Toward a Universal High-Speed Interface for Authenticated Ciphers

Ekawat Homsirikamol, William Diehl, Ahmed Ferozpuri, Farnoud Farahmand, Malik Umar Sharif, and <u>Kris Gaj</u> George Mason University USA

http:/cryptography.gmu.edu https://cryptography.gmu.edu/athena **Goal:** Portfolio of new-generation authenticated ciphers

Period: March 2014 - December 2017 (tentative)

Organizer: An informal committee of leading cryptographic experts

Number of submitted candidates: 57

Upcoming milestones:

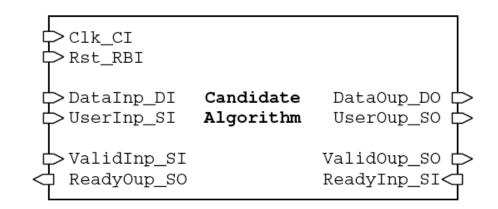
- Announcement of second-round candidates
- Round 2 tweaks
- VHDL/Verilog codes

Motivation

- Software implementations compared using a uniform API, using the SUPERCOP software and eBACS framework
- Hardware API can have a high influence on Area and Throughput/Area ratio of all candidates
- Hardware API typically much more difficult to modify than Software API
- No comprehensive hardware API proposed to date
- Comparison of existing and future codes highly unreliable and potentially unfair
- Need for a uniform hardware API, endorsed by the CAESAR Committee, and adopted by all future implementers

Proposed Features (1)

- inputs of arbitrary size in bytes (but a multiple of a byte only)
- size of the entire message/ciphertext does not need to be known before the encryption/decryption starts (unless required by the algorithm itself)
- wide range of data port widths, $8 \le w \le 256$
- independent data and key inputs
- simple high-level communication protocol
- support for the burst mode
- possible overlap among processing the current input block, reading the next input block, and storing the previous output block

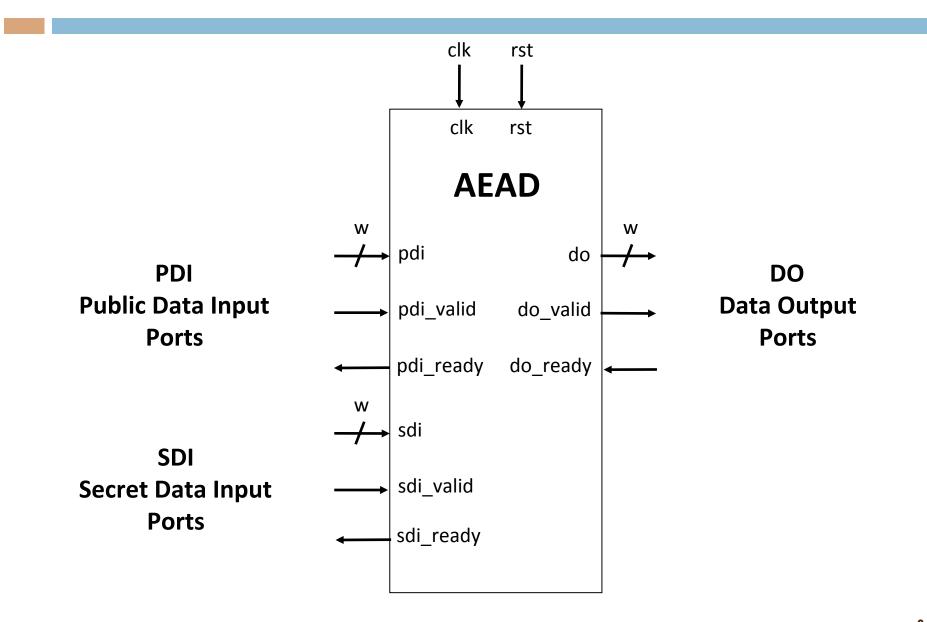

Proposed Features (2)

