/

B1 GEORG

UNIVERSITY

Volgenau School
of Engineering

Design Document

Logic Analyzer/Bus Sniffer

Team Members:
Furat Alhafez
Sultan Alghamdi
Sam Nepal
Julian Nigg
Thomas Senai

Shahroz Shahbaz

Date of Submission: 12/06/2024

Faculty Advisor: Dr. Jens-Peter Kaps
Associate Faculty: Dr. Craig Lorie

Course Coordinator: Dr. Tolga Soyota

Page 1 of 95

L. PrODIEIM STATEIMIENT. ... e eeeeiieeee e e e e e e e e e e e e e e et e e e e e e e e e e e eee e aaeeeeeeeeae e aaeeeeeeeeeeennaaaseaeeennnanns 2

1.1 Motivation and Identification Of NEed.........c.cecieriiiiieriiieiieie et 2
1.2 MATKEE REVIEW.....einiiiiiiiiiie ettt st et sa e et esat e et e sat e e b e nbb e e e eanee 2

2. Project Requirement SPeCIfICAtION.eeiuiiiiiiiiiiiiieiie ettt ettt ettt e e et e e e e e 3
2.1 MISSION REQUITEIMENL. ... eiiutiiiiieeiieeiie ettt ettt ettt e et e et e st e eteesaaeesbeessaeeseesaseenseensseeeesseeennnne 3
2.2 Operation REQUITEIMENTS.ccuiieiiieeiiieeiiieeiieeeiteeeiteeesteeeeteeesaeeesaeeessseeessseeessseessssssseeessansssseeeeens 3
3. System Decomposition & ATCHILECTUIE.cccviieiiieeiiieeeiiee ettt eee et e e e e s veeesabeeesaaeaeeeennesaeas 4
3.1 Level Zero DeCOMPOSILION.cc..ieiuieriieiieeieeiieeiieetteeiteeteeetteeteesttesseessaeebeesseeesnsseeesnsseesnnsaeesnnseeens 5
3.2 Level ONe deCOMPOSILION.ccuuiieiiieeriieeitieeiteeeiteeeiteeesteeesteeesbeeessseeessseeessseesnsseeesssaseessssnssseeesannnns 5
3.3 Level TWO DeCOMPOSTEION.cciiieeieiieeiiieeiieeeiiee ettt e eieeeeieeesbeeesbeeesseeessseeesaseaesseeesseessseaenssseeens 6
4. Background KNOWIEAEE.coouiiiiiiiiiiiiieiiee ettt ettt e e iae et essbaeeesssbeeeensaeeenns 7
4.1 MicrocOntrOller (IMCU).....ccouiiiiiiieeiiee ettt ettt et e et e et e et eeesteeesaaeeesennnssnaeeeennssseeaaeans 8
4.1.1 STMB2CUDECIDE.......cc.oiiieiieieeee ettt ettt ettt ae e st e se e b e eseenseensesneenseenseenns 8
A.1.2 HAL DIIVETS.c..eiutiiiiiiiteteeie ettt ettt sttt et st b et sht et e e e st e bt e st e saee bt entesaeenbeenneenaee 8

4.2 Graphical User Interface (GUI)........ooeuiiiiiiiiiiieeciie ettt e e e e e e enaaaeee s 9
4.3 Hardware APPIOACKH.......cccuuii ittt et e et e e e e e ta e e etaeeetaeeetaeeebaaeaeeennnaaeens 9
5. DEtAIled DIESIZN..cuuiiiuiieiiieiiieeie ettt ettt et e bt e et e et e et e e st e e be e bt e enbeetaeenbeeeanbaeeeanbaeeeanbaaeeans 10
N LY (O B B ToT ¥ o SRS URRRPPPPSR 11
T O Y (G O I 1 T 1 USRS 11
5.1.2 MCU Hardware UtIHZAtION:.........cccuiiriiiiiieiieeiiesiie ettt ettt et saeeteesieeesbeeseneesnsaaeanes 13
5.1.3 MCU Trigger FUNCHONAIIEYeieiiieiiieeiie ettt evee e e e e et ae e e ennenaeeeeennnns 13
5.1.4 MCU/GUI COMMUNICALION: 1.....vvieetieeeiieeeieeeeireesiteeesseeesseeesseeassseaessseesssssesssseesssseesssseesssseesnns 14

5.2 GUI DIESIZN .. eieutiieiiieiie ettt ettt ettt e ettt e e et e e bt e e sbe e saeeateesseeeabeensaeenseenseeesseesaesnseeensseesansseeennsns 14
5.3 PCB/CITCUIL DESIZN.c..uviiiiiiiieiiiieeiieeeieeetee ettt e ettt e stte e st e esaeeessseeeaseeesaeesnsaeesannsssnaessssssseaeesannses 18
5.3.1 Nucleo Board SCheMALIC.ccuiieiuiiiiiiieciie ettt e e e e eae e e aaeeeraeeebaeeeasaeeenes 19
5.3.2 Bus Transceiver SChEMALIC.c..cieiuieriieiiieeiie ettt ettt ettt e seee et eesaee e ensaeeeensaeeennees 19
5.3.3 USB SOFt SEATT...e..eeiutieiiieeiieit ettt ettt et e sb e bt e sbe e et e e e bt e e e e ateeeeneee 20
5.3 4 PCB LAYOUL.....oiiiiiiiie ettt ettt e e ettt e e e et e e e e sasteeeeessaeaeeanassaeeennsseaeeennsaeeeeeeeeeaaannnnns 22
5.3.5 FINAL PCBi..oiiiiie ettt ettt ettt ettt 23

5.4 DEVICE CASC....eeutiiuiiiniieiiie ettt ettt ettt ettt et st et e e h et et e s at e e bt e e ht e e bt e sat e e e e bt e e e e a bt e e s aabteeeannees 24
5.4.1 DEVICE CaSE OVETVICW.......eeieiiieeiieeiiieeeiteeesteeesteeessseeassseesssseessseessseesseeesssesesssesessssssseesssnssens 24
5.4.2 Top View of Base and Lid..........ccooiuiiiiiiiiiiiicieecee e 24
5.4.3 Bottom View of Base and Lid..........coocoiiiiiiiiiiiiiiieeeeee e 26
5.4.4 Top View Of ASSEMDIEA CaSEC......ccueiieiiiiiiieiiiie ettt e et e e aeeesabe e e saaaeeeeeennens 26
5.4.5 Bottom View of ASSEMDBIed CaSe........coueruiriiriiniiiiiriiiieeieee ettt 27

Page 2 of 95

5.4.6 Front VIEW Of ASSEIMDBIEA CaSE....ouuunnneeee ettt e e e e e e e e e e e aaaeeeeeeeeeaeaaaaees 29

5.4.7 Side View of ASSEMDIEA CaSE.....c.uieruiiriieiiiiiieiieeie ettt ettt ettt e et e e e enbaeeeeeneeeeneees 29
5.4.8 Rear View of ASSEmMDIEd CaSe.......cccuviiriiiiiiiiiiie ettt stee et eesiaeeessaeesaaeeaeeennes 29
5.4.9 Isometric View of ASSemMDbIed CaSe.........cccueeevuiieeiiiieiiieeeiie et eeeeeeree e e sae e e e e earaeee e e e eeenees 30
5.4.10 Final Printed Case MOdeL..........cccuiiiiiiiiiiieiiiciee ettt ettt eeebee e 30
6: Preliminary Experimentation PLan.............ccooiiiiiiiiiiiiieccce et 31
6.1: Preliminary EXPETiMENt...........ccoouiiiiiieiiiie ettt et s e e e et e e sive e e s aveeesssaeesseeesaeeeesnnnsseens 31
6.2: Testing Procedures for COMPONENLS.........c.eevuiiiiieriieeiieniieeieerite et etteeteeaeeereesaeesaeeseesnnessnseeeenns 31
6.2.1 MCU TESHNE....ceetvieeiiieeeiieeeiieeetee et e erteeetteesteeesseeesssaeasssaeensseeassseeasseesssseesssessseeessseeesennnes 31
0.2.27 QUL ettt ettt et e st e bt et e e st et e e ne e e st et e enteese e seenteententeenteeneenneens 34
0.2.3 PCB TOSTINE....c.uiiitieiiieeiieitie ettt et et e et esttesbeesteeesbeesseeeabeesseeeaseenseesnseensteensseeeanssaeesnsseeeannses 78
7. Project Success Evaluation:........c.coiiiiiiiiiiiiiic ettt et e e e e et e e eane e e e eennes 80
7.1: Overall Project Evaluation:.........ccc.ooiiiiiiiiiieiee ettt sttt 80
7.2 ONOT TSSULS: ..t eutieeiieentieeiieette et e et e et e ebeestte e bt e s ateesbeesseeesseeseaeaseeseesaseesseessseenseesnseanseeanseanseesnseeenns 81
8 AAMINISIIALIVE SECTIOM. . .eeiiuiieeiiieeiieeeiieeeite ettt e eetee ettt e st e e eateesseeessseeessseeensseeesseeesseeansssneeesesnssneeens 81
LT O 0 (0 [11 A (0 Y4 (LT UURRUPPPSPRNt 82
T B IR (11 0 21 T OSSR USRI 82
BL.2: MU ...ttt ettt et ettt e st e et e et eesbeesseeeab e e aseasbeessbeenba e sbeesbeesseensaensseesseenseennnns 82

T G 1) S PTRSRRT 82
8.2 ProjJect Challen@es:........eeiuiieiieeiie ettt ettt ettt e st e et e st e esbeessaeensaeeensaeeennsaeeennnes 83
8. 2.1 FTONE BN ..ttt et e et e et e e et aeeestaaeensaeeessaeeensaeesnnneeannn 83
0 Y/ (1 SRR 83
2.3 GUL ettt et h et et b bbbt et e a e bt et e h e bttt b et 83
8.3: Man, Hour Devoted t0 the ProOJeCt.........c.uiiiiiiiiiieeiie et aaee e e s e e e e e 84
841 FUNAS SPONL....oiiiiiiiiiiiecie ettt e e e st e e s teeessbee e ssae e sseeesseeenssaeensseesnssaesssseensseeens 84
8.4.1: Front ENd — VETSIONcccuiiiiiiiiiiiiiciieie ettt ettt et e e e e e 84
8.4.2: FTont ENd — VEISION 2.....uviiiiiiieiiie ettt ettt ettt e et e st e st esnaeeensaeesnnssaeeeeennnnnns 84
8.4.3: Front ENd — VEISION 3......iiiiiiieiie ettt et et e et e et e e eaaeeennsnaeeeeeennnns 85
B A: IMICU L.ttt et h ettt b ettt b et e h bbbt nb ettt et e e 86
8.4.5: Total FUNA SPENL....iciiiiiiiiiieiie ettt s e et e st e e et e e ennaeeennssaeeesennnnnes 87
8.4.0: COSt POI UNIL....ciiiiiiiiiieiiis ettt e et e et e e s b e e e s abeeesaseeesseeessseeennseesnsssaeeeeennsnnns 87
8.5: Individual Team Member ContribULIONS.cccvieiiiiriieiieriie ettt eeeeee e 88
8.5 1 FTONE ENA...oiiniiiieie ettt ettt et e e st e et e e et ee e sbeeenseeesaeeeenns 88
T 0 Y/ (1 PRSP PS 88
B.5.3: GUL ettt ettt h ettt b ettt b ettt nb et et e e 88

Page 3 of 95

TR I S B I B I o4 s FO PRSPPSO 88

0. LeSSON LRAIME.euieiiiiieiiieteeeee ettt ettt st e bbbttt et sa e bt et sbe e teeenbeeea 88
9.1: Additional Knowledge and Skills Learned............cccccueeeiiiieiiiiniiiecieeee e e 89
O.1.1: FrOnt ENd..c.eeiiiee et ettt ettt et e st e b e st e e beesateebeesnneeeans 89

0. 1.2 MICUL ..ttt et h ettt h e bt e a e h ettt sb e bt it a et et bt eaeeen 89

L2 K € 1] OSSP SRRPRRRPRPSRRRRON 89

0.2: TeAMING EXPEIIEIICE.eeutieiieeiiieiie ettt ettt ettt et ettt e st e et e s bt e et esate e bt e s nbbeeeenbaeeeanseeaeans 89
0.2.1: ProjeCt SUD-TEAMS.eiitieiiiieiieiie ettt ettt ettt e stte et e s sbe et e esbeesbeassaeensaeesensaeeenseeeennnes &9
9.2.2: Team Communication/DyNamMICS........c.eeerueeerieerrieeeiieeeiieeeiteeessseeesseeesseeessseeessseesssseesssseennns 89
9.2.3: Project Management/Schedule.............ooouiiiiiiiiiiii e 90

L0, RETRICIICES. ...ttt ettt et a e bt h e bt et e bt e bt et e she e e bt e e bt e ebbeenabeenaneeas 90

Page 4 of 95

1. Problem Statement

1.1 Motivation and Identification of Need

The logic analyzers available on the market today are either too expensive to be considered
affordable or very cheap, but not very efficient. The limitations of the current practice are the
cost of the materials. Our approach is focusing our model on an affordable developmental board
to keep costs low and to program all the needed features. It will be able to perform similar tasks
to the ADALM?2000. This simplified logic analyzer is targeted for college and university
students to help them understand the fundamentals of digital circuits. The logic analyzer can
help school and university student have hands on experience on the logic analyzer, which will
help them understand the basics of circuit analysis without any worries or shorting the circuit
and destroying the board as they are inexpensive. This will significantly reduce the financial
burden on the students as this project is aimed at producing a logic analyzer quarter the price of
logic analyzer available in the market. Additionally, with high-speed data transmission port and
high clock speed this logic analyzer can pick the signal with greater accuracy and precision.

1.2 Market Review

The high-end costs for logic analyzers are the ADLAM2000, Analog Discovery 2 (AD2) and
Saleac Logic 8, which cost around $236, $299, and $499 respectively. These have many
important functionalities, but the cost is not realistic for many students. There also exists a logic
analyzer that costs as cheap as $20 such as the SparkFun USB Logic Analyzer. The issue with
cheaper logic analyzers is that many of them do not provide all the necessary functionalities
needed for Computer and Electrical engineering students.

Model Saleae Logic 8 Analog Discovery 2 | Advanced Active Learning Sparkfun USB Logic

(AD2) Module (ADALM 2000) Analyzer

Device Picture

Power connection USB Type 2.0 USB Type 2.0 USB Type 2.0 USB Type C
Number of Digital 8 16 16 8
Channels
Maximum Sampling 100 100 100 24
Rate
(MS/s)
Supported Logic 1.8-55 1.8-5.0 0.0-5.0 20-5.25
Levels
V)
Software Saleae Logic Digilent Waveforms ADALM Scopy Open-source Sigork
Price $499.00 $299.00 $236.25 $19.95

Page 5 of 95

Figure 1: Comparison Table of examples of existing Logic Analyzers

2. Project Requirement Specification
2.1 Mission Requirement

The device shall offer an affordable solution for analyzing digital signals. It shall be user-
friendly, capable of connecting to any PC running macOS, Windows, or Linux through a USB
connection, and display a graphical user interface on the PC.

2.2 Operation Requirements

Input/output requirements:
® This device shall have 8 channels that can accept input signals.

® The device shall support 3.3V and 5.0V logic.

PC Interface requirement:
® The device shall use USB to communicate with the user’s device.

® The device shall be powered using USB.

Functional Specification:
® The device shall sample at a maximum rate of 5 MHz and display the rate on the
user's device.
® The device shall be compatible to run on Windows, Linux, and macOS.
¢ This device shall display digital signal in the form of squares waves.
® This device shall decode input 12C signal and SPI.
® This device should decode asynchronous UART signals.
¢ The device shall adjust the sampling rate and adjust buffer size through the GUI

upon the user’s input.

Page 6 of 95

3. System Decomposition & Architecture

3.1 Level Zero Decomposition

In this level Zero Design, it describes the essence of a logic Analyzer. It takes in logic signals
that might be potentially encoded in one of the various communication protocols (I2C, SPI, etc.)
or already decoded logic signals, samples them, and presents them on a plot. It uses the user's
help to decipher what communication protocol the signal is using so that it may plot a more
accurate description of the logic signal being sampled. It also presents a user interface and setting
options to help the user to easily provide the necessary information needed for decoding the logic

| l l

Logic User
Signals Commands

signals.

Power

Logic Analyzer

. Decodes Communication Protocol

. Samples Logic Signals from Port

. Accepts User Configuration Requests

. Displays Decoded Logic Signals

. Presents User Interface for graphs and
settings

User Setting

Logic Plots Interface Options

Figure 2: Level 0 Design

Page 7 of 95

3.2 Level One decomposition

In level one design, it delves deeper into the plan of building a logic analyzer. A 16 pin I/O port
is used to offer the user an abundance of pins to use with the ability to plot all 16 logic signals
coming from those pins. The logic signals pass through the Connection Interface (CI), ensuring
that the voltage protection built into the CI will prevent damaging the vital components of the
Microcontroller (MCU). The MCU takes in User Commands that were given from the software
running on the desktop computer to sample the logic signals at the right time with the correct
frequency. The sampled data is sent back to the computer where it is decoded if necessary and
displayed on a plot for the user to analyze.

