
Implementer’s Guide
to the CAESAR Hardware API

Ekawat Homsirikamol, William Diehl, Ahmed Ferozpuri,
Farnoud Farahmand, and Kris Gaj

Electrical and Computer Engineering Department,
George Mason University
Fairfax, Virginia 22030

{ehomsiri, wdiehl, aferozpu, ffarahma, kgaj}@gmu.edu

June 10, 2016

1

Contents

1 Introduction 4

2 Top-level Block Diagram of a High-Speed Implementation 6
2.1 PreProcessor . 9
2.2 PostProcessor . 10
2.3 CMD FIFO . 11

3 The Development and Benchmarking of High-Speed and
Lightweight Implementations 12

4 The AEAD Configuration 14
4.1 High-Speed Implementations 14
4.2 Lightweight Implementations 15

5 CipherCore Development for High-Speed Implementations 18
5.1 Interface . 18
5.2 Handshakes . 23
5.3 Design Procedure . 24
5.4 Dummy Authenticated Ciphers 27
5.5 AES and Keccak Permutation F 31

6 Test Vector Generation 33

7 Simulation 35

8 Generation and Publication of Results 36

A The Supporting Package Description 37

2

CONTENTS 3

B Installation of Libraries and Tools 39
B.1 Interpreter and compiler . 39
B.2 OpenSSL Installation . 40
B.3 Python module (aeadtvgen) 41

Bibliography 42

1 Introduction

The CAESAR Hardware API [1] is intended to meet the requirements of all
algorithms submitted to the CAESAR competition, as well as many earlier
developed authenticated ciphers, such as AES-GCM, AES-CCM, etc. The
major parts of its specification [1] include the minimum compliance criteria,
interface, communication protocol, and timing characteristics supported by
the core. All of these parts have been defined with the goals of guaranteeing
(a) compatibility among implementations of the same algorithm developed
by different designers, and (b) fair benchmarking of authenticated ciphers
in hardware.

Our proposed API is suitable for both high-speed and lightweight imple-
mentations of authenticated ciphers. The only difference at the API level is
the width of Public Data Input (PDI) and Data Output (DO) ports, which
is defined as follows:

Lightweight implementations: w = 8, 16, 32
High-speed implementations: 32 ≤ w ≤ 256.

From the Implementer’s point of view, this difference is important, as small
values of w (used in lightweight implementations) imply that any prepro-
cessing (such as padding) and any postprocessing (such as zeroization of
unused bytes) are significantly easier to implement compared to the case of
large values of w (used in high-speed implementations).

As a result, we leave the internal structure of any lightweight implemen-
tation entirely to the designers of such implementations. The only support
we provide to the designers of lightweight implementations is in the areas
of test vector generation (Chapter 6), simulation (Chapter 7), as well as
result generation and publication (Chapter 8).

On the other hand, for the designers of high-speed implementations, we
provide the following support:

• universal top-level block diagram (see Fig. 2.1)

4

CHAPTER 1. INTRODUCTION 5

• universal VHDL code for the PreProcessing unit

• universal VHDL code for the PostProcessing unit

• hardware API for the heart of the design, called CipherCore

• implementer’s guide to designing any specific CipherCore

• VHDL code for the three dummy CipherCores following the Cipher-
Core API

Below we describe all these supporting materials one by one. It should
be stressed that the high-speed implementations of authenticated ciphers
compliant with the CAESAR hardware API can be also developed without
using any resources described in this document, by just following directly
the specification of the CAESAR API [1].

2 Top-level Block Diagram of a
High-Speed Implementation

The proposed top-level block diagram of a high-speed, non-pipelined imple-
mentation of a single-pass authenticated cipher compliant with the CAE-
SAR hardware API is shown in Fig. 2.1. The corresponding block diagram
for a two-pass authenticated cipher is shown in Fig. 2.2. The only difference
are ports used for communication with an external Two-Pass FIFO, used
to store an output from the first pass of an implemented algorithm.

In each case, the top-level unit is divided into four lower-level units,
called PreProcessor, PostProcessor, Command (CMD) FIFO, and Cipher-
Core. The universal VHDL codes of the first three units are designed to
be suitable for all authenticated ciphers to be implemented as a part of the
CAESAR benchmarking project. These codes are provided as a part of the
supporting package [2]. Due to the availability of this package as well as
the well-defined hardware API of the CipherCore itself (described in Chap-
ter 5), the implementers of any specific authenticated cipher do not need to
be concerned with the internal details of the PreProcessor, PostProcessor,
and CMD FIFO.

Because of the availability of the open source code for the PreProcessor,
PostProcessor, and CMD FIFO, the designers of high-speed implementa-
tions of authenticated ciphers can focus exclusively on the development of
the CipherCore unit, which can be further separated into its own datapath
and controller, if desired.

Below is a high-level description of major functions of these units.

6

CHAPTER 2. TOP-LEVEL BLOCK DIAGRAM OF A HIGH-SPEED
IMPLEMENTATION 7

K
E

Y
_

S
IZ

E

P
ro

c
e

s
s

o
r

P
re

P
ro

c
e

s
s

o
r

P
o

s
t

d
o
_
re

a
d
y

d
o

_
re

a
d

y

2
4

2
4

k
e
y
_
u
p
d
a
te

b
d
i_

e
o
t

b
d
i_

e
o
i

b
d
i_

ty
p
e

b
d
i_

re
a
d
y

3

b
d
i_

v
a
lidb
d
i

k
e
y

b
d
o

D
a

ta
p

a
th

C
ip

h
e

rC
o

re m
s
g
_
a
u
th

_
v
a
lid

m
s
g
_
a
u
th

_
d
o
n
e

k
e
y
_
u
p
d
a
te

b
d
i_

e
o
t

b
d
i_

e
o
i

b
d
i_

ty
p
e

b
d
i_

re
a
d
y

b
d
o
_
s
iz

e

b
d
o
_
re

a
d
y

C
o

n
tr

o
ll

e
r

C
ip

h
e

rC
o

re
b
d
i_

v
a
lid

b
d
o
_
v
a
lid

b
d
i

k
e
y

D
B

L
K

_
S

IZ
E

m
s
g
_
a
u
th

_
v
a
lid

m
s
g
_
a
u
th

_
d
o
n
e

b
d
o
_
s
iz

e

b
d
o
_
re

a
d
y

b
d
o
_
v
a
lid

b
d
o

k
e
y
_
v
a
lid

k
e
y
_
re

a
d
y

k
e
y
_
v
a
lid

k
e
y
_
re

a
d
y

L
B

S
_
B

Y
T

E
S

+
1

d
e
c
ry

p
t

d
e
c
ry

p
t

b
d
i_

v
a
lid

_
b
y
te

s

b
d
i_

p
a
d
_
lo

c

D
B

L
K

_
S

IZ
E

/8

D
B

L
K

_
S

IZ
E

/8

b
d
i_

s
iz

e

b
d
i_

p
a
d
_
lo

c

b
d
i_

v
a
lid

_
b
y
te

s

b
d
i_

s
iz

e
L

B
S

_
B

Y
T

E
S

+
1

C
ip

h
e

rC
o

re

A
E

A
D

p
d
i_

v
a
lid

p
d
i_

re
a
d
y

p
d

i_
re

a
d

y

p
d

i_
v

a
li

d

O
p

ti
o

n
a

l
R

e
q

u
ir
e

d

s
d
i_

v
a
lid

s
d
i_

re
a
d
y

s
d

i_
re

a
d

y

s
d

i_
v

a
li

d

d
o
_
v
a
lid

d
o

_
v

a
li

d

s
d

i_
d

a
ta

p
d

i_
d

a
ta

d
o

_
d

a
ta

d
o
_
d
a
ta

s
d
i_

d
a
ta

p
d
i_

d
a
ta

s
w w

w

d
in

_
v
a
lid

d
in

_
re

a
d
y

d
in

F
IF

O

C
M

D

d
o
u
t

d
o
u
t_

re
a
d
y

d
o
u
t_

v
a
lid

cmd_valid

cmd_ready
cmd

cmd_valid

cmd_ready

cmd

b
d
i_

p
a
rt

ia
l

b
d
i_

p
a
rt

ia
l

D
B

L
K

_
S

IZ
E

Figure 2.1: Top-level block diagram of a high-speed architecture of a single-
pass authenticated cipher core, AEAD