- storing decrypted messages internally, until the result of authentication is known
- support for encryption and decryption within the same core, but only one of these two operations performed at a time
- ability to communicate with very simple, passive devices, such as FIFOs
- ease of extension to support existing communication interfaces and protocols, such as
 - AMBA-AXI4 a de-facto standard for the Systems-on-Chip buses
 - PCI Express high-bandwidth serial communication between PCs and hardware accelerator boards

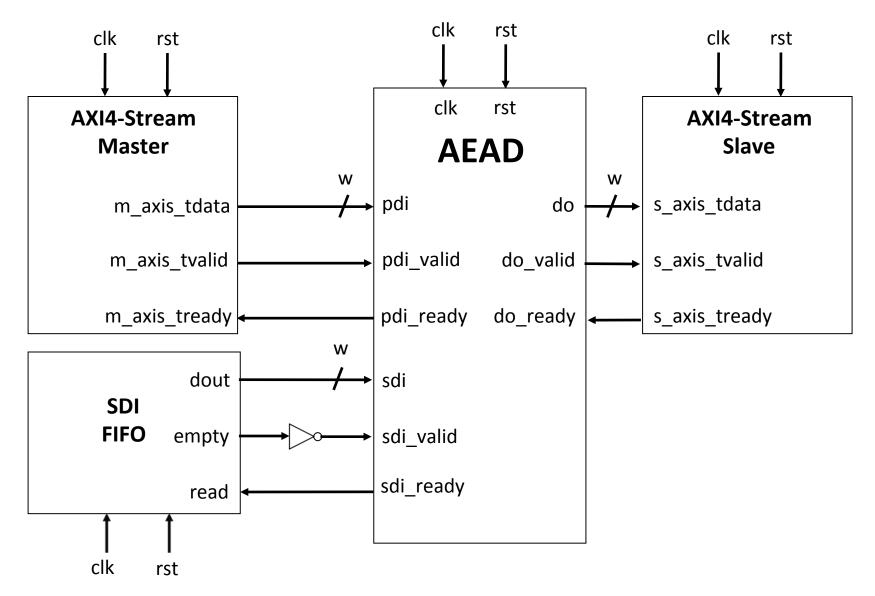
Previous Work

- Popular general-purpose interfaces
 - ARM: AXI4, AXI4-Lite, AXI4-Stream (Advanced eXtensible Interface)
 - IBM: PLB (Processor Local Bus), OPB (On-chip Peripheral Bus)
 - Altera: Avalon
 - Xilinx: FSL (Fast Simplex Link)
 - Silicore Corp.: Wishbone (used by opencores.org)
- Interfaces used during the SHA-3 Contest
 - GMU, Virginia Tech, University College Cork, etc.
- Interfaces used so far in the CAESAR competition
 - minimalistic, candidate specific
 - AXI4-Stream proposed by ETH (non-uniform control ports, algorithm specific, no description of i/o data formats)

