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1. Introduction 

With the continuing growth of today’s multi-media, Internet based culture, 

businesses are becoming more dependent on high performance, high throughput 

data servers.  There are two competing front-runners to this market space; servers 

based on the Intel Xeon processor and servers based on the AMD Opteron 

processor.  In modern computer architecture, data communications between the 

central processing unit (CPU) and other devices (memory, storage, network 

interface, etc.) are handled by two chips, know as the northbridge and the 

southbridge.  The northbridge is responsible for communications with devices that 

are high speed, including memory, peripheral component interconnect (PCI) 

express, and accelerated graphics port (AGP) graphics devices.  Additionally, the 

northbridge controls communications between the CPU and the southbridge.  The 

southbridge is responsible for communications with low speed devices, including 

legacy PCI, keyboard, mouse, universal serial bus (USB), and many others.  This 

paper will introduce the northbridge architecture of the AMD Opteron family of 

CPUs and the Intel Xeon family of CPUs, and will analyze the strengths and 

weaknesses or each.  The Intel Xeon family northbridge (known as Blackford) is 

based on the standard northbridge/southbridge organization, while the AMD 

Opteron family is based on a very different, point-to-point architecture. 

The paper will start by providing background information on the technologies 

that AMD and Intel have built their processors around.  Next, the paper will 

describe the architecture of the AMD Opteron Northbridge, and the Intel 

Blackford Northbridge.  Following that, performance data will be presented in an 

effort to compare how each architecture handles pure data processing, as well as 

how each architecture performs from a power consumption standpoint.  Finally, 

some over-all conclusions and comments on additional, non-quantifiable aspects 

of the performance of both architectures will be presented. 

 

2. The x86-64 Instruction Set Architecture (ISA) 

The Opteron processors include one to four independent processor cores.  

Each of these cores is based on AMD’s x86-64 instruction set architecture.  The 



 - 4 - 

AMD64 ISA is a full 64-bit superset of the standard x86 ISA.  It natively supports 

Intel’s standard 32-bit x86 ISA, allowing existing programs to run correctly 

without being ported or recompiled.  AMD64 was created to provide an 

alternative ISA to the Intel Itanium architecture.  The Itanium architecture is 

drastically different from standard x86, and is not compatible in any way.  The 

main defining characteristic of AMD64 is that it supports 64-bit general purpose 

registers, 64-bit integer arithmetic and logical operations, and 64-bit virtual 

addresses.
1
  Additional significant features include full support for 64-bit integers, 

16 general-purpose registers (as opposed to 8 in standard x86), 16 general-

purpose 128-bit XMM registers (as opposed to 8) used for streaming Single 

Instruction, Multiple Data (SIMD) instructions, a larger virtual and physical 

address space, instruction pointer relative data access, and a no-execution bit.  

Due to large performance enhancements possible by using 64-bit registers and 

native 64-bit operations, it is clear that the AMD64 ISA is a cutting edge 

instruction set architecture. 

Due to lack-luster sales and support of processors based on the Itanium ISA, 

Intel has cloned the AMD64 ISA, creating its own version known as Intel 64 for 

use in its multi-core 64-bit processors.  The Xeon processors used with the 

Blackford Northbridge are based on this ISA.  Other than a few minor differences, 

the Intel 64 ISA is the same as the AMD64 ISA.   

 

 

3. Memory Coherency 

One of the biggest challenges faced by designers who are implementing 

systems that have caches and multiple processors is correct management of 

memory coherency.  Memory coherency is a problem created by a system needing 

to maintain multiple copies of the same piece of information.  When a system has 

only one CPU, and no cache (main memory only), memory coherency is not a 

problem.  In this situation, the CPU will directly modify information in the main 

memory, and there is no other copy of this information.  Managing memory 

becomes more difficult when there are multiple processors sharing the same main 
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memory.  The memory model of a shared memory multiprocessor formally 

specifies how the memory system will appear to the programmer.  A memory 

consistency model restricts the values that a read can return.  A read should return 

the value of the “last” write to the same memory location.  In single processor 

systems, this is precisely defined by the program order.  That is not the case in a 

multiprocessor.  As shown in Figure 1, the write and read of the variable “Data” 

are not related by program order because they reside on two different processors.
2
 

 

 

Figure 1: Illustrating the need for a memory consistency model. 

 

Extending the single processor model to multiprocessors results in a model 

know as the sequential consistency model.  This model requires that all memory 

operations appear to execute in the order described by that processor’s program.  

While sequential consistency provides a simple, intuitive programming model, it 

disallows many single processor hardware and compiler optimizations.  To 

address this problem, many relaxed consistency models have been proposed.   

There are three requirements for a multiprocessor to be sequentially 

consistent: 

• The result of any execution must be the same as if the operations of all 

the processors were executed in some sequential order, and the 

operations of each individual processor appear in this sequence in the 

order specified by its program; 
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• Maintaining program order among operations from a single processor; 

• Maintaining a single sequential order among all operations.
2
 

A sequentially consistent memory model can be looked at as consisting of a 

global shared memory connected to all processors through a switch.  At any given 

time, only one processor can have a path through the switch to the memory.  This 

provides global serialization among all memory operations.   

Caching of shared data can lead to multiple scenarios that violate sequential 

consistency of data.  Systems that use caching must take precautions to maintain 

the illusion of program order.  Most important, even if a read hits in its 

processor’s cache, reading the cached value without waiting for the completion of 

previous operations can violate sequential consistency.  To address the problems 

with systems that have multiple processors (each with a cache), a cache coherency 

protocol must be implemented.  This protocol needs to propagate a new value to 

all copies of the modified location.  New values are propagated by either 

invalidating (eliminating) or updating each cached copy of the data.  There are 

two general definitions of cache coherency.  The first is very similar to the 

sequential consistency model. Others impose relaxed program orderings.  One 

common definition requires two conditions for coherence: 

• A write must eventually be made visible to all processors; 

• Writes to the same location must appear to be seen in the same order 

by all processors.
2
 

These conditions are not enough to satisfy sequential consistency.  This is due 

to the fact that sequential consistency requires that writes to all locations (not just 

the same location) be seen in the same order by all processors, and also explicitly 

requires that a single processor’s operations appear to execute in program order.  

