
Documentation of Protected Ascon
Implementations

1 Protection Method
The provided protected implementations of Ascon-128 feature Domain-oriented masking
(DOM) [4] with protection orders 1 and 2. The concrete implementations are inspired by
the description of masked Ascon implementation in Section 6.3 (page 72) of [3].

All implementations require 2 cycles to compute one permutation round, the masking
schemes hence adds one additional cycle of latency per round. Absorption and squeezing
happens concurrently for all shares and is hence as fast as in case of unprotected implemen-
tations. The throughput of masked implementations is hence increased to 1.75 cycles/byte
when using a 32-bit interface (per share). In comparison, a corresponding unprotected
implementations achieve a throughput of 1 cycle/byte.

The implementations are not optimized for low randomness requirements and hence
require the expected 320 bits (960 bits) of fresh randomness every other cycle when
computing DOM-AND gates on the 320-bit Ascon state in case of 1st (2nd) order
implementations. We want to point out that techniques such as changing of the guards [1]
could be used to significantly reduce the amount of required fresh randomness.

The tag comparison during decryption is currently simply implemented in an unmasked
fashion.

In the following we point out the differences between the provided implementations in
more detail:

v1 1st-order DOM.
Incomplete register layer (updated on falling clk) after first affine layer to avoid
glitchy-dependend inputs of indep-DOM-AND gates in the subsequent keccak sbox
layer.
Incomplete register layer (updated on rising clk) after DOM-compute step to avoid
glitch-related issues.

v2 1st-order DOM.
Incomplete register layer (updated on falling clk) after first affine layer to avoid
glitchy-dependend inputs of indep-DOM-AND gates in the subsequent keccak sbox
layer.
Complete register layer (updated on rising clk) after DOM-compute step to avoid
glitch-related issues and potentially allow an overall higher maximum clock frequency.

v3 Same as v1 except for the 2nd-order protection level.

v4 Same as v2 except for the 2nd-order protection level.

2 Preliminary Security Evaluation
We have successfully formally verified the correctness of our masked implementations of
Ascon-p in the glitch-extended probing model and for the respective protection order
using the tool Coco [2].



2 Documentation of Protected Ascon Implementations

References
[1] J. Daemen. “Changing of the Guards: A Simple and Efficient Method for Achieving

Uniformity in Threshold Sharing”. In: CHES. Vol. 10529. Lecture Notes in Computer
Science. Springer, 2017, pp. 137–153.

[2] B. Gigerl, V. Hadzic, R. Primas, S. Mangard, and R. Bloem. “Coco: Co-Design and
Co-Verification of Masked Software Implementations on CPUs”. In: USENIX Security
Symposium. USENIX Association, 2021, pp. 1469–1468.

[3] H. Groß. “Domain-Oriented Masking-Generically Masked Hardware Implementations”.
In: PhD Thesis. 2018. url: https : / / diglib . tugraz . at / download . php ? id =
5c80ea0c43a56&location=browse.

[4] H. Groß, S. Mangard, and T. Korak. “Domain-Oriented Masking: Compact Masked
Hardware Implementations with Arbitrary Protection Order”. In: TIS@CCS. ACM,
2016, p. 3.

https://diglib.tugraz.at/download.php?id=5c80ea0c43a56&location=browse
https://diglib.tugraz.at/download.php?id=5c80ea0c43a56&location=browse

	Protection Method
	Preliminary Security Evaluation