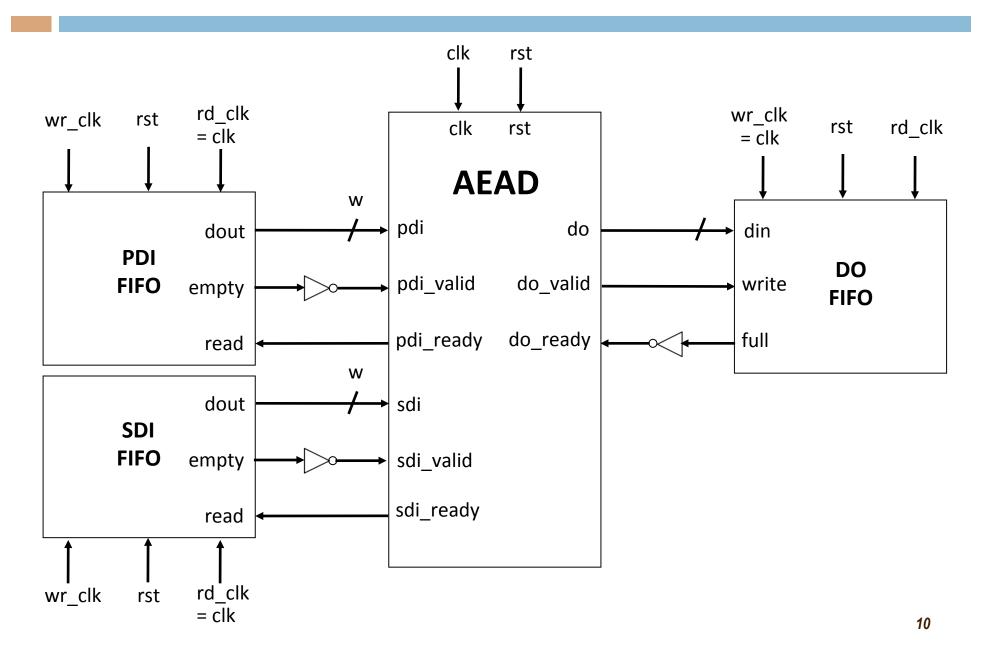
ETH Interface Conventions

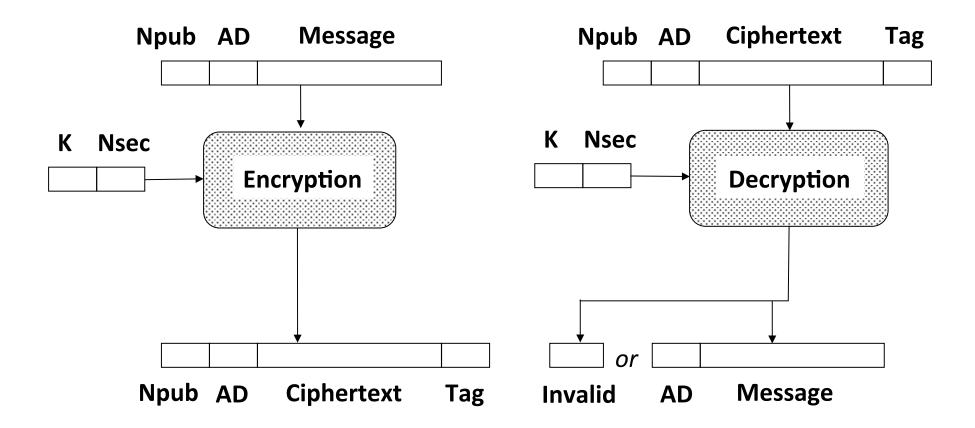


Tiaoxin-346

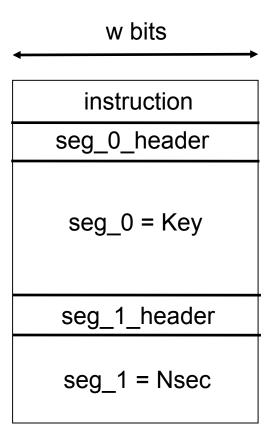

ICEPOLE

Signal Name	\mathbf{Width}	Bit range	Description	Signal Name	Width	Bit range	Description
DataInp_DI	$264\mathrm{bit}$	263 downto 261	Unused. Bytelength of the data block. If the length is zero, the block is full. Input data.	DataInp_DI	$1024\mathrm{bit}$	1023 downto 0	Input data.
		260 downto 256 255 downto 0				10	Signals whether the tag block already contains the key and nonce to initialize
UserInp_SI	$3\mathrm{bit}$	2 1 downto 0	Signals whether we are encrypting (0) or decrypting (1). Datatype.			9	the next message (1) or not (0). ^{\dagger} Signals whether we are encrypting (0) or decrypting (1).
DataOup_DO	$256\mathrm{bit}$	255 downto O	Output data.	UserInp_SI	$10/11{ m bit}$		Indicates that the current block is the
UserOup_SO	$1\mathrm{bit}$	0	Signals whether the received tag matches the computed tag, i.e. whether decryption was successful or not.			8	last associated data or message block. Toggles the FrameBit_SP flip-flop, is therefore required to be zero for all other datatypes.
						7 downto 0	Bytelength of the data block.
				DataOup_DO	$1024\mathrm{bit}$	1023 downto 0	Output data.
				UserOup_SO	1 bit	0	Signals whether the received tag matches the computed tag, i.e. whether decryption was successful or not.
				-			7