A memory consistency model is the policy that places a boundary on when the 

value can be propagated to a given processor.  There are other problems that need 

to be addressed.  For instance, how can write completion be detected and how is 

write atomicity maintained?  Typically, a write to a line replicated in other caches 

requires an acknowledgment of invalidate or update messages.  These 

acknowledgments must be collected either at the memory or at the issuing 
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processor.  Either way, the writing processor must be notified when all 

acknowledgements are received.  Only then can the processor consider the write 

to be complete.  To address maintaining write atomicity, it is important to prohibit 

a read from returning a newly written value until all cached copies have 

acknowledged the updates for the writes.   

Maintaining a strict memory consistency model usually has negative impacts 

on performance.  To address this problem, a relaxed memory model can be used.  

There are two characteristics to categorize relaxed memory consistency models.  

The first is the way they relax the program order requirement.  Models differ on 

how they relax the order from a write to a following read, between two writes, 

and from a read to a following read or write.  These relaxations apply only to 

operation pairs with different addresses and are similar to the optimizations for 

sequential consistency.  The second characteristic is how they relax the write 

atomicity requirement.  Some models allow a read to return the value of another 

processor’s write before the write is made visible to all other processors.  It is also 

possible to relax both program order and write atomicity.  In this situation, a 

processor is able to read the value of its own previous write before the write is 

made visible to other processors and before the write is serialized.  This relaxation 

is commonly used to forward the value of a write in a write buffer to a following 

read from the same processor.  Relaxed models also provide methods for 

overriding their default relaxations.  

One relaxation used is to allow a read to be reordered with respect to previous 

writes from the same processor.  There are three models in this group: the IBM 

370, total store ordering (TSO), and processor consistency (PC).  These models 

all differ in when they allow a read to return the value of a write.  The IBM 370 

model provides serialization instructions that enforce program order between a 

write and a following read.  In contrast, the TSO and PC models do not provide 

any explicit safety net functions.  However, programmers can still use read-

modify-write operations to provide the illusion that program order is maintained 

from a write to a read.  Relaxing program order can substantially improve 

performance by hiding latency of write operations.   
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4. The MOESI and MESI Cache Coherency Models 

The MOESI cache coherency model is a full cache coherency protocol that 

encompasses all of the possible states commonly used in other protocols.
3
  This is 

the cache coherency model used in the AMD Opteron Northbridge.  Each cache 

line will be in one of five states: 

• Invalid — a cache line in the invalid state does not hold a valid copy of the 

data.  Valid copies can be in main memory or another processor’s cache. 

• Exclusive — a cache line in the exclusive state holds the most recent, 

correct copy of the data.  The copy in main memory is also the most 

recent, correct copy.  No other processor holds a copy of the data. 

• Shared — a cache line in the shared state holds the most recent, correct 

copy of the data.  Other processors may hold copies of the data in the 

shared state.  If no other processor holds it in the owned state, then the 

copy in main memory is also the most recent.   

• Modified — a cache line in the modified state holds the most recent, 

correct copy of the data.  The copy in main memory is incorrect and no 

other processor holds a copy. 

• Owned — a cache line in the owned state holds the most recent, correct 

copy of the data.  Other processors can hold a copy of the correct data, 

however, the copy in main memory can be incorrect.  Only one processor 

can hold the data in the owned state; all other processors must hold the 

data in the shared state.
4
 

The MOESI state transitions are shown in Figure 2.   
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Figure 2: MOESI State Transitions 

 

To maintain memory coherency, processors need to obtain the most recent 

copy of data before caching it internally.  The copy can be in main memory or in 

the internal caches of other processors.  When a processor has a cache read-miss 

or write-miss, it probes the other processors to determine whether the most recent 

copy of data is held in any other caches.  If one of the other processors holds the 

most recent copy, it sends it to the requesting processor.  Otherwise, the most 

recent copy is provided by the main memory.   

There are two types of processor probes.  Read probes are used when the 

processor is requesting the data for read purposes.  Write probes are used when 
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the processor intends to modify the data after accessing it.  State transitions 

involving probes are initiated by processors that are trying to find out if other 

processors hold a copy of the requested data.  Read hits do not cause a MOESI 

state change.  Write hits usually cause a state change into the modified state.  If 

the cache line is already in the modified state, a write hit does not change its state.  

The MOESI protocol does not specify operation of external-bus signals, 

transactions, or how those transactions influence a cache line’s MOESI state.  The 

details of how this is handled is dependent on the implementation and is left up to 

the processor designer.  

As an example of the AMD implementation of the MOESI protocol, refer to 

Figure 3.  Processor 3 wants to access data that is located in the memory attached 

to processor 0.  Initially, processor 3 looks up the system address map and using 

the physical address, determines that the data is attached to processor 0.  The 

processor then sends a read request (RD) to processor 2.  Processor 2 forwards the 

read request to processor 0.  Processor 0 reacts by fetching the requested data 

from its internal memory controller (it might be stored in cache or main memory).  

Processor 0 also broadcasts a probe (PR) to processors 1 and 2.  Processor 1 

forwards this probe to processor 3.  Each processor combines probe responses 

(RP) from each of its individual cores into a single probe response.  Each 

processor then sends its probe response back to processor 3.  If the line is 

modified or owned, then a read response is returned instead of a probe response.  

Once the source processor has received all probe and read responses, it provides 

the fill data to the requesting core.  A source done (SD) is sent to the home 

processor to signal that all the transaction’s side effects, such as invalidating all 

cached copies for a store, have completed and that the data is now globally 

visible.  The memory controller is then free to process another request to the same 

address.  The latency of memory operations is the longer of two paths: the time it 

takes to access dynamic random access memory (DRAM) and the time it takes to 

probe all caches in the system.
5
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Figure 3: Traffic on the Opteron Processor 

 

 

The Intel Blackford Northbridge uses a memory coherency protocol that is 

similar to MOESI, called MESI.  The MESI protocol uses a data ownership 

model, meaning that only one cache can have data that is in the “dirty” state.
6
  An 

additional implication of how the MESI protocol works is that writes are not 

broadcasted to all caches, which causes data invalidation.  The bus activity in a 

MESI system is broken up into a Master/Slave relationship.  The master starts an 

inquiry cycle telling all slaves that it intends to cache some data.  The slaves 

respond with one of two signals: a Hit signal signifying that the slave has a copy 

of the data the master is about to cache, or a HitM signal signifying that the slave 

has a modified copy of the data a master is about to cache.   
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Each cache line has one of four possible states: 

• Modified− the cache line is held exclusively in this cache and the content 

is modified from the copy that is in shared memory. 

