
ECE 493 Senior Advanced
Design Project

Arbitrary Waveform Generator
Final Project Report

Team members: James Schaeffler
German Kuznetsov
Hussain Zainal

Vikram Arunachalam
Yifei Gao

William Denham

Faculty Advisor: Dr. Jens-Peter Kaps

ECE 493
Date of Submission: December 4, 2023

Contents:
1. Executive Summary……………………………………………………………………………………6
2. Problem Statement……………………………………………………………………………………..6

2.1 Motivation and Identification of Need……………………………………………………………6
2.2 Market Review……………………………………………………………………………………7

3. Approach……………………………………………………………………………………………… 8
3.1 Problem Analysis………………………………………………………………………………....8
3.2 Our Approach……………………………………………………………………………………..8

3.2.1 Hardware Approach………………………………………………………………….....8
3.2.2 Graphical User Interface Approach…………………………………………………….9

3.3 Alternative Approaches…………………………………………………………………………..9
3.4 Background Knowledge………………………………………………………………………….9

3.4.1 Microcontroller Unit (MCU)...9
3.4.2 Graphical User Interface (GUI)..10
3.4.3 Digital to Analog Converter (DAC)...10
3.4.4 Operational Amplifier (OpAmp)..10

3.5 Project Requirements Specification……………………………………………………………..11
3.5.1 Mission Requirements…………………………………………………………………11
3.5.2 Operational Requirements……………………………………………………………..11
3.5.3 Technology and System Wide Requirements………………………………………….11

4. System Design………………………………………………………………………………………...12
4.1 Functional Decomposition……………………………………………………………………….12
4.2 Physical Architecture…………………………………………………………………………….12
4.3 System Architecture……………………………………………………………………………...13
4.4 Connection……………………………………………………………………………………….14

4.4.1 Connection Setup………………………………………………………………………14
4.4.2 Packet Format…………………………………………………………………………15

5. Detail Design - Hardware……………………………………………………………………………..17
5.1 Hardware Architecture………………………………………………………………………….. 17
5.2 Analog Channel Architecture……………………………………………………………………18
5.3 Schematic Design - Analog front end…………………………………………………………...19
5.4 Schematic Design - PSU………………………………………………………………………...22
5.5 Schematic Design - Connectors………………………………………………………………....23
5.6 Layout Design…………………………………………………………………………………...24
5.7 PCB Assembly Method………………………………………………………………………….25
5.8 NUCLEO-F303RE Modifications……………………………………………………………….27
5.9 Final Product………………………………………………………………………………….....28

6. Detailed Design - MCU………………………………………………………………………………29
6.1 Flowchart State Machine………………………………………………………………………..29
6.2 MCU Hardware Utilization……………………………………………………………………..30

George Mason University
Department of Electrical and Computer Engineering 2

6.3 Pinout……………………………………………………………………………………………31
7. Detailed Design - GUI………………………………………………………………………………..32

7.1 Graphical User Interface Version 1……………………………………………………………...32
7.1.1 Main GUI……………………………………………………………………………...32
7.1.2 GUI AWGWave Drawer - Matplotlib………………………………………………...33

7.2 Graphical User Interface Version 2……………………………………………………………...33
7.2.1 Main GUI……………………………………………………………………………...33
7.2.2 GUI AWGWave Drawer - PyQtGraph………………………………………………..35

7.3 Graphical User Interface Version 3……………………………………………………………...35
7.3.1 Main GUI……………………………………………………………………………...35
7.3.2 Wave Drawer Final Version…………………………………………………………...37

8. Detailed Design - Device Case……………………………………………………………………….38
8.1 Device Case Overview………………………………………………………………………….38
8.2 Cad Rendering of Case Sleeve………………………………………………………………….38
8.3 Cad Rendering of Case Cover…………………………………………………………………..38
8.4 Cad Assembly View of Case……………………………………………………………………39
8.5 Top View of Assembled Case…………………………………………………………………..39
8.6 Front View of Assembled Case………………………………………………………………....40
8.7 Side View of Assembled Case…………………………………………………………………..40
8.8 Printed Case Model……………………………………………………………………………...41

9. Experimentation Plan and Selection of Evaluation Criteria………………………………………….41
9.1 Overview………………………………………………………………………………………...41

9.1.1 Hardware Design……………………………………………………………………...41
9.1.2 MCU…………………………………………………………………………………..42
9.1.3 GUI Programming…………………………………………………………………….42

10. Experimentation and Success Evaluation…………………………………………………………...42
10.1 Experimentation of MCU……………………………………………………………………...42

10.1.1 Communication Testing……………………………………………………………...42
10.1.2 PWM Signal Testing…………………………………………………………………43
10.1.3 Predefined Wave Testing…………………………………………………………….44

10.2 Experimentation of GUI……………………………………………………………………….45
10.2.1 Predefined Wave Testing - with Buttons - Different Operating Systems……………45
10.2.2 AWGWave Drawer Testing - Matplotlib……………………………………………46
10.2.3 AWGWave Drawer Testing - PyQtGraph…………………………………………...46

10.3 Experimentation of Integrated MCU and PCB………………………………………………...47
10.3.1 DAC Sweep with offsets and gain…………………………………………………...47
10.3.2 Offset Sweep with constant DAC values/gains……………………………………...48
10.3.3 Frequency Response Testing………………………………………………………...49

