

01 – 05 February 2021 · virtual conference
The European Event for Electronic
System Design & Test

Hardware Benchmarking of Round 2 Candidates in the NIST Lightweight Cryptography Standardization Process

Kamyar Mohajerani, Richard Haeussler, Rishub Nagpal,
Farnoud Farahmand, Abubakr Abdulgadir,
Jens-Peter Kaps and Kris Gaj

GMU CERG LWC Benchmarking Team

Kamyar Mohajerani

Richard Haeussler

Rishub Nagpal

Farnoud Farahmand

Bakry Abdulgadir

Jens-Peter Kaps

NIST Standardization Process

 Performance of current NIST cryptographic standards not acceptable in constrained environments (e.g., sensor networks, healthcare, the Internet of Things, cyber physical systems)

Timeline of the NIST Lightweight Cryptography Standardization:

- Aug. 2018: Submission Requirements and Evaluation Criteria
- Feb. 2019: 57 candidates submitted
- Aug. 2019: 32 candidates qualified for Round 2
- Feb. 2021: Decision on Round 3 candidates expected

Hardware Benchmarking Goals

- Stimulate the development of hardware implementations that can be fairly compared with each other (e.g., common API & development package)
- Perform design space exploration of at least selected candidates
- Evaluate and rank candidates from the point of view of their performance in hardware

Benchmarking Platforms

- Widely used low-cost, low-power FPGA families
- Capable of holding side-channel-protected designs (possibly using up to 4 times more resources than unprotected designs)
- Supported by free versions of state-of-the-art industry tools

- Xilinx: Artix-7: xc7a12tcsg325-3 (smallest)
- Intel: Cyclone 10 LP: 10CL016-YF484C6
- Lattice Semiconductor: ECP5: LFE5U-25F-6BG381C

Optimization Target

- Maximum Throughput assuming
 - Up to 2500 LUTs, 5000 flip-flops of Artix-7 FPGA
 - No BRAMs & no DSP units
 - Resources comparable to those used by the lightweight implementation of the current standard AES-GCM

Benchmarking Metrics

1. Resource Utilization

Number of LUTs (LEs for Cyclone 10LP)

2. Throughput in Mbits/s

- for the following sizes of inputs
 - a. long [with Throughput = d · Block size/(Time(N+d blocks)-Time(N blocks))]
 - b. 1536 bytes
 - c. 64 bytes
 - d. 16 bytes.
- all throughputs calculated separately for
 - authenticated encryption: Plaintext, Associated Data (AD)
 - hashing

Summary of Hardware Design Submissions

32 submissions representing 25 out of 32 candidates (78%)

Candidate with 3 independent submissions:

Xoodyak

Candidates with 2 independent submissions:

Ascon, COMET, Gimli, Subterranean 2.0, TinyJAMBU

8 submissions from George Mason University

24 by groups from all over the world

Design Variants

Different variants correspond to

- different algorithms of the same family
- different parameter sets, such as sizes of keys, nonces, tags, etc.
- support for authenticated encryption vs. authenticated encryption+hashing
- different hardware architectures, e.g., basic iterative, folded, unrolled

92 variants

Minimum: 1, Maximum: 16, Average: 3.1 per hardware design submission

Throughput vs. Area for Long Plaintext: Artix-7

February 2021

10

Throughput vs. Area for Long AD: Artix-7

February 2021

Throughput vs. Area for Hashing: Artix-7

Dependence of Ranking on Input Size

Position	Long	1536 B	64 B	16 B
1	Subterranean	Subterranean	Subterranean	Subterranean
2	Xoodyak	Xoodyak	Xoodyak	Xoodyak
3	KNOT	KNOT	KNOT	Ascon
4	Gimli	Gimli	Ascon	COMET
5	Ascon	Ascon	DryGASCON	DryGASCON
6	DryGASCON	DryGASCON	Gimli	KNOT
7	COMET	COMET	COMET	TinyJAMBU
8	Spook v2	Spook v2	TinyJAMBU	Romulus
9	TinyJAMBU	TinyJAMBU	Romulus	Gimli
10	Romulus	Romulus	Spook v2	PHOTON-Beetle

Higher position Lower position for smaller messages

Conclusions

- For authenticated encryption of plaintexts 10 candidates outperform AES-GCM: Subterranean 2.0, Xoodyak, KNOT, Gimli, Ascon, DryGASCON, COMET, Spook v2, TinyJAMBU, and Romulus.
- For processing of associated data (ADs) all of them, as well as Saturnin and Elephant, outperform AES-GCM
- Out of them:
 - Xoodyak, Gimli, and Saturnin support hashing faster than SHA-2
 - DryGASCON and Ascon, perform hashing faster than the folded implementation of SHA-3
- All of the mentioned above 12 candidates have good chances of qualifying for Round 3

Concurrent & Future Work

- Evaluation in terms of Power consumption and Energy per bit
- ASIC Benchmarking
- Side-channel protected implementations of Round 3 candidates

Most recent results:

Cryptology ePrint Archive: Report 2020/1207

https://cryptography.gmu.edu/athena