16 pin 1/O Ports

Logic
Signals

Sampled Logic Sampled Logic

Data
- Dat ;
Microcontroller 323 » Connection Interface » Desktop Computer

User Commands 5V

Logic Signals User Commands

Logic Signals
Sl Decoded
Logic Signals
A

Display

Figure 2: Level 1

3.3 Level Two Decomposition

The Level Two decomposition goes deeper into each individual element that is needed to build a
functional Logic Analyzer. At the left side of the assembly we place our STM32 board, having
the MCU(Microcontroller) on top of it, which will be configured to meet the requirements of our
task. In the center, our PCB acts as the crucial connection point which links our MCU to PC.
This board will also have a mounting spot for our Nucleo board. The PCB design we have is to
protect our setup from any spikes or over voltages that might be directed to the MCU. On the
right, the user's PC will be used to visualize the logic signals such as [12C, SPI, or UART. This
arrangement enables the user to both view the data and issue commands to the MCU through a
USB cable.

Page 8 of 95

MICROCONTROLLER USER PC
Board
MCU Graphical User
MEMORY | - USB
Interface
CPU = T[IMERS |=» GPIO USB
—&
A powER DIGITAL SIGNALS
FRONT END | 1
SOFT BUS USB 5V POWER
START TRANSCEIVER CONNECTOR | | DATA, USER COMMANDS
A A |

8 T LOGIC CHANNELS

Figure 5: Level 2

Page 9 of 95

4. Background Knowledge

4.1 Microcontroller (MCU)

A microcontroller (MCU) is a tiny integrated circuit that
can be used in embedded systems to control operations
without the need for a sophisticated operating system.
Microcontrollers are customized tiny computers
designed for specific tasks. Numerous devices, such as
cars, robots, medical equipment, and household
appliances, contain them.

A microcontroller's main parts are its memory, which
stores data and programs, its CPU, which carries out rige 3. 570132-Nucleo-F303RE
instructions, and its input/output (I/O) interfaces, which

allow it to interact with other devices. The CPU manages logic, I/O, and computations.
Temporary data and long-term program code are both kept in memory. Peripherals for
input/output facilitate communication with external components. The capabilities of the
microcontroller are further enhanced by additional features like buses, serial ports, and analog-
digital converters.

Microcontrollers can interface with sensors and effectively carry out specific tasks within
embedded systems thanks to a variety of processor architectures, memory types, and
programming languages like C, Python, and JavaScript. They are perfect for controlling
individual functions in a variety of applications due to their dedicated, compact design.

4.1.1 STM32CubelDE

STM32CubelDE is an all-in-one multi-OS development tool, which is part of the STM32Cube
software ecosystem. STM32CubelDE is an advanced C/C++ development platform with
peripheral configuration, code generation, code compilation, and debug features for STM32
microcontrollers and microprocessors. It is based on the Eclipse/CDT framework and GCC
toolchain for the development, and GDB for the debugging.

4.1.2 HAL Drivers

The Hardware Abstraction Layer (HAL) driver layer provides a simple, generic multi-instance
set of APIs (application programming interfaces) to interact with the upper layer (application,
libraries, and stacks). The HAL driver APIs are split into two categories: generic APIs, which
provide common and generic functions for all the STM32 series and extension APIs, which
include specific and customized functions for a given line or part number. The HAL drivers

Page 10 of 95

include a complete set of ready-to-use APIs that simplify the user application implementation.
For example, the communication peripherals contain APIs to initialize and configure the
peripheral, manage data transfers in polling mode, handle interruptions or DMA, and manage
communication errors. The HAL drivers are feature-oriented instead of IP- oriented. For
example, the timer APIs are split into several categories following the IP functions, such as basic
timer, capture, and pulse width modulation (PWM). The HAL driver layer implements run-time
failure detection by checking the input values of all functions. Such dynamic checking enhances
the firmware robustness. Run-time detection is also suitable for user application development
and debugging.

4.2 Graphical User Interface (GUI)

The GUI development aspect of this project aims to provide a user-friendly interface that allows
students to interact with the device efficiently. Our group will be using PyQt6 and PySide6,
which are well known frameworks for cross-platform GUI applications, to develop both a
sophisticated and straightforward interface.

a) Programming fundamentals

There are a few concepts and skills needed to create a functional GUI. The first of which is
having a good grasp of the Python programming fundamentals. Python’s simplicity and
readability makes it an ideal language for GUI development, especially for people who are trying
to do this for the first time.

b) Signal Processing Basics

A basic understanding of how digital signals work, including PWM, SPI, and 12C protocols, is
needed. A good understanding of these will allow us to accurately display and interpret signals
within the GUI.

¢) PyQt and PySide Frameworks

We will be using the 6™ version of this framework which gives us comprehensive tools for
creating GUI applications in Python. These frameworks Include a variety of modules that can be
used for graphical elements, event handling, and more.

d) UI Design Principles

One of the most important things about creating a GUI is making it easy for the user to traverse
it. We need to have a basic understanding of interface design, including layout, color theory, and
user experience (UX) best practices. The interface needs to be both aesthetically pleasing, and
functional, with clear presentation of information.

Page 11 of 95

e) Cross-Platform Development

Fortunately, PyQt6 allows us to create a GUI that works for the three different operating systems
we care about (Windows, Linux, MacOS). We will still need to be able to test if it functions
exactly the way we need it to on all platforms. Mac and Windows testing will be easier to do
since we have group members with those OS. We might need to set up a virtual machine for
Linux testing.

4.3 Hardware Approach

We plan to integrate the USB connector with a PCB to control the voltage input to protect the
data from being corrupted when going into the microcontroller. The USB will be connected to a
computer using the logic analyzer software.

Page 12 of 95

5. Detailed Design

5.1 MCU Design

For the detailed design of MCU, there are three parts. First, the controller layer is the
microcontroller processor configuration. The function of the MCU is required for the GUI. This
function will include RAM, Timer, GPIO and USB transmits/receives. STM32CubelDE will be
used to support these functions. STM32CubelDE is used for setup MCU configuration, and for
coding part of the MCU. For the MCU hardware, this will include the Hardware abstraction layer
(HAL) driver and the low layer (LL) driver. The HAL driver is used to perform functions such as
GPIO, Timer, RAM, and USB. LL driver is used for adjusting or changing in register level while
the MCU is running without reinitialization by STM32CubeMX.

Controller Layer Microcontroller Processor Configurtation

Request From GUI

} STM32 Cube MX
Direct memory Access
Function Layer Sampling
UsB STM32 Cube IDE

Hardware Abstraction Layer (HAL)
Hardware Layer Driver
Low Layer (LL) Driver

Figure 4: MCU Detailed Design

5.1.1 MCU Pinout:

This section provides the pinout view of our STM32 microcontroller. Which outlines the

Page 13 of 95

configuration used in our project. The diagram below shows what functionality has been assigned to
each PIN.

GPIO_Input
GPIO_Input
GPIO_Input
GPIO_Input
GPIO_Input
GPIO_Input

 GPIO_Input
TCK

B1 [Blue PushButton]

RCC_OSC32_IN ™S

RCC_0OSC32_0uUT USB_DP

RCC_0SC_IN USB_DM

STM32F303RETx
LQFP64

S| =
Tp} o1l = NI =|l| =
<< M| | @] o] @
o ol o] o] o] o

GPIO_Input
GPIO_Input
GPIO_Input

GPIO_Input

GPIO_Input
GPIO_Input
GPIO_Input
GPIO_Input
GPIO_Input

LD2 [Green Led]

Figure 5: MCU Pinout from STM Cube IDE

e PB0 to PB7: In our application these pins serve as input channels for receiving the logic
signals from Channel 1 to all the way Channel 8.

e PBS8 to PB15: These pins serve as additional channels but currently not assigned to any
channels. Can we integrate with other projects.
¢ PAS: This PIN serves as an indicator of our MCU is working properly and sampling the

data continuously.

¢ PA11 and PA12: These pins form the USB data interface, with PA11 as USB_DM (Data

Page 14 of 95

Minus) and PA12 as USB_DP (Data Plus), allowing for USB communication essential
for data transfer and device control.

¢ PF0 and PF1: These pins are used for connecting an external crystal oscillator, which
allows USB connectivity.

5.1.2 MCU Hardware Utilization:

The STM32 Microcontroller leverages an array of integrated hardware components to achieve
efficient logic signal capturing and processing. Timer inside the MCU is responsible to sample
the data so the accurate and efficient data has been captured without errors. MCU leverage RAM
as buffer to store the data and transmit the data over to the GUI front. Using internal timer, based
on the user specified sampling rate MCU capture logic signals and stored them into this buffer in
circular motion and ensure seamless flow of data. The Use of Timer, GPIOs, RAM enables the
STM32 to function as a robust and precise logic analyzer.

Page 15 of 95

(Start)

\
Sample Timer
begin

\

- PreTrigger J — Post Trigger Transmission

Timer2 ISR |e—— State ol — Siata > State
—
NO
L YES v
Sample & T
Buffer NO Transmission
-) to User PC
If Timer2 ff Timer16

Interrupt Interrupt

Trigger

u YES
Activated YES
Start l
Timer 16 Timerl6
ISR
Exit ISR Y
Stop All
J Timers
L

Figure 6.1: State Diagram for our MCU configuration

5.1.3 MCU Trigger Functionality:

The trigger functionality is based on user configuration on which channel has active trigger
condition, on which edge (rising/falling edge), and the size of the post trigger samples for the MCU to
handle. The MCU will sample the pre-trigger sample size, which is calculated by taking the buffer size
and subtracting it by the post trigger size set by the user and then proceed to check for the trigger
condition. If the buffer is filled before trigger condition is met, it will circle back to the start of the buffer
and overwrite old pre-trigger data with new pre-trigger data. Once trigger condition is met, Timer 16
will begin, which has been adjusted to set off after a certain number of samples have been completed
which is specified by the user as post trigger samples. Both timers are stopped, and the buffer is
transmitted to the GUL.

Page 16 of 95

Trigger

sample clk | | | | | f | | | | |

SDA | | L
scL | i4fF FL: i1F TLL &
3 1 5 { 4 | 4 & | 8 | %

—— Pre-Trigger ; Post-Trigger

Buffer |

Address 0 Y 1 Y 2 Y 3 Y4 Y5 X6 X7 YX8YoYo)Y1)2]

Figure 7.2: I2C Digital Wave Form

5.1.4 MCU/GUI communication:

For the GUI to send commands and configurations to the MCU, it must send three 16 bit (word)
transmissions for each command. The first word (Command) is always saved in the MCU, while the
second word (Value 1) is overwritten by the third word (Value 2) for the trigger edge and trigger pin
commands, or the first and second word is combined such as the timer 16 period and timer 16 prescalar.
Timer 2 has a period size of 32 bits, therefore, two commands are required to modify the upper 16 bits
and the lower 16 bits. The MSB of trigger edge refers to PB0, and the LSB refers to PB7. The 1
represents rising edge while 0 represents falling edge. A similar layout follows the trigger pin, where 1
represents the trigger condition will be checked for that pin while a 0 represents that the trigger will not
be checked on that pin.

Command Name

-Command -Valuel -Valuez

Start 0x00 OxXX OxXX

Stop 0x01 OxXX OxXX

Trigger Edge 0x02 OxXX 0x00-OxFF
Trigger Pin 0x03 OxXX 0x00-OxFF
Timer 16 period 0x04 0x00-OxFF 0x00-OxFF
Timer 2 upper Half Period 0x05 0x00-OxFF 0x00-OxFF
Timer 2 Lower Lower Period 0x06 0x00-0OxFF 0x00-0OxFF
Timer 16 Prescalar 0x07 0x00-OxFF 0x00-OxFF

Figure 7.3: MCU/GUI command table

Page 17 of 95

5.2 GUI Design

Upon starting the executable, the GUI will check to see if the microcontroller is detectable via
USB. Once a connection has been formed, the user will be introduced to a screen where they can
start using the logic analyzer. The user can start sampling the data with the default parameters or
they can adjust the sampling rate, trigger conditions, or channels being displayed before

sampling. While in the sampling state, the GUI will actively decode the signal and display it in a
human readable form.

McU STOP PRESSED? Data Displayed

CONNECTION

NO

Trigger
Condtions
: Adjust Input
Sampling Rate Parameters
(O EEREE

Data Data

Figure 7: GUI Flow Chart

Page 18 of 95

Receive Data from MCU

YES
Data Processing —_— Plotting

H

Visualization

Figure 8: Detail Design of GUI

The GUI is designed in a way to allow the user to select their choice of decoding, by pressing
one of the 4 buttons up top. On the right side of the graph, the user can choose which channels
they want to be active on the graph and they can select what the trigger condition is going to be
for the selected pin. The user also has the ability to choose a sample rate and the number of
samples. The GUI has the capability to continuously sample by pressing the RUN button,
additionally it performs the single capture. The configuration settings window can be reached, by
right clicking the channel buttons on the right.

Page 19 of 95

Signal

Cursor: 0.000000 s

Signal

Logic Analyzer

D Rename

Rising Edge

No Trigger

No Trigger

No Trigger

Trigger

Reset to Default

DIO 6

No Trigger

No Trigger

No Trigger

Sample Rate (Hz): 200000

Number of Samples:

10 "

Time (ms)

Logic Analyzer

D:0x0

12C2
Ch3:SDA
Ch4:sCL

® © @ I2C Configuration

Clock Channel: ~ Channel2 v
Data Channe Channel1 v
Address Width: 7bits @ 8 bits

Data Format: Hexadecimal v/ 12¢3
Ch5:SDA
Che:SCL

oK Cancel

12c4
Ch7:SDA
cha:scL

Single

SDA - No Trigger

SCL - No Trigger

SDA - No Trigger

SCL - No Trigger

SDA - No Trigger

SCL - No Trigger

SDA - No Trigger

SCL - No Trigger

Sample Rate (Hz): 200000

Number of Samples: 300

Start

Figure 11: I12C Decoding Interface

Single

Page 20 of 95

Logic Analyzer
Signal

SS - No Trigger

SCLK - Rising Edge

MISPE0xT

® © @ SPI Configuration

S5 - No Trigger
Select: Channel 1 v

Active: ® Low High
Clock: Channel2 v
Most: Channel 3 v
MISO: Channel 4
BHEE | ¢ SCLK - Rising Edge
FirstBit: ® MSB
Data Format: Decimal
ok Cancel
Sample Rate (Hz):
Number of Samples:

Start Single

Logic Analyzer

Signal

UART 1

G Trigger - No

UART 2

= Trigger - No Tri

UART 3
e Trigger - No Trigger

UART 4
Cha

UART 5

e Trigger - No Trigger

Trigger - No

;ggo Yo Trigger - No Trigger
ch7 s .

2400

4800
9600
19200
38400
57600
74880
115200

Trigger - No Trigger

Baud Rate: 9600

Single

Figure 13: UART Decoding Interface

Page 21 of 95

5.3 PCB/Circuit Design

5.3.1 Nucleo Board schematic

For this schematic, we have the Nucleo board with all its appropriate pins powered or grounded.
Pins PBO-PBI15 are the GPIO pins that take in the digital signals after being scaled down by the
bus transceiver. Pins PA11 and PA12 are the Data lines + and — respectively. These pins are
directly connected to the USB which in turn powers up the MCU. E5V is our 5V connection to
draw power from the USB and power up the MCU. The 1.5k pull-up resistor is solely there for
USB detection and the 22-ohm resistors are for data noise supression.

Mucleo Board + USB

—_——— e e NucleoBoard + USB
| C3
| - 5 +3V3 e
| eI JEFT uc303_RIGHT |
<HPC10 PClL 2 e pegl2x
| XEP{ZiQ PD2€>< PBB 3| ppa PCE [t v i) 1
2VDD Esvi® > 45y PBYS 6] = USB Micro
| = = —1PB9 PC5 2% oy
=L1B00TO GMQ_Dxl—D GND Lavop usviB B2 o | veusialieus @
| e el GND > GND nepd <
<UINC IOREF & N A e 22 D+ 3 D:ﬁ o
| Adras reseTik A3pps paafe — —F D-o[" o
<2 PALY WILE s 133 15 py7 ppio|l6PB12 — o 2
| <l pa1s 5\3% PB617 nag ngp1/18PBL1 S &
ND. 22 GND GND GND S i GND@,_% GND = LDL
PB721 o 22
lpe1s vNEX I op 22PB1
| £ Pcay ne 2 PB1025 26PB15
7 5 Z9PB1D PBI5S[GND
| 2L pe1s pao ek PB427| o, og1s |28 PBLE
%pm PM%Q(PB529 ppe ppyg32PBL3
| ;]_EPFI PAL %3{4 8O PB351 PB3 ACND B2
RIVBAT PBOSE 23pato poupk
| 2lpe2 PCL 22 Pa2 Ne P&
| >43—PC3 PCOA(g FA3 N{:E‘

Figure 9: Microcontroller schematic.