CHAPTER 2. TOP-LEVEL BLOCK DIAGRAM OF A HIGH-SPEED
IMPLEMENTATION 8

2
4

2
4

s
d
i_

v
a
lid

s
d
i_

re
a
d
y

s
d

i_
re

a
d

y

s
d

i_
v

a
li

d

s
d

i_
d

a
ta

s
d
i_

d
a
ta

s
w

D
B

L
K

_
S

IZ
E

D
a

ta
p

a
th

C
ip

h
e

rC
o

re

D
B

L
K

_
S

IZ
E

D
B

L
K

_
S

IZ
E

d
in

_
v
a
lid

d
in

_
re

a
d
y

d
in

F
IF

O

C
M

D

d
o
u
t

d
o
u
t_

re
a
d
y

d
o
u
t_

v
a
lid

k
e
y
_
u
p
d
a
te

b
d
i_

e
o
t

b
d
i_

e
o
i

b
d
i_

ty
p
e

b
d
i_

re
a
d
y

3

b
d
i_

v
a
lid

m
s
g
_
a
u
th

_
v
a
lid

m
s
g
_
a
u
th

_
d
o
n
e

k
e
y
_
u
p
d
a
te

b
d
i_

e
o
t

b
d
i_

e
o
i

b
d
i_

ty
p
e

b
d
i_

re
a
d
y

b
d
o
_
s
iz

e

b
d
o
_
re

a
d
y

C
o

n
tr

o
ll

e
r

C
ip

h
e

rC
o

re
b
d
i_

v
a
lid

b
d
o
_
v
a
lid

m
s
g
_
a
u
th

_
v
a
lid

m
s
g
_
a
u
th

_
d
o
n
e

b
d
o
_
s
iz

e

b
d
o
_
re

a
d
y

b
d
o
_
v
a
lid

k
e
y
_
v
a
lid

k
e
y
_
re

a
d
y

k
e
y
_
v
a
lid

k
e
y
_
re

a
d
y

L
B

S
_
B

Y
T

E
S

+
1

d
e
c
ry

p
t

d
e
c
ry

p
t

b
d
i_

v
a
lid

_
b
y
te

s

b
d
i_

p
a
d
_
lo

c

D
B

L
K

_
S

IZ
E

/8

D
B

L
K

_
S

IZ
E

/8

b
d
i_

s
iz

e

b
d
i_

p
a
d
_
lo

c

b
d
i_

v
a
lid

_
b
y
te

s

b
d
i_

s
iz

e
L

B
S

_
B

Y
T

E
S

+
1

C
ip

h
e

rC
o

re

p
d
i_

v
a
lid

p
d
i_

re
a
d
y

p
d

i_
re

a
d

y

p
d

i_
v

a
li

d

O
p

ti
o

n
a

l
R

e
q

u
ir
e

d

d
o
_
v
a
lid

d
o

_
v

a
li

d

p
d

i_
d

a
ta

d
o

_
d

a
ta

d
o
_
d
a
ta

p
d
i_

d
a
ta

w

w

cmd_valid

cmd_ready
cmd

cmd_valid

cmd_ready

cmd

b
d
i

k
e
y

b
d
o

b
d
i

k
e
y

D
B

L
K

_
S

IZ
E

b
d
o

K
E

Y
_

S
IZ

E

A
E

A
D

_
T

P

fdo_valid

fdi_ready

dout_valid

dout_ready

din_valid

din_ready

dout

din

b
d
i_

p
a
rt

ia
l

b
d
i_

p
a
rt

ia
l

fdi_data

fdo_data

fdi_valid

fdo_ready

T
w

o
−

P
a

s
s

F
IF

O

P
ro

c
e

s
s

o
r

P
re

P
ro

c
e

s
s

o
r

P
o

s
t

d
o
_
re

a
d
y

d
o

_
re

a
d

y

Figure 2.2: Top-level block diagram of a high-speed architecture of a two-
pass authenticated cipher core, AEAD_TP

CHAPTER 2. TOP-LEVEL BLOCK DIAGRAM OF A HIGH-SPEED
IMPLEMENTATION 9

pdi_* Logic
Control SIPO

SIPO

&

PADpdi

bdi_ready

bdi

bdi_pad_loc

bdi_valid_bytes

bdi_valid

other bdi_*

(a) registered

bdi

pdi_* Logic
Control

PAD

bdi_valid_bytes
&

bdi_pad_loc

bdi_valid

pdi

bdi_ready

other bdi_*

(b) non-registered

Figure 2.3: The PreProcessor Design. SIPO = Serial-In Parallel-Out unit.
pdi_* and bdi_* stand for all PreProcessor ports, shown in Fig. 2.1, with
the names starting from the respective strings.

2.1 PreProcessor
The PreProcessor is responsible for the execution of the following tasks
common for majority of CAESAR candidates:

• parsing segment headers

• loading and activating keys

• Serial-In-Parallel-Out loading of input blocks

• padding input blocks, and

• keeping track of the number of data bytes left to process.

An overview of the PreProcessor design is shown Fig. 2.3. This unit can
be configured to operate in two modes, registered and non-registered. The
choice between these modes is made based on the width of public data input,
PDI, (denoted as w in Fig. 2.1) and the size of an input block (denoted as
DBLK_SIZE in Fig. 2.1).

In a typical scenario, where the size of an input block is larger than the
width of PDI, w, the PreProcessor operates in the registered mode. If the
width of PDI is the same as the size of an input block, the non-registered
mode should be used. The non-registered mode ensures a high-throughput
operation for algorithms that require a new block of data every clock cycle.
It must be noted that operating the design in non-registered mode may
affect the overall maximum clock frequency of the design due to additional
critical path associated with the padding logic (if used).

CHAPTER 2. TOP-LEVEL BLOCK DIAGRAM OF A HIGH-SPEED
IMPLEMENTATION 10

do_*

Control
Logic

ZeroizePISO

bdo_ready

bdo_valid

msg_*

bdo do

(a) registered

&
Logic

Control

Zeroizebdo

do_*

do

bdo_*

msg_*

(b) non-registered

Figure 2.4: The PostProcessor Design. PISO = Parallel-In Serial-Out unit.
msg_*, bdo_*, and do_* stand for all PostProcessor ports, shown in
Fig. 2.1, with the names starting from the respective strings.