• Exclusive− the cache line is held exclusively in this cache and the content 

is the same as the copy that is in shared memory. 

• Shared− the cache line is held in this cache, and is possibly held in other 

caches.  The content of the cache line is the same as the copy that is in 

shared memory. 

• Invalid− the cache line contains no valid copy of the data.
6
 

 

The main operating idea behind MESI is that “modified” and “exclusive” 

cache lines are owned by the cache they are held in.  Those cache lines are 

allowed to be modified without reporting the new value to other caches.  Any 

attempt to access a cache line that is not “owned” results in a broadcast to all 

other caches to determine if the cache line is “owned” elsewhere.  If it is 

“owned”, the owner will notify the rest of the caches as to the current value of the 

cache line, and will give up ownership to the cache that initiated the request.  The 

MESI state of each cache line is stored in a two-bit number.  Table 1 below shows 

all of the possible cache line states: 

 

Cache Line 

State 

Modified Exclusive Shared Invalid 

Cache line is 

valid? 

Yes Yes Yes No 

Status of copy 

in memory? 

Out-of-date Valid Valid N/A 

Other cached 

copies exist? 

No No Maybe Maybe 

Reaction to a 

write to this 

line? 

Do not write to 

bus 

Do not write to 

bus 

Write to bus 

and update 

cache 

Write to bus 

 

Table 1: The MESI States 
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The MESI protocol has a state transition diagram as shown in Figure 4.   

 

 

Figure 4: MESI State Transitions 

 

 

 The Blackford Northbridge makes use of MESI by implementing a central 

coherency engine located in the system’s memory controller.  The coherency 

manager sends snoops from one bus to another bus, and handles passing resulting 

state transitions to the requestor.  The coherency manager contains a local staging 

buffer which holds cache lines as they move from source to destination through 

the northbridge.   

 The northbridge offers an optional snoop filter for workstations.  This 

snoop filter is intended to reduce the number of snoops that are initiated by 

remote front-side buses or inbound I/O requests that target coherent system 
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memory.  The organization of the snoop filter is shown in Figure 5.  The snoop 

filter stores tags and coherency state information for all caches in the processor, 

using a directory scheme.  The filter is organized as two front-side bus 

interleaves.  Each interleave contains 8,192 sets, each organized as a 16-way set-

associative array.  This allows tracking of up to 2
18
 cache lines.   

 

 

Figure 5: The Blackford Snoop Filter 

 

 When the coherency engine intercepts a request from the front-side bus, a 

snoop filter lookup is performed to determine a hit or miss.  The state of an 

existing entry is then updated or a new entry is allocated.  Depending on the 

search results of the snoop filter, the coherency engine will make a decision as to 

whether or not a cross-buss snoop will be launched. 

 

5. Scalable Coherent Interface (SCI) and HyperTransport 

With processing power increasing constantly, it has become very important to 

eliminate bottle-necks in the system.  One of the most important areas where a 

bottle-neck can occur is in the processor’s interface to system memory and other 

I/O devices.  AMD based its decision to use the HyperTransport protocol on past 

interfaces, in particular the Scalable Coherent Interface. 
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The Scalable Coherent Interface started as an offshoot from the IEEE 

Standard Futurebus+ project.
8
  The SCI group was searching for a new approach 

that would be bus-like in nature, yet would be able to avoid bottle-necks and be 

able to easily scale for multi-processor applications.  The resulting interface 

included protocols that were simple, allowing processors to run fast.  Also, since 

the protocols were simple, the interface could be built with a relatively low gate 

count, which kept expense down as well as successfully allowing the interface 

circuitry to have low latency, thus eliminating data transferring bottle-necks.  

Additionally, since the bus interface was rethought to be scalable and distance-

independent, areas that make bus interface logic more expensive then necessary 

cleared up. 

The SCI interface includes a hardware protocol to handle cache coherency.  

This protocol was based on a distributed-directory type cache coherency protocol.  

The protocol is multiple-reader, single-writer with write invalidation.  There are 

29 stable cache states and many pending states.  Despite it’s simplicity in 

hardware implementation, the SCI protocol was determined to be too complex to 

be implemented in the Opteron Northbridge due to the very large amount of cache 

states.  However, SCI made it clear that there is a lot of value in using a similar 

data transfer topology.  Figure 6 shows a top-level diagram of the SCI Cache 

Coherency Layer. 

 

Figure 6: SCI Cache Coherency Layer 
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 AMD chose to integrate HyperTransport based interfaces into the Opteron 

processor.  HyperTransport was introduced in 2001.  It is a bidirectional 

serial/parallel high-bandwidth, low-latency point-to-point link.
9
  HyperTransport 

is available in three versions which run from 200 MHz to 2.6 GHz.  For 

comparison, a PCI bus runs at either 33 or 66 MHz.  HyperTransport also runs at 

a double data rate (DDR), which means that it sends data on both edges of the 

clock.  This allows a maximum data rate of 5200 MegaTransfers/second when 

running at 2.6 GHz.  The operating frequency of the HyperTransport link is auto-

negotiated.  HyperTransport also supports variable bit-width data paths; any width 

between 2-bits to 32-bits is possible.  When operating at full speed with a full-

width data bus, HyperTransport has a transfer rate of 41.6 GB/s, which makes it 

much faster then most other bus standards.  The system is also very flexible, since 

links of various data widths can be mixed together into a single application.  

Wider data paths could be used for high-speed memory, while narrow data paths 

could be used for slow I/O devices.   

HyperTransport can be used to generate system management messages, 

signaling interrupts, as well as to issue probes to adjacent processors.  

Additionally, it is compliant with the Advanced Configuration and Power 

Interface specification, which allows changes in processor sleep states to signal 

changes in device states.  For example, the protocol can be used to power off a 

hard drive when the CPU goes to sleep. 

 

6. Fully-Buffered DIMMS 

A key technology that is central to the operation of the Intel Blackford 

Northbridge is an alternate memory architecture called Fully-Buffered dual in-line 

memory modules (FB-DIMMs).   

Due to the continuing need for increased capacity on high-end servers, the 

need for larger amounts of memory has continued to present problems for system 

designers.  While improvements in technology have allowed capacity needs to be 

met with increasingly dense DRAM chips, and bandwidth needs to be met by 
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scaling front-side bus data rates, the traditional bus organization has reached a 

point where it no longer scales well.   

The electrical constraints of high-speed parallel buses complicate bus scaling 

in terms of loads, speed, and widths.
7
  As a result, each generation of DRAM 

technology has allowed for fewer DIMMs per channel.  The serpentine routing 

required for path-length matching becomes more challenging as bus widths 

increase.  Currently, motherboard area used in routing just one channel is 

significant.  This makes increasing capacity by adding channels very difficult.  

FB-DIMMs have been introduced to address these scalability issues in today’s 

memory subsystems.   

FB-DIMMs replace standard memory architectures that are typically used in 

servers.  The traditional shared parallel interface between the memory controller 

and DRAM chips is replaced with a point-to-point serial interface between the 

memory controller and an intermediate buffer, called the Advanced Memory 

Buffer (AMB).  The interface on each DIMM between the AMB and the DRAM 

chips is the same as what is currently used in DDR2 and DDR3 systems.  The 

serial interface is divided into two uni-directional buses.  One is for read traffic 

and status messages, called the northbound channel, and another is for write 

traffic and commands, called the southbound channel.  Figure 7 shows this 

connectivity.  FB-DIMMs use a packet-based protocol that bundles commands 

and data into frames that are transmitted on the channel and then converted to the 

DDR protocol by the AMB.
7
  Frames can contain data and/or commands, 

including DRAM commands such as row activate, column read, and refresh.  

There are also special commands for a channel that include a write to 

configuration register and synchronization commands.  The AMB acts like a pass-

through switch, directly forwarding the requests it receives from the memory 

controller to successive DIMMs and forwarding frames from southerly DIMMs to 

northerly DIMMs or the memory controller.  All frames are processed to 

determine whether the data and commands are for the local DIMM.  Since frame 

scheduling is performed only by the memory controller, the AMB can only 

convert serial data to DDR based commands.  
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Figure 7: Fully-Buffered DIMMs 

   

 The FB-DIMM architecture was designed to allow further scaling of 

system memory, but serializing the memory interface between the memory 

controller and the actual DIMMs adds some performance considerations.  By 

changing the data paths from a parallel shared bus to a serial point-to-point bus, 

there are some performance issues that become apparent.  In particular, latency is 

increased in a system using FB-DIMMs if that system has low utilization.  This is 

due to the added overhead of changing data to and from FB-DIMM’s serial, 

framed protocol.  When a system is at high utilization, the average latency of 

memory transactions is actually lower than an equivalent DDR based system.  

This is because the FB-DIMM protocol allows a large number of in-flight 

transactions concurrently.  Additionally, since transactions to different DIMMs 

and transmit data to and from the memory controller can be scheduled 

simultaneously, FB-DIMM systems are able to offset the increased cost of 

serialization overhead.  Finally, moving the parallel bus off the motherboard and 

onto the DIMM helps hide the overhead of bus turn-around time.
7
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7. The AMD Opteron Northbridge 

The main goal of AMD’s Opteron Northbridge architecture is to increase 

performance while operating within a fixed power budget.  The AMD Opteron 

processor is built around multiple (currently one, two, or four) AMD64 based 

cores.  A data router and memory controller is integrated on each chip with the 

cores, as well as a HyperTransport interconnect interface including three 

independent HyperTransport ports.  The challenges that had to be overcome for 

this design effort included designing a system interconnect, memory hierarchy, 

and I/O that can easily scale with the number of cores and number of CPU sockets 

in a system. 

AMD’s Opteron Northbridge was introduced in 2005 with the release of the 

first dual-core Opteron processor.  Included in this design is the AMD Direct 

Connect architecture, which is AMD’s marketing term for its Opteron processor 

northbridge.  The Direct Connect architecture was created to replace the more 

traditional external northbridge chipsets typically found external to a 

microprocessor.  In the Opteron, the northbridge includes all of the logic that is on 

the CPU die, but is external to the processing cores.  Figure 8 shows a comparison 

between a standard, traditional northbridge and the Opteron Direct Connect 

northbridge.  Figure 8a shows a traditional northbridge.  All data traffic into and 

out of the processing cores runs through the memory controller hub.  This creates 

a bottle-neck for all traffic in the CPU and is also a single point of failure; if the 

memory controller hub stops working, so does the entire processor.  The need for 

external memory buffers (XMBs) increases latency of memory reads and writes, 

as well as requiring additional power.  Finally, a solution like this does not scale 

very well, as the logic inside the memory controller hub would become larger and 

therefore have a higher latency as more processors are added to the system.   

Figure 8b shows the AMD Direct Connect northbridge.  As shown, each 

processor has an integrated memory controller.  This allows each processor to be 

able to directly interface to a bank of memory, eliminating the bottle-neck seen in 
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traditional northbridges.  Additionally, each core has three independent 

HyperTransport based I/O interfaces.  This allows each processor in a system to 

be interconnected in a point-to-point topology.  This allows the system to scale 

easily by adding additional processors with HyperTransport interfaces.  It also 

provides multiple paths from one processor to another, which eliminates the 

single point of failure seen in the previous northbridge.  PCI bridges are installed 

as I/O devices using one of the HyperTransport interfaces on one of the 

processors.  An additional reason for the high data throughput in this topology is 

that all of the integrated northbridge logic runs at the same frequency as the 

processing cores; in traditional northbridge designs, the northbridge circuitry runs 

at a lower multiple of the core frequency.   

 

 

Figure 8: A comparison of (a) traditional northbridge and (b) the Opteron Direct 

Connect northbridge 

 

A simplified view of the Direct Connect northbridge is shown in Figure 9.  

The northbridge consists of the System Request Interface (SRI) and Host Bridge, 

a crossbar, an on-chip memory controller, a DRAM controller, as well as three 

HyperTransport transceivers.  The SRI contains the system address map, which is 

used to map memory ranges to specific processors.  This map is essential to the 

system’s ability to figure out which processor “owns” the memory that contains 



 - 21 - 

the data it wishes to read or write to.  If the memory to be accessed is determined 

to be in the on-chip memory (cache), the SRI sends the request to the on-chip 

memory controller.  If the memory requested is off the chip, the SRI sends the 

request to one of the processor’s HyperTransport ports.  The DRAM controller 

will be used to interface to memory attached to the host processor, or the data will 

be brought local from one of the other processors via the other HyperTransport 

ports.  The crossbar has five ports; one for the SRI, one for the memory controller, 

and one for each of the three HyperTransport ports.  This allows very flexible 

system operation by allowing data and command requests to be easily routed 

between all possible pieces of circuitry in the northbridge.   

 

Figure 9: A Simplified View of the Opteron Northbridge 

 

 

The northbridge separates processing of command and data packets between 

two different logical units.  There are separate command and data crossbars in the 

northbridge.  The command crossbar is dedicated to routing command packets 

and the data crossbar is dedicated to routing the data payload associated with 

commands, 4 to 64 bytes of data per command.  Figure 10 shows the command 

flow for the northbridge.  The command crossbar is responsible for routing 
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coherent HyperTransport commands.  It can deliver one HyperTransport packet 

header per clock cycle.  There is a pool of command sized buffers at each input 

port.  These buffers are divided between four virtual channels: Request, Posted 

request, Probe, and Response.  These command buffers are statically allocated at 

each of the crossbar inputs.  The memory access buffers (MABs) store 

outstanding requests to memory.  The address MAP stores the addresses of 

memory address windows in the system.  The MAP allows each processor to be 

able to determine which other processor in the system contains the data requested 

(by physical memory address range).  The graphics aperture resolution table 

(GART) maps memory requests from the graphics controllers in the system.  The 

victim buffer is used to store cache lines that have been evicted from the 

processor while they wait for idle cycles from the memory controller so that they 

can be written back to main memory.  This buffer is different from the standard 

write buffer because evicted cache lines in the victim buffer are not scheduled to 

be written to memory until the memory system becomes idle.  Data in the write 

buffer therefore takes precedence over data in the victim buffer, and is written to 

main memory first.  

The Request virtual channel is used to service memory reads, nonposted 

memory writes, and cache block commands.  The Posted request virtual channel 

is used to service posted write commands.  The difference between posted and 

nonposted writes is that posted writes do not require a response from a target, 

whereas nonposted writes do require a “target done” response from the receiver.
8
  

The Probe virtual channel is used to broadcast probes to all other processors in the 

system.  These probes are used to “snoop” on other processors to determine 

whether or not there is more then one copy of the data, and to manage updating 

the data to ensure coherency.  Finally, the Response virtual channel is used to 

service all responses resulting from requests and probes to other processors. 
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Figure 10: The Opteron Northbridge Command Flow 

 

 

The Opteron Northbridge data crossbar is shown in Figure 11.  The system 

cache line size is 64 bytes.  To optimize the transfer of cache-line-size data 

packets, all buffers are sized in multiples of 64 bytes.  Data packets move around 

inside the processor through data paths, each transfer taking 8 clock cycles.  

Transfers to different output ports are time multiplexed clock by clock to support 

high concurrency.  Similar to other routing in the northbridge, HyperTransport 

routing is table driven.  This supports arbitrary system topologies and the crossbar 

has separate routing tables for routing requests, probes, and responses.  Responses 

are always point-to-point, and Probes are broadcast to all processors in the 

system. 
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Figure 11: The Opteron Northbridge Data Flow 

 

 

The Opteron was designed to have a higher performance memory interface 

than systems with an external memory controller.  An important aspect of 

maintaining high performance when processors are added is the topology or the 

way the processors are connected together.  Figure 12 shows the performance 

benchmarks of a number of different processor connection topologies.  The most 

important factor in performance is the average network diameter.  Network 

diameter is the number of “hops” that the average request has to make to get from 

one processor to another.  Scaling is positive from one to eight processors.  

Unfortunately, processor performance decreases as the average network diameter 

increases.  As seen in Figure 12, the average diameter for a two processor system 

is 0.5 hops.  Moving to a four processor system connected in a square results in an 

average diameter of 1 hop.  This would be reduced if the four processors could be 

fully connected, but since there are only three HyperTransport ports on each 

processor, this is not possible.  There are two options for connecting eight 
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processors together, and both lead to different results.  Connecting the processors 

in a ladder arraignment results in a network diameter of 1.8 hops, while network 

diameter is reduced to 1.5 hops by using the twisted ladder topology shown.  

 

 

Figure 12: Performance of Various Connection Topologies 

 

To further analyze performance of connection topologies, it is helpful to 

consider a metric known as Xfire memory bandwidth.  Xfire memory bandwidth 

is defined as link-limited, all-to-all communication bandwidth (data only).
5
  

Figure 13 shows two 4-processor square topologies.  Figure 13a shows the 

standard 4-processor square topology with an average diameter of 1 hop.  This 

topology has an Xfire bandwidth of 14.9 Gbytes/s.  If an additional 

HyperTransport port was added to each processor, then the 4-processor fully 

connected topology shown in Figure 13b would be possible.  This topology would 
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have an average diameter of 0.75 hops and an Xfire bandwidth of 29.9 Gbytes/s.  

If the latest HyperTransport protocol (version 3.0) was used instead of version 

2.0, the fully connected topology would achieve a bandwidth of 65.8 Gbytes/s.   

 

 

Figure 13: Four-processor Network Topologies 

 

As shown in Figure 14, the benefits of fully connected topologies are more 

dramatic for eight-processor systems such as the ones shown in Figure 14.  The 

Xfire bandwidth increases by a factor of 6 when a fully connected topology is 

used.   

 

 

Figure 14: Eight-Processor Topologies 

 

 

 

 

1.62 hops 

1.12 hops 
0.88 hops 
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8. The Intel Blackford Northbridge Architecture 

 The Intel Blackford Northbridge Architecture is based on a traditional northbridge 

architecture.  An overview of the architecture is shown in Figure 15.  The system is made 

up of up to two Intel Xeon multi-core processors, a memory controller hub (MCH), an 

I/O hub, and a PCI hub.  Some of the main features of this architecture include: 

• Two independent front-side bus (FSB) interfaces 

• A coherency engine 

• Optional 16-Mbyte snoop filter (used to eliminate the number of cross-buss 

snoops) 

• Four channel FB-DIMM memory controller 

• Two I/O unit clusters, allowing connection to six x4 width Generation 1 PCI 

Express ports 

 

Figure 15: The Blackford Northbridge 
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The Blackford Northbridge is designed to make use of Intel’s dual or quad 

core Xeon processors.  These processors contain 4-Mbytes of L2 cache and 8-

Mbytes of L2 cache, respectively and have a core clock frequency that can scale 

to 3 GHz.  Multiple power saving features have been implemented on these 

processors including an enhanced halt state, clock gating, and intelligent use of 

on-die caches to prevent thrashing.  The protocol used in the front-side bus allows 

the CPU and chipset to arbitrate the bus, drive transactions, initiate snoops, and 

provide responses to snoops and/or data.   

The MCH chip is used to handle all traffic from the CPUs to the rest of the 

system.  This controller has four FB-DIMM channels, and each channel can 

accommodate up to four DIMMs for a total of up to sixteen DIMMs in the entire 

system.  As previously mentioned, the MCH contains the coherency engine and 

optional snoop filter, and all memory coherency is managed by the MCH.  Two 

paired FB-DIMM channels form a lockstep branch, and there are two lockstep 

branches in the system, with channels 0 and 1 forming one branch, and channels 2 

and 3 forming the other.  A 64-byte cache line is split across a branch, and each 

channel supplies 32 bytes to and from the corresponding DIMM of the lockstep 

pair.  Both branches operate independently of each other, and can be interleaved.  

Each channel has a peak data rate of 5.33 Gbytes/s (for DDR2 667) or 4.26 

Gbytes/s (for DDR2 533).   

The MCH provides the interface to memory from the CPUs and I/O.  It has a 

built-in decoder to translate system addresses to a DDR2 device map, a protocol 

engine for DDR2 timing, an arbitration unit to service internal request queues, 

and an reliability, availability, and serviceability (RAS) unit for handling memory 

and channel errors.
10
  The MCH also includes extensive reordering capabilities 

which help maximize channel throughput and efficiency.  These capabilities 

include: 

• Simultaneous read/write data transfer to different FB-DIMMS on a 

channel 

• No turnarounds between back-to-back data transfers to different FB-

DIMMs on a channel 
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• Minimal turnarounds and bubbles between back-to-back data transfers 

to the same FB-DIMM 

• A posted column address strobe of the DDR to improve channel 

efficiency by removing scheduler conflicts
10
 

The Blackford Northbridge provides many features that allow I/O 

connectivity between client devices or bridges to be scalable.  This is 

accomplished through six x4 PCI Express (PCIe) ports.  These ports are broken 

into two I/O unit clusters.  Each port is deeply pipelined for maximizing 

read/write throughput.  These ports can be combined to form larger widths such 

as x8 or x16.  The northbridge provides peer-to-peer memory-mapped I/O, I/O 

read/write support for applications such as remote keyboard or video sharing, and 

I/O processor support for redundant-array-of-inexpensive-disks (RAID) 

applications.  By combining read completetions when data already exists in the 

buffer, extra store-and-forward penalties of larger packet sizes are avoided.  The 

result of this is to decrease first data latency, as well as improving bus efficiency 

on the PCIe links due to larger packets.   

Blackford’s Enterprise Southbridge Interface operates through a 

proprietary x4 PCIe link for connection and operation of legacy devices.  It 

handles devices including PCI, PCI-X, USB, Low Pin Count (LPC), and Trusted 

Platform Module (TPM).  Additionally, other peripheral components can be used 

in the system by attaching them to the PCIe backplane expansion ports.  These 

components can include slot accounting system (SAS), small computer system 

interface (SCSI), serial advanced technology attachment (ATA) I and II 

controllers, or 10-Gbit Ethernet controllers.   

The Blackford Northbridge includes I/O Acceleration Technology 

(I/OAT) to reduce processor utilization and maximize I/O throughput for 

networking applications.  There are four main technologies that make up I/OAT: 

parallel processing of transmission control protocol (TCP) and memory functions, 

affinitized data flows, asynchronous low-cost copy, and improved TCP/IP 

processing.  Parallel processing lowers the system overhead and increases 

efficiency of the TCP stack processing by using the abilities of the CPU to 
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execute multiple instructions per clock.  By logically grouping data flows, the 

system partitions the network stack processing across multiple physical or logical 

CPUs.  This allows CPU cycles to be allocated to the application for faster 

execution.  Intel Quick Data Technology is used to allow payload data copies 

from the network interface card (NIC) buffer in system memory to the application 

buffer with fewer CPU cycles, reducing the overhead typically required to move 

data from the NIC to applications.
11
  Finally, the system uses separate packet data 

and control paths to optimize processing of the packet header from the packet 

payload.  This helps to reduce CPU cycles that are typically used to process the 

protocol.   

Additionally, the Blackford Northbridge supports a four-channel direct 

memory access (DMA) engine.  This engine has the ability to perform byte-

aligned memory-to-memory and memory-to-MIMO transfers using a linked-list 

descriptor access mechanism.  When used properly, the engine can move large 

amounts of data from dedicated memory to the application buffer with very low 

latency.  This is also done in a way that PCIe and FSB bandwidth are not 

consumed.  The measured DMA bandwidth is greater than 4.5 Gbytes/s for four 

channels and greater than 3.3 Gbytes/s for a single channel.
11
 

An increasing performance concern for multi-gigabit Ethernet I/O cards 

and storage applications is efficient, high-bandwidth delivery of I/O data to the 

host.  Direct cache access (DCA) is a protocol used in the Blackford Northbridge 

to improve I/O performance.  This is accomplished by placing data from an end 

device directly into a CPU cache by directly interfacing with the FSB.  Test 

results have shown throughput improvement for the Layer 3 forwarding IPv4 

networking benchmark of 17 percent, as well as over 37 percent improvement for 

streaming exclusive-or (XOR) operations common in storage applications such as 

RAID.
11 

The Blackford Northbridge uses several additional performance 

optimizations to improve system throughput.   

• Speculative Memory Read 
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A read request is sent to memory as soon as the processor request is 

decoded by the memory controller hub.  A snoop filter lookup is launched 

at the same time, but the read request is sent without waiting for the 

results of the snoop filter lookup.  A read cancel can be issued to the 

memory controller if a snoop results in “dirty” data or a retry. 

• Early Defer Reply 

This allows a memory read defer-reply transaction on the FSB to overlap 

the bus arbitration phase before the arrival of data from memory.  When 

read data gets to the FSB cluster, it is immediately sent to the FSB with 

no additional latency.   

• Snoops 

When there is no snoop filter present in the system (as is the case with 

server chipsets), the Blackford Northbridge eliminates cross-buss snoops 

for instruction fetch or data read transactions that are in the modified or 

shared state. 

• Arbitration 

The Blackford Northbridge uses a three-tier, weighted, round-robin 

arbitration algorithm to balance performance between data replies and 

snoops on the FSB.  The weights in the algorithm can be adjusted to suit 

the expected traffic mix on the system. 

• Memory Interleaving 

The memory controller can be programmed to scatter sequential addresses 

with fine-grained interleaving across memory branches, ranks, and 

DRAM banks.  This is used to minimize the number of bank conflicts and 

reduces the application’s power consumption.   

• Partial Writes 

This optimization allows applications such as graphics adapters and video 

rendition programs that rely on partial writes to system memory to 

function in a more optimal manner.  By coalescing the partial writes and 

reducing the possibility of conflict serialization in multi-bus systems, 

increased performance and memory channel utilization are achieved.  



 - 32 - 

This optimization is implemented through logic in the coherency engine 

and memory controller.
10
 

 

 

9. Performance and Power Consumption 

There is a lot of data available to compare the performance of both of 

these competing architectures.  Both Intel and AMD offer benchmark test results 

show that each side performs better than the other.  There are some trends in the 

data that help point toward the fact that both systems have strong and weak 

points.  There are many benchmarks available that claim each processor performs 

better than the other, but the reality is that each serves a different purpose.   

The Standard Performance Evaluation Corporation (SPEC) is a non-profit 

organization that develops and maintains a standardized set of benchmarks that 

can be used to evaluate computers.  These benchmarks are frequently used by 

many companies to compare computer systems, and as a result, to compare CPU 

performance.  There are many systems that have had SPEC results submitted 

using various configurations of the Opteron CPU and the Xeon CPU.  It is very 

difficult to find SPEC results that allow a true “apples to apples” comparison.  

Furthermore, it is sometimes questionable as to whether or not the SPEC 

benchmark tests accurately simulate real world situations.  Given all of these 

factors, it is still useful to look at SPEC results to help determine which CPU has 

better performance.  For most SPEC benchmarks that target pure processing 

power, the Xeon based systems out-performed equivalent Opteron based systems.   

There is a SPEC benchmark aimed at evaluating performance and power 

of volume sever class computers.  This benchmark does a questionable job of 

simulating real world results.  One of the key short-comings of this benchmark is 

that it uses a small database to test queries on.  Additionally, all data tables are in 

memory, so disk I/O is not considered.  Finally, the scale of the simulated user-

base is very small; a maximum of four simultaneous users and only one client 

computer.  To address these short-comings of the SPECpower benchmark, a 

different efficiency test has been developed.  This test uses a large database, 
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includes disk I/O, and has a more realistic amount of simultaneous users (500) 

and a more realistic amount of client computers (32).  Table 2 below shows the 

other differences between the SPECpower benchmark and this newer efficiency 

test (called the Neal Nelson Power Efficiency Test).   

 

Characteristic Nelson Power Efficiency 

Test 

SPECpower Benchmark 

Application Software Apache2, “C” programs Proprietary Java 

Application 

Application Memory 

Footprint 

Large, Complex Small, Simple 

Test Database Size Larger (Approx. 140 GB) Smaller 

Location of Data Tables Disk Memory 

Disk Input/Output During 

Test 

Yes No 

Database Management MySQL, Oracle, Sybase Undocumented 

Access to Data Tables Structured Query Language Undocumented 

Record Locking Yes (50% of all 

transactions) 

No 

No. Trans. Per screen/batch 1 1,000 

Max. Simultaneous Users 500 1, 2, or 4 

No. of Client Computers 32 1 

Network Traffic During 

Test 

Complex Simple 

Operating System Suse Linux Ent. Server Varies 

Operating System Tunables Always identical Varies 
 

Table 2: Comparison of Power Efficiency Benchmarks 

 

 

The most interesting test data available compares a two CPU Intel Xeon 

Quad-core system with a two CPU AMD Opteron Quad-core system.  The 

systems were compared with 4 GB of memory, 8 GB of memory, and 16 GB of 

memory.  The Intel system outperformed the AMD system in all throughput tests 

by an average of 2.48% in the 4 GB configuration, an average of 2.79% in the 8 

GB configuration, and 2.59% in the 16 GB configuration.  These results match up 

with the SPEC results for throughput, where the Intel based systems almost 

always outperformed equivalent AMD based systems.  It is important to note that 
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at the heaviest utilizations, in all configurations the Xeon based system 

outperformed the Opteron based system by less than 1%.  It is also important to 

note that while these results are on very similar systems, the Xeon based system 

had a higher clock frequency (2.33GHz vs. 2.0GHz) than the Opteron based 

system.
12
   

While the Xeon based systems perform best in throughput, the Opteron 

based systems have a clear edge in power consumption.  As more memory was 

added to each system, the advantage in these results was increased to the Opteron 

based system.  In the 16 GB configuration, the Opteron based system ran at 

21.3% (71 fewer watts) less power at full loading, and at 41.2% (121.6 fewer 

watts) less power when idle.
12
  The power savings when the systems are idle is 

particularly important as studies indicate that many servers are powered on and 

idle nearly 80% of the time.
12
  The Xeon processors are generally efficient, but 

the additional need of a separate memory controller adds to power consumption 

(up to 47W) and lowers efficiency.  Additionally, since the Xeon based systems 

use FB-DIMMs, there is an additional amount of power consumed for each FB-

DIMM added to the system (about 4W per DIMM).  This is due to the addition of 

the Advanced Memory Buffer on each FB-DIMM that is not present on standard 

DDR2 DIMMs.  This explains why the power usage of both systems is closer 

when less memory is used.  Finally, since the Xeon processors are being 

produced with a 45nm process instead of the 65nm process still being used for the 

Opteron, there is more leakage current, which is an additional explanation of the 

addition power consumption of the Xeon processor.  

 

 

10. Additional Considerations 

There are some additional important things to note about both of these 

northbridge architectures.  While digging into all of the available information 

about both of these architectures, it is interesting to question why most Intel 

configurations boast higher performance specs than equivalent Opteron 

configurations.  Both systems have similar memory bandwidth, and while 
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Opteron has a clear edge in power consumption, it could be expected that 

throughput performance would be closer to that of the Blackford based systems.  

One likely reason for the performance disparity is cache size.  This is one of the 

trade-offs made by the Opteron’s designers.  While Blackford moves all of the 

logic relating to memory management to a separate chip, the Opteron has much 

more complexity on its die.  This is the likely reason that Opteron processors have 

only 2MB of L2 cache to share (512KB each) with four cores, while the Xeon 

based processors share 8MB of cache dynamically between four cores.  

When it comes to power saving and improved efficiency from previous 

generations of processor, there is a great difference in how Intel and AMD are 

approaching their solutions.  Most of the gains in efficiency from the Xeon 7100 

to the Xeon 7300 series come from a process improvement that allows for smaller 

transistors.  This is of interest because the current competing generation of 

Opteron Quad-Core CPUs is already far more power efficient, yet has not made 

the move to the same smaller transistors.  Opteron accomplishes this by 

segmenting each core into sections that can be powered on and off as needed 

(such as the floating-point unit).  Will there be more gains in efficiency and will 

AMD be able to close the throughput performance gap by switching to smaller 

transistors in the future?   

 Next, it is important to consider system scalability when evaluating both 

of these architectures.  As systems continue to grow, performance will continue to 

improve as the ability to add more CPUs to a system continues to grow.  The 

Blackford Northbridge (and all other current Intel Xeon Northbridges) currently 

allow for only a maximum of four CPUs in one system.  Any additional CPUs 

past four would require the central memory controller hub to grow in complexity 

to accommodate additional Front-side bus links to the extra CPUs.  It is worth 

wondering how possible it will be to continue adding support form additional 

CPUs in this configuration, and it certainly seems that having a central memory 

controller would make scaling more difficult.  The current Opteron Northbridge 

also accommodates up to four processors, and work is being done to allow that to 

scale to eight and beyond.  By avoiding the need for a central memory controller, 
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it seems that the Opteron Northbridge should be able to continue scaling more 

easily than the Blackford Northbridge. 

 The last point to consider is the future feasibility of each of these 

architectures.  The Blackford Northbridge is very dependent on the performance 

gains it gets from the FB-DIMM architecture.  There is some question in the 

industry as to whether or not memory manufacturers are going to continue 

supporting FB-DIMMs.  The industry is questioning whether or not the trade-off 

of additional power consumed (each FB-DIMM uses around 4W more than an 

equivalent DDR2 DIMM) is worth the gain in performance achieved.   

 

 

11. Conclusion 

When comparing two very different architectures, it is important to be aware 

of the strengths and weaknesses of both, and how those apply to the intended use 

of a system based on either architecture.  The current generation of Intel Xeon 

processors based on the Blackford Northbridge boast better over-all through-put 

performance (although this does drop off with increasing system utilization), but 

has a substantial weakness efficiency and power usage.  This is due to Blackford’s 

reliance on a separate memory controller, as well as the additional power 

requirements of the FB-DIMMs used as the system memory.  The current Opteron 

based systems traded off cache size in favor of including an integrated memory 

controller on the CPU die.  This has resulted in lower throughput performance 

than the competing Blackford architecture, but has resulted in very large gains in 

power performance, and in particular a much higher performance-per-watt.  

 The strengths of the current Blackford system seem to lend itself to being 

used in situations where computational performance is the only factor to be 

considered, such as in graphical rendering, or for other scientific purposes where 

“super-computers” would typically be used.  The power efficiency performance 

of the Opteron seems to lend itself to being used in very high utilization servers, 

and in main-stream IT configurations where economical factors (cost to maintain 

the system for example) would be of great importance.  It will be very interesting 
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to see if future versions of each of these architectures can successfully blend the 

raw computing power of the Blackford based systems with the power efficiency 

of the Opteron based systems. 

The battle between AMD and Intel in the high-end server market-place will 

continue getting more interesting.  Intel is planning to introduce a point-to-point 

processor interconnect known as QuickPath.  It is being created to compete 

directly with the HyperTransport interconnect system AMD is using in Opteron.  

Beginning with the release of the Nehalem processor, Intel will have integrated 

memory controllers onto their CPUs, much like Opteron, and will have eliminated 

the separate memory controller hub currently in use.
13
  Additionally, AMD is 

working to move the next Opteron processors to a 45nm process.  Doing so will 

allow AMD to add much more L2 cache to their processors, but will increase their 

leakage current, and potentially increase power consumption.  It will be very 

interesting to see if the Opteron can catch up to the Xeon in throughput, and if the 

Xeon can improve its power consumption to better compete with Opteron. 
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