Page 22 of 95

5.3.2 Bus Transceiver Schematic

The purpose of the bus transceivers is to properly scale down the voltage without altering the
quality of the digital signal. The intention for our bus transceivers is to take in 16 digital signals
at side B and output those to GPIO PB0-PB15 on our Nucleo board from side A. The bus
transceiver itself is powered on by 3.3V which is gathered from the MCU pin 16.

Bus Trancelvers

M | |
I ' |
Ch 5 13 1 c5
| 100nF 30320-5002H8 100nF |
1 2
1 2
| 313 y |
| 5 g g8 |
| 7 |3 g8
191 3 10 12 |
11 12 |
| 13 |43 |
| 15 |- 15|16 |
17 147 1p}-1B
| o 19 |/q opl20 . |
A o= =~ =
| - : : S
| & e et e e A | e (1 1= N | Rt st 1 e v e |
| = § SEEaD2afa8E 2 g Esmabdaid § -
in = in |
T -r
Mo~ [T
| =4 [|

T =
| = -3 F{

" TEEEEEEE LY zegszozz BE |
|] | m| | w| of ~| @ = r.hmr--onncrlmm 4| - |
| [B B L = Ty BT [T9 IR s I R +] |

m ool o oo ol oA O oo N 4+ Om
£ < B
Figure 10: BUS TRANSCIVER
5.3.3 USB soft start

Soft start is a circuit designed to gradually power ‘On’ the system, preventing the sudden voltage
surge caused during the initial startup reducing the stress on the electrical component. The soft
start circuit uses an RC network to control the charging of a capacitor C1, which in turn
regulates the MOSFET’s gate voltage. This allows for a controlled and gradual increase of the
output voltage supplied to the microcontroller circuit.

Page 23 of 95

USB Softstart
(¥a)
()
N =
O o
D As\ S
1A
C1 ') ——¢
100nfF w -
Lo
| |
| X
100nF PWR_FLAG
C2 R3
R1 1K
1M
VBUS
02 YV
éED %
GND

Figure 11: The USB Soft start circuit.

Figure 13: The USB Soft start circuit Simulation

Page 24 of 95

The voltage for this simulation slowly increases until it reaches the max voltage (5V) at around
1.5s. This incrementing of the voltage protects against frying the pins due to a sudden change in
voltage.

VOut(t) = Input VOltage % [1- (e—t/RCI)]
=5V * (1 — ¢ M5/ 00M*250B)

=5%(1-¢e%% Volts
=4.98Volts (after 1.5 seconds from initial start t = Osecs

Where, R = Resistor and C = Capacitor, t = any instance of time

The formula for calculating the output voltage of a soft start circuit considers input voltage,
resistor value and the capacitor. The output voltage depends upon the capacitor charging and
discharging behavior through resistor R1, which controls the gate voltage of MOSFET, resulting
in controlling the drain-source current.

5.3.4 PCB Layout

We chose a 2-layer board for this PCB to keep our total device cost under $50. Most of our
tracks use a width of 0.25mm (about 0.01 in); however, for our power traces, we used 0.4 mm.
There is a common ground plane on the front and back of the board. A design choice we made
with the data lines was to keep them as close as possible to each other on the PCB to avoid as
little interference as possible. Lastly, there is silkscreen labeling the pins for testing use.

Page 25 of 95

5 5
missT 1 ﬂs_gl;'.,q 2:)_1_9_;:,1
. -V -

0184 araq\
LR a1aq]|
apd zraq.

OWo BAY eA9 OLA9 tlA9 StE9 £tA9 ALA] 289 dHo
aHo 089 tB9 €89 EA9 #d9 289 @89 YA9 dHo

Figure 14: PCB layout

5.3.5 Final PCB

The PCB was manufactured through JLPCB. In addition, all the SMD components (resistors, bus
transceivers, MOSFET, LED) and the micro-USB were soldered onto the PCB through JLPCB for a
little extra (~$7 per board). The only components manually soldered onto the PCB were the four 1x19-

pin headers and the twenty-pin connector.

Page 26 of 95

Figure 15: Final PCB

5.4 Device Case

5.4.1 Device Case Overview

The primary objective of designing a case for our logic analyzer was to protect the internal hardware
components from physical damage while enhancing the device's overall visual appeal. Created using a
Tinker CAD, the case features a robust and compact structure specifically designed to securely house the
logic analyzer (PCB + Microcontroller). The design consists of two pieces: a base that firmly holds the
logic analyzer and a lid that covers the top for additional protection. It incorporates precise cutouts for
connectivity and ventilation, ensuring optimal functionality and cooling. The STL file for the design was
exported and 3D printed using a Reality Ender 3 Pro, which is freely available to GMU students. The
final version was fabricated using PLA plastic with a 25% infill density, offering an ideal balance
between strength and lightweight construction.

Page 27 of 95

5.4.2 Top View of Base and Lid

Figure 16 : Top12 View of Base

Page 28 of 95

Figure 17 : Top13 View of Lid

5.4.3 Bottom View of Base and Lid

Figure 18 : Bottom14 View of Lid + Base

Page 29 of 95

5.4.4 Top View of Assembled Case

It

T L

Figure 19 : Topl5 View of Assembled Case

Page 30 of 95

5.4.5 Bottom View of Assembled Case

Figure 20: Bottom16 View of Assembled Case

Page 31 of 95

5.4.6 Front View of Assembled Case

Figure 21: Frontl7 View of Assembled Case

5.4.7 Side View of Assembled Case

Figure 22:18 Side View of Assembled Case

Page 32 of 95

5.4.8 Rear View of Assembled Case

Figure 23:19 Rear View of Assembled Case

5.4.9 Isometric View of Assembled Case

Figure 24: Isometric20 View of Assembled Case

Page 33 of 95

5.4.10 Final Printed Case Model

Figure 215: 3D Printed Case for our Logic Analyzer

6: Preliminary Experimentation Plan
6.1: Preliminary Experiment

Testing for the prototype will be split into three core components, PCB module, Microcontroller
unit and Graphical User Interface. Each of these components is tested individually to validate its
functionality once the component is integrated.

6.2: Testing Procedures for Components

6.2.1 MCU Testing

The Nucleo-F303RE board is a widely used development board for prototyping and testing
embedded systems. It is essential to confirm that our MCU operates effectively, which requires

Page 34 of 95

specific test cases to evaluate various components of the project.
Test #1: USB connection Test

The main purpose of the MCU is transmitting the logic signal from the MCU to GUI for signal
graphing. To guarantee correct data transmission via USB, we added more components to the
MCU, like capacitors and oscillators, and activated the USB connection. With the
microcontroller being set up with USB functionality, we were able to transmit data via USB
which was then displayed on the serial monitor of the PC. This test proved the data transfer from
MCU to PC to be successful.

Ground

1K Resistor

Data+

Data-

Figure 27:23 USB function to transmit data from MCU to PC

Test # 2: Recording GPIO Register values in circular buffer.

The implemented functionality records the register values of the PB port. To manage memory

Page 35 of 95

efficiently and ensure smooth operation, the recorded data is stored in a Circular Buffer. This
Circular Buffer allows for continuous recording by overwriting old data with new data when the
buffer is full, preventing memory overflow. By storing register values in this manner, the system
can monitor changes in PB port registers over time while conserving memory resources. This
approach is particularly useful for systems requiring real-time monitoring of hardware states or
for debugging purposes, as it provides a historical record of register values for analysis. A
debugger was used to verify the values of the buffers live as they were being modified and
showed it was successfully rewriting old values with new ones after filling the buffer with
samples from the GPIO pins. The values in the buffer did correctly relay the values that were fed
to the GPIO pins.

im == &htimlo6)

buttonState = GPIOB->IDR;

logicBuffer[i++] = buttonState;

=

CDC_Transm:.t_i:“S (&binary,

(1 == 20){
i=0;

}

HAL GPIO TogglePin (GPIOA,GPIO PIN 9);

Figure 28:24 Sample code Written to grab Register Values

Test # 3: MCU Trigger functionality

The trigger is crucial in delivering the digital signals that the user is looking for. The trigger
functions like a filter, the user has a choice of having a rising edge or falling edge trigger, on
which pin to activate it, and the number of samples taken after the trigger condition is met. To
test this functionality, PB3 has an active rising edge trigger with 300 samples after the trigger
condition. The first test involves setting PB3 to high and setting a breakpoint at post trigger state
to verify that the post trigger set is never met. PB3 was connected to ground next to verify that
falling edge does not pass the trigger checking functionality. Finally, PB3 was set back to high,

Page 36 of 95

and the post trigger state was met, showing that the trigger had occurred on PB3. A similar
procedure was carried out with PB3 trigger set to falling edge, and ground was tested first, then
high for rising edge, and finally back to ground to verify falling edge correctly triggers and
switches states to post trigger.

Test # 4: MCU Timer configuration for data Sampling

Timer Configuration has been implemented to record the data timely into the circular buffer so
there is no data loss. This setup allows for precise timing of register value recordings, ensuring
that data is captured at specific intervals. This functionality is very crucial for several reasons.
Firstly, they provide insight into the behavior of the system over time by capturing register
values at regular intervals. This is essential for monitoring the stability and performance of the
system. Secondly, timer-based synchronization ensures that data is captured consistently and
reliably, reducing the likelihood of missing critical events or changes in the digital circuit. To
meet our 5 MHz samples per second requirement, we carried out a test to verify the speed the
MCU is sampling. An output pin is toggled after each the GPIO pins are sampled and buffered,
and trigger checking procedures have been completed in the timer 2 ISR. The oscilloscope tool
from the ADALM?2000 was connected to the output pin to show the frequency of the output pin.
It showed that the output was near the 5 MHz samples required for the project.

MSP430 for
Logic signals

Logic Signal
Line going to
Nucleo PB1
PIN

Figure 2925: Sending Logic signal to Nucleo using MSP430.

Page 37 of 95

6.2.2: GUI
There are a variety of tests that will need to be done to make sure that the GUI is functional. We
have performed several tests to verify the functionality of our Graphical User Interface.

¢ Functional:
o Test to see if all eight signals are accurately displayed in real-time.
o Compare the generated signal with known simulated signals to ensure that the
signals generated by the microcontroller are displayed correctly.
o Simulate signal loss or corruption to check if the GUI displays the desired error
message.
o Ensure that the GUI provides visual feedback/acknowledgement of a command
being sent.
o
* Compatibility:
o We will need to run the software on Linux, MacOS, and windows to make sure it
installs and launches with no issues.
o This includes tests on virtual machines.
o Check to see if there are any layout discrepancies or functional differences across
platforms.
o It should send an error message when the microcontroller is disconnected from
the device.

® Performance:
o The GUI should be able to display signals in real-time without significant lag or

delay.

e Usability:
o Ensure that the UI (user interface) is intuitive and easy to navigate for users.
o Verify that the GUI indicates a successful connection to the microcontroller.

* Longevity:
o Test to see how the GUI holds up when being run for long periods of time to
check for crashes or performance degradation over time.

Some parts have been successful. An appropriate error message is displayed if a connection to
the MCU can’t be detected. The GUI can also successfully read serial data. It can also adjust the
sampling rate and start/stop sampling data. The GUI can display UART messages and display it
on the screen.

Page 38 of 95

Written Code:

main.py

This module serves as the entry point for the application. It initializes the PyQté
application, applies aesthetic styles, searches for a specific serial device, and
launches the appropriate window based on whether the device is found.

Dependencies:

sys

serial.tools.list_ports
PyQt6.QtWidgets.QApplication
LogicDisplay from LogicDisplay module
SerialApp from connection module
apply_styles from aesthetic module

t sys

t serial.tools.list_ports
PyQté.QtWidgets import QApplication
LogicDisplay LogicDisplay
connection import SerialApp
aesthetic import apply_styles

def main(

The main function initializes the PyQt6 application, applies styles, and attempts
to connect to a serial device with specified VID and PID. Depending on whether the
device is found, it either opens the LogicDisplay window or the SerialApp connection

window.

Steps:
1. Initialize the QApplication with command-line arguments.

. Apply aesthetic styles to the application (e.g., dark mode, icons).

Search for a serial device with VID=1155 and PID=22336.
If the device is found:

- Create and display a LogicDisplay window with the device's port.
- Print a message indicating automatic connection.
If the device is not found:
- Create and display a SerialApp window to allow user connection.
- Print a message indicating that the connection window is opening.
6. Execute the application's event loop and exit when done.

app = QApplication(sys.argv)
apply_styles(app)

vid
pid
ports = serial.tools.list_ports.comports()
target_port None
ports:
if port.vid == vid and port.pid == pid:
target_port = port.device

if target_port:

window = LogicDisplay(port=target_port, baudrate=115200, buffersi
window.show()
"Automatically connected to device on port {target_port}")

window = SerialApp()
window.show()
print(“"Device not found. Opening connection window

sys.exit(app.exec

__main__":

Figure 3026: Main.py

__name__

4096, channels=8)

Page 39 of 95

aesthetic.py

This module provides functions to apply aesthetic styles to the PyQt6 application.
It includes functionalities to set a dark mode stylesheet and configure the application icon.

nnn

import os
from PyQt6.QtGui import QIcon
from PyQt6.QtWidgets import QApplication

def get_icon() -> QIcon:

Retrieves the application's icon.

Constructs the path to the icon image relative to the current file's directory
and returns a QIcon object.

Returns:
QIcon: The icon object to be used as the application icon.

icon_path = os.path.join(os.path.dirname(__file), 'images', 'logo.png')
return QIcon(icon_path)

Figure 31:27 aesthetic.py - get_icone

Page 40 of 95

def apply_styles(app: QApplication) -> None:

Applies aesthetic styles to the PyQté application.

This function sets a dark mode stylesheet for the entire application
configures the application's window icon.

Args:
app (QApplication): The PyQté application instance to style.

dark_style = """

Qwidget {
background-color: #2e2ele;
color: #ffffff;

}

QPushButton {
background-color: #3c3c3c;
color: #ffffff;
border: 1px solid #555;
border-radius: 5px;
padding: 5px;

I

QPushButton:checked {
background-color: #4d4d4d;

}

QPushButton:hover {
background-color: #4d4d4d;

}

QComboBox {
background-color: #3c3c3c;
color: #ffffff;
border: 1px solid #555;
padding: 5px;

+

QComboBox QAbstractItemView {
background-color: #3c3c3c;
color: #ffffff;
selection-background-color: #4d4d4d;

+

QLineEdit {
background-color: #3c3c3c;
color: #ffffff;
border: 1px solid #555;
padding: 5px;

}

QMenu {
background-color: #3c3c3c;
color: #ffffff;
border: 1px solid #555;

+

QMenu: :item:selected {
background-color: #4d4d4d;

}

app.setStyleSheet(dark_style)

app.setWindowIcon(get_icon

Figure 32 28:Aesthetic.py - apply style

Page 41 of 95

connection.py

This module manages serial connections for the application. It provides the
SerialApp class, a PyQt6 QMainWindow that allows users to select, connect,
and disconnect from available serial COM ports. Upon successful connection,
it launches the LogicDisplay window to interact with the connected device.

ort
rt serial.tools.list_ports
PyQt6.QtWidgets import QMainWindow, QPushButton, QVBoxLayout, QWidget, QComboBox
PyQt6.QtGui import
typing imp
aesthetic imp
LogicDisplay i rt LogicDisplay

s SerialApp(QMainWindow):

SerialApp is a PyQt6 QMainWindow that provides a user interface for managing
serial connections. It allows users to refresh available COM ports, connect
to a selected port, and disconnect from the current connection.

Attributes:
logic_display_window (Optional[LogicDisplay]): Reference to the LogicDisplay window.

it_ (self) -> None:

Initializes the SerialApp window, sets up the UI components, and configures
the window's title and icon.

super() init

self.setWindowTitle("Serial Connection Manager")
self.setWindowIcon(get_icon

self.logic_display_window: Optional[LogicDisplay] = None

self.initUI()

f initUI(self
Sets up the user interface components, including the main widget, layout,
COM ports dropdown, and control buttons (Refresh, Connect, Disconnect).

self.main_widget = QWidget()
self.setCentralWidget(self.main_widget)
layout = QVBoxLayout(self.main_widget)

self.combo_ports = QComboBox(
self.refresh_ports(
layout.addWidget(self.combo_ports)

self.button_refresh = QPushButton("Refresh")
self.button_refresh.clicked.connect(self.refresh_ports)
layout.addWidget(self.button_refresh)

self.button_connect = QPushButton("Connect")
self.button_connect.clicked.connect(self.connect_device)
layout.addWidget(self.button_connect)

self.button_disconnect = QPushButton("Disconnect
self.button_disconnect.clicked.connect(self.disconnect_device)
self.button_disconnect.setEnabled(False)
layout.addwWidget(self.button_disconnect)

Figure 3329:connection.py - SerialApp — init

Page 42 of 95

refresh_ports(self) -> None:
Refreshes the list of available serial COM ports by clearing the current
dropdown and repopulating it with the latest COM port information.
self.combo_ports.clear()
ports = serial.tools.list ports.comports()
for port in ports:

self.combo_ports.addItem(port.device)

connect_device(self) -> None:

Attempts to establish a connection to the selected serial COM port.