2.2 PostProcessor
The PostProcessor is responsible for the following tasks:

• clearing any portions of output blocks not belonging to the ciphertext
or plaintext

• Parallel-In-Serial-Out conversion of output blocks into words

• formatting output words into segments

• generating the status block with the result of authentication.

An overview of the PostProcessor design is shown Fig. 2.4. This unit
can be configured to operate in either registered or non-registerd mode.
The choice is made based on the dependence between the size of an output
block (equal to the size of an input block) and the width of the data out,
DO port (equal to width of public data input, PDI). Namely, when an
output block size is larger than the width of DO, the registered mode is
preferable. Otherwise, the non-registered mode should be used. Similarly
to the PreProcessor design, when the unit operates in the non-registered
mode, the maximum clock frequency maybe be affected.

The PreProcessor and PostProcessor units are highly configurable using
generics of AEAD. These generics can be used, for example, to determine:

• the widths of the pdi, sdi, and do ports

• the size of the associated data block, message/ciphertext block, key,
and tag

CHAPTER 2. TOP-LEVEL BLOCK DIAGRAM OF A HIGH-SPEED
IMPLEMENTATION 11

• padding for the associated data and the message.

They have been designed to assure:

• Ease of use

• No influence on the maximum clock frequency of AEAD (up to 300
MHz in Virtex 7)

• Limited area overhead.

2.3 CMD FIFO
The Command (CMD) FIFO is a small 4x24 First-Word-Fall-Through (FWFT)
FIFO that temporarily stores all significant bits of instructions and segment
headers that need to be passed to the output. This module allows the Pre-
Processor to operate with the maximum efficiency. This FIFO’s width is
selected based on the fact that the instructions defined in [1], Fig. 7, contain
only 4 significant bits, and segment headers, defined in [1], Fig. 8, contain
only 24 significant bits.

3 The Development and
Benchmarking of High-Speed and
Lightweight Implementations

The development and benchmarking of a high-speed implementation of a
selected authenticated cipher can be performed using the following major
steps, described in the subsequent chapters of this guide:

1. Configure the provided AEAD entity declaration for high-speed im-
plementations (Chapter 4)

2. Develop CipherCore (Chapter 5)

3. Generate test vectors (Chapter 6)

4. Verify the AEAD design (including the CipherCore design) using func-
tional simulation (Chapter 7)

5. Generate optimized results for AEAD using FPGA tools (Chapter 8).

The development and benchmarking of a lightweight implementation
of a selected authenticated cipher can be performed using the following
major steps, described in the subsequent chapters of this guide:

1. Configure the provided AEAD entity declaration for lightweight im-
plementations (Chapter 4)

2. Develop the entire AEAD core from scratch, based on the CAESAR
Hardware API specification [1]

3. Generate test vectors (Chapter 6)

12

CHAPTER 3. THE DEVELOPMENT AND BENCHMARKING OF
HIGH-SPEED AND LIGHTWEIGHT IMPLEMENTATIONS 13

4. Verify the AEAD design using functional simulation (Chapter 7)

5. Generate optimized results for AEAD using FPGA tools (Chapter 8).

As can be seen from the above description, only the first two steps are
different. All remaining steps are universal and apply to both high-speed
and lightweight implementations.

4 The AEAD Configuration

4.1 High-Speed Implementations
The entity declaration of AEAD for high-speed implementations is available
as a part of the supporting package in the file
$ROOT/hardware/AEAD/src_rtl_hs/AEAD.vhd
This entity declaration contains multiple generics defined in Table 4.1. Ad-
ditional generics, used to determine the desired padding scheme are defined
in Tables 4.2 and 4.3. The names of all generics, listed in the aforementioned
tables, are supplemented in the VHDL code with the prefix G_.

The following restrictions must be considered when configuring the AEAD
entity for high-speed implementations:

4.1.1 I/O Port Widths

Consistently with the specification of the CAESAR hardware API, the al-
lowed values of the port widths for high-speed implementations are as fol-
lows:

32 ≤ w ≤ 256,
32 ≤ sw ≤ 64.

These widths are described in the AEAD entity declaration using generics
W and SW.

4.1.2 Block sizes

Values of generics ABLK_SIZE and DBLK_SIZE, describing the sizes of
input blocks for associated data and message/ciphertext, respectively, must
be multiples of the generic W. Similarly, the generic KEY_SIZE must be

14

CHAPTER 4. THE AEAD CONFIGURATION 15

a multiple of the generic SW. Additionally, ABLK_SIZE is assumed to be
smaller than or equal to DBLK_SIZE.

4.1.3 The Preprocessor and PostProcessor Maximum
Input/Output Rates

The maximum rate at which the PreProcessor can provide a block of data
and the PostProcessor can accept a block of data is dependent on the size
of the message/ciphertext block (DBLK_SIZE) and the I/O port width
(W). In the registered mode of operation, a new block of input data can
be provided by the PreProcessor and accepted by the PostProcessor every
DBLK_SIZE/W + 1 clock cycles. In the non-registered mode, a new
block of input data can be provided by the PreProcessor and accepted by
the PostProcessor every clock cycle.

4.2 Lightweight Implementations
The entity declaration of AEAD for lightweight implementations is avail-
able as a part of the supporting package in the file
$ROOT/hardware/AEAD/src_rtl_lw/AEAD.vhd
This entity declaration contains only values of generics G_W and G_SW,
used to determine the I/O port widths, w and sw, respectively. Consis-
tently with the specification of the CAESAR hardware API, the allowed
values of these port widths are as follows:

w = 8, 16, 32,
sw = 8, 16, 32.

CHAPTER 4. THE AEAD CONFIGURATION 16

Table 4.1: AEAD Generics

Generic Type Default Definition
Value

I/O Widths in Bits
W Integer 32 Public data input and data output width
SW Integer 32 Secret data input width

Reset Behavior
ASYNC_RSTN Boolean False Reset behavior. True=Asynchronous active low,

False= Synchronous active high.
Special Features

ENABLE_PAD Boolean False Enable padding (See additional settings in Tables
4.2 and 4.3)

CIPH_EXP Boolean False Ciphertext expansion mode. This option should
be used when the ciphertext size is not the same
as the plaintext size, i.e., the ciphertext is ex-
panded. It should also be used when Cipher-
text=Ciphertext||Tag.

REVERSE_CIPH Boolean False Reverse ciphertext mode. Used, for example, by
PRIMATEs-APE, currently not supported.

MERGE_TAG Boolean False No tag segment. This parameter should be set to
True when the CipherCore does not separate Tag
from Ciphertext, i.e., Ciphertext=Ciphertext||Tag.

Block Size Parameters in Bits
ABLK_SIZE integer 128 Associated data block size. This value should be

smaller than or equal to DBLK_SIZE.
DBLK_SIZE integer 128 Data (message/ciphertext) block size
KEY_SIZE integer 128 Key size
TAG_SIZE integer 128 Tag size. Note: This value is not used when

MERGE_TAG is True.
Padding Parameters

PAD_STYLE integer 1 Padding style. See Table 4.2.
PAD_AD integer 1 Padding behavior for associated data. See Table 4.3
PAD_D integer 1 Padding behavior for message. See Table 4.3.

