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1 Introduction

This report summarizes preliminary results of side-channel analysis of several NIST LWC finalists
by Cryptographic Engineering & Side-Channel Analysis (CESCA) Lab 1 from Radboud University
Nijmegen, The Netherlands, between April 1st and August 19, 2022.

We have performed side-channel evaluation of software implementations of the following finalists:

• ASCON (unprotected implementation, Section 2 and first-order masked implementation,
Section 3);

• Xoodyak (Section 4);

• ISAP (Section 5).

In our evaluation we first perform a short assessment on how feasible a side-channel attack is
and when needed we verify that our attacks work on simulated traces. Subsequently, we mostly use
test vector leakage assessment (TVLA) [1, 2] for concentrated leakage detection and Correlation
Power Analysis (CPA) [3] for performing unsupervised attacks; for details, about attacks on each
finalist see the relevant sections.

1.1 Measurement Setup

We have evaluated all software implementations on a a Piñata development board 1 with an
STM32F407IGT6, 32-bit ARM-based microcontroler, running at the clock frequency of 168 MHz
and powered with a stabilized power supply at 3.3V. The board is modified to perform SCA through
power consumption. We measure the power consumption with a current probe 1. Communication
between the board and the recording computer is implemented with UART.

We collect power traces with the Picoscope model 3206D. The measurements are performed
with a sampling frequency of between 100 MHz and 1.0 GHz with 8-bit resolution and the trigger
is implemented in software.

1https://cescalab.cs.ru.nl/
1Pinata Board: https://www.riscure.com/product/pinata-training-target/
1Current Probe: https://www.riscure.com/product/current-probe/
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2 Power Analysis of ASCON

In this section we first analyze how to perform a CPA attack on ASCON and then we run TVLA
and apply the CPA distinguisher on the acquired traces.

Samwel and Daemen [4] have successfully recovered the complete the key with a DPA attack
on a hardware implementation of ASCON 2. They mounted a bitwise attack on the x0 and x1

output state registers after a single round of permutation in the initialization of the algorithm.
They found that three (x0, x1, x4) of the five output registers contain a non-linear term with both a
key bit and a nonce bit, allowing for a DPA attack. As these terms are algorithmically identical in
the hardware and software setting, this attack should in theory be possible in both domains. Our
attack is therefore based on the successful attack proposed by Samwel and Daemen.

2.1 Selection functions and power model

We use the same selection functions as in [4]. These selection functions consider the activity of
a single bit of the respective output register after one round of permutation in the initialization
phase of ASCON. To simplify, the functions omits all constant values as they do not contribute
to the activity of the register. As these selection functions focus on activity caused by non-linear
interaction between one known and one secret value we can apply a bitwise divide-and-conquer
technique.

In ASCON [5] all permutations are done over the state of five registers of 8 bytes. A static
value is loaded into the first register, the key is loaded in the second and third register and the
nonce is loaded in the last two registers. After this twelve rounds of permutations are executed
on the state to finish the initialization. A round of permutation consists of three phases; adding
constants, executing a 5-bit S-box and combining each register with two linear shifts of itself. As
adding constants does not contribute to the activity of the output state, this phase is ignored in
the selection functions.

Equation 1 and Equation 2 show the activity of the S-box for their respective output register.
This is generalized and combined with the linear diffusion in Equation 3 and Equation 4; these are
the final equations that are being used in this DPA attack. Due to the linear diffusion layer, three
key bits are needed to compute a single output state bit. The number of possible keys for each
output state bit is therefore 23 which amounts to eight possible key values.

y0 = k(m′ + 1) +m (1)

y1 = m(k + 1) +m′ (2)

S0i(M,K∗) =k∗0(m
′
i + 1) +mi + k∗1(m

′
i+45 + 1)

+mi+45 + k∗2(m
′
i+36) +mi+36

(3)

S1i(M,K∗) =mi(k
∗
0 + 1) +m′

i +mi+3(k
∗
1 + 1)

+m′
i+3 +mi+25(k

∗
2 + 1) +m′

i+25

(4)

The power model used in Samwel and Daemen’s work is the Hamming Distance model This
power model is often used in the hardware setting as the power consumption is related to the bit

2Note that we use the term DPA and CPA interchangeably, when it is clear that CPA is a type of DPA using
Pearson correlation.
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flips in the registers of the chip. However, in the software setting, we have no guarantees that the
relevant variables are present in the registers at the required times to capture the power usage.
Therefore, we use the Hamming Weight of the output of the selection functions instead. This is
more viable as the variables will be transmitted over the bus of the chip, and the number of high
bits determines the power usage.

2.2 TVLA

The code used to record the TVLA traces is the unmodified official 32-bit low-size ASCON imple-
mentation provided by the ASCON team [6]. We setup a fixed-versus-random test on the nonce
value. For this experiment a total of 50 000 traces were recorded at 1GHz sampling rate. The traces
are cropped to contain only the encryption phase to the point were the nonce is consumed. Traces
are then aligned for better results.

We performed alignment using a windowed offset and correlation approach. With this approach
each trace is compared to a hand picked reference trace. A specific sample window is selected to
reduce the computation complexity, this window of the trace is compared to the window of the
reference trace with a specific offset. This comparison is done 2x times, where x is the offset limit
and and the offset moves from −x to x. The comparison is done by computing a Pearson correlation
between the reference and offset window. The offset with the highest correlation value is chosen
and the whole trace will be offset with this value. If the best correlation value of a trace does not
exceed the specified correlation threshold this trace is removed from the trace set. The offset steps
(2x) are removed from the beginning and end of each trace as these samples cannot be guaranteed
to have sane values due to the shifting. The aligning sample window for this experiment was set
to (15 000;16 500), this window was chosen upon manual inspection of the trace set. The reference
trace was set to the first trace in the set, also upon manual inspection. The offset steps value was
set at 100 and the correlation threshold was set at 0.85. After the alignment there were 43 597
traces left in the set, each having 119 800 samples.

We perform the TVLA test by executing Welch t-test for each group of samples at the same
index over all traces as described by Goodwill et al. [1]. This statistical test is an extension of the
students t-test for unequal variance and sample sizes. Let T be a set of traces, where each trace Ti

consists of m samples. T j denotes all samples at index j across T . The leakage L is computed for
each j in T , where 0 ≤ j < m, producing an output of m values. Equation 5 shows the Welch t-test
for the two groups for a single value j. If |Lj | > 4.5 for Lj ∈ L we reject the null hypothesis that
the fixed and dynamic groups for T j have equal means and thus that there is no leakage between
these two groups. This threshold implies a confidence of 99.999% for n > 5 000.

Lj =
X̄1 − X̄2√

s21
N1

+
s22
N2

(5)

The result of the TVLA test is shown in Fig.1.

2.3 Characterization for CPA

Since we want to execute CPA, we now focus on the initialization function of ASCON. We work
with a fixed-key setup and modify the nonce at random for all recordings. To reduce the effort of
trace recording, we isolate the initialization function from the encryption phase and only measure
this operation. Fig. 2 shows the same TVLA test as in Fig. 1, but only for the initialization function
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Figure 1: The TVLA results. The red lines indicates the leakage threshold and the blue line the
correlation values. As can be seen, the correlation values are significantly higher then the leakage
threshold. This TVLA test was run with 50 000 traces.

with 100 000 traces. This TVLA results can be used to crop properly the traces recorded for CPA
to the exact place of the operation.

The alignment was done with the same methodology as described in the previous section with
the first trace acting as reference trace, the aligning window set to (3 000;4 000) of the cropped
trace, the offset steps value at 100 and with a threshold of 0.85. During this alignment no traces
were removed from the trace set. The alignment window was chosen based on the input correlation
of the output state registers and the computed intermediate values, which are shown in Figure 3
and Figure 4. These plots show the highest correlation within this window, we therefore expect
that the DPA correlation will also occur in this window.