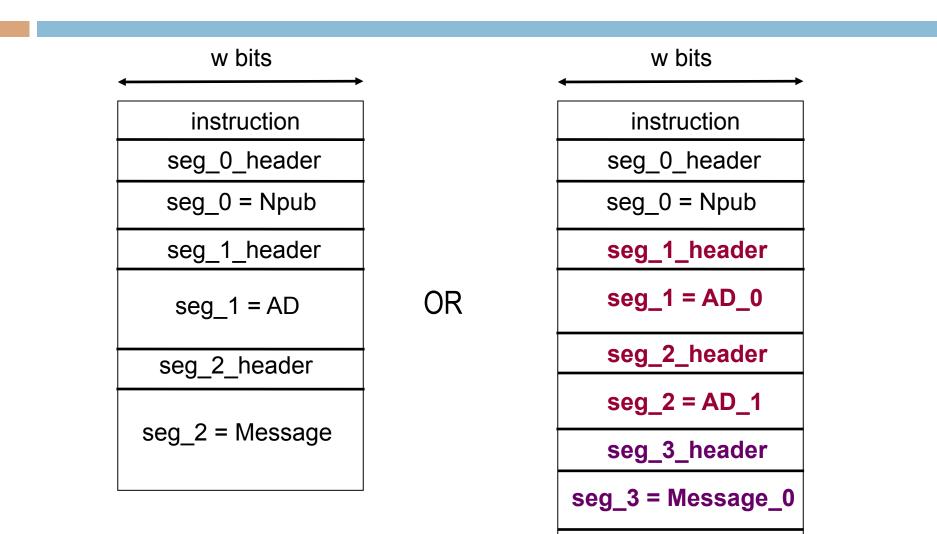

AEAD Interface


Typical External Circuits (1) – AXI4 IPs

Typical External Circuits (2) - FIFOs



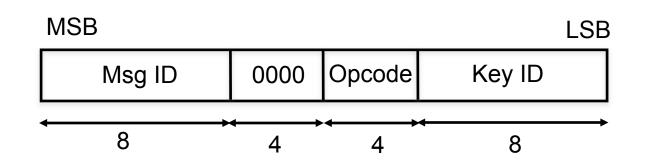
Input and Output of an Authenticated Cipher



K - Secret key Npub (Public Message Number), typically Nonce Nsec (Secret Message Number) [supported by few algorithms] AD – Associated Data

Format of Secret Data Input

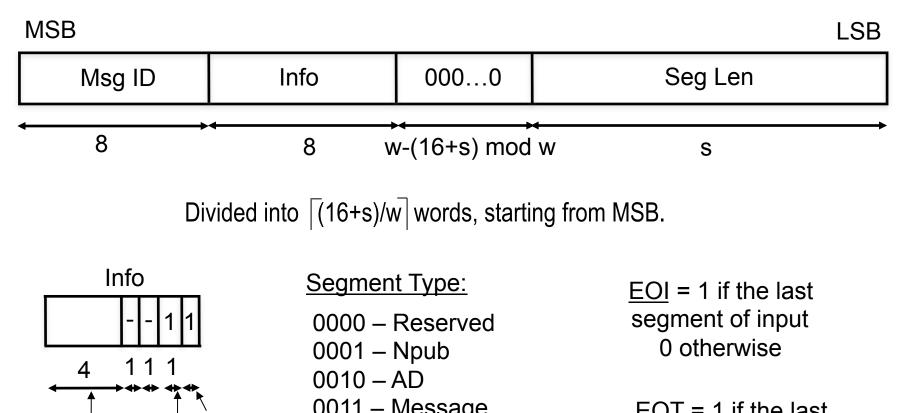
Format of Public Data Input



Single segment or **multiple segments** per data type (AD and/or Message)