CHAPTER 4. THE AEAD CONFIGURATION 17

Table 4.2: Extended description of PAD_STYLE.

Value Description
0 No padding
1 10* padding rule
2 ICEPOLE padding rule

Table 4.3: Parameters of PAD_AD and PAD_D. A = Pad enable. B =
Extra block is added when AD/D is empty. C = Extra block is added when
AD/D is a non-zero multiple of a block size.

Value Feature
A B C

0
1 x
2 x x
3 x x
4 x x x

5 CipherCore Development for
High-Speed Implementations

5.1 Interface

DBLK_SIZE

KEY_SIZE

3

DBLK_SIZE/8

DBLK_SIZE/8

bdo

Datapath

CipherCore

msg_auth_valid

msg_auth_done

key_update

bdi_eot

bdi_eoi

bdi_type

bdi_ready

bdi_pad_loc

bdi_valid_bytes

bdi_size

bdo_size

bdo_ready

Controller

CipherCorebdi_valid bdo_valid

bdi

key

DBLK_SIZE

CipherCore

key_valid

key_readyKey Control

Data Input

BDI Control

BDO Control

Data Output

Tag Verification

LBS_BYTES+1

LBS_BYTES+1

decrypt

Figure 5.1: CipherCore

The interface of CipherCore is shown in Figure 5.1. Ports marked using
dashed lines are optional and used only if required. This approach allows
the synthesis tool to trim the unused ports and the associated logic from
the design, resulting in a better resource utilization.

Data input ports are limited to key and bdi (block data input). The key
port is controlled using the key_valid and key_ready handshake signals.

18

CHAPTER 5. CIPHERCORE DEVELOPMENT FOR HIGH-SPEED
IMPLEMENTATIONS 19

key_update is used to notify the CipherCore that it should update the
internal key prior to processing the next message.

Similarly to the key port, the bdi port is controlled using the bdi_valid
and bdi_ready handshake signals. The decrypt signal informs the core
whether the current operation is encryption or decryption. The bdi_type
input indicates the type of input data, with the encoding shown in Table 5.1.
It must noted that all ports of the BDI communication group and bdi are
synchronized with the bdi_valid input. Their values should be read only
when the bdi_valid signal is high.

Table 5.1: bdi_type Encoding. – represents don’t care.

Encoding Type
00– Associated Data
01– Message/Ciphertext/Ciphertext||Tag
100 Tag
101 Length
110 Public message number
111 Secret message number

The same scenario also applies to the block data output port (bdo) and
its associated control signals, which are synchronized with the value of the
bdo_valid output. bdo_size is not used unless the CIPH_EXP generic of
AEAD is set to True. When this is the case, each active value of bdo_valid
must be accompanied by providing the size of an output block, in bytes,
using the bdo_size port.

The message authentication ports (msg_auth_∗) are only used during
the authenticated decryption operation, when the core must provide out-
put signals indicating whether the authentication is done and the result is
(or is not) valid. Note that msg_auth_valid signal is synchronized with
msg_auth_done signal.

Port descriptions are provided in Table 5.2. Ports related to bdi control
are categorized according to the following criteria:

COMM A handshake signal.

INPUT INFO An auxiliary signal that remains valid until a given input is fully
processed. Deactivation is typically done at the end of input.

CHAPTER 5. CIPHERCORE DEVELOPMENT FOR HIGH-SPEED
IMPLEMENTATIONS 20

Table 5.2: CipherCore Port Descriptions. LBS_BYTES =
log2(DBLK_SIZE/8)

Name Direction Size Description
Data Input & Output

key in KEY_SIZE Key data
bdi in DBLK_SIZE Block data input
bdo out DBLK_SIZE Block data output

Key Control
key_valid in 1 Key data is valid
key_ready out 1 CipherCore is ready to receive a new key
key_update in 1 Key must be updated prior to processing a new

input
BDI Control

decrypt in 1 [INPUT INFO] 0=Encryption, 1=Decryption
bdi_valid in 1 [COMM] BDI data is valid
bdi_ready out 1 [COMM] CipherCore is ready to receive data
bdi_type in 3 [BLOCK INFO] Type of BDI data. See Ta-

ble 5.1.
bdi_eot in 1 [BLOCK INFO] The current BDI block is the

last block of its type. Note: Only applies when
the type is either AD, Message, or Ciphertext.

bdi_eoi in 1 [BLOCK INFO] The current BDI block is the
last block of input other than a block of the
Length segment, a block of the Tag segment,
or a block of padding.

bdi_partial in 1 [SEGMENT INFO] The current block is either
a partial block of AD or Message, or the re-
sult of encryption of a partial message block.
Note: This optional signal is used only in the
implementations of the ciphertext expansion
algorithms. We are aware of its necessity only
for the implementation of the Round 2 AES-
COPA.

bdi_pad_loc in DBLK_SIZE/8 [BLOCK INFO] Encoding of the byte location
where padding begins. See Table 5.3.

bdi_valid_bytes in DBLK_SIZE/8 [BLOCK INFO] Encoding of the byte locations
that are valid. See Table 5.3.

bdi_size in LBS_BYTES+1 [BLOCK INFO] Number of valid bytes in bdi.
BDO Control

bdo_valid out 1 BDO data is valid
bdo_ready in 1 PostProcessor is ready to receive data.
bdo_size out LBS_BYTES+1 Number of valid bytes in bdo. This port must

be used when CIPH_EXP is active.
Tag Verification

msg_auth_valid out 1 1=Authentication success, 0=Authentication
failure

msg_auth_done out 1 Authentication done

CHAPTER 5. CIPHERCORE DEVELOPMENT FOR HIGH-SPEED
IMPLEMENTATIONS 21

SEGMENT INFO An auxiliary signal that remains valid for the current segment. Its
value changes when a new segment is received via the PDI data bus.

BLOCK INFO An auxiliary signal that is valid for the current input block. Its value
changes when a new block is read.

The correct values of bdi_valid_bytes, bdi_pad_loc, and bdi_size
for various numbers of valid bytes within a 4-byte data block are shown in
Table 5.3, where:

• Case A: Either not the last block or the last block with all 4 bytes
valid.

• Case B: The last block with 3 bytes valid.

• Case C: The last block with 1 byte valid.

• Case D: The last block with no valid bytes. Assuming the 10* padding,
this block consists of a single 1 followed by 31 zeros.

Table 5.3: Values of the special control signals bdi_valid_bytes,
bdi_pad_loc, and bdi_size for the bdi bus with the width w=32. Byte
Validity represents the byte locations in bdi that were the part of input
(e.g., AD or message) before padding.

Byte/Bit Position 3 2 1 0 3 2 1 0
Case A Case B

Byte Validity
bdi_valid_bytes 1 1 1 1 1 1 1 0
bdi_pad_loc 0 0 0 0 0 0 0 1
bdi_size 1 0 0 0 1 1

Case C Case D
Byte Validity
bdi_valid_bytes 1 0 0 0 0 0 0 0
bdi_pad_loc 0 1 0 0 1 0 0 0
bdi_size 0 0 1 0 0 0

For the CipherCore that supports Two-Pass algorithms, additional ports
have been added to accommodate the communication with the external
FIFO, as shown in Figure 5.2.