To extract the best key guess, we compare the correlation between the each group of samples at
the same index over all traces with the computed predictions using the selection function for each
trace and each possible key in the selection function. This results in a correlation matrix with the
dimension of the number of samples in a trace times the possible keys. The key with the highest
absolute correlation value in this matrix is the best key guess.

2.4 CPA results

Figure 6 shows the success probability of the CPA attack for both halves of the key. It shows
that the key can reliably be extracted with the use of 500 000 traces. Interesting to note is that
extracting the second half of the key has a consistent higher success rate.

The progression of the attack can be seen for a single bit in Figure 5. It shows the correlation
value and rank at specific trace intervals as well as the correlation of each sample for the maximum
number of traces.
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Figure 2: The TVLA results with the ASCON initialization function wrapped in NOP operations.
The execution of the leaking code can clearly be seen in the middle. The red lines indicate the
leakage threshold and the blue line the correlation values. This TVLA test was run with 100 000
traces.
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Figure 3: Pearson correlation of the first output bit of the state x0 with each sample. Between
sample 3 500 and 6 000 we can see a correlation peak.
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Figure 4: Pearson correlation of the first output bit of the intermediate value of x0 with each
sample. Between sample 3 000 and 4 000 a big correlation is apparent.
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Figure 5: The CPA progression results of bit 1 of the key. The top plot showcases the correlation
for each key with each sample. The correct key is highlighted in red. It shows a clear correlation
of the correct key, even though the correct key only has a correlation with a factor of two higher
than the next best key hypothesis. The bottom left plot shows the highest correlation value of each
possible key for a given number of traces used in the analysis. The bottom right plot shows the
rank of the correct key at the same interval of number of traces used in the analysis. Rank seven is
the worst key ranking, and thus having the lowest correlation. Rank zero is the highest key ranking
and means the correct key has the highest correlation. We can see that from 230 000 traces used in
the analysis the correct key became apparent and could be extracted.
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Figure 6: The probability to get the correct key for both halves of the key for a given number of
traces. It shows that with 600 000 traces you are guaranteed to get the correct key with our setup.
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3 Power analysis on masked ASCON

In this section we describe results of a second-order CPA attack on traces acquired from a masked
ASCON implementation. The official code submission of ASCON [6] includes a masked Armv6
implementation. This implementation utilizes masks with (almost) no fresh randomness, between
two and four rotated shares. We performed a 2nd order DPA attack targeting the protected
implementation with two shares.

This experiment is run with the same setup as the unprotected version. As we already established
a successful attack on the unprotected version, we opted not to perform an additional TVLA test
for the protected version. In this attack we used the same selection functions and power model as
in the first order attack.

3.1 Characterization for CPA

For this experiment we only recorded the first permutation round of the initialization phase of
ASCON. We modified the official protected implementation to stop after this permutation round.
All the required parameters were send over the serial connection. All data, apart from the nonce
was fixed. The nonce was generated with the Python Numpy random number generator. A total
of 15 000 000 traces were collected.

The post processing consisted of cropping the trace in the same manner as the unprotected
attack. Alignment was omitted in this case, as the traces were aligned well already. The cropping
sample window used was (9 000:20 000).

A total of two attacks were performed, a first-order attack and a second-order attack. The first-
order attack is identical as in the previous section and is done to confirm that there is no first order
leakage in the protected implementation. The second order attack aims to exploit the second-order
leakage by performing the attack on the combined samples of each trace. For the combination of
the samples we follow Prouff et al. [7], using the ’mean centred product of samples’ approach. The
output of this combination function is used as input for the first order attack.

Let T be a set of traces having t entries that is indexed with 0 ≤ i < t. Each trace consists of a
set M , containing m samples, indexed by 0 ≤ j < m. Each sample has an average across T given
by µj . The combined output sample is described in Equation 6 and given as Ci

s ∈ Ci, Ci is the
set that contains the mean centred product of all possible subsets of J in Ti. |J | determines the
number of subsets and thus the order of the combination function. In our case |J | = 2. The value
of |Ci| is given by m|J| and is exponential with base m and the order as exponent.

Ci
s =

∏
j∈J

(
tji − µj

)
(6)

As to reduce the computation footprint, we limit the subsets of Ti. Instead of using all possible
subsets, we use all possible subsets of two sample windows T x and T y of T . The sample windows
used in this attack are given as 5 750 ≤ m

′
< 6 050 and 5 800 ≤ m

′′
< 6 100. These windows are

chosen based on the correlation values of the relevant output state registers. These can be seen for
the first output byte of each of the two shares of the x0 register in Figure 7 and Figure 8. The
sample windows are centred on the first and highest peak, as this is the most likely place for the
sensitive data to leak.
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Figure 7: Correlation values of the first byte of the first share of the output state with each sample.
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Figure 8: Correlation values of the first byte of the second share of the output state with each
sample.

3.2 CPA Results

Figure 9 shows the results for the first order attack. It is apparent that no correlation has taken
place and that the attack was unsuccessful. The results of second order attack can be seen in
Figure 10. This attack also showed no correlation and was unsuccessful with 15M traces. We
suspect that the reason for that is not enough traces being used.
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Figure 9: The result of first-order CPA on the masked ASCON implementation.
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Figure 10: The result of second-order CPA on masked ASCON implementation.
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4 Power Analysis of Xoodyak

In this section we first analyze how to perform CPA on Xoodyak and then we run TVLA and
CPA on the acquired traces.

Samwel and Daemen [4] published a DPA side-channel attack on Keyak, an authenticated en-
cryption scheme based on Keccak-p. Keccac-p is a permutation close in design to the Xoodoo
permutation function used in Xoodyak. The attack recovers two bits of Keyak state using a single
bit leakage in the S-box on the non-linear step of the permutation and; this attack is also extended
to a row of the state. We can adjust this attack on Xoodyak because of the similarities between
Xoodoo and Keccak-p. We target the state of Xoodyak before an Absorb function. The first op-
eration of absorb in most modes is to apply the Xoodoo permutation function. This permutation
consists of three linear functions on the planes of the state (i.e., Theta, ρeast, a non-linear function
Chi and again a linear function (i.e., Phi west).

χ(a(x,y,z)) = a(x,y,z) + (a(x+1,y,z) + 1)a(x+2,y,z) (7)

4.1 TVLA

In this section we attack a Xoodyak software implementation optimized for the ARMv7M mi-
croprocessor from XKCP [8]. First we used TVLA to evaluate here potential leakage vectors in
Xoodyak.

First, we perform a fixed-versus-random key TVLA test with 50 000 traces sampled at 1GHz.
We used the traditional leakage detection threshold of ±4.5. The result of this test is shown in
Fig. 11. The power trace captured the full encryption of a 20 byte message from the initialization
function using a 16 byte key and a 16 byte nonce, absorb function of a 16 byte associated data,
encrypt of the message and squeeze of the tag. From the t-value trace, we can see an activity only
during the initialization function. During this function, the key is xored in the state and should
leak in a straight forward way because of load and store operations.

Secondly, we perform a fixed-versus-random nonce TVLA test with 10 000 traces sampled at
500MHz. The result is shown in Fig. 12. We can see high activity in the absorb of the nonce and
smaller activity in several part of the later execution of the encryption process.

4.2 Simulated CPA

For this attack the simulated traces are the state taken after the first message has been absorbed and
the following linear layer has been executed for only the first round constant. Then the prediction
matrix is made by performing the non-linear layer (Chi) for the first column of the state only with
two bits of linear-layer(K). This gives two bits of the state. The result is correlated with the bit of
the state after performing the Chi function to obtain simulation traces. Given this simulation, the
correct key stands out after a few traces as shown in Fig. 13.

We then collected traces for the CPA attack on the XKCP [8] implemenation. We capture the
power consumption during the execution of the permutation that follows the absorb(nonce) function.
The traces are then cropped to contain only the first round Chi function of the permutation. We
measure the trace at a 1GHz sampling rate and applied window re-sampling and alignment to
enhance the bit leakage. The result of the CPA attack is shown in Fig. 14 on 30 000 traces. The
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Figure 11: Xoodyak fixed-versus-random key TVLA for 50k traces; the horizontal axis represents
acquired number of samples.

Figure 12: Xoodyak fixed-versus-random nonce TVLA results for 10k traces; the horizontal axis
represents acquired number of samples.

two bits of the state can be early (within a few hundred traces), but statistically diverge of other
candidates after 20 000 traces.
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Figure 13: CPA attack on the Chi function with 100 simulated traces. The red color represents the
correlation with the correct guess of two bits. In the top, it reaches −1 around the offset 0.
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Figure 14: CPA attack on the Chi function with 30k traces.
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5 Power Analysis of ISAP

In this section, we first analyze how to perform a side-channel attack on ISAP and then we run
TVLA on an unprotected ISAP implementation.

ISAP is one of the AEAD candidates in the current portfolio of the NIST-LWC competition with
conjectured robustness against various side-channel attacks. In this report, we study this cipher
suite regarding power analysis attacks. Very briefly: we discuss how it has confronted a divide-
and-conquer strategy required for DPA-like attacks; throughout the computation flow at Re-Keying,
Encryption, Authentication, and Decryption. With an exception regarding the Re-Keying algorithm in
the randomness absorption phase. Nevertheless, we will argue that setting the absorption rate rb to a
minimum possible, i.e., rb = 1, has damped information leakage. We also note how utilizing separate
IVs and distinct computation paths for Encryption and Authentication adds to its implementation
security. The current state of the soft-analytical attacks against ISAP is also part of this report.
Another relevant fact we cover in this report is the role of leakage-resilient tag comparison added
to version 2 of ISAP. Moreover, the impact of unmasked-key transfer occurring at the start of Re-
Keying is included. For it, we discuss how averaging observations of key being copied from memory,
combined with precise profiling, might open the door for the master key recovery, at least for the
8- and 16-bit structures.

Structure of this section. A brief overview of the construction of ISAP is in Part 5.1. Part
5.2 explains impossibility of the divide-and-conquer strategy and other considerations about DPA
attacks for ISAP. In the absence of practical DPA attacks, the attacker may go for soft-analytical
attacks that are profiling attacks and assume the strongest adversary. Part 5.3 reviews relevant
soft-analytical attacks. There, the impact of the word size, unmasked-key transfer, quantization,
and over-sampling is covered. Part 5.4 is the conclusion and supplementary notes.

5.1 Composition of ISAP

ISAP has four variants that only differ in the parameters and the internal permutation π. Ascon-p,
with state size n = 320, and Keccak-p, with n = 400, are two lightweight options for π. Nonce N
and master key K are 128 bits. To encrypt a plaintext M ∈ {0, 1}∗, first, it is partitioned into Mi

blocks with rh bits. Except for the last block, that can be less than rh bits. Then, the Encryption
algorithm, as in Figure 16, is called. The encryption starts with creating a fresh (n−128)-bit session
key by calling the Re-Keying algorithm as in Figure 15. In this call to Re-Keying, randomness bits
Yis are the nonce bits. With squeezing the sponge structure, Mis are masked to produce ciphertext
block Cis. To authenticate Ci blocks and arbitrary-length associated data Ai blocks, a 128-bit tag
T is generated with the Authentication algorithm as in Figure 17. For decryption, upon reception of
a tuple (N , Ais, Cis, T ), first, the validity of tag T is checked by computing the tag and comparing
it with the given one. Then, the Encryption algorithm is called to unmask Cis and produce the
corresponding plaintext blocks. ISAP parameters for its four variants are in table 1. For a more
detailed explanation, see the official document [9].

5.2 Divide-and-conquer attacks

A Requirement of DPA-like attacks. These attacks need an intermediate variable inside the
cipher that is a function of only a fraction of the target secret. More strictly, if K is the target, there
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Variant π n a b e h rb rh

1 Ascon-p 320 12 1 6 12 1 64
2 Keccak-p 400 8 1 8 16 1 144
3 Ascon-p 320 12 12 12 12 1 64
4 Keccak-p 400 12 12 12 20 1 144

Table 1: Parameters of ISAP for different variants.

K ∥ IV

πa

Initialize

Yi

rb

πb

Absorb Randomness

Yw

rb

πa

K∗

z

Squeeze

Figure 15: Re-Keying. The parameters a and b denote the number of rounds of permutations, and
z is the number output bits.

should be a variable V and a function f such that V = f(P,Ko), where P is a known (non-fixed)
parameter, and Ko ∈ {0, 1}t is part of K. For a practical attack, 2t should be small enough that
the attacker can examine all possibilities for Ko. It is also required that the relation V = f(P,Ko)
be valid during multiple executions of the algorithm under the same value of Ko.

Generalized case. If multiple variables inside the cipher collectively give f(P,Ko), then divide-
and-conquer is still possible. More precisely, if for collection of m intermediates {V1, V2, . . . , Vm}
we can write g(V1, V2, ..., Vm) = f(P,Ko), where g is some combination of input arguments, it is
doable to conduct a DPA attack3.

For ISAP, divide-and-conquer attacks are avoided by making it infeasible to find such interme-
diates; we will examine each algorithm to verify this property.

5.2.1 Attacks regarding Re-Keying

The Re-Keying, with schematic as in Figure 15, is used both for session key and tag generation.
Value of IV, z, and Yis are different for the two use cases. Note that IV is not random; for a fixed
π, it has only three static values {IVA, IVKE, IVKA}, each for a different purpose.

Initializing phase. In this phase, since no random value is involved, we can not find any func-
tion f(P,Ko) with an associated intermediate variable V . Note that if IV was random, it could
deteriorate the security of the implementation. With random IV, DPA attacks, like those for Ascon
AEAD candidate, were possible. See the section for Ascon in this report.

3V is known as sensitive variable, f is selection function, and g is usually simply an XOR operation. Some works
suggest that f is better to be non-linear.
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Figure 16: Encryption. N is nonce, and K is master key.

Absorbing randomness phase. At this phase, public and random parameters are available, but
the main obstacle for the attacker is that the master key K is well-mixed before the start of this
phase, in the sense that it is not possible to find any intermediate that is only based on a fraction
of K. However, the attacker can target other secrets as K̂ = πa(K||IV ) or the internal states of π.
For these secrets, the requirement of DPA is met. For example, for K̂, we see that V = K̂o ⊕ Y1,
where V is the output of Xor operation, and Y1 is 1-bit (with enough trailing zeros), and K̂o is part
of K̂. In [10], it is argued that this combination with b ≥ 3 is not enough for a successful DPA
attack. Note that Y1 has only two possible values, and K̂o is 8-, 16-, 32-bit, or even more. In two
of ISAP variants (see table 1), that are less conservative, b is set to one, and this is less than the
recommended value in [10]. In our future works, we will consider power analysis impact of having
b = 1.

Squeezing phase. This phase is also DPA-secure since no randomness is involved in its compu-
tations.

5.2.2 Attacks regarding Encryption

Encryption process is as in Figure 16. After computation of a fresh session key K∗
E, sponge is

squeezed at rate rh (see table 1), and the output bits are used to encrypt plaintext blocks Mi.

Encrypt plaintext phase. With the new nonce involvement in each Re-Keying invocation, the
value of K∗

E is entirely fresh each time. Therefore, the requirement of DPA attacks that the targeted
fraction of K∗

E should be constant during multiple executions of cipher is not satisfied. Also, note
that the internal state of each π is wholly different for distinct nonce’s.

5.2.3 Attacks regarding Authentication

In ISAP, to authenticate a tuple of ciphertext and associated data, a separate algorithm, independent
of the Encryption, as depicted in Figure 17, is used. For a DPA attack, phases before Finalize are
not helpful since no secret is involved. The Finalize itself is composed of Re-Keying with randomness
Y and an extra permutation πh. The final permutation πh involves no randomness.

Usage of separate IVs for Encryption and Authentication makes states inside Re-Keying different
for the two cases, even for the same input randomnesses.
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Figure 17: Authentication. Ais are blocks of the associated data, and T is the generated tag.

5.2.4 Attacks regarding Decryption

After receiving a tuple (N , Ais, Cis, T ), first, the authenticity of tag T should be verified. If the
tag is invalid, the receiver is not allowed to call the Decryption. However, if the tag is valid, the
Decryption will be invoked. This algorithm works in the same way as Encryption; only the places
of ciphertext and plaintext blocks are swapped. We have already discussed the impossibility of
DPA-like attacks for Authentication and Encryption.

5.2.5 Attacks regarding Tag comparison

In [11], it is shown that naive comparison of a valid (secret) tag T with a random value T ′ can
help an adversary to recover T with a DPA attack. If T [i]s are words of T , a direct (constant time)
comparison of T and T ′ requires XORing corresponding T [i] and T ′[i] for all is. This computation
has all the requirements of a DPA attack. So, it can reveal secret values of T [i] with the help of
adequate collection of measurements done with random parameters T ′[i].

To prevent tag recovery, [12] suggested the usage of an extra permutation. In this way, to
validate T ′, a comparison is made only on initial words4 of πr(T ) and πr(T ′) for some constant
r. Note that full comparison helps the adversary to recover πr(T ) with a DPA attack and hence
obtain T since πr is an easy-to-invert permutation (in ISAP). So, the comparison is only made on
truncated parts of πr(T ) and πr(T ′). Although the attacker will the learn value of the compared
parts of πr(T ), this knowledge is not enough to obtain T .

5.3 Soft-analytical attacks

When it is impossible to extract any fraction of the secret separately, the attacker can consider a
more advanced and more complex class of attacks known as soft-analytical attacks. For this purpose,
leakages of as many as possible variables are gathered and merged with the belief propagation method
to recover the value of the secret. Belief prorogation is a commonly used tool in the coding theory
for decoding a code word with an observation of its noisy variables. There, the belief propagation
approach utilizes the algebraic interconnections (also known as parity relations)5 of the variables
of the code word. In a somewhat similar process, belief propagation can use the parity relations
among the intermediate variables for combining their leakage information [13, 14].

4If word size is Byte, then the 16 initial Bytes are compared.
5For the best possible results, the parity relations should be sparse, as in the case of LDPC codes.
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The soft-analytical attacks are successfully used in simulations for recovering the internal state
of Keccak-p with n = 1600 6 and word size of at most 16-bit [15]. For ISAP, the internal state size
is n = 400, which is much less. In [16], larger word size as 32-bit are used for a soft-analytical
attack against Keccak-p. Again, this work is considering only n = 1600. In [11], the authors
successfully applied this attack for Keccak-p with n = 400 and word size of 16-bit on Cortex-M0,
which is known for very low observation noise. It is currently unknown to what extent refinements
to the belief propagation methods can be a threat in the moderate noise levels. However, it is
commonly accepted that bigger word sizes as 32-bit is notably helping to the side-channel security
of implementations. In the reminder of this section, we consider two points related to internal state
recovery.

5.3.1 State recovery in the Re-Keying leads to full key recovery

Recovering the state of each permutation during Re-Keying directly leads to recovery of the master
key K since the permutation π is easily convertible for both of the options.

5.3.2 Attacking key transfer

Since the schema is unmasked, the same K is always transferred from device memory for computa-
tion of the session key, which with enough averaging and precise profiling, can lead to recovery of
K. A footprint of this effect is also evident in the following TVLA results.

Interpreting TVLA results. TVLA result for fixed-key versus random-key is plotted in Figure
18. For it, 100k traces for each case were collected where the message was 8-Byte random, and
the associated data was 16-Byte random with the device operating at 100MHz. There are notable
peaks in the TVLA result. Some of these peaks are because of key transfer. Note that the master
key K is directly used in the Re-Keying, and both the Encryption and the Authentication call the
Re-Keying.

Value recovery for Bytes. If word size is small enough (for example, if it is 8 bits), an attacker
can create (in this example, 256) precise templates to determine the value of each word of the key K
by averaging multiple noisy observations [17]. This approach does not rely on the parity relations
of the intermediate variables. Creating these precise templates requires an exponential effort in the
word size, so, for 32-bit implementations, this attack is almost not a practical threat.

5.3.3 Impact of word size and other parameters

We already discussed one impact of word size. Another consideration relevant to side-channel
security is its connection to the available quantization levels in ADCs. Current trace measurement
devices are equipped with 16-bit or less ADCs, which means that if only one sample in each clock
cycle, i.e., single PoI7, is gathered, it will contain at most 16 bits of information about a word that
can be 32-bit or even more. This remark demonstrates some inherent security of using bigger word
sizes in the implementations. To overcome the quantization limitation, the attacker can invoke the
over-sampling technique by collecting more measurement points for each operation, which adds to
the work’s complexity.

6This state size is used in SHA3 hash function.
7Point of Interest
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Figure 18: TVLA results for fixed-key vs. random-key for ISAP. Notable peaks are due to the key
transfer at the start of Re-Keying.

5.4 Conclusion

Our discussions in this section show that DPA attacks are not an option for ISAP. The only
exception is the tag comparison leakage, which should be understood well and defeated effectively.
In the absence of DPA vulnerabilities, an attacker may opt to mount soft-analytical attacks that
assume the strongest adversary. These attacks require a lot of effort in profiling and combining and
are not so practical on actual devices. Anyhow, for soft-analytical attacks, currently, there is no
guarantee that refined versions of templates or more complicated belief propagation methods such
as generalized belief propagation cannot recover the internal states. Because of this, it is advisable to
modify Re-Keying algorithm of ISAP to break the permutations chain that is leading state recovery
to master key recovery.

21



References

[1] Gilbert Goodwill, Benjamin Jun, Joshua Jaffe, and Pankaj Rohatgi. A testing methodology
for side channel resistance. 2011.

[2] Georg T. Becker, Jeremy Cooper, Elke DeMulder, Gilbert Goodwill, Joshua Jaffe, Gary Ken-
worthy, Timofei Kouzminov, Andrew J. Leiserson, Mark E. Marson, Pankaj Rohatgi, and
Sami Saab. Test vector leakage assessment (TVLA) methodology in practice. International
Cryptographic Module Conference, 2013.

[3] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with a leakage
model. In Marc Joye and Jean-Jacques Quisquater, editors, Cryptographic Hardware and
Embedded Systems – CHES 2004, volume 3156, pages 16–29, 2004.

[4] Niels Samwel and Joan Daemen. DPA on hardware implementations of Ascon and Keyak.
In Proceedings of the Computing Frontiers Conference, pages 415–424, Siena Italy, May 2017.
ACM.

[5] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. Ascon v1.2.
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