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Goal:     Portfolio of new-generation authenticated ciphers 

Period:  March 2014 - December 2017 (tentative) 
Organizer:  An informal committee of leading cryptographic 

         experts  

Number of submitted candidates:  57 

Upcoming milestones: 
 - Announcement of second-round candidates 
 - Round 2 tweaks 
 - VHDL/Verilog codes 

CAESAR Competition 
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•  Software implementations compared using a uniform API, using the 
SUPERCOP software and eBACS framework 

•  Hardware API can have a high influence on Area and  
Throughput/Area ratio of all candidates 

•  Hardware API typically much more difficult to modify than Software API 

•  No comprehensive hardware API proposed to date 

•  Comparison of existing and future codes highly unreliable and 
potentially unfair 

•  Need for a uniform hardware API, endorsed by the CAESAR Committee, 
and adopted by all future implementers 

Motivation 
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•  inputs of arbitrary size in bytes (but a multiple of a byte only) 
•  size of the entire message/ciphertext does not need to be 

known before the encryption/decryption starts (unless 
required by the algorithm itself) 

•  wide range of data port widths, 8 ≤ w ≤ 256 
•  independent data and key inputs 
•  simple high-level communication protocol 
•  support for the burst mode 
•  possible overlap among processing the current input block, 

reading the next input block, and storing the previous output 
block 

 

Proposed Features (1) 
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•  storing decrypted messages internally, until the result of 
authentication is known 

•  support for encryption and decryption within the same core, 
but only one of these two operations performed at a time 

•  ability to communicate with very simple, passive devices, 
such as FIFOs 

•  ease of extension to support existing communication 
interfaces and protocols, such as 
•  AMBA-AXI4   - a de-facto standard for the Systems-on-Chip buses 
•  PCI Express – high-bandwidth serial communication between PCs 

and hardware accelerator boards 

Proposed Features (2) 
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•  Popular general-purpose interfaces 
•  ARM:     AXI4, AXI4-Lite, AXI4-Stream (Advanced eXtensible Interface) 
•  IBM:      PLB (Processor Local Bus), OPB (On-chip Peripheral Bus) 
•  Altera:  Avalon 
•  Xilinx:   FSL (Fast Simplex Link) 
•  Silicore Corp.:  Wishbone (used by opencores.org) 

•  Interfaces used during the SHA-3 Contest 
•  GMU, Virginia Tech, University College Cork, etc. 

•  Interfaces used so far in the CAESAR competition 
•  minimalistic, candidate specific 
•  AXI4-Stream proposed by ETH (non-uniform control ports, 
   algorithm specific, no description of i/o data formats) 

Previous Work 



7 

ETH Interface Conventions 

ICEPOLE Tiaoxin-346 



8 

AEAD Interface 

w	  

AEAD	  

pdi	   do	  

pdi_valid	  

pdi_ready	   do_ready	  

do_valid	  

clk	   rst	  

clk	   rst	  

w	  

w	  
sdi	  

sdi_valid	  

sdi_ready	  

PDI	  
Public	  Data	  Input	  

Ports	  

SDI	  
Secret	  Data	  Input	  

Ports	  

DO	  
Data	  Output	  

Ports	  
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Typical External Circuits (1) – AXI4 IPs 

w	  
AEAD	  

pdi	   do	  

pdi_valid	  

pdi_ready	   do_ready	  

do_valid	  

clk	   rst	  

clk	   rst	  

w	  

sdi	  

sdi_valid	  

sdi_ready	  

empty	  

read	  

w	  

SDI	  
FIFO	  

clk	   rst	  

dout	  

AXI4-‐Stream	  
Master	  

m_axis_tvalid	  

m_axis_tdata	  

m_axis_tready	  

s_axis_tvalid	  

s_axis_tdata	  

s_axis_tready	  

AXI4-‐Stream	  
Slave	  

clk	   rst	  clk	   rst	  
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Typical External Circuits (2) - FIFOs 

AEAD	  
pdi	   do	  

pdi_valid	  

pdi_ready	   do_ready	  

do_valid	  

clk	   rst	  

clk	   rst	  

sdi	  

sdi_valid	  

sdi_ready	  

empty	  

read	  

w	  

SDI	  
FIFO	  

dout	  

wr_clk	  
	  	  =	  clk	   rst	  

empty	  

read	  

w	  

PDI	  
FIFO	  

dout	  

rd_clk	  wr_clk	   rst	   rd_clk	  
=	  clk	  

wr_clk	   rst	   rd_clk	  
=	  clk	  

DO	  
FIFO	  

full	  

write	  

din	  

DO	  
FIFO	  
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Input and Output of an Authenticated Cipher 