CHAPTER 5. CIPHERCORE DEVELOPMENT FOR HIGH-SPEED
IMPLEMENTATIONS 22

KEY_SIZE

DBLK_SIZE

FW

DBLK_SIZE

3

DBLK_SIZE/8

DBLK_SIZE/8

Datapath

msg_auth_valid

msg_auth_done

key_update

bdi_eot

bdi_eoi

bdi_type

bdi_ready

bdi_pad_loc

bdi_valid_bytes

bdi_size

Controller

bdi_valid

key_valid

key_readyKey Control

BDI Control

Tag Verification

LBS_BYTES+1

decrypt

bdo_size

bdo_ready BDO Control

LBS_BYTES+1

bdo_valid

fdo_valid

fdo_ready

fdi_valid

fdi_ready

FIFO Control

Two−Pass

Data Input bdi

key

fdi

bdo

Data Output
fdo

FW

CipherCore_TP

CipherCore_TP

CipherCore_TP

Figure 5.2: Two-Pass CipherCore

The additional port descriptions required for a CipherCore that supports
Two-Pass algorithms are provided in Table 5.4. It must be noted that all
the ports listed in Table 5.2 are also present in the interface of the Two-Pass
core.

Table 5.4: Additional Port Descriptions for a Two-Pass CipherCore.

Name Direction Size Description
Data Input & Output

fdi_data in FW Input data from the two-pass FIFO
fdo_data out FW Output data to the two-pass FIFO

Control
fdi_valid in 1 fdi data is valid
fdi_ready out 1 CipherCore is ready to receive a new two-pass

data
fdo_valid out 1 CipherCore is ready to send a new two-pass

data
fdo_ready in 1 two-pass FIFO is ready to receive a new data

CHAPTER 5. CIPHERCORE DEVELOPMENT FOR HIGH-SPEED
IMPLEMENTATIONS 23

Figure 5.3: An example of a handshake used for loading data using the
input bdi

5.2 Handshakes

This section presents examples of handshakes. All ports in the figures of
this section are represented by the blue and the red color, for input and
output ports, respectively. Fig. 5.3 provides an example of a handshake
used for loading a block of data using the (bdi) port. Data and its auxiliary
signals are synchronized with the bdi_valid signal. Similarly for key, data
is synchronized with the key_valid signal, as shown in Figure 5.4.

Fig. 5.5 provides an example of a handshake used to write output to
the PostProcessor. Fig. 5.5a presents an example for the standard mode of
operation of an authentiocated cipher. Figure 5.5b presents an example for
the case of an algorithm operating in the ciphertext expansion mode. An
additional output port (bdo_size) is now required to update the PostPro-
cessor about the size of the current message block after decryption. This
information is used by the PostProcessor to update the header with correct
value of the last segment size.

Finally, an example of a handshake for authentication is shown in Fig. 5.6.
For every decryption operation, PostProcessor should issue themsg_auth_done
signal to indicate the completion of the authentication check. At the same
time, msg_auth_valid is captured by the PostProcessor to determine the
result of authentication. These two signals should only be activated once
for every decryption. Subsequent values of of the msg_auth_done signal
during the same decryption operation are ignored.

CHAPTER 5. CIPHERCORE DEVELOPMENT FOR HIGH-SPEED
IMPLEMENTATIONS 24

Figure 5.4: An example of a handshake used for loading a key

(a) Standard mode (b) Ciphertext expansion mode

Figure 5.5: An example of a handshake used for writing data in the a)
Standard mode, b) Ciphertext expansion mode

Figure 5.6: An example of a handshake used to perform message authenti-
cation

5.3 Design Procedure
It is recommended that you start the development of the CipherCore, spe-
cific to a given authenticated cipher, by using the code provided in the
Development Package, in the folder
$ROOT/hardware/AEAD/src_rtl_hs
In particular, the appropriate connections among the CipherCore, the Pre-
Processor, the PostProcessor, and the CMD FIFO modules are already
specified in this code. A designer needs to modify generics in the AEAD
module, and then develop the CipherCore Datapath and the CipherCore
Controller.

The development of the CipherCore is left to individual designers and
can be performed using their own preferred design methodology. Typically,
when using a traditional RTL (Register Transfer Level) methodology, the

CHAPTER 5. CIPHERCORE DEVELOPMENT FOR HIGH-SPEED
IMPLEMENTATIONS 25

CipherCore Datapath is first modeled using a block diagram, and then
translated to a hardware description language (VHDL or Verilog HDL).
The CipherCore Controller is then described using an algorithmic state
machine (ASM) chart or a state diagram, further translated to HDL.

An ASM chart of the CipherCore Controller typically contains the fol-
lowing states:

1. Idle
2. Activate Key
3. Load Npub
4. Load Data
5. Process AD
6. Process AD Last
7. Process Data
8. Process Data Last
9. Generate/verify Tag (GenVer Tag).

An example ASM chart for the CipherCore Controller is shown Fig. 5.7.
After a new instruction or after reset, the control should wait for the
first block of data in the Idle state. The CipherCore should monitor the
bdi_valid for the first block of data, which is typically Npub. When this
signal is active, the circuit should check whether the current key requires
an update by inspecting the key_update signal. If it does, the controller
changes its state to Activate Key. In this state either a new key is stored
internally within the CipherCore or the corresponding round keys are pre-
computed. Once this task is completed, key_ready should be activated to
acknowledge the key activation.

Once a new key is activated or no new key is required (key_update=0),
the circuit is ready to process the first block of data (Npub) in the Load Npub
state. At the same time, that the Npub block is loaded into the Cipher-
Core, the circuit needs to acknowledge its receipt by setting the bdi_ready
output to high. The controller then moves to the next processing state,
Load Data. In the case that Npub is the last block of data (AD size =
Message/Ciphertext size = 0), which can be determined using the bdi_eoi
input, the controller state can change directly to Generate/verify tag.

In the Load Data state, the circuit waits until the next input block is
valid (bdi_valid=1), and then processes data based on the incoming input

CHAPTER 5. CIPHERCORE DEVELOPMENT FOR HIGH-SPEED
IMPLEMENTATIONS 26

Process
Data

Process
AD

msg_auth_valid

bdi_valid?

bdo_ready?

Last
Data

Process

A

GenVer
Tag

bdo_ready?

Last

Process
AD

0

1

0

==AD?
bdi_type

1

1

0

0

1

0

bdi_valid?

bdi_eoi?
01

10

1

rst

10
key_valid?

bdi_valid?

bdo_validkey_ready

bdi_ready

bdi_ready

Load
Data

Idle

Activate
Key

Load
Npub

1

1

0
tag_match?

1

0 1

bdo_valid

msg_auth_done

bdi_ready

bdo_valid
1 0

1
decrypt_r?

bdi_eoi_r?
0

bdi_eot?

0

1
0

1

0
==AD?

bdi_type

bdo_ready?

A

key_update?

0

bdi_valid?

Figure 5.7: A typical Algorithmic State Machine (ASM) chart of the Ci-
pherCore Controller. Each shaded state in this diagram may need to be
replaced by a sequence of states in the actual implementation of a com-
plex authenticated cipher. *_r are status registers storing values of the
respective inputs read during the last bdi handshake.

CHAPTER 5. CIPHERCORE DEVELOPMENT FOR HIGH-SPEED
IMPLEMENTATIONS 27

type (bdi_type). Depending on the algorithm, additional processing may
be required for the last block of data. This block can be determined using
the end-of-type input (bdi_eot). At the same time, the end-of-input signal
(bdi_eoi) may be stored in a register within the CipherCore to keep track
of the last input state. This status register is useful to determine when
no additional data block is expected after processing of the last AD block,
so that the controller can progress to the last state (Generate/verify tag)
directly.

In the last state, Generate/verify tag, during the authenticated encryp-
tion operation, the core should generate a new tag and pass it to the Post-
Processor via the bdo bus. During the authenticated decryption operation,
msg_auth_done should be activated, and the msg_auth_valid signal should
be used to provide the result of authentication.

5.4 Dummy Authenticated Ciphers

Five example designs of the CipherCore and AEAD, corresponding to five
Dummy Authenticated Ciphers, are provided as a part of our distribution.
The first three Dummy Authenticated Ciphers is specified using the follow-
ing equations:

AD = AD1, AD2, ..., ADn−1, ADn (5.1)

PT = PT1, PT2, ..., PTm−1, PTm (5.2)

CT = CT1, CT2, ..., CTm−1, CTm (5.3)

CTi = PTi ⊕ i⊕Key ⊕Npub (5.4)

for i = 1..m− 1.

CTm = Trunc(PTm ⊕ i⊕Key ⊕Npub, PTm) (5.5)

when CIPH_EXP=False.

CTm = Pad(PTm)⊕m⊕Key ⊕Npub (5.6)

CHAPTER 5. CIPHERCORE DEVELOPMENT FOR HIGH-SPEED
IMPLEMENTATIONS 28

when CIPH_EXP=True.

Tag = Key⊕Npub⊕Len⊕
n−1⊕
i=1

ADi ⊕ Pad(ADn)⊕
m−1⊕
i=1

PTi ⊕ Pad(PTm)

(5.7)
where,

• PTi and CTi are the plaintext (message) and ciphertext blocks, re-
spectively,

• ADi = associated data block,

• Pad(·) represents a padding operation applied to the last AD and/or
the last plaintext block,

• Trunc(X, Y) truncates X to the size of Y,

• i = 128-bit block number,

• Key = 128-bit key,

• Npub = Public message number,

• Len = 64-bit associated data length (in bytes) || 64-bit plaintext
length (in bytes).

For an XOR operation with inputs of different sizes, the smaller operands
are appended with zeros to have the same length as the longest operand.
The result has the length of the longest operand. All examples are based
on a 128-bit data block, unless specified otherwise. The differences between
each Dummy Authenticated Cipher are primarily based on the definition
of padding and values of parameters described below. Please note that a
typical padding behavior is either appending all zeros (0∗) or one followed
by zeros (10∗).

The design of the controllers used in our dummy cores is based on the
ASM chart discussed in the previous section.

The features of all five dummy cores are summarized in Table 5.5.

CHAPTER 5. CIPHERCORE DEVELOPMENT FOR HIGH-SPEED
IMPLEMENTATIONS 29

Table 5.5: Summary of features/parameters of five dummy authenticated
ciphers and their high-speed implementions

CIPH Npub AD PT Tag Off- Pre-Processor
EXP? Size Block Pad? Block Pad? Size line? Data Key

size size buffer? buffer?
dummy1 False 96 128 True 128 True 128 False True True
dummy2 False 128 96 False 128 True 128 True True True
dummy3 True 128 128 True 128 True 128 False True True
dummy4 False 128 32 True 32 True 64 False False True
dummy5 False 128 32 True 32 True 128 False False False

5.4.1 dummy1

This example is aimed at presenting the behavior of the Pre- and Post-
processors for a typical CipherCore. The following parameters are used:

• ADblock_size = PTblock_size = 128 bits

• Npubsize = 96 bits

• Pad(ADn) = ADn if len(ADn) = block_size else ADn||10∗

• Pad(PTm) = PTm if len(PTm) = block_size else PTm||10∗

• CIPH_EXP=False

5.4.2 dummy2

This example aims at presenting the behavior of the PreProcessor when
ADblock_size 6= PTblock_size, and zero padding is applied to AD. The following
parameters are used:

• ADblock_size = 96 bits

• PTblock_size = Npubsize = 128 bits

• Pad(ADn) = ADn if len(ADn) = block_size else ADn||0∗

• Pad(PTm) = PTm if len(PTm) = block_size else PTm||10∗

• CIPH_EXP=False

CHAPTER 5. CIPHERCORE DEVELOPMENT FOR HIGH-SPEED
IMPLEMENTATIONS 30

5.4.3 dummy3

This example aims at presenting an example implementation for algorithms
that have ciphertext expansion. The following parameters are used:

• ADblock_size = PTblock_size = Npubsize = 128 bits

• Pad(ADn) = ADn if len(ADn) = block_size else ADn||10∗

• Pad(PTm) = PTm if len(PTm) = block_size else PTm||10∗

• CIPH_EXP=True

Additionally, the Len segment is removed from the tag generation for
this dummy core, so the new equation for Tag is

Tag = Key⊕Npub⊕
n−1⊕
i=1

ADi⊕Pad(ADn)⊕
m−1⊕
i=1

PTi⊕Pad(PTm) (5.8)

5.4.4 dummy4

This example aims at presenting the behavior of the Pre- and Post-processor
for the following cases:

• External public bus size is equal to the internal data bus size, i.e.,
W = DBLK_SIZE. This allow the PreProcessor to operate in the
non-registered mode for the bdi input.

• Tag size is larger than the data bus size, i.e., TAG_SIZE > DBLK_SIZE.

• Npub size is larger than the data bus size.

For this example, the same padding rules as those used in dummy1 are
applied, together with the following values of parameters:

• ADblock_size = PTblock_size = 32 bits

• Npubsize = 128 bits

• Key = 128 bits

• Tag = 64 bits.

CHAPTER 5. CIPHERCORE DEVELOPMENT FOR HIGH-SPEED
IMPLEMENTATIONS 31

Additionally, the ciphertext and the tag are described as followed:

CTi = PTi ⊕ i⊕KN (5.9)

for i = 1..m− 1.

CTm = Trunc(PTm ⊕m⊕KN,PTm) (5.10)

Tag63..32 = KN ⊕
n−1⊕
i=1

ADi ⊕ Pad(ADn)⊕
m−1⊕
i=1

PTi ⊕ Pad(PTm) (5.11)

Tag31..0 =
n−1⊕
i=1

ADi ⊕ Pad(ADn)⊕
m−1⊕
i=1

PTi ⊕ Pad(PTm) (5.12)

where,

KN = Key127..96 ⊕Key95..64 ⊕Key63..32 ⊕Key31..0

⊕Npub127..96 ⊕Npub95..64 ⊕Npub63..32 ⊕Npub31..0

5.4.5 dummy5

This example uses the same algorithm as dummy4 except that the hardware
implementation relies on a different PreProcessor settings. In particular, the
key bus size (KEY_SIZE) is set to the same width as sdi bus size (SW).
As a result, the PreProcessor operates in a non-registered mode for the key
as well as the bdi input. This mode reduces the AEAD overall resource
utilization as the key is not buffered inside the PreProcessor.

5.5 AES and Keccak Permutation F
Additional support is provided for designers of cipher cores of CAESAR
candidates based on AES and Keccak. Fully verified VHDL codes, block
diagrams, and ASM charts of AES and Keccak Permutation F have been
developed and made available at [?]. Our AES core implements a basic it-
erative architecture of a block cipher, with the SubBytes operation realized

CHAPTER 5. CIPHERCORE DEVELOPMENT FOR HIGH-SPEED
IMPLEMENTATIONS 32

using memory. Either distributed memory (implemented using multipur-
pose LUTs) or block memory is inferred depending on the specific options
of FPGA tools.

6 Test Vector Generation

Test vectors for the targeted algorithm can be generated using our test
vector generator (aeadtvgen) available in the software folder of our develop-
ment package. The program relies on a reference software implementation
located at $ROOT/softare/CAESAR/$algorithm/ref that uses the
CAESAR software API to create a shared library used by our program,
where $algorithm is algorithm’s name/implementation. A limited set of
reference C implementations of Round 2 CAESAR candidates is provided
as part of our development package.

In the case that the targeted algorithm is not available as part of our
package, the user can add a new algorithm at the location noted above, and
perform a slight modification to the source code. In particular, user must in-
clude an additional header file (dll.h) located in the $REPO/software/CAESAR
folder as well as prepend an EXPORT syntax to CAESAR software API,
e.g.:

#include "../../dll.h"
EXPORT int crypto_aead_encrypt(..) { ... }
EXPORT int crypto_aead_decrypt(..) { ... }

Note: For the installation procedure of the recommended software, please
refer to Appendix B.

A standard procedure for creating the testbench can be executed as
follows:

1. Create shared CAESAR libraries (*.dll in Windows and *.so in Linux)

a) In console, navigate to the CAESAR folder ($root/software/CAESAR).
Note: For Windows, perform this step using msys console

b) Modify Makefile to include only targeted primitive(s).

33

CHAPTER 6. TEST VECTOR GENERATION 34

c) (Situational) An algorithm may require OpenSSL library in or-
der to compile. If it does, one needs to provide an appropriate
compilation flag inside the following clause:
ifeq ($(OS),Windows_NT)
...
else
...
endif

Note: The flags are available but uncommented by default.

d) type
make

2. Generate the script using aeadtvgen python program. The user can di-
rectly use the program from a command line or create a script similar
to examples shown in $root/software/aeadtvgen/examples
folder. Full description of the program can be found by typing
python -m aeadtvgen -h

3. Copy the three generated test vectors (pdi.txt, sdi.txt and do.txt) to
simulation folder.

7 Simulation

Once test vectors are generated, copy them into your simulation folder and
ensure that the PWIDTH and SWIDTH generics of the testbench are set
to W and SW, respectively.

Simulation is performed until end-of-file is reached or a mismatched be-
tween expected output and output data occurs. A clock signal is deactivated
when either of the conditions apply. In the case that user wants to ignore
the simulation mismatch, one can set the STOP_AT_FAULT generic to
False and the testbench will ignore the verification error.

In the case that the target implementation is ASIC, one can simulate
the design by setting ASYNC_RSTN to True.

Finally, four test modes, summarized in Table 7.1, are provided to simu-
late the conditions when available of source or target communication mod-
ules are intermittent. The rate at which the data is not available can be
configured using TEST_ISTALL and TEST_OSTALL for input and out-
put (in cycles), respectively.

Table 7.1: Test modes

Value Description
0 Always available
1 Input & Output intermittent test
2 Input intermittent test
3 Output intermittent test

35

8 Generation and Publication of
Results

Generation of results is possible for AEAD and CipherCore. We strongly
recommend generating results primarily for AEAD. This recommendation
is based on the fact that CipherCore has an incomplete functionality and a
full-block-width interface.

In case AEAD, for Virtex 7 and Zynq, we recommend generating results
using Xilinx Vivado [3], operating in the Out-of-Context (OOC) mode [4].
In this mode, no pin limit applies. For Virtex 6 and below, since Xilinx
ISE must be used, and the OOC mode is not supported by this tool, we
recommend using a simple wrapper, with five ports: clk, rst, sin, sout,
piso_mux_sel, provided as a part of supporting files [2].

In case of CipherCore, because of a large number of port bits and limited
effectiveness of the OOC mode, we recommend using the aforementioned
five-port wrapper for all FPGA families.

In terms of optimization of tool options, for Virtex 7 and Zynq, we
recommend the use of 25 default optimization strategies available in Xilinx
Vivado. The corresponding scripts, used to run Xilinx Vivado in batch
mode, are included in our supporting codes [2], and their use is explained
in detail in Appendix E. For Virtex 6 and below, we recommend using
Xilinx ISE and ATHENa [5]. For Altera FPGAs, we suggest using Altera
Quartus II and ATHENa.

Our database of results for authenticated ciphers is available at [6].
After receiving an account in the database, the designers can enter results
by themselves.

36

A The Supporting Package
Description

The contents of our development package is shown in Table A.1.

37

APPENDIX A. THE SUPPORTING PACKAGE DESCRIPTION 38

Table A.1: Directory structure of the development package
F
ol

d
er

F
il
es

D
es

cr
ip

ti
on

sc
ri
pt
s

V
iv
ad

oB
at
ch

D
ir
ec
to
ry

th
at

co
nt
ai
ns

a
se
t
of

sc
ri
pt
s
fo
r
re
su
lt

ge
ne

ra
ti
on

us
in
g
V
iv
ad

o
M
od

el
Si
m

m
od

el
si
m
.t
cl

m
od

el
si
m

sc
ri
pt

to
ru
n
a
re
fe
re
nc
e
de

si
gn

so
ft
w
ar
e

A
E
T
V
ge
n

A
E
T
V
ge
n.
py

T
es
t
ve
ct
or

ge
ne

ra
to
r
pr
og
ra
m

ge
n.
py

E
xa

m
pl
e
us
ag
e

C
A
E
SA

R
/

{a
lg
or
it
hm

}/
re
f

D
ir
ec
to
ry

th
at

co
nt
ai
ns

an
im

pl
em

en
ta
ti
on

of
a

sp
ec
ifi
c

al
go
ri
th
m

of
C
A
E
SA

R
ca
nd

id
at
e

fr
om

SU
P
E
R
C
O
P

di
st
ri
bu

ti
on

ha
rd
w
ar
e

A
E
A
D
/s
rc
_
rt
l_

hs

A
E
A
D
.v
hd

E
nt
it
y
on

ly
fil
e
of

A
E
A
D

A
E
A
D
_
A
rc
h.
vh

d
A
rc
hi
te
ct
ur
e
on

ly
fil
e
of

A
E
A
D

C
ip
he

rC
or
e.
vh

d
C
ip
he

rC
or
e
te
m
pl
at
e

A
E
A
D
_
T
P.
vh

d
E
nt
it
y
on

ly
fil
e
of

T
w
o-
P
as
s
A
E
A
D

A
E
A
D
_
A
rc
h_

T
P.
vh

d
A
rc
hi
te
ct
ur
e
on

ly
fil
e
of

T
w
o-
P
as
s
A
E
A
D

C
ip
he

rC
or
e_

T
P.
vh

d
T
w
o-
P
as
s
C
ip
he

rC
or
e
te
m
pl
at
e

fw
ft
_
fif
o.
vh

d
F
ir
st
-W

or
d-
Fa

ll-
T
hr
ou

gh
F
IF
O

P
os
tP

ro
ce
ss
or
.v
hd

P
os
tP

ro
ce
ss
or

fil
e

P
re
P
ro
ce
ss
or
.v
hd

P
re
P
ro
ce
ss
or

fil
e

A
E
A
D
/s
rc
_
rt
l_

lw
A
E
A
D
.v
hd

T
op

-le
ve
l
te
m
pl
at
e
fil
e
fo
r
lig

ht
w
ei
gh

t
ha

rd
w
ar
e

de
si
gn

.
A
E
A
D
/s
rc
_
tb

A
E
A
D
_
T
B
.v
hd

U
ni
ve
rs
al

te
st
be

nc
h
fil
e

A
E
A
D
_
T
P
_
T
B
_
W
ra
pp

er
.v
hd

W
ra
pp

er
fil
e
to

us
e
w
it
h

th
e
te
st

of
T
w
o-
P
as
s

A
E
A
D

st
d_

lo
gi
c_

11
64
_
ad

di
ti
on

s.
vh

d
A
dd

it
io
na

ls
im

ul
at
io
n
pa

ck
ag
e

A
E
A
D
/s
rc
_
rt
l

A
E
A
D
_
W
ra
pp

er
.v
hd

W
ra
pp

er
fil
e
fo
r
im

pl
em

en
ta
ti
on

of
A
E
A
D

/w
ra
pp

er
s

C
ip
he

rC
or
e_

W
ra
pp

er
.v
hd

W
ra
pp

er
fil
e
fo
r
im

pl
em

en
ta
ti
on

of
C
ip
he

rC
or
e

A
E
A
D
_
T
P
_
W
ra
pp

er
.v
hd

W
ra
pp

er
fil
e

fo
r

im
pl
em

en
ta
ti
on

of
T
w
o-
P
as
s

A
E
A
D

C
ip
he

rC
or
e_

T
P
_
W
ra
pp

er
.v
hd

W
ra
pp

er
fil
e
fo
r
im

pl
em

en
ta
ti
on

of
T
w
o-
P
as
s
C
i-

ph
er
C
or
e

du
m
m
y*

K
A
T

K
no

w
n-
A
ns
w
er
-T
es
t
fo
ld
er

fo
r
du

m
m
y
de

si
gn

sr
c_

rt
l

R
ef
er
en

ce
du

m
m
y
re
la
te
d
co
de

sc
ri
pt
s

M
od

el
Si
m

sc
ri
pt

fo
ld
er

to
pe

rf
or
m

a
qu

ic
k
si
m
u-

la
ti
on

B Installation of Libraries and
Tools

B.1 Interpreter and compiler

B.1.1 Windows

• MinGW with MSYS as a compiler
Download and install the latest version from http://www.mingw.org.
MSYS should be included in the installation package.
Note: MSYS is the console for MinGW in Windows

Below is an example in how to compile the program using MingW
with Msys console (MingW shell).

cd /c/Downloads/GMU_API_v20/software/CAESAR
make

• Python v3.5+
Download and install the latest Python distribution package from
https://www.python.org.
Note: Please make sure that all installations are done as an admin-
istrator and the path to python is correctly set in the environmental
variable.

B.1.2 Linux

• Python v3.5+

39

http://www.mingw.org
https://www.python.org

APPENDIX B. INSTALLATION OF LIBRARIES AND TOOLS 40

B.2 OpenSSL Installation
1. Download and uncompress the latest version of OpenSSL

2. Navigate to download folder and uncompress files

a) Open terminal (Msys console for Windows)

b) Navigate to the download folder

• Windows
cd /c/Users/$USER/Downloads/openssl-1.0.2e

• Linux Open terminal
cd /home/$USER/Downloads

c) Uncompress downloaded file, e.g.
tar -zxvf openssl-1.0.2e.tar.gz

d) Change working directory
cd openssl-1.0.2e

e) Configure OpenSSL

• Windows
./Configure mingw --prefix=/usr/local shared

Note: Possible error
"gcc command not found" error
This is caused by a problem during installation where your
MingW’s /bin folder is not included as a part of environ-
mental variable. You can either try to re-install or add the
variable manually. To do this manually
i. Access environmental variable onWindows system, right-

click @ My Computer (or This PC on some system) ->
Properties -> Advanced System Settings -> Advanced
Tab -> Environmental Variables

ii. Prepend C:/MingW/bin; to PATH variable by editing
PATH variable in either User variable for $USER or
System variable.

https://www.openssl.org/source/

APPENDIX B. INSTALLATION OF LIBRARIES AND TOOLS 41

iii. OK -> Apply
• Linux

./Configure --prefix=/usr/local shared

f) Compile and install
make && make install

B.3 Python module (aeadtvgen)
The distribution package for aeadtvgen can be found as a wheel (*.whl)
package under $root/software/aeadtvgen/dist folder. To install,
type
python -m pip install _PACKAGED_MODULE_.whl

Bibliography

[1] Cryptographic Engineering Research Group (CERG) at GMU. (2016,
June) CAESAR Hardware API, full specification. [Online]. Available:
https://cryptography.gmu.edu/athena/index.php?id=download

[2] ——. (2016, June) Development Package for the CAESAR Hardware
API. [Online]. Available: https://cryptography.gmu.edu/athena/index.
php?id=download

[3] Xilinx. Vivado Design Suite. [Online]. Available: http://www.xilinx.
com/products/design-tools/vivado.html

[4] ——, Vivado Design Suite User Guide: Hierarchical Design, April 2015.
[Online]. Available: http://www.xilinx.com/support/documentation/
sw_manuals/xilinx2015_1/ug905-vivado-hierarchical-design.pdf

[5] K. Gaj, J.-P. Kaps, V. Amirineni, M. Rogawski, E. Homsirikamol, and
B. Y. Brewster, “ATHENa – automated tool for hardware evaluation:
Toward fair and comprehensive benchmarking of cryptographic hard-
ware using FPGAs,” in 20th International Conference on Field Pro-
grammable Logic and Applications - FPL 2010. IEEE, 2010, pp. 414–
421.

[6] Cryptographic Engineering Research Group (CERG) at GMU. (2016,
June) GMU ATHENa Database of Results. [Online]. Available: https:
//cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view

42

https://cryptography.gmu.edu/athena/index.php?id=download
https://cryptography.gmu.edu/athena/index.php?id=download
https://cryptography.gmu.edu/athena/index.php?id=download
http://www.xilinx.com/products/design-tools/vivado.html
http://www.xilinx.com/products/design-tools/vivado.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug905-vivado-hierarchical-design.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug905-vivado-hierarchical-design.pdf
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view

	Introduction
	Top-level Block Diagram of a High-Speed Implementation
	PreProcessor
	PostProcessor
	CMD FIFO

	The Development and Benchmarking of High-Speed and Lightweight Implementations
	The AEAD Configuration
	High-Speed Implementations
	Lightweight Implementations

	CipherCore Development for High-Speed Implementations
	Interface
	Handshakes
	Design Procedure
	Dummy Authenticated Ciphers
	AES and Keccak Permutation F

	Test Vector Generation
	Simulation
	Generation and Publication of Results
	The Supporting Package Description
	Installation of Libraries and Tools
	Interpreter and compiler
	OpenSSL Installation
	Python module (aeadtvgen)

	Bibliography

