogglePin(Trigger_GPIO_PORT, Trigger_Pin);
giftb128 encrypt_block(y, m_rkey.rkey, nonce);

// Call trigger
HAL_GPIO_TogglePin(Trigger_GPIO_PORT, Trigger_Pin);

Figure 3: Code snippet to set triggers in the software implementation

For the hardware implementation, we use a passive way to set the trigger signal, i.e.
the algorithm will block until we supply a high level to a certain pin. The trigger is set as
an external signal that enables the hardware to start executing the algorithm by pulling
up for 1 clock cycle. This signal is also connected to the oscilloscope as a trigger control
for the trace acquisition.

4 Description of Collected Raw Traces
We collected two sets of power traces, (S) and (H). (S) is acquired from the given software

GIFT-COFB implementations under settings described in Section 3, and (H) is from the
hardware implementation. Their basic information is presented in Table 3.

Table 3
Item Software Implementation Hardware Implementation
Trace set ID S H
Rounds contained 40 7
No. of traces 20,000 1,000,000
No. of points per trace 8,000 10,000
Precision —215 ~ 215 —27 ~ 27

Sampling time 5h 12h

6 On the Side Channel Leakage Assessment of First-Order Masked GIFT-COFB

The sample plots of trace set (S) and (H) are presented in Figure 4. As seen from
Figure 4a, we can easily distinguish the rounds in GIFT-128 encryption from (H).

4 Data loadin:
15000 100 N

10000 4 Single round

50 4
5000 q

—5000
—50 4

—10000 -

—-100
—15000 -

0 1000 2000 3000 4000 5000 6000 7000 8000 0 2000 4000 6000 8000 10000

(a) () (b) (H)
Figure 4: Sample graph of trace set (S) and (H)

Then we can perform different tests mentioned in Section 2 on them to evaluate the
power leakage of the given implementations.

5 Main Result
5.1 Welch’s t-test

Welch’s t-test is a statistical hypothesis test used to compare the means of two groups,
especially when the two groups have unequal sample sizes and variances. In terms of
side-channel analysis, we can divide the power traces into two groups according to the
difference in intermediate values. More precisely, when the master key is fixed, we can
divide the power traces of GIFT-COFB by the following two cases.

o Case(I): The last bit of the first byte of the input nonce is 0 or 1.

o Case(II): The last bit of the first byte of the intermediate value is 0 or 1.

t-statistics vs time steps t-statistics vs time steps

t-statistic values
o

t-statistic values
o

-2 -2
-4 -4
0 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000 4000 5000 6000
Time Steps Time Steps
(a) (S) (b) (H)

Figure 5: Welch’s t-test results of (S) and (H) (divided by Case (1))

The test results are shown in Figure 5 and Figure 6. We can see from the figure that
the results failed to reach the threshold of the Welch’s t-test for either the software or
the hardware implementation, suggesting that no significant leakage information can be
detected using this test approach.

Xiangjun Lu, Shipei Qu, Tengfei Wang, Pei Cao 7

t-statistics vs time steps t-statistics vs time steps

N)
)

t-statistic values
o

t-statistic values
o

-2

!
)

-4 -4
0 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000 4000 5000 6000
Time Steps Time Steps
(a) (5) (b) (H)

Figure 6: Welch’s t-test results of (S) and (H) (divided by Case (II))

5.2 x3-test

x2-test is another statistical hypothesis test to determine whether there is a significant
difference between the expected and observed frequencies, which is a natural complement
to Welch’s t-test for black box leakage detection, especially in the case of higher-order
masked implementations. It can also test the null hypothesis of independence of a pair of
random variables. Therefore, like t-test, we divide the power traces by the following two
cases and observe their statistical differences.

o Case(I): The last bit of the first byte of the input nonce is 0 or 1.

o Case(II): The last bit of the first byte of the intermediate value is 0 or 1.

Chi2-statistics vs time steps Chi2-statistics vs time steps

w

w o~

~

Chi2-statistic p values
Chi2-statistic p values

-

o

(I) 10'00 2600 30‘00 40'00 SObO 60‘00 70'00 aobo (I) 10'00 ZdOO 30‘00 40'00 SObO 60‘00 70'00 aobo
Time Steps Time Steps
(a) (5) (b) (H)

Figure 7: x2-test results of (S) and (H) (divided by Case (1))

The test results are shown in Figure 7 and Figure 8. We can see from the figure that
the results failed to reach the confidence level of thex?-test in 7a, but there is slight power
leakage detected from (H) in Figure 7b when the traces are divided by nonce. However,
when the traces are divided according to the intermediate values, y2-test cannot find
statistically significant differences of two trace groups.