Message	  

Tag	  

Encryp;on	  

Npub	  

Ciphertext	  Npub	  

Tag	  Ciphertext	  Npub	  

Decryp;on	  

K	  -‐	  Secret	  key	  
Npub	  (Public	  Message	  Number),	  typically	  Nonce	  

Nsec	  (Secret	  Message	  Number)	  	  [supported	  by	  few	  algorithms]	  
AD	  –	  Associated	  Data	  

AD	  

AD	  

AD	  

Message	  AD	  

K	  

Invalid	  
or	  

Nsec	  K	   Nsec	  
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Format of Secret Data Input 

.	  

.	  

.	  
	  

seg_0_header 

seg_0 = Key 

w bits 

instruction 

seg_1_header 

seg_1 = Nsec 
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Format of Public Data Input 

.	  

.	  

.	  
	  

seg_0_header 

seg_0 = Npub 

seg_1 = AD 

seg_2_header 

seg_2 = Message 

w bits 

instruction 

seg_1_header 

OR 
.	  
.	  
.	  
	  

seg_0_header 

seg_0 = Npub 

seg_1 = AD_0 

seg_2_header 

seg_3 = Message_0 

w bits 

instruction 

seg_1_header 

seg_2 = AD_1 

seg_3_header 

seg_4_header 

seg_4 = Message_1             
Single segment or multiple segments 
 per data type (AD and/or Message) 
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Instruction Format 

MSB 

Msg ID Opcode 

4 4 

Opcode: 
0000 – Reserved  
0001 – Reserved 
0010 – Authenticated Encryption  
0011 – Authenticated Decryption 
0100 – Load Key  
0101 – Activate Key 

0000 Key ID 

8 

LSB 

8 

Divided into   24/w  words, starting from MSB.  
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Segment Header Format 

MSB 

Msg ID Seg Len 

8 

LSB 

8 

Divided into   (16+s)/w  words, starting from MSB.  

Info 

s 

000…0 

w-(16+s) mod w 

4 

Segment 
Type 

EOT 

1 - 1 

1 1 1 

EOI 

Info Segment Type: 

0000 – Reserved  
0001 – Npub 
0010 – AD 
0011 – Message 
0100 – Ciphertext 
0101 – Tag 
0110 – Key 
1000 – Nsec 

EOI = 1 if the last  
segment of input 

0 otherwise 

EOT = 1 if the last  
segment of its type  

(AD, Message, Ciphertext), 
0 otherwise 

- 
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•  Universal Testbench supporting any authenticated cipher 
core following GMU AEAD API 

•  Change of cipher requires only changing test vector file 
•  A Python script created to automatically generate test 

vector files representing multiple test cases 
•  Encryption and Decryption 
•  Empty Associated Data and/or Empty Message/Ciphertext 
•  Various, randomly selected sizes of AD and Message/Ciphertext 
•  Valid tag and invalid tag cases 

•  All source codes made available at GMU ATHENa website 

 

Universal Testbench & Automated Test Vector 
Generation 



17 

PreProcessor: 
•  parsing segment headers 
•  loading and activating keys 
•  Serial-In-Parallel-Out loading of input blocks 
•  padding input blocks 
•  keeping track of the number of data bytes left to process 

PostProcessor: 
•  clearing any portions of output blocks not belonging to ciphertext 

or plaintext 
•  Parallel-In-Serial-Out conversion of output blocks into words 
•  formatting output words into segments 
•  storing decrypted messages in AUX FIFO, until the result of 

authentication is known 
•  generating an error word if authentication fails 

PreProcessor and PostProcessor for  
High-Speed Implementations (1) 
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Features: 
•  Ease of use 
•  No influence on the maximum clock frequency of AEAD 

(up to 300 MHz in Virtex 7) 
•  Limited area overhead 
•  Clear separation between the core unit and internal FIFOs 

•  Bypass FIFO – for passing headers and associated data directly to 
PostProcessor 

•  AUX FIFO – for temporarily storing unauthenticated messages after decryption 

Benefits: 
•  The designers can focus on designing the CipherCore specific to a 

given algorithm, without worrying about the functionality common 
for multiple algorithms 

•  Full-block width interface of the CipherCore 
 
 