seg_4_header

seg_4 = Message_1


Instruction Format

Divided into 24/w words, starting from MSB.

<u>Opcode:</u> 0000 – Reserved 0001 – Reserved 0010 – Authenticated Encryption 0011 – Authenticated Decryption 0100 – Load Key 0101 – Activate Key

Segment Header Format

Segment EOI Type 0000 – Reserved 0001 – Npub 0010 – AD 0011 – Message 0100 – Ciphertext 0101 – Tag 0110 – Key 1000 – Nsec

<u>EOT</u> = 1 if the last segment of its type (AD, Message, Ciphertext), 0 otherwise

Universal Testbench & Automated Test Vector Generation

- Universal Testbench supporting any authenticated cipher core following GMU AEAD API
- Change of cipher requires only changing test vector file
- A Python script created to automatically generate test vector files representing multiple test cases
 - Encryption and Decryption
 - Empty Associated Data and/or Empty Message/Ciphertext
 - Various, randomly selected sizes of AD and Message/Ciphertext
 - Valid tag and invalid tag cases
- All source codes made available at GMU ATHENa website

PreProcessor and PostProcessor for High-Speed Implementations (1)

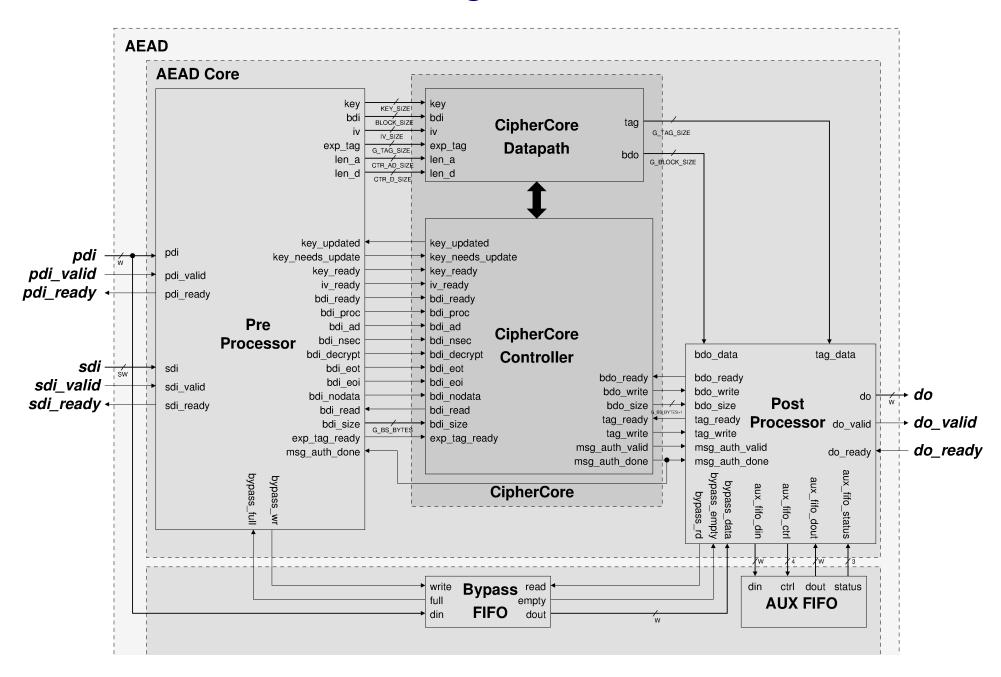
PreProcessor:

- parsing segment headers
- loading and activating keys
- Serial-In-Parallel-Out loading of input blocks
- padding input blocks
- keeping track of the number of data bytes left to process

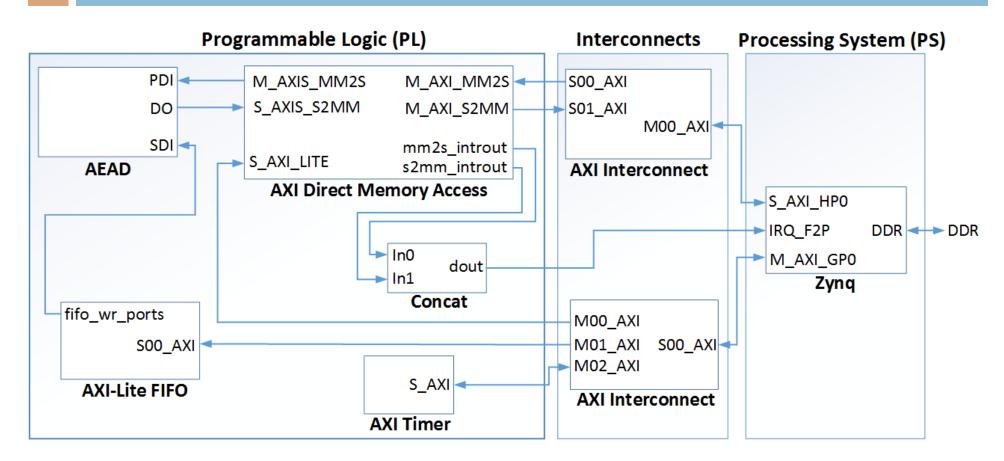
PostProcessor:

- clearing any portions of output blocks not belonging to ciphertext or plaintext
- Parallel-In-Serial-Out conversion of output blocks into words
- formatting output words into segments
- storing decrypted messages in AUX FIFO, until the result of authentication is known
- generating an error word if authentication fails

PreProcessor and PostProcessor for High-Speed Implementations (2)


Features:

- Ease of use
- No influence on the maximum clock frequency of AEAD (up to 300 MHz in Virtex 7)
- Limited area overhead
- Clear separation between the core unit and internal FIFOs
 - Bypass FIFO for passing headers and associated data directly to PostProcessor
 - AUX FIFO for temporarily storing unauthenticated messages after decryption

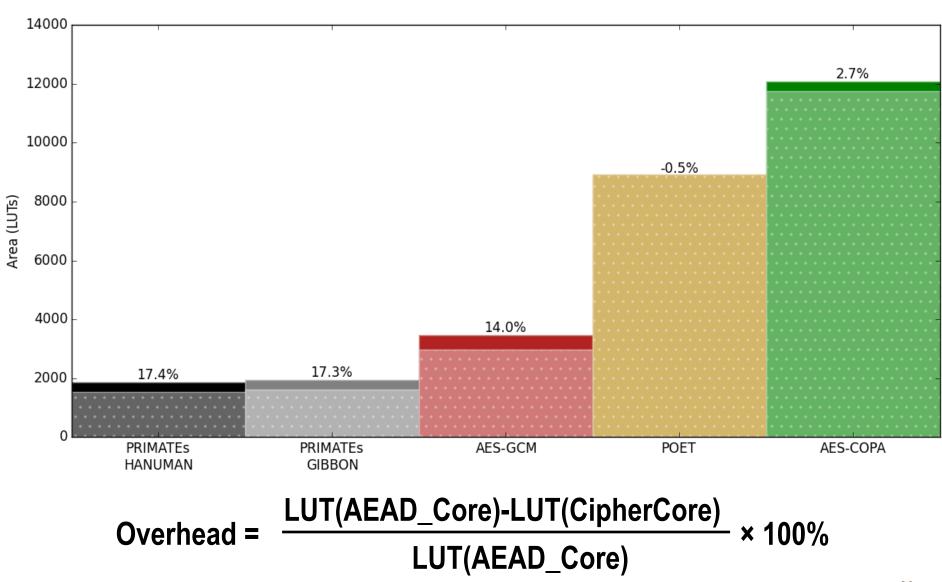

Benefits:

- The designers can focus on designing the CipherCore specific to a given algorithm, without worrying about the functionality common for multiple algorithms
- Full-block width interface of the CipherCore

Block Diagram of AEAD

Test of Compatibility with AXI4 IP Cores

Correct operation verified and performance measured experimentally using the ZedBoard based on Xilinx ZYNQ XC7Z020 All Programmable SoC

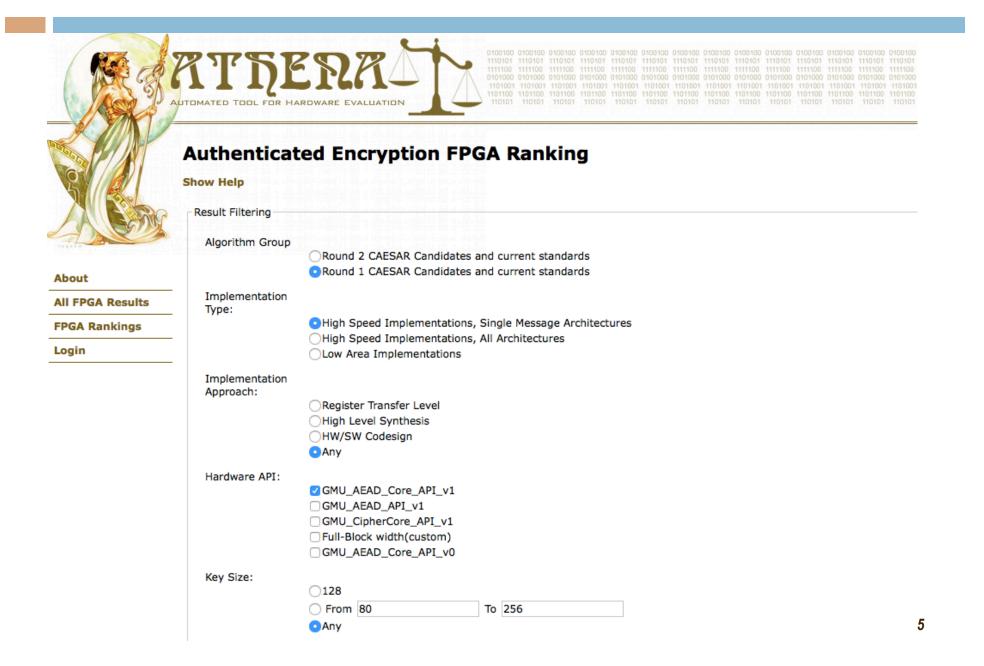

AES & Keccak-F Permutation VHDL Codes

- Additional support provided for designers of Cipher Cores of CAESAR candidates based on AES and Keccak
- Fully verified VHDL codes, block diagrams, and ASM charts of
 - AES
 - Keccak-F Permutation
- All resources made available at the GMU ATHENa website https://cryptography.gmu.edu/athena

Generation of Results

- Generation of results possible for
 - CipherCore full block width interface, incomplete functionality
 - AEAD Core recommended
 - AEAD difficulty with setting BRAM usage to 0 (if desired)
- Use of wrappers
 - Out-of-context (OOC) mode available in Xilinx Vivado (no pin limit)
 - Generic wrappers available in case the number of port bits exceeds the total number of user pins, when using Xilinx ISE
 - GMU Wrappers: 5 ports only (clk, rst, sin, sout, piso_mux_sel)
- Recommended Optimization Procedure
 - ATHENa for Xilinx ISE and Altera Quartus II
 - 26 default optimization strategies for Xilinx Vivado

AEAD Core vs. CipherCore Area Overhead


ATHENa Database of Results for Authenticated Ciphers

• Available at

http://cryptography.gmu.edu/athena

- Developed by John Pham, a Master's-level student of Jens-Peter Kaps
- Results can be entered by designers themselves.
 If you would like to do that, please contact me regarding an account.
- The ATHENa Option Optimization Tool supports automatic generation of results suitable for uploading to the database

Ranking View (1)

Ranking View (2)

Throughput for:							
	 Authenticated Encryption 						
	OAuthenticated Decryption						
	OAuthentication Only						
Min Area:	0						
Max Area:	1000000						
Min Throughput:	500						
Max Throughput:	1000000						
Source:							
	Source Available						
Ranking:							
	 Throughput/Area 						
	Throughput						
	Area						
	Please note that codes with primitives, megafunctions, or embedded resources are not fully portable.						
Update							
<u></u>							

Compare Selected

Result ID	Algorithm Disable Unique	Key Size [bits]	Implementation Approach	Hardware API	Arch Type
68	ICEPOLE	128	RTL	GMU_AEAD_Core_API_v1	Basic Iterative
73	Keyak	128	RTL	GMU_AEAD_Core_API_v1	Basic Iterative
62	AES-GCM	128	RTL	GMU_AEAD_Core_API_v1	Basic Iterative
65	CLOC	128	HLS	GMU_AEAD_Core_API_v1	Basic Iterative
80	PRIMATEs-GIBBON	120	RTL	GMU_AEAD_Core_API_v1	Basic Iterative
124	PRIMATEs-HANUMAN	120	HLS	GMU_AEAD_Core_API_v1	Basic Iterative
86	SCREAM	128	RTL	GMU_AEAD_Core_API_v1	Basic Iterative
75	POET	128	RTL	GMU_AEAD_Core_API_v1	Basic Iterative
60	AES-COPA	128	RTL	GMU_AEAD_Core_API_v1	Basic Iterative
Result ID	Algorithm	Key Size [bits]	Implementation Approac	(GMU_AEAD_Core_API_v1)	Arch Type
First Previous	s 1 Next Last				Showing 1 to

Database of Results

Ranking View:

Supports the choice of

- I. Hardware API (e.g., GMU_AEAD_Core_API_v1, GMU_AEAD_API_v1, GMU_CipherCore_API_v1)
- II. Family (e.g., Virtex 6 (default), Virtex 7, Zynq 7000)
- III. Operation (Authenticated Encryption (default), Authenticated Decryption, Authentication Only)
- IV. Unit of Area (for Xilinx FPGAs: LUTs vs. Slices)
- V. Ranking criteria (Throughput/Area (default), Throughput, Area)

 Table View:

 more flexibility in terms of filtering, reviewing, ranking, searching for, and comparing results with one another

Conclusions

- Complete Hardware API for authenticated ciphers developed, including
 - Interface
 - Communication Protocol
- Design with the GMU hardware API facilitated by
 - Detailed specification
 - Universal testbench and Automated Test Vector Generation
 - PreProcessor and PostProcessor Units for high-speed implementations
 - Universal wrappers for generating results
 - AES and Keccak-F Permutation source codes
 - Ease of recording and comparing results using ATHENa database
 - Full example of use in Zynq 7000 based on Xilinx AXI4 IPs
- GMU proposal open for discussion and possible improvements through
 - Better specification
 - Better implementation of supporting codes

Possible Extensions of the Current Hardware API

- formatting errors detection and reporting
- support for two-pass algorithms
- accepting inputs with padding done in software
- accepting inputs with key scheduling done in software
- support for multiple streams of data

Thank you!

Comments?

Questions?

Suggestions?

http:/cryptography.gmu.edu https://cryptography.gmu.edu/athena