10.4 Project Success Evaluation…………………………………………………………………….50
10.4.1 Overall Project Evaluation…………………………………………………………...50

George Mason University
Department of Electrical and Computer Engineering 3

10.4.2 Other Issues………………………………………………………………………….50
11. Administrative Section……………………………………………………………………………...52

11.1 Project Progress………………………………………………………………………………..52
11.1.1 Front-End…………………………………………………………………………….52
11.1.2 MCU…………………………………………………………………………………52
11.1.3 GUI…………………………………………………………………………………..52

11.2 Project Challenges……………………………………………………………………………..52
11.2.1 Front-End……………………………………………………………………………52
11.2.2 MCU………………………………………………………………………………...52
11.2.3 GUI………………………………………………………………………………….53

11.3 Work-Hours Devoted to The Project…………………………………………………….…...53
11.4 Funds Spent …………………………………………………………………………………..54

11.4.1 Front End - Version 1……………………………………………………………….54
11.4.2 Front End - Versions 2 and 3……………………………………………………….54
11.4.3 MCU………………………………………………………………………………..55
11.4.4 Total Funds Spent…………………………………………………………………..55
11.4.5 Cost Per Unit……………………………………………………………………….55

11.5 Individual Team Member Contributions……………………………………………………..56
11.5.1 Front-End…………………………………………………………………………..56
11.5.2 MCU……………………………………………………………………………….56
11.5.3 GUI………………………………………………………………………………...56
11.5.4 Project Management……………………………………………………………….56

12.Lessons Learned…………………………………………………………………………………...56
12.1 Additional Knowledge and Skills Learned…………………………………………………..56

12.1.1 Front-End…………………………………………………………………………..56
12.1.2 MCU……………………………………………………………………………….56
12.1.3 GUI………………………………………………………………………………...57

12.2 Teaming Experience…………………………………………………………………………57
12.2.1 Project Sub-Teams…………………………………………………………………57
12.2.2 Team Communication/Dynamics………………………………………………….58
12.2.3 Project Management/Schedule…………………………………………………….58

13. References ………………………………………………………………………………………..59
14. Appendix A: Proposal (ECE 492)...60
15. Appendix B: Design Document (ECE 493)..81
16. Appendix C: Schematic…………………………………………………………………………...127
17. Appendix D: Code listing MCU…………………………………………………………………..132

17.1 Interface.c…………………………………………………………………………………….132
17.2 Interface.h……………………………………………………………………………………135
17.3 Main.c………………………………………………………………………………………..136

George Mason University
Department of Electrical and Computer Engineering 4

18. Appendix E: Code listing GUI……………………………………………………………………149
18.1 Main.py……………………………………………………………………………………...149
18.2 Wave_Drawer.py……………………………………………………………………………158
18.3 Wavegen.py………………………………………………………………………………….169
18.4 Input Field…………………………………………………………………………………...172
18.5 Connection.py……………………………………………………………………………….176
18.6 Channel.py…………………………………………………………………………………..181

19. Appendix F: Python Code Coverage Testing…………………………………………………….190
19.1 Board 1 testing result………………………………………………………………………..190
19.2 Board 2 testing result………………………………………………………………………..191

George Mason University
Department of Electrical and Computer Engineering 5

1. Executive Summary

This project involves the design and construction of a USB Waveform generator device that meets the
academic requirements of Electrical and Computer Engineering undergraduate students. The primary
purpose of this is to design an affordable USB Waveform generator that can be readily available and at
low cost, even in chip shortage conditions. The secondary purpose of this device should be to have high
accuracy and precision. The design should have similar features to other portable electrical engineering
test tools such as the ability to supply typical sine, square, and triangular waveforms; as well as an
arbitrary waveform specified by the user.

The planning stages of the project occurred in ECE 492, where the team was split up into three separate
teams of the front-end circuit design, microcontroller (MCU), and Graphical User Interface. Individual
team members were tasked with researching and coming up with potential designs to better understand
and develop a solution to their part of the project. They came up with conceptual design sketches for the
front-end, graphical user interface, and the microcontroller; then compared each design against the
design criteria to select the best design. Design and implementation of a beta GUI was developed in
these stages, as well as the breadboarded version of the analog front-end. The implementation and
testing stages occurred in ECE 493, where the individual components came together into the completed
system. The testing and implementation determined the design criteria has been met and thus the
problem is considered solved.

2. Problem Statement
2.1 Motivation and Identification of Need
For many years, undergraduate Electrical and Computer Engineering students have been
required to purchase all-in-one oscilloscope tools such as the Analog Discovery 2 (AD2) and the
Advanced Active Learning Module (ADALM 2000) to complete laboratory experiments. This
was due to the inability to access state of the art bench equipment in the lab, during the
COVID-19 pandemic. These devices allow students to conduct lab experiments anywhere,
without the need to rely on the availability of the hardware labs. The pandemic has led to a
resurgence in demand for these devices as students around the world are trying to get one for
their academic studies. As a result of this increased demand, there is a chip shortage and prices
continue to rise as chip supply fails to meet the demand.

Tools such as the ADALM2000 and Analog Discovery 2 cost around $236 and $399
respectively, which are not affordable to the average college student. In order to reduce the
amount required to purchase one of these tools, this project aims to create an affordable usb
waveform generator. This project contains a USB communication port with a two channel, 12-bit
resolution Digital-Analog converter. The sampling rate operates at 2 MHz and the sampling rate
is around 5 MSPS. This device will come with a custom design Graphical User Interface (GUI)

George Mason University
Department of Electrical and Computer Engineering 6

where students can supply pre-programmed waveforms as well as user-specified waveforms to
circuits. This new device will pair with the oscilloscope being designed and developed by
another senior design team to create a new multifunction laboratory tool for use by
undergraduate Electrical and Computer Engineering students.

2.2 Market Review

Table 1: Current Alternative Waveform Generators and Oscilloscope Multifunction Tools

George Mason University
Department of Electrical and Computer Engineering 7

3. Approach:
3.1 Problem Analysis
The problem required the creation of a low cost AWG able to communicate with a GUI program
running on the PC, and generate the waveforms requested by the user.

The problem required the usage of DACs to create the waveforms, as well as op-amps to condition
the waveforms to the correct output voltage levels. Furthermore, this problem required two pieces of
software that can communicate via USB - the GUI software running on the PC, and the MCU
firmware responsible for running the device and generating the waves. Also required is a pair of
regulators to generate a dual polarity voltage rail for the op-amps.
3.2 Our Approach
One way to reduce cost is to reduce complexity. By selecting a MCU with built in peripherals like
DACs and USB, we can reduce the cost of our device. However, the MCU should still be powerful
enough so that the AWG remains a viable option when it comes to being used in an academic setting.

3.2.1 Hardware Approach
We settled on the STM32-F303RE MCU as our microcontroller of use. Despite its price tag of
10$, the STM32 includes two DACs, DMA, and USB, meaning it is very well suited for our use.
The two DACs can be used to produce the two waveforms channels, and the DMA can be used
to supply the DACs with data without load on the CPU. The USB interface could allow the MCU
to communicate with a computer without the need for an external USB<->UART converter,
which is needed for microcontrollers like the AVR (used in Arduino).

The MCU can only generate a wave in the 0-3.3V range. In order to condition the signal to the
right levels, we will need to use op-amps to apply a gain to the signal and shift the signal to the
right levels. By carefully designing the circuit, we can minimize parts count and keep cost down.

To supply the aforementioned op-amps, we will need to generate a positive and negative voltage
rail to power the op-amps. This will require a boost and a buck converter, to generate the positive
and negative voltage rails respectively. Considering that our output signal should be in the -5 to
5V range, and that typical (non rail-to-rail) op-amps cannot reach their supply voltage, the
negative supply rail should be less than -5V and the positive supply rail should be over 5V.

George Mason University
Department of Electrical and Computer Engineering 8

3.2.2 Graphical User Interface Approach

Our graphical user interface must be capable of allowing the user to specify the waveform they
want, And transmitting these settings to the user. There are 4 main specifications for the
waveform:
● Frequency of the waveform.
● Amplitude.
● Offset.
● Shape (triangle, square, sign, or user defined)

Furthermore, we could extend the functionality to allow the user to enter duty cycle for square
waves, and phase when there are more than two waves. These options will be configured via
graphical user interface elements such as numerical text boxes or drop down menus, and a
preview of the output waveform will be displayed in the GUI. To simplify coding, we chose to
use the GUI library PyQt. It can be used via python, and works with any of the major three
operating systems.

3.3 Alternative Approaches
There are not a lot of alternative approaches when it comes to the opamp and power supply of the
AWG hardware. However, there are some alternative MCUs to use. One example is the RP2040. It
has a ARM Cortex CPU with higher clock speeds than the STM32. It is also cheaper. However, it
does not come with an internal DAC and would require an external DAC. Another approach would
be to use a Direct Digital Synthesis IC such as the AD9837 instead of a DAC. This approach would
completely alleviate the task of generating the waveform from the MCU, allowing us to use a very
anemic MCU. However, a chip like the AD9837 is expensive at $6.77, and only has one channel.

3.4 Background Knowledge:
3.4.1 Microcontroller Unit (MCU)
MCU is an intelligent semiconductor IC that consists of
Arithmetic and Logic Unit(ALU), Register set, Control
Unit, Internal bus, and Interface to System bus which is
to connect to memory and I/O ports. The MCU is used in
lots of different types of applications which include
washing machines, radio, and controllers. MCU is similar
but less sophisticated than System on a Chip. The first
MCU was developed in 1971 which is called TMS1000.
For MCU characteristics, it has a low price for
high-volume applications. It has lower clock frequencies
when compared to DSPS and it is up to 100MHz. Also,

George Mason University
Department of Electrical and Computer Engineering 9

low power consumption and limited memory. For our project, we use the NUCLEO-F091RC as
our boardand the microprocessor on it is STM32F091RC. For the MCU we use, its frequency is
up to 48 MHz. It has 128 to 256 Kbytes of Flash memory. 32K bytes of SRAM with HW parity.
It has a 12-channel DMA controller. One 12-bit, 1.0us ADC, and its conversion range is 0 to
3.6V.

3.4.2 Graphical User Interface (GUI)

We will use PyQtGraph(Figure 2) which is a GUI
module to design the GUI for this project. PyQt
supports both C++ and python and it is widely used for
creating large-scale GUI-based programs. It provides
creators with lots of different pre-built designs which
helps creators save time. The QtWidgets has graphical
components and related classes, such as buttons,
windows, status bars, bitmaps, colors or fonts. Also,
PyQt can run on Windows, Linux, Mac OS, and
various UNIX platforms. For our project, on the user
side, they can choose a hand drawn arbitrary
waveform, sine, square, triangle and sawtooth.

3.4.3 Digital to Analog Converter
A D/A converter takes the precise number and converts it
into a physical quantity. Usually, the digital signal is a
finite-precision time series data and the analog signal is a
continually varying physical signal.

3.4.4 Operational Amplifier (OpAmp)

An operational amplifier is an integrated circuit that can
amplify electrical signals. It has 2 input pins and 1 output
pin. Usually, an operational amplifier isn’t used alone but
connected to other circuits’ components. For 1 op-amp
circuit, it can be a non-inverting amplifier circuit,
inverting amplifier circuit, voltage follower, etc. For this
project, the circuit we design needs to let the output
signal be large enough and also can drive a 20mA load.

George Mason University
Department of Electrical and Computer Engineering 10

3.5 Project Requirements Specification:

3.5.1 Mission Requirements:

The project shall develop an affordable USB-powered arbitrary waveform generator that has a
low cost requirement for undergraduate electrical and computer engineering students to perform
laboratory experiments anywhere. The device shall utilize a custom PCB design for the analog
front end and microcontroller that can interface to a Graphical User Interface to display the
results.
3.5.2 Operational Requirements:

Input/output requirements:
● The device should have 2 analog output channels.
External Interface Requirements:
● Communication of the device is from the USB
Functional requirements
● The device shall create arbitrary waveforms, triangular, rectangular, sine
● The output bandwidth should be around 2MHz.
● The Sample Rate will be around 5 MSPS.
● The output shall be peak-to-peak 10V, adjustable +-2.5V.
● The output will be able to drive a 20 mA load and 12 bits resolution.
● The output shall display the wave, frequency, amplitude and offset selected.
3.5.3 Technology and System-Wide Requirements:
In order to run the device, the SMT32 IDE and Python based GUI will be able to work on most
operating systems, i.e. Windows, Mac OS, and Linux.

George Mason University
Department of Electrical and Computer Engineering 11

4. System Design:
4.1 Functional Decomposition
The MCU software has a number of functions, including communication with the GUI, managing the
DMA and PWM, managing the timers, and outputting the waveform. The hardware has the function of
amplifying and offsetting the waveform in the analog front end, and generating a number of voltages
required by the system. The GUI has the function of accepting user input, communicating with the
MCU, and drawing graphs based on the user input.

Figure 5: Functional Decomposition
4.2 Physical Architecture
The physical architecture is split into three main components. The first is the user’s PC which runs the
GUI application. The next component is the NUCLEO dev board which contains the STM32 MCU and
the voltage regulator for the MCU. The third is our custom PCB, which contains the analog front end,
itself composed of the gain and offset stages, and the power supplies. A USB Cable links the PC to the
MCU.

George Mason University
Department of Electrical and Computer Engineering 12

Figure 6: Physical Architecture
4.3 System Architecture

The system is composed of the GUI software, which runs on the user’s PC, the MCU software,
which runs on the STM MCU, and the AWG hardware, made up from the includes the NUCLEO dev
board and our custom PCB. The GUI accepts input from the user. The GUI displays the user’s changes
and sends configuration packets to the MCU, to which the MCU responds to with acknowledgment
packets. The MCU generates the wave, which passes through the AWG hardware analog front end and is
output from the device. The PC which runs the GUI software supplies power to the AWG hardware.

Figure 7: System Architecture

George Mason University
Department of Electrical and Computer Engineering 13

4.4 Connection
4.4.1 Connection Setup
The STM32F303 MCU has a built-in USB controller. This allows the MCU to communicate to a PC
through USB without requiring external hardware like an FTDI USB-Serial converter IC. The USB
protocol defines a device class commonly used to emulate serial devices called the USB
communication device class. (CDC). The STM32F303 can act like a CDC Device, and send and
receive data from a USB Host, such as a PC. On the PC, the MCU will appear as a serial device. An
application can then open the serial port and talk to the device.Serial devices communicate using a
stream of bytes. This stream is continuous, with no separation between packets. Any custom packet
format has to be manually implemented by the user on top of the stream. However, usb is a packet
based, not stream based, protocol. Thus, when USB CDC is used, the stream has to be split into
packets, sent through the USB controllers, and reassembled back into a stream. On this USB device,
the USB CDC packet can carry up to 64 bytes.

Figure 8: Connection Setup
The STM32’s CDC USB device library code does not automatically convert the CDC packets
back into a stream. For simplicity, we thought reassembling the USB CDC packets into a stream
only to split it into our custom packet format to be redundant. Thus, we made the packet size in
our custom packet format a multiple of 64 (which is the max amount of data that can be carried
in a USB CDC packet) and then simply treated the data in the USB CDC packets as if they were
our custom packets.

The process of sending a packet from our GUI application to the MCU is explained here:
a) The GUI creates an array of bytes representing the packets. The array size is a multiple of 64.
b) The packet bytes are sent through the socket. The OS’s drivers take the stream and split it

into USB CDC packets. Since at any time the amount of data in the stream should be a
multiple of 64, the CDC packets created should always contain 64 bytes of data.

George Mason University
Department of Electrical and Computer Engineering 14

c) The packets are sent through the USB cable via the controllers.
d) The MCU receives the CDC packet and reads the data in the packet. The MCU can now

interpret this data for commands.

Figure 9: MCU-GUI Communication
A possible issue with this method is that nothing prevents the OS’s drivers from splitting the
stream into CDC packets with less than 64 bytes, however in practice, we have not seen that
happen. The process for sending data from the MCU to the GUI works much the same way
but in reverse

4.4.2 Packet Format
Now that the connection setup has been discussed, we move onto our custom packet format used to
control the AWG device from the GUI. There are three packet types in our format. The format is
easily extendable to allow for more packet types. All packets use a little-endian format. The three
packet types are:

a) handshake/keep-alive (GUI -> MCU)
b) Config (GUI -> MCU)
c) ACK (MCU -> GUI)

The first packet type is the “handshake/keep-alive” packet. It is sent from the GUI to the MCU to
initiate a handshake between the two. It is also sent occasionally by the GUI as a form of
“keep-alive”, but this is not necessary as USB already implements keep-alive and any disconnect
would already be detectable. Upon receiving this packet, the MCU is expected to send an “ACK”
(acknowledgment) packet. If the MCU does not respond within a given time period, or responds

George Mason University
Department of Electrical and Computer Engineering 15

with an incorrectly formatted ACK packet, the GUI software knows the device has
malfunctioned and attempts no further communication. The format for the
“handshake/keep-alive” packet is shown in table 2:

Handshake/Keepalive Packet

Offset Name Type Value Length Note

0 Packet Type u8 0 1 Indicates packet type

1 Magic String u8[] “INIT” 4 Magic string, no null terminator.

5 Padding u8[] {0, 0, …} 59 Zeroed Padding Bytes

Table 2: Handshake Packet Format

The “ACK” packet, which is shown in table 3, is sent from the MCU to the GUI is equally
simple. Both send no practical data other than a short magic string that can be checked for
correctness. Note how both packets are padded with zero bytes to increase the length up to 64
bytes.

Table 3: Acknowledgement Packet Format

The config (configuration) packet, shown in table 4, is more complex. It is sent by the GUI to the
MCU everytime the GUI wants to configure the output wave. The first data field of the packet is
the channel that the GUI wishes to configure, this field can have a value of 0 or 1. All other data
fields contain settings that will be applied to that channel. The second field is the gain, its value
is 0 to indicate high gain (10VPP output) or low gain (1VPP output). The next to fields, PSC and
ARR, control the output frequency of the samples. The next field, CCR_Offset, controls the
offset voltage. 0 indicates the minimum offset voltage (-5V), and 4095 indicates the maximum
offset voltage (5V). NumSamples indicates the number of samples to send per period of the
wave. PhaseARR is the number of clock cycles to offset the phase of the waves by. PhaseARR
must not be larger than ARR, thus PhaseARR allows for precise control of the phase down to
~13.9ns, but does not allow for a large range. To get phase control with high precision and high
range, the GUI must employ two methods of changing the phase: setting PhaseARR and shifting
the provided samples. After the padding bytes, comes the array of samples. The length of the
array (in bytes) is always numSamples*2, rounded up to the nearest multiple of 128. Each
sample is 16 bit and ranges from 0 (-5V with gain=0, -1V with gain=1) to 4095 (-V with gain=0,
1V with gain=1). The GUI must scale the samples to get the correct amplitude. The packet
format is shown here:

George Mason University
Department of Electrical and Computer Engineering 16

Ack Packet

Offset Name Type Value Length Note

0 Packet Type u8 0 1 Indicates packet type

1 Magic String u8[]
“STMAWG2

3” 8 Magic string, no null terminator.

9 Padding u8[] {0, 0, …} 55 Zeroed Padding Bytes

Channel Config Packet

Offset Name Type Value Length Note

0 Packet Type u8 1 1 Indicates packet type

1 Channel u8 x 1 Channel to configure, 0 or 1

2 Gain u8 x 1 Gain to use, 0 = High, 1 = Low

3 PSC u16 x 2 Prescaler Value for channel Timer

5 ARR u16 x 2 Divider Value for channel Timer

7 CCR_Offset u16 x 2 CCR Register value for PWM Offset Gen.

9
numSample

s u16 x 2 Number of Samples

11 phaseARR u16 x 2 Phase offset of wave in clock cycles

13 Padding u8[] {0, 0, …} 51 Zeroed Padding Bytes

64 Samples u16[] x v
The samples for the wave. Length is numSamples*2

rounded up to nearest multiple of 128

Table 4: Channel Configuration Packet Format
5. Detail Design - Analog Front End Architecture

5.1 Hardware Architecture
The primary hardware component is the STMF303 microcontroller. The microcontroller is
responsible for generating the samples for the waveform, and controlling the settings of the two
analog front ends, each of which is responsible for a single output channel. The analog front end
circuit takes a waveform generated by the MCU and applies the desired gain and offset. The
resulting waveform is fed to the output connectors.

A USB connector allows the hardware to be connected to a computer. The data pins of the connector
are connected to the MCU to facilitate communication between the MCUand the user’s PC. The
USB connector also supplies 5V to the board.

A number of voltages are required by the components. 3.3V is needed to power the MCU. A linear
regulator is used to generate this voltage from the 5V USB voltage. The opamps need a high enough
supply voltage so as to not reach saturation at the min or max output voltage. Because the min and
max output voltages of the analog front ends are 10V and -10V, respectively, 12V and -12V was
chosen to power the opamps. The voltages are generated by a switching mode PSU. Finally, a -5V
reference voltage is needed by the analog front end for correct offsetting of the wave. This reference
voltage is generated via a zener-like voltage reference IC.

This project - the waveform generator - is intended to be one of three projects that make up the final
product, all three of which share the MCU. Due to this, a NUCLEO MCU development board will
be used as the base of the hardware, and all other necessary functionality will be built on a “hat”
daughterboard that can plug onto the connector found on the NUCLEO development board. This
will allow the other two projects to be combined into one product by simply plugging their
corresponding daughterboards onto the stack. The development contains the MCU as well as the
3.3V linear regulator.

George Mason University
Department of Electrical and Computer Engineering 17

Figure 10: Analog Front End System Architecture
5.2 Analog Channel Architecture
The analog channel, of which there are two on the board, has two primary jobs. The first is to apply
a gain to the waveform generated by the MCU, as the MCU DAC’s output is only 3.3V
peak-to-peak. And second, to correctly offset the wave. The diagram for the analog channel is shown
in figure N.
The wave enters the analog front end from the MCU. It is 3.3V peak-to-peak and centered around
1.65V. Therefore it is offset by -1.65V (fig. 11a) to center it around zero before applying the gain
(11b). The two possible gains are 10÷3.3 and 1÷3.3. (3.0303… and 0.3030… respectively.) The
MCU can select which gain to use (11c). These gains are fractions to turn a 3.3V peak-to-peak wave
into either a 10V peak-to-peak wave (the “high gain” option) or a 1V peak-to-peak wave (the “low
gain” option). The offset is configured by a PWM signal generated by the MCU. It enters a low-pass
filter (11d) which turns the PWM signal into a DC signal. The DC offset signal is amplified (11e)
and is combined with the waveform (11f). Because the PWM signal is centered around 1.65V, it also
needs to be shifted by -1.65V in (11f).

George Mason University
Department of Electrical and Computer Engineering 18

Figure 11: Analog Channel System Architecture

5.3 Schematic Design - Analog front end
The analog front end design was prototyped using Falstad circuit simulator to work out a compact
design that used few components. Then the circuit was carried over to schematics in Kicad.
Stages (11a)(11b) and (11c) are performed using an inverting opamp configuration. To control the
gain, an analog multiplexer is used to switch the resistor in the feedback of the amplifier. Here the
-5V reference voltage is used for the -1.65V offset.

George Mason University
Department of Electrical and Computer Engineering 19

Figure 12: Schematic of MCU Supplied Wave and Gain Adjustment
Stage (11d) is done by passing the PWM offset through a RC lowpass filter, then passing the filtered
signal through a opamp in a voltage follower gain configuration.

Figure 13: Schematic of PWM/DC Offset
Stage (11e) and (11f) are performed by another inverting opamp configuration. Since the front end
contains two inverting opamp configurations, they will cancel out and the output signal will be the
same phase as the input signal.

George Mason University
Department of Electrical and Computer Engineering 20

Figure 14: Schematic of PWM Offset

All together the schematic for the entire front end for a single channel is in figure where
C0_PWM_OFF is the PWM offset and C0_IN is the waveform from the MCU.

Figure 15: Complete Channel Schematic

This circuit is duplicated for the second channel. The outputs of the two analog channels are fed to a
pair of BNC and a pair of male pin connectors.

George Mason University
Department of Electrical and Computer Engineering 21

Figure 16: Two Channel Complete Schematic
5.4 Schematic Design - PSU
To generate the 12V and -12V power rails for the op amps, a circuit was designed around the R1283,
a dual rail step-up/inverting DC/DC converter IC. Though it is intended for powering CCDs and
LCDs in cameras, the chip fits our specifications, and was available for a low price, and was thus
selected for usage. The circuit design is fairly standard. The RF/RG and RF/RR resistors set the
output voltage values according to the formula provided in the datasheet. A LM4040-5 voltage
reference IC is used to get a -5V reference voltage from the -12V rail. The LM4040 mimics the
behavior of a zener diode, and can be used in the same circuit setup as a zener diode. However, the
LM4040 actually contains analog circuitry that allows a more stable output over a wide range of
current draws, whereas a zener diode’s forward voltage would vary with the current drawn from the
reference and would thus probably require buffering.

George Mason University
Department of Electrical and Computer Engineering 22

Figure 17: Power Supply Unit Schematic
5.5 Schematic Design - Connectors
Four rows of through-hole headers are used to connect the daughterboard to the NUCLEO
development board. The USB connector also sits on the daughterboard and is connected to the
corresponding. As per specifications, the two differential data lines have 22 ohm series resistors, and
a 1.5K ohm pullup resistor on the positive data line. It should be noted that the pins used for offset
were changed on the MCU after the PCB was made, so this schematic is slightly wrong. The error
had to be manually bodged on the PCB with wires.

George Mason University
Department of Electrical and Computer Engineering 23

Figure 18: Connector Schematic
5.6 Layout Design
The schematics were transferred over to a PCB layout. A width of 0.25mm was used for most traces,
but the power traces were thicker, at 0.4mm. The USB data traces were routed as a length matched
differential pair. The PCB was routed as a two layer board, with most horizontal traces the the first
layer and most vertical traces on the second layer. Because of the two layer layout, having a
continuous ground plane was not possible. Instead there is a segmented ground plane stitched
together with vias. A “final” version should use a 4 layer layout with a typical
signal-ground-ground-signal stackup.

When doing PCB layout, cross coupling between traces is a concern. Analog traces should be kept
away from other analog traces to prevent cross coupling between the channels. The USB traces,
which contain sharp edges, can easily couple to other traces and should also be kept away from the
analog traces. Unfortunately, due to the use of the development board, whose layout is beyond our
control, the USB traces couple to the trace for the second channel’s DAC output. This causes
noticeable interference on the second channel output when a packet is sent to the device. Similarly,
the traces carrying the offset PWM signal should be kept away from the analog or USB traces too.

George Mason University
Department of Electrical and Computer Engineering 24

Figure 19: PCB Layout
5.7 PCB Assembly Method
The PCB was manufactured by JLCPCB and manually assembled by us. The PCB assembly was
done in 4 steps. The first step is to place solder paste on the pads on the PCB. This could either be
done manually, using a syringe of solder paste, or by placing a stencil over the board and spreading
the paste over the stencil. The stencil is way more effortless, but has to be milled by a CND, which is
done at the manufacturer, and thus increases development cost slightly (~7$).

The second step was to populate the components onto the board. The components were placed on the
board with tweezers under a microscope. The third step was reflow soldering the board. The board
was placed in a reflow oven, which melts the solder, soldering the components to the board once the
oven cools.

George Mason University
Department of Electrical and Computer Engineering 25

In order for this process to work flawlessly, placement and quantity of solder needs to be controlled
perfectly (a stencil helps with this), and the components have to be placed with tight tolerances. This
is hard to do by hand, which can cause problems with the board such as tombstoned
resistors/capacitors or shorted pads. The final step of the assembly process is to fix up any issues
with the board.

Figure 20: Final Version of the PCB

George Mason University
Department of Electrical and Computer Engineering 26

5.8 NUCLEO-F303RE Modifications
The NUCLEO development board is intended for a variety of use cases and thus contains solder
bridges that should be shorted/cut as needed for your use case. First, X3 on the development board
has to be populated with a 8MHZ crystal. Then, C33 and C34 have to be populated with 20pf
capacitors, and R35 and R37 have to be bridged. Finally jumpers SB54, SB55, SB16, and SB50,
SB21 have to be cut. These modifications allow the MCU to run off a 8MHZ crystal, which is
needed for the MCU’s UCB peripheral work, and allow the second DAC output channel to work
correctly.

Figure 21: STM32-F303RE Microcontroller

George Mason University
Department of Electrical and Computer Engineering 27

5.9 Final Product
After assembly, the daughterboard PCB can be placed onto the pin headers of the NUCLEO
development board.

Figure 22: Fully Assembled PCB & MCU Device

George Mason University
Department of Electrical and Computer Engineering 28

6. Detail Design - Microcontroller
6.1 Interface State Machine Diagram

This section provides a systematic depiction of the control logic implemented in the STM32F303RE
microcontroller, central to the operation of our waveform generator, as represented by the state
machine diagram.

Figure 23: MCU State Machine Diagram

George Mason University
Department of Electrical and Computer Engineering 29

6.2 MCU Hardware Utilization

The STM32 microcontroller leverages an array of integrated hardware components to achieve
efficient waveform generation. Timers within the MCU are employed to manage the precise timing
needed for waveform modulation and to control the rate at which data is processed. The Direct
Memory Access (DMA) channels are utilized to transfer the waveform data directly between
memory and the Digital-to-Analog Converter (DAC) without burdening the CPU, thereby enhancing
the system's real-time performance. The DAC converts the digital waveform data into an analog
signal, ready for output. To facilitate these operations, the onboard RAM is used as a buffer, storing
the waveform samples and ensuring a seamless flow of data. This orchestrated use of timers, DMA,
DAC, and RAM enables the STM32 to function as a robust and precise waveform generator.

Figure 24: Hardware Utilization Chart

George Mason University
Department of Electrical and Computer Engineering 30

6.3 MCU Pinout

This section includes a straightforward pinout diagram of the STM32 microcontroller, which
outlines the basic configuration used in our project. The diagram simplifies the understanding of our
hardware setup, showing the essential connections and functionalities assigned to each pin.

Figure 25: MCU Pinout from STM Cube Integrated Development Environment

George Mason University
Department of Electrical and Computer Engineering 31

● PA4 and PA5: In our application, these pins serve as the output channels for the
Digital-to-Analog Converter (DAC), with PA4 as DAC Channel 1 (DAC_OUT1) and
PA5 as DAC Channel 2 (DAC_OUT2). These are critical for converting the digital signal
into an analog waveform.

● PA6 and PA7: These General Purpose Output (GPIO) pins are designated for selecting
the high and low gain settings in our system, which is a pivotal aspect of managing signal
amplification.

● PB3 and PA15: As part of our design, these pins function as timer outputs to provide
Pulse Width Modulation (PWM) signals. These signals are then used to adjust the offset.

● PA11 and PA12: These pins form the USB data interface, with PA11 as USB_DM (Data
Minus) and PA12 as USB_DP (Data Plus), allowing for USB communication essential
for data transfer and device control.

● PF0 and PF1: These pins are used for connecting an external crystal oscillator, which
allows USB connectivity.

7. Detail Design - Graphical User Interface

7.1 Graphical User Interface Version 1

The initial version of our graphical user interface (GUI) was designed to deliver fundamental
functionality. It enabled users to generate predefined wave shapes by specifying parameters such as
frequency, amplitude, and offset. Upon entering these parameters and pressing the 'generate' button, the
GUI would display the corresponding graphical representation of the wave. Simultaneously, it
transmitted data packets to the microcontroller unit (MCU), ensuring a seamless integration of user
inputs with the hardware functionality.

7.1.1 Main GUI

Figure 26: GUI Version 1 - Buttons

George Mason University
Department of Electrical and Computer Engineering 32

7.1.2 GUI AWGWave Drawer - Matplotlib

The initial design for the arbitrary wave drawer was minimalistic and offered the basic functionality
for testing arbitrary waveform generation. The prototype was a stand alone program from the main
GUI that implemented Matplotlib to allow the user to draw waveforms. The samples of drawn waves
could then be saved to a csv file and uploaded to be displayed in the main GUI.

Figure 27: Wave Drawer Version 1- Matplotlib

7.2 Graphical User Interface Version 2
7.2.1 Main GUI

The second iteration of our graphical user interface aimed to incorporate a second channel while
enhancing its intuitiveness. To achieve this, we prioritized modular coding, leading to a shift towards
an object-oriented approach in our code development. This transition facilitated the addition of the
second channel.

In our pursuit of a more intuitive interface, we identified several areas for improvement,
particularly in the graphical representation. A key issue was the display of waveforms.
High-frequency waves tended to appear compressed, whereas low-frequency waves displayed the
opposite effect. To address this, we experimented with different display strategies: initially setting a
range between a minimum of one and a maximum of ten waves, and later trying to consistently show
only a single period. Ultimately, we found that displaying a single period offered a clearer
representation.

Another challenge arose with the wave offset changes, especially noticeable when shifting
between certain frequency values (e.g., from 10 to 100). The updated graph often appeared similar to
its previous state, failing to clearly depict the changes. To resolve this, we focused on enhancing the

George Mason University
Department of Electrical and Computer Engineering 33

graphical updates. We implemented visual shifts that accurately reflect changes in the waveform,
such as an offset alteration causing the entire wave to move up, thereby providing a more accurate
and user-friendly visual representation.

This version of the wave drawer included some updates to make the program more intuitive
from a user perspective. Instead of needing to run a separate program the user can open the wave
drawer from within the main GUI. The mechanic for drawing was updated from a user being
required to input all points of the wave to the user being able to manipulate all samples or sections of
pre-generated waves. With this change, sample presets were added for all of the generic wave types
by the AWG project.

Figure 28:GUI Version 2 - Buttons

George Mason University
Department of Electrical and Computer Engineering 34

7.2.2 GUI AWGWave Drawer - PyQtGraph

Figure 29: Wave Drawer Version 2 - PyQtGraph

7.3 Graphical User Interface Version 3 - Offset/Phase/Duty Cycle Implemented
7.3.1 Main GUI

Having established a solid foundation for our graphical user interface (GUI), we focused on adding
new features to enhance its functionality. We introduced additional parameters such as phase and
duty cycle. To streamline the user experience, we made duty cycle adjustments and file selection
options context-sensitive, activating them only when the appropriate waveform types (DC and
arbitrary, respectively) are selected.
We also improved user input flexibility. Now, users can specify units directly in the GUI, and we
have enhanced the system's capability to manage edge cases in inputs. Furthermore, we expanded the
ways users can input data. For example, they can now use the scroll wheel to linearly increase or
decrease the value in a selected input box.
A notable update is the replacement of the 'generate' button with a 'run' button. This change allows
for the automatic updating of the wave being sent as long as it is toggled, facilitating a more
interactive and responsive experience. With the generate button removed, the graph now
automatically updates to reflect the currently entered parameters, ensuring that users always see the
most current representation of their settings.
Finally, we have upgraded the visual aspects of the GUI by implementing customizable button
themes and overall themes, such as dark mode and light mode. These options cater to diverse user
preferences and needs, including considerations for users who are colorblind or prone to eyestrain,
thereby making our GUI more accessible and user-friendly.The team implemented a new feature in

George Mason University
Department of Electrical and Computer Engineering 35

the form of a 'sync' button, accompanied by an indicator. This addition was designed to enhance user
interaction with the dual-channel functionality of our application. The sync button allows users to
easily synchronize the two waveforms, ensuring they operate in harmony. The accompanying
indicator serves a crucial role in alerting users whenever the two waveforms become
desynchronized. This feature not only improves the usability of the application but also provides a
visual cue for users to maintain waveform synchronization effectively.

Figure 30: GUI Final Version

George Mason University
Department of Electrical and Computer Engineering 36

7.3.2 Wave Drawer Final Version

The final version of the Arbitrary waveform drawer implemented an overhaul of the previous
method for saving waveforms. Instead of saving each wave wave as an individual csv file, the
method stores and modifies wave data in a text file. The user can now add, delete, and modify
previously created waves. The wave data is also stored in a list that is passed into the main GUI, thus
the user no longer needs to upload the samples for arbitrary waves themselves.
The last change is an additional preset option that allows the user to input a formula for a desired
wave. This functionality allows for precision of arbitrary waves that was not previously possible.

Figure 31: Wave Drawer Final Version

George Mason University
Department of Electrical and Computer Engineering 37

8. