

GEORGE
MASON
UNIVERSITY

PDIS – PRINT DATA INSERTION SYSTEM

Final Report

Many of the items received in mail, from telephone bills to bank statements, are generated by

high-speed production printers. Companies which build these printers are not only concerned

with the printing speed, but also with the printing quality. A control unit inside each production

printer directly controls the printing quality by the print algorithm it uses. Normally, in order to

test a new printing algorithm to determine whether or not it has any positive effect on the print

quality, a new control unit has to be built for that specific algorithm. Developing a new control

unit is expensive, costing a company large amounts of time and resources.

PDIS (Print Data Insertion System) is a tool which eliminates the need to develop a new control

unit for every algorithm a company wants to test for print quality. PDIS can easily be re-used for

multiple algorithms. The system inserts print data which has been altered by PC software utilizing

the new algorithm directly into a production printer. The printer uses the data it receives to print

pages which reflect the new algorithm. The printed pages can then be examined to determine

whether or not the new algorithm offers a significant improvement to print quality.

Faculty Supervisor: Jens-Peter Kaps
Jenny Higgins

Pinal Patel
Paul Anderson

1 | P a g e

Table of Contents
1. Approach

1.1 Overview
1.2 Specifications
1.3 USB vs. Serial
1.4 DLL vs. VCP Driver
1.5 Visual C++.NET vs. Standard C++
1.6 Contributions

2. Technical Section
2.1 PDIS Xfer
 a. Versions 1.0 and 2.0
 b. Visual Studio C++.NET
 c. FTD2XX.DLL
 d. PDIS Xfer Operation
 e. Limitations
2.2 DLP-TXRX-G USB Adapter (USB Converter)
 a. Output Pins
 b. Voltage Select Jumper
 c. Atmel 93C46 EEPROM
 d. RS-232 Output Scheme
 e. Location on PDIS
2.3 Verilog HDL Design Overview
 a. Micro-UART
 b. prepareData
 c. mig_control_v2
 d. MIG
 e. laserData
2.4 Printer Emulator

3. Experimentation and Validation
3.1 PDIS Xfer
3.2 PDIS Xfer and DLP-TXRX-G USB Adapter
3.3 Verilog HDL Modules
3.4 Printer Emulator

4. Benefit
5. Potential Uses
6. Costs
7. Alternatives
8. Maintainability
9. Replacement
10. Administrative
11. Lessons Learned
12. References
Appendix A - Proposal
Appendix B – Design Document

2
2
6
8
9
9

10
10
10
11
11
12
14
14
15
16
16
17
17
18
19
22
26
29
29
31
33
33
35
35
38
39
40
40
41
42
42
42
44
45
47
58

2 | P a g e

1. Approach

1.1 Overview

 High-speed production printers are vital to businesses such as cell phone companies,

electric companies, credit card companies, and banks. Each of these businesses has something in

common: they all need a way to print out mass amounts of paper on demand quickly. Production

printers are able to meet that need.

 However, speed is not the only thing important to these companies. The quality of the

printing is also an important factor. As a result, engineers who work on developing the

technology behind the production printers are concerned not only with maximizing the printing

speed, but also with maximizing the quality of the printing. The printing quality is directly

affected by the algorithms used to process a page of data. Unfortunately, these algorithms are

hard coded within the control unit of the printer, making it extremely costly and time consuming

to test out new algorithms because in order to do so, a new control unit must be made. As a

result, there is a need for a device which can bypass the control unit of an existing printer and

insert data directly into the pulse width modulators (PWMs) which control the lasers of the

printer. Instead of using the algorithm hard coded within the control unit of the production

printer, a changeable algorithm on a personal computer would be used to process the page of

data. The device would need to be capable of sending up to 185 MB of data and meeting the

rigorous high-speed requirements of a production printer.

1.2 Specifications

3 | P a g e

 The sponsor of this project, InfoPrint Soultions Company, specifically requested this

device to be developed for one of their high-speed production printers: the InfoPrint 4100. This

printer contains five printing lasers which expect nine bits of data each. Each laser has an

associated clock and active low enable. Whenever the enable is low and a rising edge of the

clock occurs, nine bits of valid data need to be available for that laser. The laser clocks each run

at approximately 50 MHz. However, the five different clocks and enables are not synced, and

are offset by a considerable amount. This fact had to be carefully considered in our design.

 Since the five clocks run at 50 MHz and each expect 9 bits of data available for each

clock cycle, data must be able to be sent by the device at a speed of at least 2.25 Gb/s. None of

the considered connections available from a personal computer were fast enough to meet this

requirement. However, if the page of data were able to be stored on an external device’s DDR2

memory, then sent to the printer through high-speed IO, the speed requirement could be met.

 As a result, InfoPrint Solutions Company provided us with a ML505 Evaluation Board.

This board, available from Xilinx, contains a top of the line Virtex 5 FPGA. The board also

comes with 256 MB of DDR2 SO-DIMM memory and has numerous IO pins. The idea behind

PDIS (Print Data Insertion System), is to process a page of data using an algorithm on the

computer, send the processed data to the ML505 evaluation board, store the data in DDR2

memory, then read the data from DDR2 memory at high speeds in response to the control signals

provided by the production printer. The company specified that modules designed for the FPGA

should be written in Verilog HDL.

 InfoPrint Solutions Company is located in Boulder, CO. As a result, it was not possible

to test the design on an actual production printer. As a solution to this problem, a printer

4 | P a g e

emulator was designed and developed. InfoPrint Solutions Company provided several timing

diagrams of the control signals created by the InfoPrint 4100, shown below. The diagrams also

included setup and hold time requirements for the provided data. Using these diagrams as a

guide, a printer emulator was developed in VHDL which generated outputs which reflected the

provided timing diagrams. The emulator was later converted into Verilog.

Figure 1: Timing Overview from InfoPrint

5 | P a g e

Figure 2: Enables Going Down Diagram from InfoPrint

Figure 3: Enables Going Up Diagram from InfoPrint

6 | P a g e

Figure 4: Setup and Hold Time Diagram from InfoPrint

1.3 USB vs. Serial

 The first step in transferring a page of print data located on a PC to a high-speed

production printer (through PDIS) was to find a way to connect a PC to the ML505 FPGA

evaluation board. InfoPrint company indicated that they wanted us to use a Universal Serial Bus

(USB) connection to do this. The motivation for using USB is that it is very user friendly and

also portable (nearly all modern computers are equipped with USB ports.) Unfortunately, the

fact that USB is simple for users means that it is complicated to implement in a project such as

PDIS. The USB protocol requires that devices connected on the bus respond through

handshaking and by providing device identification. Using a direct USB connection to our

7 | P a g e

FPGA would mean that the receiver unit on our FPGA would have to follow the USB protocol,

making it very complicated. Our other option was to use another common data transmission

scheme—serial RS-232. Serial RS-232 is much easier to implement in an FPGA receiver than

USB. A free, complete, open core RS-232 receiver (this type of receiver is called a Universal

Asynchronous Receiver/Transmitter, or UART) called Micro-UART was found online, which

would eliminate the need for us to design and implement the receiver ourselves (if we used RS-

232.) The down side to using RS-232 is that it isn’t as user friendly as USB or as portable (many

modern computers no longer have serial ports.) This led us to the decision to use both USB and

RS-232 for PDIS. To accomplish this, a circuit board (DLP-TXRX-G USB Adapter) made by

DLP Design was purchased for a small amount to convert USB signals to RS-232. This solution

gives PDIS the best of both worlds. The PC is connected to the ML505 board through the USB

Adapter with USB, which means that PDIS is portable and easy to connect to any PC. The serial

output of the USB Adapter is connected to the FPGA evaluation board, allowing us to use the

simple, free UART design found online. The USB Adapter also came packaged with software

(see DLL vs. VCP Driver section) which made transferring data from the PC via a c++ program

to the USB port simple.

8 | P a g e

Figure 5: DLP-TXRX-G USB Adapter

1.4 Dynamically-Linked Library (DLL) vs. Virtual COM Port (VCP) Driver

 The company which produces the chip on PDIS’ USB Adapter circuit board provided

two choices of software to make transferring data from the PC to the PC’s USB port easy. These

were a VCP driver and a DLL of c++ classes with functions specific to the chip on the USB

Adapter. Both options gave positive results and were easy to use, but only the DLL was chosen

for use in PDIS. The reason for this is as follows: A program written to transfer data from a file

to the PC USB port can be compiled to include the classes and functions used by the DLL in its

executable file (e.g. Program.exe.) This means that the application can be transferred to any

Windows PC and used without any further effort since the DLL code is included with it.

Alternatively, if the VCP driver were used, it would need to be installed on each computer that

9 | P a g e

the program runs on, adding an extra step to the use of PDIS. In addition, the VCP driver may

need to be continuously installed and uninstalled on certain computers if the VCP driver

interferes with other USB/Serial applications running on that computer. The third option of

using both VCP driver and DLL is not possible: they are not compatible.

1.5 Visual C++.NET vs. Standard c++

 A c++ program was written to transfer a data file located on a PC hard drive to the USB

port of the PC. This program is called PDIS Xfer, and makes use of the DLL supplied by the

maker of the USB Adapter used by PDIS. PDIS Xfer was written using c++ because of its

familiarity among the PDIS team and the control it provides to the user in computer memory

management (as opposed to JAVA.) The decision was made to code PDIS Xfer in Visual

C++.NET rather than standard c/c++ due to its support in creating Windows Graphical User

Interfaces (GUIs.)

1.6 Contributions

Paul Anderson was responsible for the Visual C++.NET program on the computer which sent a

file of data over the USB port. Paul also completed Verilog modules which wrote requested

characters to the ML505 Evaluation Board’s 2-line LED display.

Jenny Higgins was responsible for developing the Verilog HDL modules on the FPGA which

received the serial data, stored it in memory, read it from memory, and provided the appropriate

output to the printer in response to printer control signals. She was also the project manager.

10 | P a g e

Pinal Patel was responsible for developing the printer emulator in VHDL which provided the

appropriate control signals.

2. Technical Section

2.1 PDIS Xfer

2.1.a Versions 1.0 and 2.0

PDIS Xfer is a PC program written in Visual Studio C++.NET, which transfers a page of

print data to a PC’s Universal Serial Bus (USB). For Version 2.0, the data must be in binary

“.bin” or “.fil” (FILE) format. An early version of PDIS Xfer (Version 1.0) is capable of

transferring text “.txt” files, but is not recommended for transferring files with sizes greater than

tens of megabytes. Version 1.0 allocates a single block of memory for the data file, which may

cause Windows to crash if the file size is too large, especially on systems with little memory or

which are running several applications. Version 1.0 is mentioned here (and included as a

deliverable to our sponsor) for its potential use in quickly testing small data file transfers (there is

no need to prepare a .bin file—a sequence of 0s and 1s can simply be typed into Windows

Notepad.) PDIS Xfer Version 2.0 uses a buffered input stream reader rather than allocating a

block of memory to store and read from the data file. This effectively eliminates size restrictions

in Version 2.0 on the binary data file being transmitted.

11 | P a g e

Figure 6: PDIS Xfer Version 2.0 GUI

2.1.b Visual Studio C++.NET

 PDIS Xfer was written using the Visual Studio C++ programming environment, and

makes use of Visual C++ and Microsoft .NET managed data types and structures. PDIS Xfer

can run on any PC with a Windows operating system, but any future changes to the code must be

made using Visual Studio. The Visual Studio project file and all necessary files for making

changes to PDIS Xfer are included as a deliverable to the sponsor.

2.1.c FTD2XX.DLL

 PDIS Xfer communicates to a PC’s USB port through a dynamically-linked library

(DLL) provided by FTDI Ltd., which produces the USB to Serial converter chip located on the

DLP Design DLP-TXRX-G USB Adapter (see USB Converter Board section.) This DLL with

supporting documentation from FTDI is included as a deliverable to the sponsor. This DLL is

12 | P a g e

located in the same folder as the Visual Studio project file for PDIS Xfer. The DLL greatly

simplifies the effort necessary to deliver data to the PC’s USB port. With the DLL, the

complicated details of the USB protocol are abstracted from the programmer. Sending data to

the USB is done in a similar manner as sending data to a serial COM port, without the need to

open or close a port. A function provided by the DLL, FT_Write, can be used to send data in

any data type (included Microsoft managed types) to the USB port. The data is passed into the

FT_Write function as type LPVOID, meaning that any type of data can be passed in, with the

details of correctly interpreting and formatting the data type abstracted from the programmer.

For PDIS Xfer Version 2.0, the managed type __int64 was used to pass a single byte of data to

FT_Write at a time. Version 1.0 passes in data of type Byte (a derived class of type Char.)

2.1.d PDIS Xfer Operation

The user first runs the PDIS.exe application, which opens a Graphical User Interface

(GUI) window. After the GUI and its components (buttons, labels, etc.) have loaded, PDIS Xfer

scans the USB to determine if the USB converter is connected. PDIS Xfer recognizes the

converter through the DLL, which handshakes with devices on the USB and returns their device

identifications. PDIS Xfer opens a handle to the first instance of a DLP-TXRX-G USB

converter on the USB, which it recognizes by the device ID “DLP-TXRX.” If there is a DLP

USB converter on the USB, its device ID is displayed to the user in the GUI drop down list under

“List Devices By.” The user can choose to select the USB converter by device ID or USB

address (“Serial Port.”) PDIS Xfer will not transfer data if a DLP USB converter is not found on

the bus.

13 | P a g e

 When the user clicks the “Select Datafile” GUI button, an instance of OpenFileDialog (a

managed VC++ class) is created, which opens a GUI window that allows the user to select a data

file from the PC’s hard drive. The files shown in the OpenFileDialog window can be filtered by

.bin file type by selecting “.bin” in the “List File Types” drop down window. Once the user has

opened a data file, the type of the file is verified to make sure that it is compatible (Version 2.0:

.bin, .fil. Version 1.0: .txt.) PDIS Xfer attempts to open the file, sending a message box with an

error warning to the user if unsuccessful. The path and file name of the data file is saved as a

String pointer and displayed in a label in the GUI. The OpenFileDialog instance passes back a

stream to the selected data file, which is used to read data from the file.

 The user clicks “Send Data” to begin the process of transmission of data from the PC to

the USB converter. If the user has not selected a file at this point, a message box is displayed to

the user which indicates this error. Before data is transferred, the transfer rate (9600 baud) is

sent to the USB converter. This speed determines how fast the Serial RS-232 data sent from the

USB converter to the FPGA Evaluation Board (see ML505 FPGA Evaluation Board section.)

This step also confirms that the USB converter has not been disconnected since the handle to it

was first created (the rate set function returns an error status code if a USB converter is not

reached.) Following this, the size of the data file is determined by placing the stream file pointer

at file end and reading the pointer position (in bytes). The file size is sent to the USB converter

(and subsequently sent to the FPGA board) before data. The file size is sent as a 32-bit (4 byte)

little-endian word. Next, the Read function of the managed Stream class is used to read a byte of

data from the data file, which is then sent immediately to the USB. This process reiterates until

the end of the file is reached. PDIS Xfer knows that the end of the file has been reached by

comparing the number of bytes read/written to the total number of bytes in the file (determined

14 | P a g e

before data transmission began.) After PDIS Xfer transmits the last byte of data, there is no end

sequence. Further transmission will not take place unless the user selects a data file and again

clicks “Send Data.”

Figure 7: Basic PDIS Xfer Algorithm

2.1.e Limitations:

 Opening two instances of PDIS Xfer may cause errors on certain PCs. At any given time

that an instance of PDIS Xfer is opened and a USB Converter is on the USB, PDIS Xfer will

have a handle opened to talk with the device. Having two PDIS Xfer windows (and two handles

to the same device) opened simultaneously may cause system errors. On most systems, this will

not present a problem, and data transmission will still be possible. However, some systems may

not be able to communicate with the USB or may crash.

2.2 DLP-TXRX-G USB Adapter (USB Converter)

 The DLP-TXRX-G USB Adapter is a circuit board made by DLP Design which converts

USB signals to Serial RS-232. The converter supports USB 1.1 and 2.0, as well as all standard

RS-232 baud rates. The board features an FTDI Ltd. FT232R USB to Serial converter chip, a

15 | P a g e

voltage level select jumper, transmit/receive LEDs, clock, and Atmel 93C46 EEPROM. The

USB is connected via a common ‘Type B’ mini USB cable, while the serial data is read from

1mm female header pin slots. The board includes a DLL (see PDIS Xfer section) provided by

FTDI Ltd. which allows the user to transfer data from a PC USB port using a c++ program

having no knowledge of the USB protocol. Effectively, using this board allowed us to receive

data at our FPGA evaluation board in an RS-232 scheme while connecting the evaluation board

using USB. The board, documentation, VCP drivers (see Approach: Connecting PC to FPGA

section), and DLL are included as deliverables to our sponsor.

Figure 8: DLP-TXRX-G USB Adapter Schematic

2.2.a Output Pins

 The DLP-TXRX-G contains five output pins for the connection of a serial device. These

pins are Transmit and Receive (TX/RX), Ground, VCCIO, and Reset. PDIS makes use of only

TX and Ground. The TX pin is used to transmit data serially from the board to the FPGA

evaluation board, with the Ground pin used as a reference. The RX pin could be used in future

16 | P a g e

improvements to PDIS, so that the PC on the other end of the USB converter could receive data

from the FPGA. The VCCIO pin can be used to power the serial data pins when an output

voltage level other than 5 volts is necessary (see Voltage Select Jumper.) Finally, the Reset pin

can be used to asynchronously reset the on-board USB to Serial converter chip.

2.2.b Voltage Select Jumper

 A jumper is featured on the board that allows the user to change the output voltage level

of the serial RS-232 signals (see DLP documentation for details.) For receivers accepting output

voltages other than 5 volts, the jumper must be moved. For PDIS, the factory default 5 volt

setting was ideal, so no changes to the jumper were made.

Figure 9: DLP-TXRX-G Voltage Select Jumper

2.2.c Atmel 93C46 EEPROM

 The on-board EEPROM stores the serial transmission rate and output scheme. These

settings can be changed through software using functions provided by the FTDI Ltd. DLL. For

17 | P a g e

PDIS, we set the transmission rate to 9600 baud and used the default RS-232 output scheme (see

RS-232 Scheme section.)

2.2.d RS-232 Output Scheme

 The default output RS-232 scheme of the DLP-TXRX-G board is called “Non-Return to

Zero” RS-232, in which each byte of data (8 bits) is preceded by a start bit and ended with a stop

bit, making for a total of 10 bits for every 8 bits of data. The start bit is always zero, and the stop

bit is always 1. The FPGA receiver uses these bits to synch itself with the incoming data. A

transition from a high stop bit to a low start bit is expected at the beginning of every byte of data

(see UART section for receiver detail.)

Figure 10: Serial RS-232 “Non-Return to Zero” Scheme

2.2.e Location on PDIS

 The DLP-TXRX-G USB converter board is located at the top left corner of the ML505

Evaluation board. It is secured to a small metal cage surrounding a component on the ML505 by

electrostatic discharge safe Velcro. Two wires are inserted into the Ground and Transmission

18 | P a g e

(TX) pins of the board and connected to the FPGA through two individual 1mm female header

pin housings on the ML505’s rightmost GPIO bank.

Figure 11: USB Adapter Location on PDIS

2.3 Verilog HDL Design Overview

The top file for the design on the FPGA is mem_interface_top. Originally, this file was

automatically generated by the Memory Interface Generator (MIG), a free IP core available from

the Xilinx ISE 9.1i which, after extensive modifications, provided an interface to the DDR2

memory. Over the course of the project, modifications were made to this file to meet certain

requirements.

The design configured to the FPGA had to be capable of the following:

1. De-serializing the data sent by the USB adapter in the return-to-zero scheme.

2. Storing a variable amount of data in DDR2 memory.

3. Reading data from DDR2 memory in response to signals from the printer.

4. Providing the specified output to be fed to the production printer.

19 | P a g e

Five main modules were used to achieve these requirements. These modules are

explained in detail below.

 Figure 12: Top Level Module Design

2.3.a Micro-UART

Micro-UART is a free UART core, found online at CMOSexod.1 Although the UART

has several configuration options, it is extremely compact. The documentation is also extensive

1 Micro-UART from CMOSexod (http://www.cmosexod.com/micro_uart htm)

20 | P a g e

and informative. The UART is capable of acting both as a receiver and a transmitter. However,

for this project, only the receiver functionality was utilized.

Micro-UART consists of five files: uart.v, u_xmit.v, u_rec.v, baud.v, and inc.h. uart.v is

the top level module which appears as a component in the top module of the overall project. The

ports of this module are as follows:

input sys_clk: 200 MHz clock.

input sys_rst_l: Active low reset.

output uart_clk: Sampling clock generated by the UART.

output uart_XMIT_dataH: Transmitter signal. Serialized data for transmission.

input xmitH: Transmitter signal. Data ready signal for xmit_dataH.

input [7:0] xmit_dataH: Transmitter signal. Data to be serialized.

output xmit_doneH: Transmitter signal. Indicates completion of transmission.

input uart_REC_dataH: Receiver signal. Serial data input.

output [7:0] rec_dataH: Receiver signal. Contains de-serialized data.

output rec_readyH: Receiver signal. Indicates valid data on rec_dataH.

21 | P a g e

inc.h contains variables which can be used to configure the UART. The following

configurations were used:

WORD_LEN: This parameter sets the size of the output register of the receiver with a minimum

of 0 and a maximum. Its configuration for this project is 8.

XTAL_CLK: A parameter which specifies the speed of the on-board clock. The generated clock

used to sample the incoming data is based off of this clock. Its configuration for this project is

200000000, or 200 MHz.

BAUD: This parameter specifies the Baud rate at which the computer sends the data. Its

configuration is 9600.

CW: This parameter determines the width of counters within the UART which are used to

generate the sampling clock. The value must be greater than log2(XTAL_CLK/(BAUD*16*2)).

The current setting is

Except for configuration of the inc.h file, the UART was added in its original form to PDIS.

22 | P a g e

Figure 13: UART Receiving Data

The UART receives data from the USB adapter and places the decoded data into an 8-bit

register. Whenever the register contains 8 valid bits of data, a ready signal is asserted (See

Figure).

Note: The UART also asserts the ready signal briefly before any valid data is received.

This anomaly had to be compensated for in the prepareData module.

A more extensive explanation of the UART and its functionality can be found at

http://www.cmosexod.com/micro_uart.htm.

2.3.b prepareData

The purpose of the prepareData module is to fill a 256-bit buffer with data provided by the

UART. The prepareData module has the following ports:

input clk: A 200 MHz clock used by all modules in the design.

23 | P a g e

input reset0: Active low reset. Note that the reset input to the entire design through

mem_interface_top is actually active high. The reset wired to reset0 is the inverse of that reset.

input [7:0] datain: 8-bits of de-serialized data from the output of the UART.

input dataready: Ready signal from UART which indicates that valid data is available on the 8-

bit register, datain.

output [127:0] word_falling: Contains the upper 128-bits of the 256-bit buffer. Will be written

to memory second.

output [127:0] word_rising: Contains the lower 128-bits of the 256-bit buffer. Will be written

to memory first.

output writeword: Signal which indicates that the two 128-bit words (derived from the 256-bit

buffer) contain valid data.

output [23:0] file_size: Contains the expected file size in 256 bit chunks. Wired to the

mig_control_v2 to be used as a condition for completing all writes and reads.

The logic within prepareData consists of a counter, called [5:0] bytes_written, which

counts how many valid bytes of data have been received from the UART. However, the first

five pulses of the dataready signal from the UART are treated in a special way. The first pulse is

completely disregarded, as the UART asserts dataready once before it receives any data to

indicate the start of its generated sampling clock. The next four pulses are stored in a 24-bit

buffer which is treated as the page size. The reason the buffer is 24 bits instead of 32 bits is

24 | P a g e

because the page size is stored in 128-bit chunks to make it immediately usable by the control

unit.

After the first five pulses of dataready have been accounted for, the prepareData module

uses any subsequent pulses of dataready to fill its internal 256-bit buffer. The prepareData

module fills the buffer by shifting the 256-bit buffer to the right by 8 bits and by placing the new

byte of data in the most significant byte of data (bit location 255 through 248). As a result, data

received first ends up in the least significant byte of data (bit location 7 through 0), data received

last ends up in the most significant bye of data, and data received in between the two end up

sequentially throughout the 256-bit buffer.

As previously mentioned, a counter keeps track of how many bytes of valid data have

been stored in the 256-bit buffer. Once the counter reaches 31, the buffer has been completely

filled, and an internal ready signal, write_word_long, is asserted and the counter is reset to zero.

When the next pulse of dataready, the UART’s ready signal, is received, write_word_long is

unasserted and the module starts to fill the 256-bit buffer again.

When write_word_long is asserted, the outputs [127:0] word_falling and [127:0]

word_rising are filled with data from the internal 256-bit buffer. word_rising is filled with the

last most significant 128 bits of data from the buffer, from location 127 to 0. word_falling is

filled with the most significant 128 bits of data from the buffer, from location 255 to 128. These

outputs hold their value until write_word_long is again asserted.

25 | P a g e

It is important to note that the prepareData module is only compatible with file sizes that

are integer multiples of 128. This is a discrepancy which should be addressed in further

development of the project.

write_word_long is used as a control signal for the state machine in the mig_control_v2

module. The state machine runs off of a 200 MHz clock. However, since the Baud rate used for

transmission through USB is set to 9600, the effective clock for the dataready module is roughly

1 kHz, which is 200,000 times slower than the 200 MHz clock. As a result, write_word_long

stays high for approximately 200,000 of the state machine’s clock cycles. To fix this problem, it

was necessary to shorten the write_word_long signal so that its maximum length was one of the

200 MHz clock cycles.

The circuit below (See Figure 14) shows the method used to shorten the ready signal.

write_word_long is wired into a flip flop which runs off of the 200 MHz clock. The output of

that flip flop is inverted and wired to an and gate which also takes in the original

write_word_long signal as an input. Whenever write_word_long is asserted, the output of the

and gate is 1 for a single 200 MHz clock cycle. However, once a rising edge of the 200 MHz

clock occurs, 1 becomes the output of the flip flop. Since the output of the flip flop is inverted

before reaching the and gate, the output of the inverter become 0 and the output of the circuit

becomes 0 as well. The result is the signal write_word which stays high for only one of the 200

MHz clock cycles.

26 | P a g e

Figure 14: Circuit to shorten ready signal

2.3.c mig_control_v2

mig_control_v2 is a module which controls all of the writes and reads to DDR2 memory.

This module utilizes the memory interface generated by the MIG (Memory Interface Generator)

by setting the control signals to perform the desired actions. It consists of the following ports:

input clk0: 200 MHz clock

input rst0: Active high reset

input [127:0] word_falling: 128 bits of data to be written, wired from prepareData. Written

second.

input [127:0] word_rising: 128 bits of data to be written, wired from prepareData. Written first.

input write_word: Indicates data on word_falling and word_rising is ready to be written.

input app_wdf_afull: Signal from MIG. Indicates write data flip flops are full.

27 | P a g e

input app_af_afull: Signal from MIG. Indicates address flip flops are full.

input phy_init_done: Signal from MIG. Indicates initialization of DDR2 memory is complete.

Once this signal goes high, it is safe to request writes and reads.

output app_wdf_wren: Signal to MIG. Enables the write data flip flop.

output [2:0] app_af_cmd: Signal to MIG. Controls whether a write (“000”) or read (“001”) is

performed.

output [127:0] app_wdf_data: Signal to MIG. Data to be written to memory.

output app_af_wren: Signal to MIG. Enables address flip flop.

output [30:0] app_af_addr: Signal to MIG. Indicates address of write or read.

output [127:0] app_wdf_mask_data: Signal to MIG. Mask data.

output error: Error signal which indicates if an unknown state has been entered.

output led_on: Signal which asserts when all writes and reads have been completed.

28 | P a g e

Figure 15: State Machine in mig_control_v2

mig_control_v2 is a state machine with 8 states (See Figure 15). After initialization, the

WAIT state is entered. Once the write_word signal, controlled by the prepareData module is

asserted, WRITE1 is entered. The signal settings in WRITE1 cause the data in word_rising to be

written to memory. The next state, WRITE0, is then entered, causing the data in word_falling to

be written to memory. A counter is then incremented. The value of this counter is compared to

the file size. If the counter is the same as the file size, indicating that all data in the file has been

written, the WRITESDONE state is entered. Otherwise, the WAIT state is again entered.

29 | P a g e

 Once the readnext signal from laserData is asserted, the module exits the WRITESDONE

state and enters the READ state. Another counter keeps track of how many reads have been

completed. If this number is equal to the file size, the DONE state is entered and led_on is

asserted. Otherwise, WRITESDONE is again entered.

2.3.d MIG

The MIG, or Memory Interface Generator, is a free IP core available from the Xilinx ISE.

It acts as an interface between mig_control_v2 and the DDR2 memory, handling the

initialization and timing required for successful writes and reads to DDR2 memory.

 Configuration settings, available in mem_interface_top, can be altered to meet various

requirements. The settings are currently set to match the requirements of the ML505 evaluation

board’s DDR2 SO-DIMM 256 MB memory.

 For more detailed information on the MIG, refer to the MIG documentation, available on

the project CD.

2.3.e laserData

 This module is responsible for controlling the output to the printer’s lasers (See Figure

16).

30 | P a g e

Figure 16: Block Diagram of laserData

 When a read from a single memory address is requested, 4 64-bit words are returned.

Therefore, 36 (4*9) bits of data are available to each of the 5 lasers for a single read. Thus, when

a read is made, 5 36-bit registers are loaded, each with 4 9-bit words. The 5 36-bit registers are

loaded into 5 separate instances of a module (called bitSelector) which controls which 9-bit

chunks are output to the printer. Each bitSelector has a 2 bit counter which increments when it

sees a rising edge of a printer clock and a low enable. The counter determines which 9-bit chunk

31 | P a g e

of the 36-bit register is output. Each time the counter hits 0, the next word is loaded into the 36-

bit register and another read is requested so that when the counter hits 0 again, 36 more bits will

be ready.

2.4. Printer Emulator

 Production printer and FPGA board are interfaced with each other, but it is very hard to

run the tests since it is not possible to have the big production printer bring in at the station, we

needed to generate the same signals sent by the “Printer Card” to the FPGA. So one of the parts

of the project was to generate VHDL modules to generate several clocks and enable signals.

During the remaining period of time, the signals for the specified criteria have been

generated. There were five clocked and enable signals. The data clock frequency provided by

the board is 200 MHz and the actual frequency of the clocks specified is 50 MHZ.

 Different counters have been generated in order to get the desired frequency. Also, the

enable signals needed some kind of scheme to be generated in VHDL to have specified output.

Clock 1 can be generated using the main clock of 200 MHZ. Clock 2 is a sifted version of Clock

1, and all other clocks can be derived from Clock 1. It is very important to note that all the enable

signals are active low. Data is passed on each clock enable. Each enable becomes active low

after the previous enable has been active low after few clock cycles. But they all become active

low at the same time. Data is being sent on each falling edge of the enable signal. FPGA reads

a byte until all the enables go up. When the enables go up, any data that has been sent after that

gets destroyed. When the enables go up the clock speed s do not change.

32 | P a g e

 Designing VHDL modules was challenging in the beginning just as to get grasp of the

pattern the signals followed and figure out a scheme to implement them. VHDL Xilinx software

although provides better and easier environment to work with than using any other active HDL

environments. The only challenging part in implementing the modules was to debug the code for

many hours and try to manipulate then code in order for it to give required part. Finally, the code

has been designed to generate all the required outputs. The reason that the code is written in

“VHDL” and not in “Verilog” is the familiarity with the language one better than the other.

The following figure 1 shows simulated output of the waveforms. It shows all the clocks and enables

signals in desired format

33 | P a g e

Figure 17: Timing Simulation Results from Printer Emulator

3. Experimentation and Validation

3.1 PDIS Xfer

34 | P a g e

PDIS Xfer contains several error checking devices and algorithms to ensure that the

program always works as expected. In most cases, if an error is detected the user is notified with

a message box. If the error is severe, the program also shuts down. In order to determine that

PDIS Xfer always operates correctly, several “beta testing” sessions were held throughout the

development of the program. In these tests, various combinations of user input were employed

to attempt to “break” the program. These tests also served to prove that the error checking

devices in the program worked correctly. The main tests were as follows:

1. PDIS Xfer should not attempt to write data to the USB port if the user hasn’t selected

a data file

2. The user cannot send data from a file with the wrong format (not .bin or .fil)

3. The user can’t use PDIS Xfer to communicate with a device on the USB which does

not have the device identification “DLP-TXRX”

4. Once the user has selected a data file and has clicked “Send Data,” the user must

reselect the file from the hard drive if they want to send it again. This eliminates the

possibility of accidentally clicking the “Send Data” button twice unintentionally.

In all of the above cases, PDIS Xfer successfully avoided incorrect operation and

informed the user of all error situations.

35 | P a g e

Figure 18: PDIS Xfer Displaying an Error Message

3.2 PDIS Xfer and DLP-TXRX-G USB Adapter

 To check that the PC data file was being correctly sent to the FPGA evaluation board, a

logic analyzer was used to view the serial data output by the USB converter board. By sending

data from the PC with known sequences and characteristic patterns, it was possible to determine

that PDIS Xfer and the USB Adapter worked correctly.

3.3 Verilog HDL Modules

 The Verilog HDL modules were carefully tested as they were developed. Each module,

with the exception of the MIG, was tested separately in simulation to verify its correct operation.

In many cases, separate modules were synthesized and placed in hardware to verify their

36 | P a g e

individual operation in hardware, utilizing LEDs as well as the logic analyzer to ensure correct

outputs. The MIG was unable to be tested in simulation due to the lack of a workable DDR2

memory emulator. However, at the start of this senior design project, the MIG and control unit

had already been developed and tested.

 Timing diagrams from testing of the individual modules are shown below.

Figure 19: Accurate bitSelector Timing Simulation

 The timing diagram shown in the figure above shows working operation of the

bitSelector module. Dataout represents the 9 bits of data sent to one of the printing lasers. Five

instantiations of the bitSelector module are used.

37 | P a g e

Figure 20: Accurate prepareData Timing Simulation

 The figure above is a timing diagram of a prepareData simulation. The file_size,

word_falling, word_rising, and write_word are wired to mig_control_v2.

Figure 21: Accurate prepareLaserData Timing Simulation

 The figure above shows proper operation of the prepareLaserData module. The data read

from memory is separated into five different 36 data lines, which are then wired to their own

individual bitSelector modules.

38 | P a g e

3.4 Printer Emulator

 The final test was performed on the entire system using the printer emulator. A logic

analyzer was connected to output pins on the ML505 evaluation board to test the output of the

system. The following figure shows the output of the logic analyzer.

Figure 22: Logic Analyzer capture of one of the 5 9-bit outputs responding to its clock and

enable

 The figure above shows the output of the entire system. The 9-bit line shown in the

diagram is shown to stay constant when the enable is up as desired. When the enable is down,

39 | P a g e

the data changes sequentially, while meeting the setup and hold time requirements specified by

InfoPrint. This diagram is conclusive evidence of the successful operation of PDIS.

4. Benefit

Many of the items received in mail, from telephone bills to bank statements, are

generated by high-speed production printers. Companies which build these printers are not only

concerned with the printing speed, but also with the printing quality. A control unit inside each

production printer directly controls the printing quality by the print algorithm it uses. Normally,

in order to test a new printing algorithm to determine whether or not it has any positive effect on

the print quality, a new control unit would have to be built for that specific algorithm.

Developing a new control unit is expensive, costing a company large amounts of time and

resources.

 PDIS, or Print Data Insertion System, is a tool which eliminates the need to develop a

new control unit for every algorithm a company needs to test for print quality. PDIS acts as an

interface between a PC and a high-speed production printer. The system inserts print data which

has been altered by the new algorithm directly into a production printer. The printer uses the

data it receives to print pages which reflect the new algorithm. The printed pages can then be

examined to determine whether or not the new algorithm offers a significant improvement to

print quality.

40 | P a g e

5. Potential Uses

 The need for this project was determined by InfoPrint Solutions Company, who has need

for a system that can test many different kinds of print quality algorithms. A page processed by

these new algorithms would need to be printed on an existing print engine, to test the algorithm’s

capability. Our system would do so by eliminating the need to construct a separate printer

control unit for every new print algorithm or set of parameters, which would otherwise require a

complete new design cycle.

 PDIS is a piece of hardware which can send printing data from a computer to a high-speed

production printer with the speed and formatting required. The test data will consist of one page

to be printed which has been processed by a printing algorithm. The processed page of data can

then be sent to the control unit of a printer for repeated printing. To insert a new page of test

print data, the printer will be stopped, the new data will be loaded into memory, and the printer

will be restarted. The timing and format of the output data of our hardware will need to fit the

requirements of a printer which is printing in real-time.

6. Costs

Hardware Costs:

ML505 Evaluation Board: $1195

TX/RX USB Adapter: $20

USB Cable: $10

41 | P a g e

Miscellaneous Wires: $2

Total Hardware Cost: $1227

Software Costs:

Xilinx ISE: $0 (WebPACK available online)

Total Software Cost: $0

Development Costs:

Development Time: 400 hours

Total Development Cost: $20 /hr * 400 hours = $8000

Total Cost: $9227

7. Alternatives

 The ML505 board was chosen and supplied to us by InfoPrint Solutions Company.

However, a less expensive board could probably be used as long as the board contained DDR2

memory, a Virtex 5 FPGA, and sufficient IO pins.

 Reproduction costs would extend only to the cost of the board and the USB adapter

device. Although the total cost of the project was $9227, the cost of reproduction would be

42 | P a g e

closer to $1227, a price which could be reduced even further by selecting a less expensive

evaluation board.

8. Maintainability

 If , Visual C++, the software behind the application which sends the file of data to the

USB adapter, were to be upgraded, some compatibility issues may arise if changes were made to

the application. Similar issues may result from upgrading the Xilinx ISE from 9.1i to a later

version. However, these are only issues if the consumer desires to make changes to the

application or the Verilog modules.

9. Replacements

 In order to replace a defunct board, a new ML505 evaluation board can be ordered from

xilinx.com.

10. Administrative

 Initially, the project was delayed due to difficulties with the USB controller on the ML505

Evaluation Board. The initial plan to connect the computer to the ML505 Evaluation Board was

to directly connect the computer and the board with a USB cable, making use of the Cypress

USB controller available on the board. However, after several weeks of investigation and

43 | P a g e

attempts to integrate the USB controller into the project, it was realized that the controller is hard

coded into a host mode. The project requires the board to receive USB data in peripheral mode.

Therefore, we had to prepare an alternative solution. The USB adapter provided a workable,

cheap, and easy solution to this dilemma.

 All tasks were completed successfully. However, more rigorous testing must be done to

ensure proper operation of the entire system with a production printer. Another remaining task is

to determine which pins to use as outputs and inputs for signals to and from the production

printer. It is assumed that InfoPrint Solutions Company, which will continue work on this

project to integrate it with their printers, will complete this task.

 Work was also done on writing to the 2 line LED display provided on the ML505 Evaluation

Board. Enough progress was made so that desired characters could be written to the display on

request. Unfortunately, we did not have enough time to implement the code with the core

system.

 The expenses of this project for our team were minimal due to the sponsorship by InfoPrint

Solutions Company. The adapter was a necessary and effective purchase. The various cables

and wires used were already available to us. The only other expenses were headers for the IO

pins, which were a minimal expense.

 The hours spent on the project were concentrated on the last half of the semester. During the

first few weeks of the project, we struggled to work out how to implement the USB controller

into our project. As a result, minimal progress was made. However, once the USB adapter was

44 | P a g e

purchased, progress was made at full speed and we made up for the time lost. Progress was also

improved by effective delegation of the various tasks.

11. Lessons Learned

Visual C++ is an Integrated Development Environment (IDE) which makes use of special

classes and data types known as “managed” c++. The support provided by this environment can

be invaluable for certain projects, particularly those which make use of Windows GUIs (such as

PDIS Xfer.) Unfortunately, managed c++ data types are often very different from their standard

c++ counterparts, and in many cases have no direct analogs in standard c++. Therefore, it is

crucial when considering the use of Visual C++ in a project to determine (before coding begins)

if the program will be written in all Visual C++, or all standard c++. Mixing Visual C++ and

standard c++ code can be time-consuming, frustrating, or impossible because many data types,

objects, and classes simply can’t be converted from one type of c++ to the other. In the

beginning of PDIS Xfer’s development, a simple command line program was written in standard

c++ to transfer a small text file of data to the USB port. When this code was ported into Visual

C++, it was impossible to integrate the control of the file transfer with the Visual C++ GUI code.

From that point on, every aspect of the program was written completely in Visual C++. In

general, it’s important to use the tools you have available to you, but you must understand how

to use them! Otherwise, they may turn out to be unwieldy and impede you progress more than

they further it.

45 | P a g e

Just because something works in simulation does not mean it will work in hardware.

Even careful simulation of Verilog HDL on the computer does not guarantee success once

implemented in the FPGA. It pays to be aware of issues that may work fine when simulated, but

not in hardware.

Work in parallel, not in series! During the first few weeks of the project, the mistake was

made of assigning every member of the group to the task of figuring out how the USB controller

would work. Due to this, very little progress was made. However, once Dr. Kaps suggested that

we divide the tasks up in a different manner, our rate of progress increased dramatically.

It pays to ask for help early. There were several instances when several days were spent

trying to find the cause of a bug. Once the advice of a professor was finally requested, the bug

usually was quickly fixed.

12. References

ML505 Evaluation Platform Documentation:

http://www.xilinx.com/support/documentation/ml505.htm

MIG Documentation:

http://www.xilinx.com/support/documentation/ipmeminterfacestorelement_meminterfacecontrol

_mig.htm

Micro UART Documentation:

46 | P a g e

http://www.cmosexod.com/micro_uart.htm

DLP-TXRX-G USB Adapter Documentation:

http://www.dlpdesign.com/usb/txrx.shtml

FTDI FT232R USB to Serial Converter IC Documentation:

http://www.ftdichip.com/Products/FT232R.htm

47 | P a g e

Appendix A: Proposal (ECE 492)

Proposal

Team Members:

Paul Anderson
Jenny Higgins
Pinalben Patel

Faculty Supervisor: Jens‐Peter Kaps

PDIS
Print Data Insertion System

Submitted: October 19th, 2007

48 | P a g e

I. Executive Summary

 Many of the items received in mail, from telephone bills to bank statements, are

generated by high-speed production printers. Companies which build these printers are not only

concerned with the printing speed, but also with the printing quality. A control unit inside each

production printer directly controls the printing quality by the print algorithm it uses. Normally,

in order to test a new printing algorithm to determine whether or not it has any positive effect on

the print quality, a new control unit would have to be built for that specific algorithm.

Developing a new control unit is expensive, costing a company large amounts of time and

resources.

 PDIS, or Print Data Insertion System, is a tool which eliminates the need to develop a

new control unit for every algorithm a company needs to test for print quality. PDIS can also be

re-used for multiple algorithms. The system inserts print data which has been altered by the new

algorithm directly into a production printer. The printer uses the data it receives to print pages

which reflect the new algorithm. The printed pages can then be examined to determine whether

or not the new algorithm offers a significant improvement to print quality.

II. Problem Statement

 The purpose of our project is to create a piece of hardware which can send printing data

from a computer to a high-speed production printer with the speed and formatting required. The

test data will consist of one page to be printed which has been processed by a printing algorithm.

49 | P a g e

The processed page of data can then be sent to the control unit of a printer for repeated printing.

To insert a new page of test print data, the printer will be stopped, the new data will be loaded

into memory, and the printer will be restarted. The timing and format of the output data of our

hardware will need to fit the requirements of a printer which is printing in real-time.

 The need for this project was determined by InfoPrint Solutions Company, who has need

for a system that can test many different kinds of print quality algorithms. A page processed by

these new algorithms would need to be printed on an existing print engine, to test the algorithm’s

capability. Our system would do so by eliminating the need to construct a separate printer

control unit for every new print algorithm or set of parameters, which would otherwise require a

complete new design cycle.

 In addition to the basic functionality of our system stated above, an optional task handed

down by InfoPrint Solutions Company would be to create a display system to show data our

system would be sending to the printer. This would be helpful for testing purposes as well as to

allow users to ensure the data being sent to the printer is accurate before an actual printing test.

A display system would also make debugging our tool easier.

III. Approach

 PDIS will need to interface with a computer and an existing production printer control

unit. PDIS will use a unit with a FPGA, large memory, and sufficient IO ports, which will be

connected to a computer using USB. A program will need to be written to control the flow of

50 | P a g e

data from the computer to the USB port. PDIS will be connected to the printer control unit using

custom IO pins. Verilog modules will be written to control the interaction of the FPGA with the

USB and the printer control unit.

IV. Requirements

Evaluation Board:

 An evaluation board called “XILINX HW_VSML505-UNI-G” that has a very large

memory, ports to connect to the laptop, enough output pins for the print data, and a

programmable Xilinx Vertex 5 FPGA which can contain the control logic needed for the

interfacing.

USB:

 USB will be the connection between the laptop and evaluation board. Since USB is fast,

easy to use, and also a standard type, it is a good choice in this particular system where a laptop

has to be connected with an evaluation board.

Compact Flash:

 Xilinx Vertex 5 module will be programmed using the Compact Flash system provided

on the ML505 evaluation board. Compact Flash requires less power than other available

devices. CF is robust in that it is nonvolatile and solid state.

51 | P a g e

Logic Analyzer:

 A logic analyzer will be used to aid debugging the system.

Xilinx ISE 9.1i:

 Xilinx ISE 9.1i is a program which allows the development of Verilog HDL modules.

The program can also translate the modules into a .ACE file which can be loaded on the

Compact Flash to program the FPGA.

Verilog HDL:

 Knowledge of Verilog is one of the key requirements to implement the design. As

requested by InfoPrint Solutions Company, Verilog HDL will be used to program the Xilinx

FPGA.

USB Control:

 USB is used as the connection between the laptop and evaluation board. A custom

program will be used to control the flow of data between the computer and the evaluation board.

52 | P a g e

V. Preliminary Design

 From a top level perspective, PDIS needs to have a way to transfer data from a computer

to a printer card with the appropriate formatting and timing. A direct connection between a

computer and a printer card, with a program on the computer controlling the timing, would not

be feasible because of the high speeds required for production printing. Hence, a middle step is

needed between the computer and the printer card.

 The ML505 evaluation board includes an FPGA, DDR2 memory, customizable IO pins,

and various ports, including USB and CompactFlash. The data will be transferred from the

computer to the FPGA. The FPGA will then store the data in DDR2 memory. The FPGA will

await signals from the printer card which inform the FPGA when the data is needed. The FPGA

will read data from the DDR2 memory in response to these signals. The DDR2 memory is fast

enough to meet the speed demands of a production printer. The FPGA will direct that data out

through the custom IO pins and into the printer card.

 USB has been chosen as the connection between the computer and the ML505 evaluation

board. This type of connection was requested by InfoPrint Solutions Company for this project to

facilitate ease of use since employees are familiar with USB and have the ports on their

computers.

 There are two major pieces in implementing USB as the connection between the

computer and the FPGA. One piece is to create a program, preferably in C, which can format

and send data out through the USB port on a computer. The second piece is to write a USB

interface in Verilog HDL so that the FPGA is able to retrieve data from the USB port.

53 | P a g e

 In order for the FPGA to read and write to the DDR2 memory on the ML505 evaluation

board, a memory interface is needed. This interface has, for the most part, already been

developed. The interface is currently capable of writing up to 256 MB of data to memory, which

is the size of the DDR2 memory stick included with the ML505 board. The interface is also

capable of reading data from the DDR2 memory. Currently, a simple state machine controls the

writes and reads to the memory. This state machine will need to be altered to account for the

data the USB will send to be written to DDR2 memory as well as the commands the printer card

will send to request a read from DDR2 memory.

 The connection between the FPGA and the printer card will also require a custom

interface of some sort. The project’s sponsor will provide timing diagrams which depict when

and how the printer card expects to receive data.

 If time allows, the USB connection may be made to not only send data from the computer

to the FPGA, but also to send data read from the DDR2 memory from the FPGA to the

computer. A C program could collect this data and display it, either in text format or in the form

of dots across the computer screen, in an attempt to ensure that the data sent to the printer card

was accurate.

 One concern about this project is the eventual testing and ensuring that PDIS provides the

functionality needed by the project’s sponsor. The company plans to have an identical setup in

Boulder, Colorado. One option for testing would be to send the company the completed Verilog

HDL modules so that they could load those modules on their evaluation board and provide us

with feedback.

54 | P a g e

VI. Testing Plans

USB Interface (PC to Evaluation Board)

 Once the program which controls the PC’s USB port has been written, a logic analyzer

will be attached to each of the four wires in a USB cable. The output signals will be observed to

ensure the interface is working as expected.

USB Interface (Evaluation Board to PC)

 The Verilog modules which control receiving the signals from the USB port will be

tested using waveform simulations in the Xilinx ISE 9.1i. After the operation of the modules has

been verified, a USB cable will be connected between the PC and the evaluation board. The four

signals received from the USB cable will be sent to four LEDs as well as four output pins. The

logic analyzer will be connected to these four pins to ensure the FPGA to USB interface is

working correctly.

Memory Interface Controller

 The memory interface controller will consist of states which control the writes and reads

to the memory. A test bench, written in Verilog, will test the functionality of the state machine

within the memory interface controller.

Memory Interface (FPGA to DDR2 and DDR2 to FPGA)

55 | P a g e

 Test data will be written to the DDR2 memory using the memory interface via the

memory interface controller. Data will be read from the same location the data was written to.

The data read will be sent to the logic analyzer using IO pins to ensure the functionality of the

memory interface.

Page Storage (PC to USB to FPGA to Memory to FPGA)

 A small sample page will be sent from the PC to the USB. The FPGA will read the

information from the USB and write the data to the DDR2 memory. The FPGA will then read

the data from the DDR2 memory and place the information on IO pins which can be accessed by

the logic analyzer.

Control Unit Interface (FPGA to Control Unit (PWM))

 A logic analyzer can be used to test the signals sent by the FPGA to the Control Unit and

ensure the signals match the specifications.

Page Insertion (Memory to FPGA to Control Unit (PWM))

 To test the signals sent by the memory to the FPGA to the Control Unit, a logic analyzer

will be used to ensure the signals match the requirements.

Full Process (PC to USB to FPGA to Memory to FPGA to Control Unit (PWM))

 To test the entire process, a logic analyzer will be used to confirm that the page sent from

the PC is reproduced at the IO pins of the FPGA with proper timing and format. PDIS will not

be able to be tested on a real printer, so the final test will consist of comparing the signals on the

IO pins with the given specifications.

56 | P a g e

VII. Tasks

C/Java/C++ Programming: Paul Anderson and Pinal Patel

Verilog Programming: Paul Anderson, Jenny Higgins, Pinal Patel

Testing: Paul Anderson, Jenny Higgins, Pinal Patel

Note: Further task allocations will be determined as the project progresses.

57 | P a g e

VIII. Milestones

58 | P a g e

Appendix B: Design Document (ECE 492)

PDIS:

Print Data Insertion System
Design Document

ECE 492: Senior Design Project

November 30, 2007

Faculty Supervisor:

Jens-Peter Kaps

Team Members:

Paul Anderson

Pinal Patel

Jenny Higgins

59 | P a g e

I. Functional Design/Architecture

 The function of the Print Data Insertion System, PDIS, will be to take a page of print data and

insert it directly into a production printer. This system will allow the user to easily test the algorithms

which are used to form the page of print data. Ideally, the user would send a page of print data which has

been processed by a new test algorithm to the control unit of the production printer via the USB port of a

PC. However, large-scale production printers operate too quickly to pull print data from the PC via USB.

To solve this problem, PDIS will access the page of data which needs to be printed via USB from the PC,

send it to a big memory unit with fast access time, and send it to the printer with the appropriate timing

and format.

 An executable program written in C++ and stored on the PC will control the interface to PDIS.

The user will provide a text file containing the processed print data represented in binary for the program

to read and send to the big memory unit. The PC with the C++ program will be connected to the big

memory unit via a USB port. The big memory unit will be connected to the production printer’s pulse

width modulators (PWM), which directly control the printing lasers (See Figure 1).

Figure 1: Top Level Block Diagram of PDIS

60 | P a g e

 In order to store a page of print data in the big memory unit, the unit will be turned on. A

“START” button will be pressed in the C++ program on the PC to initiate data transmission through the

USB port to the big memory unit. Once all of the data has been stored in the big memory unit, a message

will appear in C++ program and a “DONE” LED on the big memory unit will turn on. The user will then

push a “START PRINTING” button on the big memory unit to initiate printing. The printer will

repeatedly print the same page of data until a “STOP” button is pressed. A “RESET” button will be

available during each phase of the process.

II. System Design/Architecture

 The big memory unit will need a FPGA, DDR2 memory, customizable IO pins, and various ports,

including USB and a way to program the FPGA. The data will be transferred from the computer to the

FPGA. The FPGA will then store the data in DDR2 memory. Once the “START PRINTING” button has

been pressed by the user, a signal will be sent to the printer control unit which will inform the printer that

the big memory unit is ready to supply information. The FPGA will then await signals from the printer

control unit which inform the FPGA when the data is needed. The FPGA will read data from the DDR2

memory in response to these signals. DDR2 memory is fast enough to meet the speed demands of a

production printer. The FPGA will direct that data out through the custom IO pins and into the PWMs

(Pulse Width Modulators) of the printer control unit (See Figure 2).

61 | P a g e

Figure 2: System Level Block Diagram for PDIS

 USB has been chosen as the connection between the computer and the big memory unit. This

type of connection was requested by InfoPrint Solutions Company for this project to facilitate ease of use

since employees are familiar with USB and have the ports on their computers.

 There are two major pieces in implementing USB as the connection between the computer and

the FPGA. One piece is to create a program, preferably in C++, which can format and send data out

through the USB port on a computer. The second piece is to write a USB interface in Verilog HDL so

that the FPGA is able to retrieve data from the USB port.

 In order for the FPGA to read and write to the DDR2 memory on the big memory unit, a memory

interface is needed. This interface has, for the most part, already been developed. The interface is

currently capable of writing up to 256 MB of data to memory, which is the size of the DDR2 memory

62 | P a g e

stick being used. The interface is also capable of reading data from the DDR2 memory. Currently, a

simple state machine controls the writes and reads to the memory. This state machine will need to be

altered to account for the data the USB will send to be written to DDR2 memory as well as the commands

the printer card will send to request a read from DDR2 memory.

 The connection between the FPGA and the printer card will also require a custom interface of

some sort. The project’s sponsor will provide timing diagrams which depict when and how the printer

card expects to receive data.

 If time allows, the USB connection may be made to not only send data from the computer to the

FPGA, but also to send data read from the DDR2 memory from the FPGA to the computer. A C++

program could collect this data and display it either in text format or in the form of dots across the

computer screen in an attempt to ensure that the data sent to the printer card is accurate.

III. Detailed Design

 In order to implement the interfaces between the PC’s USB port and the big memory unit, as well

as the interface between the big memory unit and the printer control unit, an FPGA will be needed. The

Xilinx ML505 evaluation board, which contains a Virtex 5 FPGA, meets this requirement.

ML505 Evaluation Board:

63 | P a g e

 The XILINX HW_VSML505-UNI-G, or

ML505 evaluation board (See Figure 3), has a

Virtex 5 LXT FPGA, which is connected to DDR2

memory, a USB controller, and 64 I/O pins. The

ML505 board also contains a JTAG port which will

allow us to easily program the FPGA. The ML505

block diagram is shown in Figure 4.

Figure 4: ML505 Block Diagram

(Source: http://www.xilinx.com)

Figure 3: ML505 Evaluation Board

(Source: http://www.xilinx.com)

64 | P a g e

Virtex 5 LXT FPGA:

 The Virtex 5 LXT FPGA is produced by

Xilinx. According to the Xilinx website, the Virtex

5 contains up to 330,000 logic cells, 1200 I/O pins

for high-bandwidth memory interfacing, and 24 low-

power transceivers for high-speed serial interfaces.

DDR2 Memory:

 DDR2 memory meets the speed

requirements of the production printers.

 The ML505 board includes a 256 MB stick of

DDR2 SO-DIMM memory. The DDR2 memory

slot on the board is upgradeable.

USB:

 USB will be the connection between the

laptop and evaluation board. Since USB is fast, easy

to use, and also a standard type, it is a good choice in this particular system where a laptop has to be

connected with an evaluation board.

Compact Flash:

Figure 5: Virtex 5 Logo

(Source: http://www.xilinx.com)

Figure 6: SO-DIMM DDR2

(Source: http://www.ocztechnology.com)

65 | P a g e

 Xilinx Virtex 5 module will be programmed using the Compact Flash system provided on the

ML505 evaluation board. Compact Flash requires less power than other available devices. CF is robust in

that it is nonvolatile and solid state.

Logic Analyzer:

 A logic analyzer will be used to aid debugging the system.

Xilinx ISE 9.1i:

 Xilinx ISE 9.1i is a program which allows the development of Verilog HDL modules. The

program can also translate the modules into a .ACE file which can be loaded on the Compact Flash to

program the FPGA.

Verilog HDL:

 Knowledge of Verilog is one of the key requirements to implement the design. As requested by

InfoPrint Solutions Company, Verilog HDL will be used to program the Xilinx FPGA.

USB Control:

 USB is used as the connection between the laptop and evaluation board. A custom program

written in C++ will be used to control the flow of data between the computer and the evaluation board.

USB is a serial connection with data represented by a differential voltage between two pins. Two

additional pins are used for power. The ML505 board includes a Cypress USB Controller (figure 5)

which is connected between the USB port on the board and the FPGA.

66 | P a g e

Figure 7: Cypress USB Controller Diagram

(Source: http://www.xilinx.com)

IV. Final Experimentation

USB Interface (PC to Evaluation Board)

 Once the program which controls the PC’s USB port has been written, a logic analyzer with

adequate speed will be attached to each of the four wires in a USB cable. The output signals will be

observed to ensure the interface is working as expected.

67 | P a g e

USB Interface (Evaluation Board to PC)

 The Verilog modules which control receiving the signals from the USB port will be tested using

waveform simulations in the Xilinx ISE 9.1i. After the operation of the modules has been verified, a USB

cable will be connected between the PC and the evaluation board. The four signals received from the

USB cable will be sent to four LEDs as well as four output pins. The logic analyzer will be connected to

these four pins to ensure the FPGA to USB interface is working correctly.

Memory Interface Controller

 The memory interface controller will consist of states which control the writes and reads to the

memory. A test bench, written in Verilog, will test the functionality of the state machine within the

memory interface controller.

Memory Interface (FPGA to DDR2 and DDR2 to FPGA)

 Test data will be written to the DDR2 memory using the memory interface via the memory

interface controller. Data will be read from the same location the data was written to. The data read will

be sent to the logic analyzer using IO pins to ensure the functionality of the memory interface.

Page Storage (PC to USB to FPGA to Memory to FPGA)

 A small sample page will be sent from the PC to the USB. The FPGA will read the information

from the USB and write the data to the DDR2 memory. The FPGA will then read the data from the

DDR2 memory and place the information on IO pins which can be accessed by the logic analyzer.

Control Unit Interface (FPGA to Control Unit (PWM))

 A logic analyzer can be used to test the signals sent by the FPGA to the Control Unit and ensure

the signals match the specifications.

68 | P a g e

Page Insertion (Memory to FPGA to Control Unit (PWM))

 To test the signals sent by the memory to the FPGA to the Control Unit, a logic analyzer will be

used to ensure the signals match the requirements.

Full Process (PC to USB to FPGA to Memory to FPGA to Control Unit (PWM))

 To test the entire process, a logic analyzer will be used to confirm that the page sent from the PC

is reproduced at the IO pins of the FPGA with proper timing and format. PDIS will not be able to be

tested on a real printer, so the final test will consist of comparing the signals on the IO pins with the given

specifications.

VI. Milestones and Tasks

69 | P a g e

Task Completion
Name Rate 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1. USB Interface

PC Program 0%

Program Testing 0%

FPGA to USB Interaction 0%

Testing 0%

2. Memory Interface 0%

Modify Control Unit for USB Data 0%

Testing 0%

3. Printer Card Interface 0%

Develop Timing Scheme 0%

Modify Control Unit for Printer Requests 0%

Testing 0%

4. Final Testing 0%

5. Demonstration (milestones) K K K K
6. Reporting K K K K

Weeks

Figure 8: Milestones