PreProcessor and PostProcessor for  
High-Speed Implementations (2) 
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Block Diagram of AEAD 
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Test of Compatibility with AXI4 IP Cores 

clk, rst, sin, sout, piso_mux_sel clk, rst, sin, sout, piso_mux_sel 

Correct operation verified and performance measured experimentally using 
the ZedBoard based on Xilinx ZYNQ XC7Z020 All Programmable SoC 
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•  Additional support provided for designers of Cipher Cores 
of CAESAR candidates based on AES and Keccak 

•  Fully verified VHDL codes, block diagrams, and  
ASM charts of 
•  AES 
•  Keccak-F Permutation 

•  All resources made available at the GMU ATHENa website 
        https://cryptography.gmu.edu/athena 

 

AES & Keccak-F Permutation VHDL Codes 
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•  Generation of results possible for 
•  CipherCore – full block width interface, incomplete functionality 
•  AEAD Core - recommended 
•  AEAD – difficulty with setting BRAM usage to 0 (if desired) 

•  Use of wrappers 
•  Out-of-context (OOC) mode available in Xilinx Vivado (no pin limit) 
•  Generic wrappers available in case the number of port bits exceeds 

the total number of user pins, when using Xilinx ISE 
•  GMU Wrappers: 5 ports only (clk, rst, sin, sout, piso_mux_sel) 

•  Recommended Optimization Procedure 
•  ATHENa for Xilinx ISE and Altera Quartus II 
•  26 default optimization strategies for Xilinx Vivado 

 

Generation of Results 

clk, rst, sin, sout, piso_mux_sel clk, rst, sin, sout, piso_mux_sel 
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AEAD Core vs. CipherCore Area Overhead 

clk, rst, sin, sout, piso_mux_sel clk, rst, sin, sout, piso_mux_sel 

Overhead =  
LUT(AEAD_Core)-LUT(CipherCore) 

LUT(AEAD_Core) 
× 100% 
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•  Available at 
  http://cryptography.gmu.edu/athena 
  

•  Developed by John Pham, a Master’s-level student of  
Jens-Peter Kaps 

•  Results can be entered by designers themselves. 
If you would like to do that, please contact me regarding  
an account. 

•  The ATHENa Option Optimization Tool supports automatic 
generation of results suitable for uploading to the database 

ATHENa Database of Results for Authenticated Ciphers 
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Ranking View (1) 
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Ranking View (2) 
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Database of Results 

clk, rst, sin, sout, piso_mux_sel clk, rst, sin, sout, piso_mux_sel 

Ranking View: 
Supports the choice of 
  I.  Hardware API  (e.g., GMU_AEAD_Core_API_v1, GMU_AEAD_API_v1, 

GMU_CipherCore_API_v1) 
  II. Family (e.g., Virtex 6 (default), Virtex 7, Zynq 7000) 
  III. Operation (Authenticated Encryption (default), Authenticated 

Decryption, Authentication Only) 
  IV. Unit of Area (for Xilinx FPGAs: LUTs vs. Slices) 
  V. Ranking criteria (Throughput/Area (default), Throughput, Area) 

Table View: 
•  more flexibility in terms of filtering, reviewing, ranking, searching 

for, and comparing results with one another 
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Conclusions 

clk, rst, sin, sout, piso_mux_sel clk, rst, sin, sout, piso_mux_sel 

•  Complete Hardware API for authenticated ciphers developed, 
including 

•  Interface 
•  Communication Protocol 

•  Design with the GMU hardware API facilitated by 
•  Detailed specification 
•  Universal testbench and Automated Test Vector Generation 
•  PreProcessor and PostProcessor Units for high-speed implementations 
•  Universal wrappers for generating results 
•  AES and Keccak-F Permutation source codes 
•  Ease of recording and comparing results using ATHENa database 
•  Full example of use in Zynq 7000 based on Xilinx AXI4 IPs 

•  GMU proposal open for discussion and possible improvements through 
•  Better specification 
•  Better implementation of supporting codes 
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•  formatting errors detection and reporting 
•  support for two-pass algorithms 
•  accepting inputs with padding done in software 
•  accepting inputs with key scheduling done in software 
•  support for multiple streams of data 

 

Possible Extensions of the Current Hardware API 



Comments? 

Thank you! 
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Questions? 

http:/cryptography.gmu.edu 
https://cryptography.gmu.edu/athena  

Suggestions? 