If successful, it disables the Connect button, enables the Disconnect
button, and opens the LogicDisplay window. If a connection is already
open, it closes the previous LogicDisplay window before opening a new one.

Prints status messages to the console regarding the connection status.
port_name = self.combo_ports.currentText()
try:
self.button_connect.setEnabled(False)
self.button_disconnect.setEnabled(True)
print(f"Connected to {port_name}")

if self.logic_display_window:
self.logic_display_window.close()

self.logic_display_window = LogicDisplay(port=port_name, baudrate=115260, channels=8)
self.logic_display_window.show()

pt Exception as e:

print(f"Failed to connect to {port_name}: {str(e)}")
self.button_connect.setEnabled(True)
self.button_disconnect.setEnabled(False)

disconnect_device(self) -> None:

Disconnects from the currently connected serial COM port by closing the
LogicDisplay window. It also resets the Connect and Disconnect buttons®
enabled states and prints a status message to the console.

if self.logic_display_window:
self.logic_display_window.close()
self.logic_display_window = None

self.button_connect.setEnabled(True)
self.button_disconnect.setEnabled(False)
print("Disconnected")

Figure 3430:connection.py - SerialApp — refresh, connect, disconnect

Page 43 of 95

def get _trigger edge command(trigger modes):

Determines the edge of buttons selected and returns the corresponding command integer.

The LSB represents the edge of channel 1 while the MSB represents channel 8.
If the button is on 'Rising Edge', the bit value will be 1.
If it's on 'Falling Edge' or 'No Trigger', the bit will be 0@.
This 8-bit value is converted to an int and can be sent as a character.
command_value = @
for idx in range(8):

mode = trigger modes[idx]

if mode == 'Rising Edge':

command_value [= 1 << idx

return command_value

get_trigger_ pins_command(trigger_modes):

Determines which channels have triggers enabled and returns the corresponding command integer.

The LSB represents channel 1, and the MSB represents channel 8.
If the button is either 'Rising Edge' or 'Falling Edge', the bit value is 1.
If it's 'No Trigger', the bit will be 0.
This 8-bit value is converted to an int and can be sent as a character.
command_value = @
for idx in range(8):

mode = trigger_modes[idx]

if mode in ('Rising Edge', 'Falling Edge'):

command_value |= 1 << idx

return command_value

Figure 3531:InterfaceCommands.py

Page 44 of 95

LogicDisplay.py

This module defines the LogicDisplay class, a PyQt6 QMainWindow that serves as the main interface
for the Logic Analyzer application. It allows users to select between different communication
protocols (Signal, I2C, SPI, UART) and manages the corresponding display modules. The LogicDisplay
handles the initialization of the user interface, loading of selected modules, and management of
serial communication parameters such as baud rate and buffer size.

import
from PyQt6.QtWidgets import (

£

QMainWindow,
QWidget,
QVBoxLayout,
QHBoxLayout,
QButtonGroup,
QPushButton,
)
from PyQt6.QtGui import
from PyQt6.QtCore import Qt

from typing import Optional

from aesthetic import get_icon
from Signal import SignalDisplay
from I2C import I2CDisplay

from SPI import SPIDisplay

from UART import UARTDisplay

Figure 3632: LogicDisplay.py - Libraries

Page 45 of 95

LogicDisplay(QMainWindow) :
LogicDisplay is the main window of the Logic Analyzer application. It provides an interface
for users to select different communication protocols and displays the corresponding modules.

Attributes:
port (str): The serial port to which the device is connected.
default_baudrate (int): The default baud rate for serial communication.
baudrate (int): The current baud rate for serial communication.
channels (int): The number of channels used in the logic analyzer.
bufferSize (int): The size of the buffer for serial communication.
current_module (Optional[QWidget]): The currently active display module.

__init_ (self, port: str, baudrate: int, bufferSize: int = 4096, channels: int = 8) -> None:
Initializes the LogicDisplay window with the specified serial port, baud rate, buffer size,
and number of channels. It sets up the user interface and loads the default module.

Args:
port (str): The serial port to connect to.
baudrate (int): The baud rate for serial communication.
bufferSize (int, optional): The size of the buffer for serial communication. Defaults to 4€96.
channels (int, optional): The number of channels for the logic analyzer. Defaults to 8.
super().__init_ ()
self.port = port
self.default_baudrate = baudrate
self.baudrate = baudrate
self.channels = channels
self.bufferSize = bufferSize

self.setWindowTitle("Logic Analyzer™)
self.setWindowIcon(get_icon())

self.current_module: Optional[QWidget] = None
self.init_ui()

.load_module('Signal')

Figure 3733: LogicDisplay.py - init

Page 46 of 95

it_ui(self) -> None:
Initializes the user interface components of the LogicDisplay window, including the
mode selection buttons and the area where the selected module is displayed.

central_widget = QWidget()

central_layout = QVBoxLayout(central_widget)
central_layout.setContentsMargins(e, ©, @, @)
central_layout.setSpacing(®)

button_widget = QWidget()

button_layout = QHBoxLayout(button_widget)
button_layout.setContentsMargins(e, @, @, @)
button_layout.setSpacing(@)

signal_button = QPushButton('Signal')
i2c¢_button = QPushButton('I2C")
spi_button = QPushButton('SPI")
uart_button = QPushButton('UART")

signal_button.setCheckable(True)
i2c_button.setCheckable(
spi_button.setCheckable(True)
uart_button.setCheckable(True)

mode_button_group = QButtonGroup()
mode_button_group.setExclusive(Tru
mode_button_group.addButton(self.signal_button)
mode_button_group.addButton(self.i2c_button)
mode_button_group.addButton(self.spi_button)
mode_button_group.addButton(self.uart_button)

signal_button.setChecked(True)

button_layout.addWidget(self.signal_button)
button_layout.addWidget(self.i2c_button)
button_layout.addWidget(self.spi_button)
button_layout.addWidget(self.uart_button)

signal_button.clicked.connec : self.load_module
i2c_button.clicked.connect(] : self.load_module('I2C
spi_button.clicked.connect(la : self.load_module('SPI'
uart_button.clicked.connect : self.load_module('UART

module_widget = QWidget(

module_layout = QVBoxLayout(self.module_widget)
module_layout.setContentsMargins(e, @, ©, @)
module_layout.setSpacing(@)

central_layout.addWidget(button_widget)
central_layout.addWidget(self.module_widget)

self.setCentrallWidget(central_widget)

Figure 3834: LogicDisplay.py - init ui

Page 47 of 95

def load_module(self, module_name: str) -> None

Loads the specified module into the LogicDisplay window. It handles the cleanup of
the existing module and initializes the new module based on the selected communication

protocol.

Args:
module_name (str): The name of the module to load. Expected values are 'Signal',
'I2C', 'SPI', or 'UART'.

self.current_module:
self.current_module.close()
self.current_module.deletelLater()
self.current_module = None

self.module_layout.count():
item = self.module_layout.takeAt
widget = item.widget()
if widget is not None:
widget.deletelLater()

module_name != ‘UART':
self.baudrate = self.default_baudrate

module_name ‘Signal’
self.current_module = SignalDisplay(self.port, self.baudrate, self.bufferSize, self.channels)
self.signal_button.setChecked(True)

if module_name == 'I2C":
self.current_module = I2CDisplay(self.port, self.baudrate, self.bufferS
self.i2c_button.setChecked(True)

if module_name == 'SPI':
self.current_module = SPIDisplay(self.port, self.baudrate, self.bufferS
self.spi_button.setChecked(True)

if module_name == 'UART'

self.current_module = UARTDisplay(self.port, self.baudrate, self.bufferSize)
self.uart_button.setChecked(
f self.current_module:
self.module_layout.addWidget(self.current_module)
self.current_module.show(

placeholder_widget = QWidget
self.module_layout.addWidget(placeholder_widget)

def update_baudrate(self, baudrate: int) -> None:
Updates the baud rate for serial communication. This method can be called to change
the baud rate dynamically based on user input or other conditions

Arg:
udrate (int): The new baud rate to set.

self.baudrate = baudrate

f closeEvent(self, event: Qt.QEvent) -> None:
Handles the close event of the LogicDisplay window. Ensures that the currently active
module is properly closed before the window itself is closed.

Args:
event (Qt.QEvent): The close event triggered when the window is being closed.

self.current_module:
self.current_module.close()
event.accept

Figure 3935: LogicDisplay.py - load module, update baudrate, closeEvent

Page 48 of 95

Signal.py

This module defines classes and functionalities related to handling serial communication,
data processing, and graphical display for a Logic Analyzer application. It includes:

SerialWorker: A QThread subclass that manages serial data reading and triggering mechanisms.
FixedYViewBox: A custom PyQtGraph ViewBox that restricts scaling and translation on the Y-axis.
EditableButton: A QPushButton subclass that allows for context menu operations like renaming.
SignalDisplay: A QWidget subclass that provides the main interface for displaying and interacting
with signal data, including plotting, control buttons, and trigger configurations.

Dependencies:

- sys, serial, math, time, numpy, pyqtgraph
PyQt6.QtWidgets, PyQt6.QtGui, PyQt6.QtCore
collections.deque
InterfaceCommands (custom module)
aesthetic (custom module)

rt time
mport numpy
rt pyqtgraph as pg
from PyQt6.QtWidgets in
QWidget,
»
QHBoxLayout,
QGridLayout,
QInputDialog,
QMenu,
QPushButton,
QLabel,
QLineEdit,

1 PyQt6.QtGui import , QIntValidator
PyQt6.QtCore in t QTimer, QThread, pyqtSignal,
collections imp deque

n typing import List, Optional

from InterfaceCommands import (
get_trigger_edge_command,
get trigger pins_command,

)

from aesthetic import g

Figure 4036: Signal.py - Libraries

Page 49 of 95

SerialWorker handles serial communication in a separate thread. It reads incoming data from
the serial port, proce trigger conditions for multiple channels, and emits signals when

data is ready for processing.

Attribute
data_ready (pyqtSignal): Signal emitted when new data is ready. Carries a 1 of integers.
is_running (bool): Flag indicating whether the worker is activ
channels (int): Number of channels to monitor for trigger
gger_modes (List[str]): List of trigg es for each channel.
: Maximum size of the data buffer.
ial): Serial port in ce for communicat

data_r

Args:
port (str):

buffer int): The maximum number of data points to store in the buffer.

channels (int, optional): The number of channels to monitor for triggers. Defaults to 8.

"Failed to open
False

f set_trigger_mod channel_i
s the trigger mode for a specific channel.
channel_idx (int): The index of the channel (@-based).

mode (str): The trigger mode to set (e » 'No Trigger', 'Rising Edge', 'Falling Edg

Figure 4137: Signal.py - Serial Worker Init, trigger mode

Page 50 of 95

def run(self) -> None:

The main loop of the worker thread. Continuously reads data from the serial port,
processes trigger conditions, and emits data_ready signals when appropriate.
data_buffer = deque(maxlen=self.bufferSize - 24)

triggered = [False] * self.channels

while self.is_running:
if self.serial.in_waiting:
raw_data = self.serial.read(self.serial.in_waiting).splitlines()
for line in raw_data:
try:
data_value = int(line.strip())
data_buffer.append(data_value)

for i in range(self.channels):
if not triggered[i] and self.trigger_modes[i] != 'No Trigger':
last_value = data_buffer[-2] if len(data_buffer)
if last_value is not None:
current_bit = (data_value >> i) &

last_bit = (last_value >> i) & 1

if self.trigger modes[i] == 'Rising Edge' and last_bit == and current_bit ==
triggered[i] = True
print(f"Trigger condition met on channel {i+1}: Rising Edge")

elif self.trigger_modes[i] == 'Falling Edge' and last_bit == 1 and current_bit == @:
triggered[i] = True
print(f"Trigger condition met on channel {i+1}: Falling Edge")

if any(triggered) or all(mode == 'No Trigger' for mode in self.trigger modes):
self.data_ready.emit([data_value])

xcept ValueError:
continue

def stop_worker(self) -> None:

Stops the worker thread by setting the running flag to False and closing the serial port.
self.is_running = False
if self.serial.is_open:

self.serial.close()

Figure 4238: Signal.py - Serial Worker Run & Stop

Page 51 of 95

FixedYViewBox(pg.ViewBox) :

FixedYViewBox is a custom PyQtGraph ViewBox that restricts scaling and translation
along the Y-axis, allowing only horizontal scaling and movement.

f __init_ (self, *args, **kwargs) -> None:

Initializes the FixedYViewBox with the provided arguments.

super(FixedYViewBox, self)._ init_ (*args, **kwargs)
scaleBy(self, s=None, center=None, x: Optional[float] = None, y: Optional[float] = None) -> None:
Overrides the scaleBy method to fix the Y-axis scaling to 1.0, preventing vertical scaling.

Args:
s: Scaling factor (unused for Y-axis).
center: Center point for scaling.
x (float, optional): Scaling factor for X-axis.
y (float, optional): Scaling factor for Y-axis (fixed to 1.8).

if x is None:
None:
X 1.0
elif isinstance(s, dict):
x = s.get('x", 1.0)
elif isinstance(s, (list, tuple)):
x = s[@]

X =S
super(FixedYViewBox, self).scaleBy(x=x, y=y, center=center)

translateBy(self, t=None, x: Optional[float] = None, y: Optional[float] = None) -> None:
Overrides the translateBy method to fix the Y-axis translation to 0.0, preventing vertical movement.

Args:
t: Translation value (unused for Y-axis).
x (float, optional): Translation value for X-axis.
y (float, optional): Translation value for Y-axis (fixed to ©.9).
y = 0.0
if x is None:
if t is None:
X = 0.0
elif isinstance(t, dict):
x = t.get('x", 0.0)
elif isinstance(t, (list, tuple)):
x = t[e]

X =t
super (FixedYViewBox, self).translateBy(x=x, y=y)

Figure 43 39: Signal.py - FixedYViewBox

Page 52 of 95

EditableButton(QPushButton):
EditableButton is a QPushButton subclass that allows users to rename the button label
via a context menu and reset it to its default label.

def __init_ (self, label: str, parent: Optional[QWidget] = None) -> None:

Initializes the EditableButton with a given label.

Args:

label (str): The initial text label of the button.

parent (QWidget, optional): The parent widget. Defaults to None.
super().__init_ (label, parent)
self.setContextMenuPolicy(Qt.ContextMenuPolicy.CustomContextMenu)
self.customContextMenuRequested. connect(self.show_context_menu)
self.default_label = label

show_context_menu(self, position: Qt.QPoint) -> None:

Displays a context menu with options to rename the button or reset it to the default label.

Args:
position (Qt.QPoint): The position where the context menu is requested.
menu = QMenu()
rename_action = menu.addAction("Rename")
reset_action = menu.addAction("Reset to Default")
action = menu.exec(self.mapToGlobal(position))
if action == rename_action:
new label, ok = QInputDialog.getText(
self, "Rename Button", "Enter new label:", text=self.text()
)
if ok and new label:
self.setText(new_label)
elif action == reset_action:
self.setText(self.default_label)

Figure 4440: Signal.py - Editable Button

Page 53 of 95

SignalDisplay(QWidget):

1Display provides the main interface for displaying and interacting with signal data.
It includes graphical plots, control buttons, and configurations for triggers and sampling.

Attributes:
period (int): The period for sample timing.
num_samples (int): Number of samples to capture.
port (str): Serial port for communication.
baudrate (int): Baud rate for serial communication.
channels (int): Number of channels for the logic analyzer.
buffersize (int): Size of the data buffer.
data_buffer (List[deque]): Data buffers for each channel
channel_visibility (List[bool]): Vvisibility status for each channel.
is_single_capture (bool): Flag indicating if a single capture is active.
current_trigger_modes (List[str]): Current trigger modes for each channel
trigger_mode_indices (List[int]): Indices representing trigger modes for each channel.
sample_rate (int): Sampling rate in Hz
timer (QTimer): Timer for updating the plot.
is_reading (bool): Flag indicating if data reading is active.
worker (SerialWorker): Worker thread handling serial communication.
graph_layout (pg.GraphicsLayoutWidget): Layout widget for graphs.
plot (pg.PlotItem): Plot item for displaying data.
colors (List[str]): List of colors for plotting each channel
curves (List[pg.PlotDataltem]): Plot curves for each channel
channel_buttons (List[EditableButton]): Buttons to toggle channel visibility.
trigger_mode_buttons (List[QPushButton]): Buttons to toggle trigger modes
cursor (pg.InfinitelLine): Cursor for measurement on the plot.
cursor_label (pg.TextItem): Label displaying cursor position.

__init_ (self, port: str, baudrate: int, bufferSi int, channels: int = 8) -> None:

Initializes the SignalDisplay with the specified serial port parameters and sets up the UI.

Args:
port (str): Serial port for communication.
baudrate (int): Baud rate for serial communicati
bufferSize (int): Size of the data buffer
channels (int, optional): Number of channels for the logic analyzer. Defaults to 8.

init ()

super()
self.period = 65454
self.num_samples = @
self.port = port
self.baudrate = baudrate
self.channels = channels
self.buffersize = bufferSize

self.data_buffer: List[deque] = [deque(maxlen=self.buffersSize) _ in range(self.channels)]
self.channel_visibility: List[bool] = [False] * self.channels

self.is_single_capture = False

self.current_trigger_modes: List[str] = ['No Trigger'] * self.channels
self.trigger_mode_indices: st = [@] * self.channels
self.sample_rate = 1000

self.setup_ui()
self.timer = QTimer()
self.timer.timeout.connect(self.update_plot)

self.is_reading = False
self.worker = SerialWorker(self.port, self.baudrate, self.bufferSize, channels=self.channels)

self.worker.data_ready.connect(self.handle_data)
self.worker.start()

Figure 4541: Signal.py - SignalDisplay — init

Page 54 of 95

setup_ui(self ne
ma1n_Layout joxLayout(selt)

ph_lay
main_layout.addwidge

Box ())
)

f.sample_rate)

Fal
. enable=Fal

=False)

“#3OFF14°, '#FFAS6D', '#BFOOFF', '#FFFF33°, '#FFAS00',
.PlotDataItem] = []
annels) :
ors[i % len(self.colors)]
_plot.plot(pen=pg.mkPen(color=color, width-4))
etVisible(s annel_visibility[i]
ppend)

button_layout - QGridL,
main_layout.addLayou yout)

[EditableButton] - []
List[QPushButton] = [
tions - ['No Trigger', 'Rising Edge', 'Falling Edge’

_channels) :
label = £"DIO {i+1}"
button - EditablleButton(label)
button. setCheckable(True)
button. setChecke
button.
button_

trig

button_la
self.trigger s

1f.sample_r
button_layout.addwidget

1f . sample.

self.sample_rate_input.s
button_layout. addwidget . = fm els, 1
self.sample

QLabel("Number of Samples:
1f.num_samples_label,
mples input = QLineEdit(

1,

f.channels + 1, 1)

end_num_samples_command)

control_button out = QHBoxLayou
self.toggle button - QPushButton
1f . toggle button.clicked.conne
control_buttons_layout-addWidget(s
gle_button = QPushButten
ingle_captur
control_buttons_layout-addWidget(self.single button)
button_layout . addLayout (control_|

*#OOFS5FF ',

"#BFFF00" |

Page 55 of 95

def handle_sample_rate_input(self) -> None:
Handles the event when the sample rate input field receives a return key press.
Validates and updates the sample rate, adjusts the plot range and timers accordingly.

sample_rate = int(self.sample_rate_ input.text())
if sample_rate <= 0:
raise ValueError("Sample rate must be positive")

self.sample_rate = sample_rate

period = (72 * 10**6) / sample_rate

print(f“"Sample Rate set to {sample_rate} Hz, Period: {period} ticks")

self.updateSampleTimer(int(period))

self.plot.setXRange(@, 200 / self.sample_rate, padding=0)

self.plot.setLimits(xMin=0, xMax=self.bufferSize / self.sample_rate)
except ValueError as e:

print(f"Invalid sample rate: {e}")

send_num_samples_command(self) -> None:

Sends the number of samples command to the serial device based on user input.

num_samples = int(self.num_samples_input.text())
self.num_samples = num_samples
self.updateTriggerTimer()

>pt ValueError as e:

print(f"Invalid number of samples: {e}")

send_trigger_ edge_command(self) -> None:

Sends the trigger edge configuration to the serial device.
command_int = get_trigger_edge command(self.current_trigger_modes)
command_str = str(command_int)
try:
self.worker.serial.write(b'2")
time.sleep(0.01)
self.worker.serial.write(b'@")
time.sleep(0.01)
self.worker.serial.write(command_str.encode('utf-8'))
time.sleep(0.01)
pt serial.SerialException
print(f“"Failed to send trigger edge command: {str(e)}")

send_trigger_pins_command(self) -> None:

Sends the trigger pins configuration to the serial device.
command_int = get_trigger_pins_command(self.current_trigger_modes)
command_str = str(command_int)
try

self.worker.serial.write(b'3")

time.sleep(0.001)

self.worker.serial.write(b'@")

time.sleep(0.001)

self.worker.serial.write(command_str.encode('utf-8'))
except serial.SerialException as e:

print(f"Failed to send trigger pins command: {str(e)}")

Figure 4743: Signal.py - SignalDisplay — sampleRate, numSamples, trigger

Page 56 of 95

updateSampleTimer(self, period: int) -> None:

Updates the sample timer configuration on the serial device.

Args:
period (int): The period value to set for the sample timer.

self.period = period

self.worker.serial.write(b'5")
time.sleep(©.001)

selected_bits = (period 24) @xFF
self.worker.serial.write(str(selected_bits).encod
time.sleep(@.001)

selected_bits = (period 16) & OxFF
self.worker.serial.write(str(selected_bits).encode('utf-8
time.sleep(@.001)

self.worker.serial.write(

time.sleep(@.001)

selected_bits = (period >> 8) OxFF
self.worker.serial.write(str(selected_bits).encode('utf-8"
time.sleep(@.001)

selected_bits = period xFF
self.worker.serial.write(str(selected_bits).encode('utf-8
time.sleep(@.001)

Exception as e:
print(f"Failed to update sample timer: {e}")

updateTriggerTimer(self) -> None:

Updates the trigger timer configuration on the serial device based on the number of samples.

sampling_freq = 72e6 / self.period
trigger_freq = sampling_freq self.num_samples
periodl6 = 72e6 / trigger_freq
prescaler = 1
if periodl6 > 2**16:
prescaler = math.ceil(period16 *%16))
periodl6 = int((72e6 / prescaler) / trigger_freq)
print(f"Period timer 16 set to {periodl6}, Timer 16 prescaler is {prescaler}”)

self.worker.serial.write(b'4")
time.sleep(@.01)

selected_bits = (periodl6 >> 8) & ©xFF
self.worker.serial.write(str(selected_bits).encod
time.sleep(0.01)

selected_bits = periodl6 & @xFF
self.worker.serial.write(str(selected_bits).encod
time.sleep(@.01)

self.worker.serial.write(
time.sleep(@.01)

selected_bits = (prescaler >> 8) FF
self.worker.serial.write(str(selected_bits).encod
time.sleep(@.01)

selected_bits = prescaler & 8x
self.worker.serial.write(str(selected_bits).encode('utf-8'
time.sleep(@.01)

ception -H

P
print(f"Failed to update trigger timer: {e}

Figure 4844: Signal.py - SignalDisplay — Sample & Trigger Timer

Page 57 of 95

def toggle_trigger_mode(self, channel_idx: int) -> None

Toggles the trigger mode for a specific channel cyclically through predefined options.

Args:
channel_idx (i : The index of the channel (@-based).
self.trigger_mode_indices[channel_idx] (self.trigger_mode_indices[channel_idx] + 1) % len(self.trigger_mode_options)
mode = self.trigger_mode_options[self.trigger_mode_indices[channel_idx]]
self.trigger_mode_buttons[channel_idx].setText(mode)
self.current_trigger_modes[channel_idx] = mode
if self.worker:
self.worker.set_trigger_mode(channel_idx, mode)
self.send_trigger_edge_command()
self.send_trigger_pins_command(

f is_light_color(self, hex_color: str) -> bool:

Determines if a given hex color is light based on its luminance.

Args:
hex_color (str): The hex color string (e.g., '#FF6EC7")

Returns:

bool: True if the color is light, False otherwise
hex_color = hex_color.lstrip('#")
r, g, b = tuple(int(hex_color[i 2], riin (0, 2, 4))
luminance = (0.299 * r + ©.587 * g + ©.114 * b) 255
return luminance 8.5

toggle_channel(self, channel_idx: int, is_checked: bool) -> Non

Toggles the visibility of a specific channel's data on the plot.

Args:
channel_idx (int): The index of the channel (@-based).
is_checked (bool): Whether the channel should be visible.
self.channel_visibility[channel_idx] = is_checked
self.curves[channel_idx].setVisible(is_checked)

button = self.channel_buttons[channel_idx]
if is_checked:
color = self.colors[channel_id len(self.colors)]
text_color = 'black' if self.is_light_color(color) e ‘white'
button.setStyleSheet (f"QPushButton {{ background-color: {color}; color: {text_color}; "
f"border: 1px solid #555; border-radius: S5px; padding: 5px; }}")

button.setStyleSheet("")

f toggle_reading(self) -> None:
Toggles the data reading state between active and inactive. Starts or stops data acquisition
and updates the UI accordingly.
if self.is_reading:
self.send_stop_message()
self.stop_reading()
self.toggle_button.setText("Run")
self.single_button.setEnabled(True)
self.toggle_button.setStyleSheet(

.is_single_capture = False

.send_start_message

.start_reading()

.toggle_button.setText("Runnin|

.single_button.setEnabled(True)
.toggle_button.setStyleSheet("background-color: #B8BFF77; color: black

Figure 4945: Signal.py - SignalDisplay —toggle and is _light color

Page 58 of 95

send_start_message(self) -> None:

Sends a ‘start’ command to the serial device to begin data acquisition.

f self.worker.serial.is_open:

self.worker.serial.write(b'@")

time.sleep(0.001)

self.worker.serial.write(b'0")

time.sleep(0.001)

self.worker.serial.write(b'®")

print("Sent 'start’' command to device")
serial.SerialException

print(f"Failed to send 'start' command: {str(e)}")

print("Serial connection is not open")

send_stop_message(self) -> None:

Sends a ‘stop’' command to the serial device to halt data acquisition.

if self.worker.serial.is_open:

self.worker.serial.write(b'1")

time.sleep(©.001)

self.worker.serial.write(b'l")

time.sleep(0.001)

self.worker.serial.write(b'1")

print("Sent 'stop' command to device™)
serial.SerialException -H

print(f"Failed to send 'stop' command: {str(e)}")

print("Serial connection is not open")

f start_reading(self) -> None:

Starts the data reading process by activating the timer.
f not self.is_reading:

self.is_reading = True

self.timer.start(1)

f stop_reading(self) -> None:

Stops the data reading process by deactivating the timer.
if self.is_reading:
self.is_reading
self.timer.stop()

False

Figure 5046: Signal.py - SignalDisplay —Start & Stop

Page 59 of 95

def start_single_capture(self) -> None:
Initiates a single data capture by clearing existing data buffers, sending a start message,
and starting the reading process. Disables relevant UI buttons during capture.
self.is_reading:
self.clear_data_buffers()
self.is_single_capture = True
self.send_start_message()
self.start_reading()
self.single_button.setEnabled(False)
self.toggle button.setEnabled(False)
self.single_button.setStyleSheet("background-color: #8OFF77; color: black;")

stop_single_capture(self) -> None:

Stops a single data capture by stopping the reading process, sending a stop message,
and re-enabling relevant UI buttons.

self.is_single capture = False

self.stop_reading()

self.send_stop_messapgel)

self.single button.setEnabled(True)

self.toggle_button.setEnabled(True)

self.toggle button.setText("Start™)

self.single button.setStyleSheet("")

clear_data_buffers(self) -> None:

Clears all data buffers for each channel.

self.data_buffer = [deque(maxlen=self.bufferSize) for _ in range(self.channels)]

handle_data(self, data_list: List[int]) -> None:
Handles incoming data emitted by the SerialWorker. Appends data to buffers and manages
single capture logic.

Args:
data_list (List[int]): List of incoming data values.
self.is_reading:
r data_value in data_list:
for i in range(self.channels):
bit value = (data_value >> i) & 1
self.data_buffer[i].append(bit_value)
if self.is single capture and all(len(buf) >= self.bufferSize buf in self.data_buffer):
self.stop_single_capture()

Figure 5147: Signal.py - Signal Display —Single Start & Stop, Buff Clear and Data Handle

Page 60 of 95

update_plot(self) -> None:

nnmn

Updates the graphical plot with the latest data from the buffers.
i in range(self.channels):
if self.channel_visibility[i]:
inverted_index = self.channels - i - 1
num_samples = len(self.data_buffer[i])
if num_samples > 1:
t = np.arange(num_samples) / self.sample_rate
square_wave_time = []
square_wave_data = []
for j in range(l, num_samples):
square_wave_time.extend([t[j-1], t[j]])
level = self.data_buffer[i][j-1] + inverted_index *
square_wave_data.extend([level, level])
if self.data_buffer[i][]j] != self.data_buffer[i][j-1]:
square_wave_time.append(t[j])
level = self.data_buffer[i][j] + inverted_index * 2
square_wave_data.append(level)
self.curves[i].setData(square_wave_time, square_wave_data)

update_cursor_position(self) -> None:

Updates the position and label of the cursor on the plot based on user interaction.
cursor_pos = self.cursor.pos().x()

self.cursor_label.setText(f"Cursor: {cursor_pos:.6f} s")
self.cursor_label.setPos(cursor_pos, self.channels * 2 - 1)

closeEvent(self, event: Qt.QEvent) -> None:
Handles the close event of the SignalDisplay widget. Ensures that the worker thread is
properly stopped before closing.

Args:
event (Qt.QEvent): The close event triggered when the widget is being closed.
self.worker.stop_worker()
self.worker.quit()
self.worker.wait()
event.accept()

Figure 5248: Signal.py - Signal Display —Update Plot and Cursor, Close Event

Page 61 of 95

I2C.py

This module defines classes and functionalities related to handling I2C communication,
data processing, and graphical display for a Logic Analyzer application. It includes:

SerialWorker: A QThread subclass that manages serial data reading, I2C decoding, and triggering mechanisms.
FixedYViewBox: A custom PyQtGraph ViewBox that restricts scaling and translation on the Y-axis.

EditableButton: A QPushButton subclass that allows for context menu operations like renaming.

I2CChannelButton: An EditableButton subclass specific to I2C channels, with additional signals for configuration.
I2CConfigDialog: A QDialog subclass that provides a user interface for configuring I2C channel settings.
I2CDisplay: A QWidget subclass that provides the main interface for displaying and interacting with I2C data,
including plotting, control buttons, and trigger configurations.

Dependencies:

sys, serial, math, time, numpy, pygtgraph
PyQt6.QtWidgets, PyQt6.QtGui, PyQt6.QtCore
collections.deque

InterfaceCommands (custom module)
aesthetic (custom module)

ort math
ort time

ort pyqtgraph as pg
from PyQt6.QtWidgets imp
QWidget,
QVBoxLayout,
QHBoxLayout,
QGridLayout,
QInputDialog,
QMenu,
QPushButton,
QLabel,
QLineEdit,
QComboBox,
QDialog,
QRadioButton,
QButtonGroup,
QSizePolicy,
QTextEdit,

5

)

from PyQt6.QtGui import , QIntValidator, » QFont
n PyQt6.QtCore import QTimer, QThread, pyqtSignal, Qt, QPoint

from collections import deque

from typing import List, Dict, Optional

from InterfaceCommands import (
get_trigger edge_command,
get_trigger pins_command,

)

from aesthetic import

Figure 5349: I2C.py - Libraries

Page 62 of 95

SeriallWorker(QThread):
SerialWorker handles I2C serial communication in a separate thread. It reads incoming data from
the serial port, decodes I2C messages, processes trigger conditions for multiple I2C groups,
and emits signals when data or decoded messages are ready for processing.

Attributes:
data_ready (pyqtSignal): Signal emitted when new raw data is ready. Carries an integer value and sample index.
decoded_message_ready (pyqtSignal): Signal emitted when a decoded I2C message is ready. Carries a dictionary with message details.
is_running (bool): Flag indicating whether the worker is active.
channels (int): Number of channels to monitor for triggers.
group_configs (List[Dict]): Configuration settings for each I2C group.
trigger_modes (List[str]): List of trigger modes for each channel
states (List[str] Current state of the state machine for each I2C group.
bit_buffers (List[List[int]]): Bit buffers for each I2C group
current_bytes (List[int]): Current byte being assembled for each I2C group.
bit_counts (List[int]): Bit count for the current byte in each I2C group.
decoded_messages (List[List[Dict]]): Decoded messages for each I2C group.
scl_last_values (List[int]): Last sampled SCL values for edge detection.
sda_last_values (List[int]): Last sampled SDA values for edge detection.
messages (List[List[Dict]]): Accumulated messages for each I2C group.
error_flags (List[bool]): Error flags for each I2C group
sample_idx (int): Global sample index counter.

data_ready = pyqtSignal(int, int)
decoded_message_ready = pyqtSignal(dict)

init_ (self, port: str, baudrate: int, channels: int = 8, group_configs: Optional[List[Dict]] = None) -> None:
Initializes the SerialWorker thread with the specified serial port parameters and I2C group configurations

Arg

port (str): The serial port to connect to (e.g., 'COM3', '/dev/ttyUSBe').

baudrate (int): The baud rate for serial communication.

channels (int, optional): The number of channels to monitor for triggers. Defaults to 8.
group_configs (List[Dict], optional): Configuration settings for each I2C group. Defaults to None.

super()

self.channels = channels
self.group_configs = group_configs if group_configs _ in range(4)]
self.trigger_modes = ['No Trigger'] * self.channels

self.states = ["IDLE'] len(self.group_configs)

self.bit_buffers: List[t[int]] = [[] for _ in range(len(self.group_configs))]
self.current_bytes = [@] * len(self.group_configs)

self.bit_counts = [8] * len(self.group_configs)

self.decoded_messages: List[List[Dict]] = [[] for _ in range(len(self.group_configs))]
self.scl_last_values = [1] len(self.group_config

self.sda_last_values = [1] len(self.group_configs)

self.messages: List[List[Dict]] [[] for _ in range(len(self.group_configs
self.error_flags = [False] * len(self.group_config

self.sample_idx = @

self.serial = serial.Serial(port, baudrate)
t serial.SerialException H
print(f"Failed to open serial port: {str(e)
self.is_running = False

self.addr_sample_idxs: t[Optional[int]] = [None] * len(self.group_configs)
self.ack_sample_idxs: List[Optional[int]] = [None] * len(self.group_configs)

self.data_sample_idxs: List[Optional[int]] [None] * len(self.group_configs)
self.stop_sample_idxs: List[Optional[int]] = [None] * len(self.group_configs)

Figure 5450: I12C.py - Serial Worker — init

Page 63 of 95

def set_trigger mode(self, channel_idx: int, mode: str) -> None:

Sets the trigger mode for a specific channel.

Args:
channel_idx (int): The index of the channel (@-based).
mode (str): The trigger mode to set (e.g., 'No Trigger', 'Rising Edge', 'Falling Edge').

self.trigger_modes[channel_idx] = mode

run(self) -> None:
The main loop of the worker thread. Continuously reads data from the serial port,
processes I2C decoding, and emits data_ready and decoded_message_ready signals when appropriate.

data_buffer = deque(maxlen=1000)

while self.is_running:
if self.serial.in_waiting:
raw_data = self.serial.read(self.serial.in_waiting).splitlines()
for line in raw_data:
try:
data_value = int(line.strip())
data_buffer.append(data_value)
self.data_ready.emit(data_value, self.sample_idx)
self.decode_i2c(data_value, self.sample_idx)
self.sample_idx += 1
except ValueError:
continue

Figure 5551:12C.py - SerialWorker — triggerMode, run

Page 64 of 95

def decode_i2c(self, data_value: int, sample_idx: int) -> None:

Decodes incoming serial data to interpret I2C messages based on configured groups.

Args:
data_value (int): The raw data value read from the serial port.
sample idx (int): The current sample index.

for group_idx, group_config in enumerate(self.group_configs):
scl_channel = group_config.get('clock_channel', 2) - 1
sda_channel = group_config.get('data_channel’, 1) - 1
address_width = group_config.get('address_width', 8)

= group_config.get('data_format', 'Hexadecimal')

(data_value >> scl channel) & 1
(data_value >> sda_channel) & 1

scl_last = self.scl_last_values[group_idx]
sda_last = self.sda_last_values[group_idx]
scl_edge scl !'= scl_last
sda_edge sda != sda_last

state = self.states[group_idx]

current_byte = self.current_bytes[group idx]
bit_count = self.bit_counts[group_idx]
message = self.messages[group_idx]
error_flag = self.error_flags[group_idx]

addr_sample_idx = self.addr_sample_idxs[group_idx]

ack_sample_idx = self.ack_sample_idxs[group_idx]

data_sample_idx = self.data_sample idxs[group_ idx]
stop_sample_idx self.stop sample idxs[group idx]

Figure 5652:12C.py — Decode Start

Page 65 of 95

if state == 'IDLE':
if sda_edge = sda ==

state = "START'
current_byte = @
bit_count = ©
message = []
error_flag = False

start_sample_idx = sample_idx

self.decoded_message_ready.emit({
‘group_idx': group_idx,
‘event': 'START',
'sample_idx': start_sample_idx,
1)
state == "START':
if scl_edge Hell
if bit_cou

addr_sample_idx = sample_idx
self.addr_sample idxs[group idx] = addr_sample idx

current_byte = (current_byte << 1) | sda

bit_count 1
if bit_count == expected_bits:

if address_width == 7:
address = current_byte
rw_bit = current_byte & 1
message.append({'type’': 'Address', 'data': address, 'rw': rw_bit})

address = current_byte
rw_bit = None
message.append({ 'type': 'Address’', 'data': address})

self.decoded_message_ready.emit({
‘group_idx': group_idx,
'event': "ADDRESS',
'data': address,
'rw_bit': rw_bit,
'sample_idx': addr_sample_idx,

})

bit_count = @

current_byte

state = 'ACK'

self.addr_sample_idxs[group_idx] = None

Figure 5753:12C.py — Decode FSM — IDLE & START

Page 66 of 95

S) o SACK::
if scl_edge and scl

ack_sample_idx = sample_idx
self.ack_sample_idxs[group_idx] = ack_sample_idx

ack = sda
message.append({'type': 'ACK', 'data’: ack})

self.decoded_message_ready.emit({
‘group_idx': group_idx,
'event': 'ACK',
‘data’: ack,
‘sample_idx': ack_sample_idx,

state

self.ack_sample_idxs[group_idx] = None
state == 'DATA":
if scl_edge SCIN=

if bit_count == @:

data_sample_idx = sample_idx
self.data_sample_idxs[group_idx] data_sample_idx

current_byte = (current_byte << 1) sda
bit_count il
if bit_count

message.appen 'type': 'Data', 'data': current_byte

self.decoded_message_ready.emit({
‘group_idx': group_idx,
‘event’: 'DATA',
'data': current_byte,
‘sample_idx': data_sample_idx,

)

bit_count = @

current_byte = 8

state = 'ACK2'

self.data_sample_idxs[group_idx] = None
f state 'ACK2':
f scl_edge scl

ack_sample_idx = sample_idx
self.ack_sample_idxs[group_idx] = ack_sample_:

ack = sda
message.append({'type': "ACK', 'data’: ack

self.decoded_message_ready.emit({
‘group_idx': group_idx,
‘event': 'ACK',
'data’: ack,
'sample_idx': ack_sample_idx,

state =

self.ack sample idxs[group idx] = None

Figure 5854:12C.py — Decode FSM — ACK, DATA, ACK?2

Page 67 of 95

if sda_edge and sda == 1 and scl == 1:
stop_sample_idx = sample_idx

self.decoded _message ready.emit({
'group_idx': group idx,
'event': 'STOP',
‘message': message.copy(),
'sample_idx': stop_sample idx,

}

state = "IDLE'

current_byte =
bit count =
message = []

%]
error_flag = False

self.addr_sample idxs[group_idx] = None
self.ack sample idxs[group _idx] = None
self.data_sample idxs[group_idx] = None
self.stop_sample idxs[group_idx] = None

states[group_idx] = state
current_bytes[group_idx] = current_byte
bit_counts[group_idx] = bit_ count
messages[group_idx] = message
error_flags[group_idx] = error_flag

scl last values[group_ idx]
sda_last_values[group_ idx]

Figure 5955: 12C.py — Decode FSM — Idle Check

Page 68 of 95

def reset_decoding_states(self) -> None:

Resets the I2C decoding state machines for all groups, clearing buffers and states.

self.states = ['IDLE'] * len(self.group_configs)
self.bit _buffers = [[] for _ in range(len(self.group configs))]
self.current_bytes = [@] * len(self.group configs)
self.bit counts = [@] * len(self.group configs)
self.decoded _messages = [[] for _ in range(len(self.group configs))]
self.scl last values = [1] * len(self.group_configs)

[1] * len(self.group_configs)

self.sda_last_values =

self.messages = [[] for _ in range(len(self.group_configs))]
self.error_flags = [False] * len(self.group_configs)
self.sample_idx = ©

stop_worker(self) -> None:

nnn

Stops the worker thread by setting the running flag to False and closing the serial port.
self.is_running = False
if self.serial.is_open:

self.serial.close()

Figure 6056:12C.py — Serial Worker — reset decode & stop worker

Page 69 of 95

I2CChannelButton(EditableButton):

I2CChannelButton is an EditableButton subclass specific to I2C channels. It emits additional
signals for configuration and reset actions.

Attributes:
configure_requested (pyqtSignal): Signal emitted when the configure option is selected.
reset_requested (pyqtSignal): Signal emitted when the reset to default option is selected.

configure_requested = pyqtSignal(int)
reset_requested = pyqtSignal(int)

init_ (self, label: str, group_idx: int, parent: Optional[QWidget] = None) -> None:

Initializes the I2CChannelButton with a given label and group index.

Args:
label (str): The initial text label of the button.
group_idx (int): The index of the I2C group this button represents.
parent (QWidget, optional): The parent widget. Defaults to None.
super().__init_ (label, parent)
self.group_idx = group_idx

show_context_menu(self, position: QPoint) -> None:

Displays a context menu with options to rename the button, reset to default, or configure the group.

Args:
position (QPoint): The position where the context menu is requested.

menu = QMenu()

rename_action = menu.addAction("Rename")
reset_action = menu.addAction("Reset to Default")
configure_action = menu.addAction("Configure")
action = menu.exec(self.mapToGlobal(position))
if action == rename_action:
new_label, ok = QInputDialog.getText(
self, "Rename Button", "Enter new label:", text=self.text()

)
if ok and new_label:
self.setText(new_label)
elif action == reset_action:
self.setText(self.default_label)
self.reset_requested.emit(self.group_idx)
elif action == configure_action:
self.configure_requested.emit(self.group_idx)

Figure 6157:12C.py — I2C Channel Button

Page 70 of 95

Clock Channel:
oX

-addItems([f"Channel {i+1}" for i in rar (8)1)

-setCurrentIndex(self.current_config._get('clock_channel®,
addWidget(clock_.
addWidget
t.addLayout(clock la

([f"Channel {i+1} i in range 1)
_combo.setCurrentIndex(self.current_config.get('data_channel’, 1) - 1)

_layout.addWidge
ut.addLayout(data_layout)

elf.curren 1fig.get (" addre:
self.addre: t.setChecked(

self.addre it.setChecked(

_layout
label

Binary"”, "Decimal”, “Hexadecimal®™, "BCD", "ASCII"])
10. setCurrentText (f_current_config.get('data_format', 'Hexadecimal
it .addWidget (format_label)
yout.addwWidget
t.addLayout(f

ok_button = QPushBut
cel_button = QPushButto!

_lay .addWidget
ut.addLayout(but

self.setLayout(layou

Figure 6258: I2C.py — I2C Config

Page 71 of 95

I2CDisplay(QWidget):

I2CDisplay provides the main interface for displaying and interacting with I2C data.
It includes graphical plots, control buttons, and configurations for multiple I2C groups.

Attributes:

period (int): The period for sample timing.

num_samples (int): Number of samples to capture.

port (str): Serial port for communication.

baudrate (int): Baud rate for serial communication.

channels (int): Number of channels for the logic analyzer.

bufferSize (int): Size of the data buffer.

data_buffer (List[deque]): Data buffers for each channel.

sample_indices (deque): Sample indices buffer.

total samples (int): Total number of samples captured.

is_single_capture (bool): Flag indicating if a single capture is active.
current_trigger_modes (List[str]): Current trigger modes for each channel.
trigger_mode_options (List[str]): Available trigger mode options.

sample_rate (int): Sampling rate in Hz.

group_configs (List[Dict]): Configuration settings for each I2C group.
default_group_configs (List[Dict]): Default configuration settings for each I2C group.
i2c_group_enabled (List[bool]): Flags indicating whether each I2C group is enabled.
decoded_messages_per_group (Dict[int, List[str]]): Decoded messages for each I2C group.
group_cursors (List[List[Dict]]): Cursors for each I2C group.

setup_ui (method): Method to set up the user interface.

timer (QTimer): Timer for updating the plot.

is reading (bool): Flag indicating if data reading is active.

decoded_texts (List[QTextEdit]): Text edits for displaying decoded messages.

worker (SerialWorker): Worker thread handling serial communication.

group_curves (List[Dict[str, pg.PlotDataltem]]): Plot curves for SDA and SCL of each group.
colors (List[str]): List of colors for plotting each group.

channel_buttons (List[I2CChannelButton]): Buttons to toggle I2C group visibility and configuration.
sda_trigger_mode_buttons (List[QPushButton]): Buttons to toggle trigger modes for SDA of each group.
scl_trigger_mode_buttons (List[QPushButton]): Buttons to toggle trigger modes for SCL of each group.
sample rate_input (QLineEdit): Input field for sample rate.

num_samples_input (QLineEdit): Input field for number of samples.

toggle_button (QPushButton): Button to start/stop data acquisition.

single button (QPushButton): Button to initiate a single data capture.

Figure 6359: I2C.py —I2CDisplay - DocString

Page 72 of 95

init_ (self, port: str, baudrate: int, bufferSize: int, channels: int = 8) -> None

Initializes the I2CDisplay with the specified serial port parameters and sets up the UI.

Args:
port (str): Serial port for communication.
baudrate (int): Baud rate for serial communicati
bufferSize (int): Size of the data buffer.
channels (int, optional): Number of channels for the logic analyzer. Defaults to 8.

super(

self. 65454

self.num_samples = @

self.port = port

self.baudrate = baudrate

self.channels = channels

self.buffersize = bufferSize

self.data_buffer: List[deque] = [deque(maxlen=self.bufferSi _ in range(self.channels)]
self.sample_indices: deque = deque(maxlen=self.bufferSize)
self.total_samples: int = @

self.is_single_capture: bool = False

self.current_trigger_modes: List[str] = ['No Trigger'] * self.channels
self.trigger_mode_options: List[str] = ['No Trigger', 'Rising Edge', 'Falling Edge']

self.sample_rate: int = 1008

self.group_configs: List[Dict] = [

{'data_channel" ‘clock_channel® "address_width® ‘data_format': 'Hexadecimal'},
data_channel’ *clock_channel®': 4, ‘address_width" ‘data_format': ‘Hexadecimal'},
data_channel” ‘clock_channel® ‘address_width" 'data_format': 'Hexadecimal'},

{'data_channel': 7, 'clock_channel': 8, 'address_width": 'data_format': 'Hexadecimal'},

default_group_configs: List[Dict]
data_channel': ‘clock_channel': 'address_width': 'data_format': 'Hexadecimal'},
data_channel’ "clock_channel': 4, 'address_width" 'data_format': 'Hexadecimal'},
data_channel’ ‘clock_channel® 'address_width' 'data_format': 'Hexadecimal'},
{'data_channel': 7, "clock_channel": "address_width": ‘data_format': 'Hexadecimal'},

i2c_group_enabled: List[bool] = [False] * 4

self.decoded_messages_per_group: Dict[int, List[str]] = {i: [] for i in range
self.group_cursors: List[List[Dict]] _ in range(4)]
self.setup_ui(

self.timer = QTimer()
self.timer.timeout.connect(self.update_plot)

self.is_reading: bool = False
self.decoded_texts: List[QTextEdit] = []

self.worker = SerialWorker(

port=self.port,

baudrate=self.baudrate,

channels=self.channels,

group_configs=self.group_configs
)
self.worker.data_ready.connect(self.handle_data_value)
self.worker.decoded_message_ready.connec elf.display_decoded_message
self.worker.start()

Figure 6460: 12C.py —I12CDisplay - init

Page 73 of 95

all data buffer

elf.plot.re

erial connect

int): The

a buffers,

ttons dur

ng the

_data (Dict): A dictionary containiny

up_idx', -1
up_enabled[g

Figure 6561:12C.py — Start, Stop, handle data

Page 74 of 95

ded message details.

ip_ic
get(‘event

[“type']
addr: int
&
int]

‘Binary

.append(me

Figure 6662:12C.py — display decoded message

Page 75 of 95

create_cursor(self, group_idx: int, sample_idx: int, label text: str) -> None:

Creates a visual cursor on the plot at the specified sample index with a label.

Args:
group_idx (int): The index of the I2C group (©-based).
sample_idx (int): The sample index where the cursor should be placed.
label _text (str): The text label to display alongside the cursor.

base_level = (4 - group_idx - 1) * 4

cursor_color = ‘#@OF5FF'

yl = base level + 1
y2 = base level + 2
X =0

line = pg.PlotDataItem([x, x], [yl, y2], pen=pg.mkPen(color=cursor_color, width=2))
self.plot.addItem(line)

label = pg.TextItem(text=1label text, anchor=(8.1, ©.5), color=cursor_color)
font = QFont("Arial"”, 12)

label.setFont(font)

self.plot.addItem(label)

self.group_cursors[group_idx].append({
'line': line,
"label': label,
'sample_idx': sample_idx,
'base_level': base level,
ylt: yl,
Avplis

clear_decoded_text(self) -> None:

Clears all decoded text boxes and messages per group.

idx in range(4):
self.decoded_messages_per_group[idx].clear()

Figure 6763:12C.py — create cursor, clear _decoded_text

Page 76 of 95

def closeEvent(self, event: Qt.QEvent) -> None:
Handles the close event of the I2CDisplay widget. Ensures that the worker thread is
properly stopped before closing.

Args:
event (Qt.QEvent): The close event triggered when the widget is being closed.
self.worker.stop_worker()
self.worker.quit()
self.worker.wait()
event.accept()

open_configuration_dialog(self, group_idx: int) -> None:

Opens the configuration dialog for a specific I2C group, allowing the user to update settings.

Args:
group_idx (int): The index of the I2C group to configure (©-based).
current_config = self.group_configs[group_idx]
dialog = I2CConfigDialog(current_config, parent=self)
if dialog.exec():
new_config = dialog.get_configuration()
self.group_configs[group_idx] = new_config
print(f"Configuration for group {group_idx + 1} updated: {new_config}")

sda_channel = new_config['data_channel']

scl_channel = new_config['clock_channel']

label = f"I2C {group_idx + 1}\nCh{sda_channel}:SDA\nCh{scl_channel}:SCL"
self.channel_buttons[group_idx].setText(label)

self.sda_trigger_mode_buttons[group_idx].setText(f"SDA - {self.current_trigger_modes[sda_channel - 1]}"
self.scl_trigger_mode_buttons[group_idx].setText(f"SCL - {self.current_trigger_modes[scl_channel - 1]

1
J
1
J

)
")

is_checked = self.i2c_group_enabled[group_idx]
sda_curve = self.group_curves[group_idx]['sda_curve']
scl_curve = self.group_curves[group_idx]['scl_curve']
sda_curve.setVisible(is_checked)
scl_curve.setVisible(is_checked)

self.clear_data_buffers()

self.worker.group_configs = self.group_configs

Figure 6864: I12C.py — close Event & open_config dialog

Page 77 of 95

pins_command,

def

1 data reading, Sf
scaling a
context menu op

Initializes the SerialWorker thread with the specified serial por

s incoming data from
tiple SPI groups,

ple index.

a dictionary with mess

t parameters and SPT group configurations

fdev/ttyusse’)

orker - init

set_trigger_mode(self, channel_idx: int, mode: str) -> None:

Sets the trigger mode for a specific channel.

Args:
channel_idx (int): The index of the channel (©-based).
mode (str): The trigger mode to set (e.g., 'No Trigger',
if @ <= channel_idx < self.channels:
self.trigger modes[channel_idx] = mode
else:
print(f"Channel index {channel_idx} out of range.")

run(self) -> None:

‘Rising Edge’,

to 8
group. Defaults to None

'Falling Edge').

The main loop of the worker thread. Continuously reads data from the serial port,
processes SPI decoding, and emits data_ready and decoded_message_ready signals when appropriate.

while self.is_running:
if self.serial.in_waiting:

raw_data = self.serial.read(self.serial.in_waiting).splitlines()

for line in raw_data:
try:
data_value = int(line.strip())

self.data_ready.emit(data_value, self.sample_ idx)

self.decode_spi(data_value, self.sample_idx)
self.sample_idx += 1
except ValueError:

print(f"Invalid data received: {line.strip()}")

continue

Page 78 of 95

def reset_decoding_states(self) -> None:

Resets the SPI decoding state machines for all groups, clearing buffers and states.

self.states = ['IDLE'] * len(self.group_configs)
self.current_bits mosi = [''] * len(self.group_configs)
self.current_bits miso = [''] * len(self.group configs)
self.last _clk values = [@] * len(self.group_configs)
self.last_ss_values = [1] * len(self.

self.sample_idx = ©

stop_worker(self) -> None:

Stops the worker thread by setting the running flag to False and closing the serial port.
self.is_running = False
if self.serial.is open:

self.serial.close()

Figure 70: SPLpy65 — Serial Worker — Reset decode states and stop worker

SPIConfigDialog(QDialog):
SPIConfigDialog provides a user interface for configuring SPI group settings, including
SS channel, CLK channel, MOSI channel, MISO channel, data bits, first bit order, SS active level, and data format.

def __init_ (self, current_config: Dict[str, Any], parent: Optional[QWidget] = None) -> None:

Initializes the SPIConfigDialog with the current configuration.

Args:
current_config (Dict[str, Any]): The current configuration settings for the SPI group.
parent (QWidget, optional): The parent widget. Defaults to None.

super().__init__ (parent)

self.setWindowTitle("SPI Configuration™)

self.current_config: Dict[str, Any] = current_config

self.init_ui()

Figure 7166: SPL.py — SPI Config Dialog — init

Page 79 of 95

init_ui(self) -

up the user nfiguration dialog.

ombo)

laster In S1

.addwidget(bi
addwidget |
t.addLayout(bits_lay

LK) Channel:")

addwidget
adduidget

= QHBoxL t(
= QLabel("Data Format:"

"Decimal”
ormat_combo.setCurrentText(self.current_config.get(' data_format', 'Hexadecimal

out.addLayout

Figure 7267: SPLpy — SPI Config Dialog — init ui

Page 80 of 95

def get_configuration(self) -> Dict[str, Any]:

Retrieves the updated configuration settings from the dialog.

Returns:
Dict[str, Any]: A dictionary containing the updated SPI group configuration.

return {
'ss_channel': self.ss_combo.currentIndex() + 1,
"ss_active': 'Low' if self.ss_active_low.isChecked() else 'High',
‘clock_channel': self.clock_combo.currentIndex() + 1,
'mosi_channel': self.mosi_combo.currentIndex() + 1,
'miso_channel': self.miso_combo.currentIndex() + 1,
"bits': int(self.bits_input.text()),
"first_bit': 'MSB' if self.first_msb.isChecked() else 'LSB',
‘data_format': self.format_combo.currentText(),

Figure 7368: SPLpy — SPI Config Dialog — get configuration

class SPIDisplay(QwWidget):
SPIDisplay provides the main interface for displaying and interacting with SPI data.
It includes graphical plots, control buttons, and configurations for multiple SPI groups.

Attributes:
period (int): The period for sample timing.
num_samples (int): Number of samples to capture.
port (str): Serial port for communication.
baudrate (int): Baud rate for serial communication.
channels (int): Number of channels for the logic analyzer.
bufferSize (int): Size of the data buffer.
data_buffer (List[deque]): Data buffers for each channel.
sample_indices (deque): Sample indices buffer.
total samples (int): Total number of samples captured.
is_single capture (bool): Flag indicating if a single capture is active.
current_trigger modes (List[str]): Current trigger modes for each channel.
trigger_mode_options (List[str]): Available trigger mode options.
sample_rate (int): Sampling rate in Hz.
group_configs (List[Dict]): Configuration settings for each SPI group.
default_group_configs (List[Dict]): Default configuration settings for each SPI group.
spi_group_enabled (List[bool]): Flags indicating whether each SPI group is enabled.
decoded_messages_per_group (Dict[int, List[str]]): Decoded messages for each SPI group.
group_cursors (List[List[Dict[str, Any]]]): Cursors for each SPI group.
timer (QTimer): Timer for updating the plot.
is_reading (bool): Flag indicating if data reading is active.
worker (SerialWorker): Worker thread handling serial communication.
group_curves (List[Dict[str, pg.PlotDataItem]]): Plot curves for SS, CLK, MOSI, and MISO of each group.
colors (List[str]): List of colors for plotting each group.
channel_buttons (List[SPIChannelButton]): Buttons to toggle SPI group visibility and configuration.
ss_trigger_mode_buttons (List[QPushButton]): Buttons to toggle trigger modes for SS of each group.
clk_trigger_mode_buttons (List[QPushButton]): Buttons to toggle trigger modes for CLK of each group.
sample_rate_input (QLineEdit): Input field for sample rate.
num_samples_input (QLineEdit): Input field for number of samples.
toggle_button (QPushButton): Button to start/stop data acquisition.
single_button (QPushButton): Button to initiate a single data capture.

Figure 7469: SPL.py — SPI Display — DocString

Page 81 of 95

6.2.3 PCB Testing

A printed circuit board (PCB) serves as both a voltage and data conduit, facilitating
communication among different circuit components. It acts as a transmission hub that allows
seamless data transfer between Microcontroller and the PC, while consistently supplying to all
the peripheral components connected to it. PCB testing is essential to validate the data integrity
and its validity. PCB test plan for the PCB includes:

Test 1: Verifying the circuit Logic output using Voltmeter.

This test aims to confirm the accuracy and functionality of the circuit by sampling its output
using a digital Voltmeter. The data obtained from the voltmeter was analyzed to validate logic
level high accuracy.

Test 2: Comparing output signal deviation using a known signal.

The test involves conducting functionality by applying a known input signal into the PCB.
During the test the PCB circuit output will be analyzed verifying the output aligns with the

Page 82 of 95

expected result.

gure 71: Received output signal through the Bus transceiver

Page 83 of 95

7. Project Success Evaluation:

7.1: Overall Project Evaluation:

Overall, this project can be considered a success. GUI team successfully created an interface that
is both user friendly and complements interfaces already in use by students today like Digilent
Waveforms, or Scopy. This interface connects with MCU via USB communication protocol to
communicate data from MCU to GUI and vice versa. From here GUI can process the data
coming from MCU and plot the logic signal on the screens. Utilizing the data GUI can
successfully decode 12C and SPI protocol. Unable to process UART signal decoding because our
UART signal was not generated properly from other MCU.

7.2: Other issues:

Reason for the Project: With the onset of the COVID-19 pandemic, demand for
computer chips increased while production or supply decreased. The workforce and
students alike were sent home to complete work from home. For electrical
engineering students, their curriculum consists of a series of hardware lab classes
where state of the art bench equipment is required to simulate and test hardware.
However, due to the online nature of classes, the on-campus lab rooms were
unavailable for use, forcing students to buy all-in-one USB devices to complete their
experiments. Devices like the Analog Discovery 2 by Digilent or the ADALM2000
were recommended by ECE professors for use in these experiments. Currently the
AD2 costs around $299, and the ADALM costs around $236; unaffordable to the
average college student. This project sought to develop a cheaper alternative to these
devices as a part of a three-team/project effort. In May of 2024, a group of students
successfully developed a two-channel oscilloscope based off the STM32-F303RE
MCU, the same one we are using. In December 2023, a group of students
successfully developed AWG based off the same board. Our project solved the need
for Logic analyzer component of the bigger device. Since all three components are
based on the same MCU, there will be a group that combines our three projects,
making a more affordable laboratory tool at around a $50 price range: significantly
cheaper than the other alternatives on the market today.

Use Cases of the Project: The main use cases of the project are undergraduate
electrical and computer engineering students that are required to complete
coursework. In addition, it can market to hobbyists and academic researchers where
access to moderate electrical engineering bench equipment is needed.

Final Design Maintenance: By creating a design case where the end user only has
access to the USB connector, channel outputs, and external tap-in to the power
supply; we eliminate any maintenance that will need to be done on the side of the
hardware. The device will require minimal maintenance and if any is needed, they
will be the replacement of the connectors from physical wear and tear. The GUI will
periodically require updates of python packages, as updates to the GUI would be
released via GitHub.

Life Cycle of Final Design: All parts and components in this project were sourced

Page 84 of 95

from common vendors like Digi key and Mouser, and replacements can be easily
found online. Our Interface code will be open source and can be found easily on
GitHub. Anyone can download and easily create our product. When it comes to the
disposal of our device, it would be considered E-Waste and can be sent to any
recycling center where other devices containing computer chips are sent. This project
can be constantly improved and thus does not truly have an end of lifetime.

Page 85 of 95

8: Administrative Section
8.1: Project Progress:

8.1.1: Front End:
The Front-End schematic was designed using KiCad and manufactured through JLPCB. The

initial phase of the Front-End development involved researching suitable components that met
the project’s requirements, while also considering the original Front-End design from the AWG
group. After completing the first schematic, we promptly had it manufactured to serve as a test
board. Upon identifying issues with the Front-End, we decided to simulate the circuitry using a
breadboard to validate our findings. Once the issues with the bus transceiver were confirmed and
a proper replacement was identified, we proceeded with the development of the final prototype.

Figure 72: Final Prototype

8.1.2: MCU:
The MCU was configured using the STM32Cube Integrated Development Environment. During

the summer, we took the time to familiarize ourselves with the MCU and its development
environment, gaining an understanding of key components such as timers, RAM, USB
communication, and interrupt service routines. We tested the USB protocol configuration and
timers to facilitate data sampling from the MCU to the GUI. Additionally, we experimented with
graphing logic signals from the MSP430, sampling the data through the STM32, and displaying
it on the GUI. Once we successfully displayed signals on the GUI, we implemented additional
functionalities, including command reception and determining the number of samples required
after a trigger event. These features were thoroughly tested using basic logic signals from the
MSP430, yielding exceptional results. After achieving these milestones, we transitioned to the
Raspberry Pi to send signal to our MCU to decode properly.

Page 86 of 95

8.1.3: GUI:
GUI was developed using Python. The first semester of Senior Design was dedicated to learning

how to develop a GUI using PyQt6, where we would be able to have buttons that we can interact
with and send UART messages between the MCU and GUI. The second semester began with us
figuring out how to plot square waves on a graph using PyQtgraph. Once we were able to have
the contents of the buffer displayed as square waves, we moved on to decoding the different
communication protocols. The first one we were able to do was 12C, which was followed by SPI.
Once we were able to successfully decode said signals, we needed to find a way to display the
decoded text. We ended up using the cursor functionality within PyQtgraph where the label
would be the decoded text. We couldn’t get the timing down for the UART decoding since it is
asynchronous.

8.2: Project Challenges:

8.2.1: Front End:

Upon completing the initial design of the Front End, we encountered an issue with the digital
logic signal output. During the summer and at the beginning of ECE 493, we revisited the Front-
End schematic, specifically the bus transceiver output, to ensure it produced the correct digital
logic signals. After selecting the appropriate bus transceivers, we finalized the design by
optimizing the placement of capacitors and resistors, removing any extraneous components.
Additionally, we also encountered the USB-PC connectivity issue, where the USB was not
recognized by the PC. To address the issue of noise interference during data transfer we added a
capacitor for noise cancellation and signal stabilization. Pull- up resistor was also adjusted to
ensure the quality of the signal ensuring reliable USB connection. With these adjustments, the
Front-End was successfully completed.

8.2.2: MCU:
Throughout the project's lifespan, we encountered multiple challenges, with understanding the

MCU being the most significant hurdle, as we had no prior experience working with the STM32
in our academic curriculum. We had to familiarize ourselves with its code structure, timers,
interrupt service routines (ISRs), and USB transmission and reception functions. The primary
issue was establishing a reliable USB connection; the MCU failed to connect properly to the PC,
repeatedly displaying driver-related errors. Another major challenge was configuring the timer's
speed and determining the correct period and pre-scaler values to ensure accurate data sampling.
Additionally, achieving a seamless USB connection through the front-end board proved
problematic. We could not resolve this issue entirely and had to resort to workarounds, such as
pressing the reset button or switching the JP5 jumper from U5V to E5V. Addressing this
problem would require additional circuit modifications.

8.2.3: GUI:
PyQtgraph doesn’t have an obvious to place text on the graphing window. This made displaying

the decoding logic text on the graphing window difficult. There was a cursor functionality
available within the PyQt library which would let us place a cursor anywhere on the graph. The

Page 87 of 95

important thing about this was that the cursor had a label which gave us a way to show text on
the graph. The second major challenge had to do with UART decoding. Since this was an
asynchronous communication protocol, the decoding had to be done without a clock. I wasn’t

able to successfully calculate the correct sampling rate given a baud rate.

8.3: Man, Hour Devoted to the project

* Sultan Alghamdi -
* Shahroz Shahbaz.
* Furat Alhafez -
* Sam Nepal -
* Julian Nigg -
* Thomas Senai -

MCU/GUI Code
MCU/GUI Code
3D Design /RSCH
PCB Schematics
GUI/MCU Code
PCB Design -

160 Hours
171 Hours
160 Hours
180 Hours
170 Hours
167 Hours

Over the course of the project, our team collectively dedicated approximately 1008 hours, distributed
among various members and different aspects of the project. This total includes regular team
meetings and the documentation of our progress. A significant portion of the time was allocated to
MCU programming, GUI design, and PCB construction. Specifically, we spent around 320 hours on
the MCU development, 347 hours on the front-end design, and 341 hours on creating the logic

analyzer interface (GUI).

8.4: Funds Spent

8.4.1: Front End — Version 1

Part Detail

@ IRFE330NSTRLPBF
“~
CL10B223KBBNNNC
KT-0603R
0603WAF1004T5E
. 10118124-0001LF
N
0603WAF2200T5E
0603WAF1201TSE

FCCD603B203K500CT

e T4LCX245MTC

'

Top Designator

Qa

c2

D1

R1

J1

R2

RS

Cc1

u1,U2

Figure 73: Cost of Parts for First PCB

Qty

20

Source

JLCPCB

JLCPCB

JLCPCB

JLCPCB

JLCPCB

JLCPCB

JLCPCB

JLCPCB

JLCPCB

Ext. Price

$1.48
$0.01
$0.01
$0.00
$0.92
$0.00
$0.00
$0.06

$2.77

Page 88 of 95

8.4.2: Front End — Version 2

Part Detail Top Designator Qty Source Ext. Price
CCOB03KRX7RIBB104
_) c1,c2 4 JLCPCB £0.01
Basic C14663
KT-0603R
D2 2 JLCPCB £0.01

R1 2 JLCPCB $0.00

J1 5 JLCPCB $0.91
0603WAF1001T5E

R3 2 JLCPCB $0.00
Basic C21190
0603WAF1201T5E

RS 2 JLcPcB $0.00
Basic C22765

Figure 744: Cost of Parts Second PCB

8.4.3: Front End — Version 3

Part Detail Top Designator Qty Source Ext. Price
CCO0603KRX7R9BB104
C1,C2,C4,C5 8 JLCPCB $0.02
Basic C14663
74HC245D,653
U1,U3 4 JLCPCB $0.85
Extended C5625
0603WAF220JT5E
R2,R4 4 JLCPCB $0.00
Basic C23345
KT-0603R
D2 2 JLCPCB $0.01
Basic C2286
0603WAF1004T5E
R1,R10,R11,R12,R13,R14,R15,R16,R17,... 34 JLCPCB $0.03

Basic C22935

10118194-0001LF

N J1 5 JLCPCB $0.92
V Extended C132563

CL10A105KB8NNNC

C3 2 JLCPCB $0.01
Basic C15849
0603WAF1501T5E

R5 2 JLCPCB $0.00

Basic C22843

'Y IRF9530NS-VB
v Q2 2 JLCPCB $1.18

Extended C4355054

0603WAF1001T5E

R3 2 JLCPCB $0.00
Basic C21190

Page 89 of 95

Figure 75: Cost of Parts for Final PCB

Part

Part Number

Quantity

Cost per Unit ($)

Total Cost ($)

20 Pin Connector
Header

30320-5002HB

5

0.88

4.40

Female Pin
Header 1x19 Pins
for ESP32 Module

BOCFDYMRK2

20

0.

49

9.99

8 Pin Single Row
Straight Female
Header

BO7J5BOLTS

50

0.

18

8.99

Figure 76: Additional Components

Note: For Figure 76, the last row of components was not utilized in the final Front End design.
8.4.4: MCU

Line Mouser Part Number Requested Estimated Quantity Unit Extended
Number Customer Part Number Delivery Shipment Price Price
Manufacturer Part Number Date(s) Date(s) (UsSD) (usbD)
Description
449- 7 1 FEB 27, 2024 FEB 27, 2024 5 0.580 2.90
loHS
1 LFXTAL029665REEL e
LFXTALO29665Reel
8MHz 16pF -10C 60C
80- 7 1 FEB 27, 2024 FEB 27, 2024 10 0.226 2.26
2 CBRO6C200J5GAUTO
CBRO6C200]J5GACAUTO
50Volt 20pF COG 0.05
511-NUCLEO-F303RE \-(41 FEB 27, 2024 . FEB 27, 2024 3 10.980 32.94
3 NUCLEO-F303RE e
STM32 Nucleo-64 deve
512-74L.CX245MTC 7 1 FEB 27, 2024 FEB 27, 2024 5 0.450 2.25
4 74LCX245MTC e
Bidirectional Trans
640-USB3080-30-00-A 7/ 1 FEB 27, 2024 FEB 27, 2024 3 0.710 2.13
5 USB3080-30-00-A =
Micro B Skt, Bottom-
e
1357 RoHS: Compliant
Shipping Notes Merchandise Total
42.48
(UsD) $
Shipping $7.99
Estimated Tax $2.55

Figure 77: Total money spends for purchasing MCU and parts

8.4.5: Total Fund Spent

Page 90 of 95

https://www.amazon.com/dp/B0CFDYMRK2?ref=ppx_yo2ov_dt_b_fed_asin_title
https://www.digikey.com/en/products/detail/3m/30320-5002HB/1237398?s=N4IgTCBcDaIMwAY5gQWgKwIWAFgIxAF0BfIA

PCB $140.79
MCU $53.02
Additional Components $48.07

8.4.6: Cost Per Unit

PCB + Parts $13.64
MCU + Crystal Oscillator + 2 capacitor $17.67
Device Cost $31.31

8.5: Individual Team Member Contributions

8.5.1: Front End

¢ Thomas Senai: Created the schematic and PCB design within Kicad and soldered
components onto the Front End.

¢ Sam Nepal: Selected the appropriate hardware component and created circuit blueprints
needed for final PCB design. Developed a PCB prototype model and performed through
testing to ensure circuit functionality meets the specified requirements.

8.5.2: MCU
¢ Shahroz Shahbaz: Created the setup for Py-serial USB communication between PC and
MCU, using virtual comport. Also, setup the functions and ISR need to fill up the buffer
and sample the data

¢ Sultan Alghamdi: Written code to test the functionality of USB communication.
Implemented Received command code and trigger checking functionality.

Both were able to successfully write code that is needed to capture, sample, trigger check and
transmission of data to the PC for visualization.

8.5.3: GUI
¢ Julian Nigg: Designed the interface, set up communication between the MCU and GUI,

and did the signal decoding.
e Sultan Alghamdi: Set up the 3-byte commands which are being sent to the MCU so that

the MCU knows when to start and stop sampling, which channels are active, and the
speed at which to sample. converted the user's numeric choice of samples after the trigger

Page 91 of 95

condition is met by adjusting the prescalar and period of timer 16 through USB
commands to the MCU.

e Shahroz Shahbaz: Wrote a basic GUI code to test out the graphing of some random
logic signals.

8.5.4: 3D Design
¢ Furat Alhafez: Designed the final 3D-printed case for the logic analyzer, ensuring it
securely housed the hardware components while incorporating ventilation and
connectivity cutouts. Additionally, contributed to group research efforts to integrate all
components of the project cohesively.

9. Lesson Learned
9.1: Additional Knowledge and Skills Learned

9.1.1: Front End
When developing the schematic for the front end, it was a valuable learning experience to

Page 92 of 95

understand how to manually create footprints for the Nucleo board. This was crucial, as the
entire front-end structure depended on the accuracy of the footprint.

9.1.2: MCU

The STM32FR303RE uses the STM32CubelDE application to code in C language or assembly
language. It provides some helpful interactive graphical interfaces to view or change the various
pin layout, timers, and other components on the board. The debugger features live expressions
which were used to test various functionalities of the MCU. The debugger is a helpful tool that
can be used when the GUI has not been developed to help visualize and debug the buffer.
However, there are some limitations as the buffer size increases, it becomes more difficult to see
irregularities. A GUI can be a very helpful tool in cleaning out any remaining bugs with the
MCU. It can help visualize the change in sampling frequency through an increase or decrease of
the width of the signal, the trigger functionality can be checked by plotting the buffer when the
trigger is detected, and any noise or spikes in the buffer can be more easily spotted with a large
buffer size.

9.1.3: GUI

The time dedicated to learning how to make a good-looking GUI could have been saved to by
using a tool such as QT Design Studio, as opposed to coding the whole thing. The second thing;
this project should have been developed using C instead of Python. The program runs incredibly
slow on laptops (except for the M-Series MacBook Pro and Desktops), especially when all 8
channels are active. Synchronous communication protocols are relatively simple to implement
since we can rely on the clock to make sure the data is accurate. This is not the case for UART
were getting the timing down was really challenging.

9.2: Teaming Experience

At the start of our project, our team met twice a week. Early in the week, we held a meeting without our
faculty supervisor to review our progress, and later in the week, we met to conduct research and work on
the project. Our faculty supervisor provided guidance, offering solutions whenever we encountered
challenges. In the second half of the project, we transitioned to having one official meeting with our
faculty supervisor each week, while scheduling additional meetings as needed to focus on completing
our work.

9.2.1: Project Sub-Teams
To ensure the success of our project, we divided our team into three groups based on individual

skills and expertise. One group focused on the MCU, another on developing the GUI, and the
third on designing the PCB. While each group had its primary responsibilities, team members
were flexible and assisted in other areas as needed, depending on the project's requirements for
that week.

9.2.2: Team Communication/Dynamics
Effective communication and team collaboration was a topmost priority for the project success.

Regular meetings were conducted where each sub-team provided an update about their progress,

Page 93 of 95

shared the obstacles faced, aligned their work with the other teams, and documented any changes
made. Additionally, collaborative tools like Microsoft SharePoint, google Docs, GitHub and
other project management platforms were used for remote tasking, setting deadlines and
providing real time feedback to each team member. While each project sub-team was focused on
their specific area, the uses of the collaborative tool provided flexibility and support to each team
when needed. This dynamic approach helped in project unity, allowing team members to address
the challenges and complete the project efficiently.

9.2.3: Project Management/Schedule

To keep the team and project on track, we used several communication and project management
tools. Our primary platform was a team Discord server, organized with separate channels for
each project area to facilitate asynchronous discussions. The server also allowed for sharing
images and data, which were essential for documentation. We utilized GitHub to manage all
source code for the GUI, MCU, and the KiCad schematics for PCB designs. SharePoint was
employed for collaborative work on deliverables such as presentations and documents. Finally,
we held weekly face-to-face meetings in the Engineering building with Dr. Kaps. These
meetings provided an opportunity to update him on our progress, receive constructive feedback,
address technical challenges, and resolve any team dynamics issues.

Page 94 of 95

10:

10.

References

. ADALM?2000 Evaluation Board | Analog Devices.

https://www.analog.com/en/resources/evaluation-hardware-and-software/evaluation-boards-
kits/adalm2000.html#eb-overview. Accessed 8 Dec. 2024.

“Analog Discovery 2: 100MS/s USB Oscilloscope, Logic Analyzer and Variable Power Supply.”
Digilent, https://digilent.com/shop/analog-discovery-2-100ms-s-usb-oscilloscope-logic-analyzer-
and-variable-power-supply/. Accessed 8 Dec. 2024.

Duong, Phu, Luong, Duy, Alsaei, Jasem A. J. M, Phan, Bao, Nguyen, Giang & Nguyen, Thu
Viet Minh. “Affordable USB Oscilloscope Final Project Report.” 5 May 2023.

“Graphical User Interface (GUI) Fundamentals.” Mailchimp,
https://mailchimp.com/resources/graphical-user-interface/. Accessed 8 Dec. 2024.

“I2C vs SPI vs UART - Introduction and Comparison of Their Similarities and Differences.”
Total Phase Blog, 1 Dec. 2021, https://www.totalphase.com/blog/2021/12/i2¢-vs-spi-vs-uart-
introduction-and-comparison-similarities-differences/.

“PyQt6 Tutorial 2024, Create Python GUIs with Qt.” Python GUIs, 6 Jan. 2021,
https://www.pythonguis.com/pyqt6-tutorial/.

“Saleae Logic 8.” Saleae, Inc., https://www.saleae.com/products/saleae-logic-8. Accessed 8 Dec.
2024.

STM32CubelDE - Integrated Development Environment for STM32 - STMicroelectronics.
https://www.st.com/en/development-tools/stm32cubeide.html. Accessed 8 Dec. 2024.

USB Logic Analyzer - 24MHz/S-Channel - TOL-18627 - SparkFun Electronics.
https://www.sparkfun.com/products/18627. Accessed 8 Dec. 2024.

“What Is a Microcontroller? | Definition from TechTarget.” Search IoT,
https://www.techtarget.com/iotagenda/definition/microcontroller. Accessed 8 Dec. 2024.

Page 95 of 95

https://www.techtarget.com/iotagenda/definition/microcontroller
https://www.sparkfun.com/products/18627
https://www.st.com/en/development-tools/stm32cubeide.html
https://www.saleae.com/products/saleae-logic-8
https://www.pythonguis.com/pyqt6-tutorial/
https://www.totalphase.com/blog/2021/12/i2c-vs-spi-vs-uart-introduction-and-comparison-similarities-differences/
https://www.totalphase.com/blog/2021/12/i2c-vs-spi-vs-uart-introduction-and-comparison-similarities-differences/
https://mailchimp.com/resources/graphical-user-interface/
https://digilent.com/shop/analog-discovery-2-100ms-s-usb-oscilloscope-logic-analyzer-and-variable-power-supply/
https://digilent.com/shop/analog-discovery-2-100ms-s-usb-oscilloscope-logic-analyzer-and-variable-power-supply/
https://www.analog.com/en/resources/evaluation-hardware-and-software/evaluation-boards-kits/adalm2000.html#eb-overview
https://www.analog.com/en/resources/evaluation-hardware-and-software/evaluation-boards-kits/adalm2000.html#eb-overview

	1. Problem Statement
	1.1 Motivation and Identification of Need
	1.2 Market Review

	2. Project Requirement Specification
	2.1 Mission Requirement
	2.2 Operation Requirements

	3. System Decomposition & Architecture
	3.1 Level Zero Decomposition
	3.2 Level One decomposition
	3.3 Level Two Decomposition

	4. Background Knowledge
	4.1 Microcontroller (MCU)
	4.1.1 STM32CubeIDE
	4.1.2 HAL Drivers

	4.2 Graphical User Interface (GUI)
	a) Programming fundamentals
	b) Signal Processing Basics
	c) PyQt and PySide Frameworks
	d) UI Design Principles
	e) Cross-Platform Development

	4.3 Hardware Approach

	5. Detailed Design
	5.1 MCU Design
	5.1.1 MCU Pinout:
	5.1.2 MCU Hardware Utilization:
	5.1.3 MCU Trigger Functionality:
	5.1.4 MCU/GUI communication:

	5.2 GUI Design
	5.3 PCB/Circuit Design
	5.3.1 Nucleo Board schematic
	5.3.2 Bus Transceiver Schematic
	5.3.3 USB soft start
	5.3.4 PCB Layout
	5.3.5 Final PCB

	5.4 Device Case
	5.4.1 Device Case Overview
	5.4.2 Top View of Base and Lid
	5.4.3 Bottom View of Base and Lid
	5.4.4 Top View of Assembled Case
	5.4.5 Bottom View of Assembled Case
	5.4.6 Front View of Assembled Case
	5.4.7 Side View of Assembled Case
	5.4.8 Rear View of Assembled Case
	5.4.9 Isometric View of Assembled Case
	5.4.10 Final Printed Case Model

	6: Preliminary Experimentation Plan
	6.1: Preliminary Experiment
	6.2: Testing Procedures for Components
	6.2.1 MCU Testing
	
	6.2.2: GUI
	6.2.3 PCB Testing

	7. Project Success Evaluation:
	7.1: Overall Project Evaluation:
	7.2: Other issues:

	8: Administrative Section
	8.1: Project Progress:
	8.1.1: Front End:
	8.1.2: MCU:
	8.1.3: GUI:

	8.2: Project Challenges:
	8.2.1: Front End:
	8.2.2: MCU:
	8.2.3: GUI:

	8.3: Man, Hour Devoted to the project
	8.4: Funds Spent
	8.4.1: Front End – Version 1
	8.4.2: Front End – Version 2
	8.4.3: Front End – Version 3
	8.4.4: MCU
	8.4.5: Total Fund Spent
	8.4.6: Cost Per Unit
	

	8.5: Individual Team Member Contributions
	8.5.1: Front End
	8.5.2: MCU
	8.5.3: GUI
	8.5.4: 3D Design

	9. Lesson Learned
	9.1: Additional Knowledge and Skills Learned
	9.1.1: Front End
	9.1.2: MCU
	9.1.3: GUI

	9.2: Teaming Experience
	9.2.1: Project Sub-Teams
	9.2.2: Team Communication/Dynamics
	9.2.3: Project Management/Schedule

	10: References