5.3 Correlational power attack (CPA)

CPA is an efficient side-channel analysis method to reveal the secret from power leakage
of a cryptographic device. According to the analysis in Section 2, we will guess 1 bit (or 1

8 On the Side Channel Leakage Assessment of First-Order Masked GIFT-COFB

Chi2-statistics vs time steps Chi2-statistics vs time steps

Chi2-statistic p values
Chi2-statistic p values

6 10'00 20‘00 30‘00 40‘00 50‘00 60‘00 70‘00 80‘00 6 10'00 20‘00 30‘00 40‘00 50‘00 60‘00 70‘00 80‘00

(a) () (b) (H)

Figure 8: y2-test results of (S) and (H) (divided by Case (IT))

byte, using more computational resources) from two different subkeys W5 /W3 7 at a time
and compute the corresponding intermediate value. Taking the bit model for example, we
can get a sequence of bits from the calculation of intermediate value. The correct guess
will exhibit the greatest level of correlation between the bit sequence and real power trace,
which indicates the correct subkey bit.

Table 4: CPA guess result of key bits in (S)

Target bit index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Target bit value (W2[|lW3) 0 o0 o0 0 0 1 0 0 O O O O O 1 o0 1
Target bit value (W6|lW7) 0 o o0 0 1 1 0 0 0 O O O 1 1 o0 1
Real key rank(/4) 3 2 3 3 4 3 1 3 1 1 2 4 2 4 1 1
Best guess 01 10 01 10 00O 0O 00 11 00 00 01 10 00O OO0 00 11
Real key 00 00 00 00 01 11 00 OO0 00O 00 00 00 01 11

Target bit index 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Target bit value (W2||lW3) 0 o o o0 o0 1 1 0 0 O O O 0O 1 1 1
Target bit value (W6|lW7) 0 o o o0 1 1 1 0 0 O O o0 1 1 1 1
Real key rank(/4) 2 3 1 3 4 4 3 1 4 1 1 2 1 2 3 1
Best guess 10 11 00 01 10 10 10 00 10 00 00 01 01 01 00 11
Real key 00 00 00 00 01 11 11 00 0O 00O 00 0O O1 11 11 11

Table 5: CPA guess result of key bits in (H)

Target bit index 0 1 2 3 4 5 6 7T 8 9 10 11 12 13 14 15
Target bit value (W2[W3) 1 1 0 o 1 1 0 0 1 0 1 0 0 1 0 1
Target bit value (W6[|W7) 0 1 o 1 1 1 1 1 1 1 1 0 1 1 0 0
Real key rank 4 2 3 2 4 3 3 1 2 2 4 4 1 3 1 1
Best guess 1 01 11 11 10 00 10 01 00 10 01 10 01 10 00 O1
Real key 10 11 00 01 11 11 01 01 11 11 11 00 01 11 00 O1
Target bit index 16 17 18 19 20 21 22 23 24 25 26 27 28 29 31
Target bit value (W2W3) 0 o0 o0 1 1 o0 o0 1 1 o0 o O 1 1 1 1
Target bit value (W6[|W7) 0 1 o 1 1 0 o0 1 1 1 0 1 1 1 0 1
Real key rank 1 2 1 2 1 2 3 1 1 2 2 1 3 3 3 2
Best guess 00 11 00 10 11 01 11 11 11 10 01 01 00 10 01 O1
Real key 0o 01 00O 11 11 00 00O 11 11 01 00 O1 11 11 10 11

For trace set (S), we perform CPA on Ws g and W3 7, including half of all key bits of
GIFT-128. The CPA guess results for each bit is presented in Table 4.

Note that we are guessing 2 bits of 2 different subkeys each time, hence the guessed
bits and real key bits are expressed as (W2||W3)[i]||(Ws||W7)][¢], where ¢ indicates the bit
location from the lowest. In the result above, the average ranking of the correct key is
2.3125, which is similar to the theoretical result of 2.5 for any random guess. Furthermore,

Xiangjun Lu, Shipei Qu, Tengfei Wang, Pei Cao 9

the success rate of key guessing over all bits is 34.375%, which is a slight increase compared
to the random guess of 25%, but still far from restoring the real master key.

For trace set (H), we have the following CPA results in Table 5.

The hardware implementation results are similar to the previous ones overall. The
average rank order of correct keys in the correlation results is 2.1875, and the percentage
of correct guessed keys is 28.125%. In general, CPA fails to perform effective attacks on
the given software and hardware implementations.

References

[BCD*13] Georg T. Becker, Jim Cooper, Elizabeth K. DeMulder, Gilbert Goodwill,

[BCI+20]

[HBB20]

[MRSS18]

Joshua Jaffe, Gary Kenworthy, T. Kouzminov, Andrew J. Leiserson, Mark E.
Marson, Pankaj Rohatgi, and Sami Saab. Test vector leakage assessment (tvla
) methodology in practice. 2013.

Subhadeep Banik, Avik Chakraborti, Akiko Inoue, Tetsu Iwata, Kazuhiko
Minematsu, Mridul Nandi, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and
Yosuke Todo. Gift-cofb. Cryptology ePrint Archive, Paper 2020/738, 2020.
https://eprint.iacr.org/2020/738.

Xiaolu Hou, Jakub Breier, and Shivam Bhasin. Dnfa: Differential no-fault
analysis of bit permutation based ciphers assisted by side-channel. Cryptology
ePrint Archive, Paper 2020/1554, 2020. https://eprint.iacr.org/2020/
1554.

Amir Moradi, Bastian Richter, Tobias Schneider, and Frangois-Xavier Standaert.
Leakage detection with the x2-test. TACR Transactions on Cryptographic
Hardware and Embedded Systems, 2018(1):209-237, Feb. 2018.

On the Side-channel Leakage Assessment of
Ascon with Boolean Masking

Hongyi Zhang!, Pei Cao!

School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University,
Shanghai, China

1 Introduction

In the report, we will make a side-channel leakage assessment for Ascon with second-order
boolean masking in software implementation(STM32F303) and first-order boolean masking
in hardware implementation(Sakura-X). With collected power traces, the report will show
the capability of counter side-channel analysis of Ascon through three tests, including
Welch’s t-test, x2-test, and correlation power analysis (CPA).

2 Our Work and Results Overview

In this report, our work and the assessment results of the side-channel leakage assessment
on Ascon can be concluded as follows:

e We collected two trace sets from the given software and hardware implementations
of Ascon on an STM32F303 MCU and a SAKURA-X evaluation board

o We performed Welch’s t-test and x2-test to evaluate the power leakage condition of
Ascon. Also, we tried to recover the private keys of Ascon by CPA

o Welch’s t-test and x2-test did not show obvious leakage of intermediate value

e CPA cannot recover the private key bits in the software and hardware implementa-
tions when protection is applied to Ascon

3 Assessment Strategy

There are three phases in the assessment strategy on the given Ascon implementations:
Phase 1: Determine the intermediate value for analysis.

As far as we know, unprotected Ascon has been shown to be insecure under CPA [SD17].
Since we know the contents of the state at initialization, except for the key part. And we
can vary the nonce each run, we pick the end of the first round of the initialization phase
as our point of analysis (see figure 1). Specifically, we chose the output of the first round
of permutation Keccak-p as the intermediate value:

y0o=k(m' +1)+m (1)

where y0 is the output of the non-linear S-box, k is one bit of the key, m’ and m are
related to the variable nonce.
Phase 2: Discern possible power leakage.

2 Assessment for Ascon

Target operatign

F Ay A PGy PaCa RGC . T
5 LA ISH Y
> . : \v%) BN . : \\% b' (N7 . (v : . 128
y m E ¢ P c P m E c P ¢ P ¢ E m y
> P . o . Y
t ot - 1 f
IVIK|[N 07K 071 K[j0* K
Initialization Associated Data Plaintext Finalization

Figure 1: Encryption of Ascon

Next, we need to determine if there is power leakage in the process of Ascon encryption.
As mentioned before, we assess the power traces with Welch’s t-test and x? test, which
can help us discover the possible leakage points in the power trace. These leakage points
in turn help us to find the corresponding operation that cause the leakage.

Phase 3: Recover the secret key bits.

If we detect the possible power leakage in Phase 2, then we can apply CPA to the Ascon
to recover the key bits. In the process of CPA, we would foucs on the first three bits of
the private key, which should be easily obtained if there is leakage in Ascon’s encrpytion.

4 Assessment on the EM traces of software implementa-
tion

4.1 Experiment Procedure

First, we download the Ascon’s firmware of the C implementation into the STM32F303’s
flash memory. Then we connect the STM32F303 chip to the host computer through a USB
serial port to execute the algorithm and record the input and output data.At the same time,
we collect the electromagnetic power traces of the chip with a high-precision electromagnetic
probe. And the sampled traces are recorded by the Pico-3203D oscilloscope in the form
of .trs files. After repeatedly collected a large number of traces, we can have a power
trace set of the masked Ascon for the assessment. In the experiment, the software code
applied to STM32F303 can be found on github(https://github.com/ascon/simpleserial-
ascon/releases/tag/v1.2.6).

Table 1: Details of experimental environments for software implementation.

Items Details
Target MCU STM32F303RCT6
EM probe Langer RF-U 5-2
Oscilloscope Pico 3203D
Baud rate (USB Serial Port) 115200 bps
Sampling rate 62.5MS/s
Amplifier Mini-Circuits ZKL-1R5+
Ascon Code Version protected_ bi32__armv6

Trigger location. When sampling traces, we use a trigger signal to locate the timing
when the target operation (the permutation Keccak-p in the initialization phase) is executed.
Therefore, we need to modify the original Ascon implementations so that they can control
the corresponding pins of the device to send trigger signals at sepcific time point. To
achieve this function, we insert the controlling soruce codes into the ’ascon_ initaead’

Hongyi Zhang, Pei Cao 3

function, specifically, before and after the call of the 'P’ function (see figure 2). To cover
larger parts of the implementation, the number of rounds have been reduced to 2 rounds
for PA and PB.

/* trigger high */

HAL GPIO TogglePin(Trigger GPIO Port, Trigger Pin);

/* compute the permutation */

P(s, ASCON_PA ROUNDS, NUM SHARES KEY) ;

/* trigger ow */

HAL GPIO TogglePin(Trigger GPIO Port, Trigger Pin);

Figure 2: Code snippet to set trigger in the software implementation

Input data of Ascon. During the experiments of EM trace collection, the input of
Ascon encryption consists of three parts: a 16-byte nonce, 16-byte associated data and
16-byte plaintext. The output is 32-byte, including a 16-byte ciphertext and a 16-byte
authenticated tag. The 16-byte encryption key is fixed throughout the collection. The
detailed information about the fixed input is shown in table 2. Since changing solely
the input nonce will change the intermediate values, we choose to alter the nonce in
each encryption. Then the intermediate values will change under the same key, thereby
generating different but related power consumption patterns. This allows us to perform
CPA and other tests.

Table 2: Details of input for software Ascon implementation.

Items Details
Key 000102030405060708090A0BOCODOEOF
Plaintext 000102030405060708090A0BOCODOEOF
Associated data 000102030405060708090A0BOCODOEOF
Nonce random

Trace information. The basic information of collected traces is presented in Table 3.

Table 3: Basic information of the collected EM traces for software Ascon implementation.

Items Details
No. of traces 60000
No. of points per trace 80000
Precision —215 215
Sampling time 4 hours

4.2 Result of Welch’s t-test

We use Welch’s t-test, which is used to compare the means of two sample groups, to
examine if there is any leakage points in the power trace. To do the t-test, we compart the
power traces into two groups according to the difference in their intermediate values. As
the private key is fixed, we can divide the power traces of Ascon by the intermediate value
y0 in equation 1, which is determined by the first bit of the secret key. The test results
are shown in figure 3.

4.3 Result of x2-test

x2-test is a statistical hypothesis test to determine whether there is a significant difference
between the expected and observed frequencies. It can also test the null hypothesis of

4 Assessment for Ascon

t-statistics vs time steps

t-statistic values
o

-2

-4

0 10000 20000 30000 40000 50000 60000 70000 80000
Time Steps

Figure 3: Results of Welch’s t-test on Ascon software implementation

independence of a pair of random variables. Therefore, like t-test, we need to divide
the power traces of Ascon by the intermediate value y0 in equation 1 and observe their
statistical differences.

Chi2-statistics vs time steps

Chi2-statistic p values

0 10000 20000 30000 40000 50000 60000 70000 80000
Time Steps

Figure 4: Result of y2-test on Ascon software implementation

4.4 CPA results for software power traces

We try to recover the first three bits of the key by using CPA(Correlation Power Analysis),
which should be 000. In this way, we get the result as below, the figure shows the leakage
situation at different sample points.

And best 8 keys guessed by CPA are shown in Table 4:

We can see the best key is 4 and 5, which are not the correct ones. Therefore, the CPA
against Ascon power traces of software implementation is not successful, showing that the
Ascon can resist the side-channel attacks.

Hongyi Zhang, Pei Cao 5

Table 4: Best 8 keys guessed by CPA.

Key Rank Key Correlation Value Leak Position

0 4(100) 0.014632203153923171 17218
1 5(101) 0.014632203153923171 17218
2 0(000) 0.014263695444477729 39050
3 1(001) 0.014263695444477729 39050
4 6(110) 0.013485215252643857 47599
5 7(111) 0.013485215252643857 47599
6 2(010) 0.012931953494060296 40501
7 3(011) 0.012931953494060296 40501
0.014 A

0.012 A1

0.010 A1

0.008 A

0.006 -

correlation value

0.004

0.002

0.000 A

0 10000 20000 30000 40000 50000 60000
sample points

Figure 5: CPA result for Ascon using software power traces

5 Assessment on the power traces of hardware implemen-
tation

5.1 Experimental Setting

We first need to download the firmware of Ascon into the SAKURA-X. Then we connect the
device to the host computer through a USB serial port so that we can execute the cipher and
record its input and output. The captured power comsumption is then transmitted to the
oscilloscope to generate and display the waveform of electronic signals. With the help of the
oscilloscope, we can acquire enough raw power traces of protected Ascon in the host com-
puter for later assessment. The source code of hardware implementation can be found on-
line(https://cryptography.gmu.edu/athena/LWC/LWC_ Finalists protected HW__implementations.html).

Input data of Ascon. During the experiments of power trace collection, the input
of Ascon encryption consists of four parts (see table 6). Only nonce is variable, the other
inputs (i.e., key, plaintext, and associated data) are fixed.

Trace information. The basic information of collected traces is presented in Table 7.

6 Assessment for Ascon

Table 5: Details of experimental environments for hardware implementation.

Items Details
Target platform SAKURA-X (with Xilinx Kintex-7 FPGA)
Oscilloscope LeCroy 610Zi
Sampling rate 1GS/s
Ascon code version ASCON__HPC2(first order boolean mask)

Table 6: Details of input for hardware Ascon implementation.

Items Details
Key D90E654D39818255180DD3DCA9FAEB4B
Plaintext /
Associated data 81B2D700
Nonce random

Table 7: Basic information of the collected traces for hardware Ascon implementation.

Items Detalils
No. of traces 1000000

No. of points per trace 10000
Precision —27 ~ 27
Sampling time 8 hours

5.2 Result of Welch’s t-test

The result is shown in figure 6

t-statistics vs time steps

t-statistic values
o

-2

0 2000 4000 6000 8000 10000
Time Steps

Figure 6: Results of Welch’s t-test on Ascon hardware implementation

5.3 Result of x2-test

The result of y2-test is as below:

Hongyi Zhang, Pei Cao

Chi2-statistic p values

Chi2-statistics vs time steps

0 2000

4000 6000 8000

Time Steps

10000

Figure 7: Results of y2-test on Ascon hardware implementation

5.4 CPA results for hardware power traces

We try to recover the first three bit of the key by using CPA (Correlation Power Analysis),
which should be 000. And we get the result as below, the figure 8 shows the leakage
situation at different sample points. We can see the best guessing is 110, which is far from
being the right answer 000.

Best 8 guessed keys are shown in Table 8 below:

Table 8: Best 8 keys guessed by CPA.

Key Rank Key Correlation Value Leak Position
Rank0 key 6(110) 0.049118043345022504 9823
Rank1 key 7(111) 0.049118043345022504 9823
Rank2 key 2(010) 0.04863842222881651 7496
Rank3 key 3(011) 0.04863842222881651 7496
Rank4 key 0(000) 0.045888110508008735 7497
Rank5 key 1(001) 0.045888110508008735 7497
Rank6 key 4(100) 0.04552392802497998 7496
Rank7 key 5(101) 0.04552392802497998 7496

8 Assessment for Ascon

0.050 A

0.045 A

o
o
B
o

0.035 A1

correlation value

0.030 A1

0.025 +

0 2000 4000 6000 8000 10000
sample points

Figure 8: CPA result for Ascon using hardware power traces

References

[SD17] Niels Samwel and Joan Daemen. DPA on hardware implementations of ascon and
keyak. In Proceedings of the Computing Frontiers Conference, CF’17, Siena, Italy,
May 15-17, 2017, pages 415-424. ACM, 2017.

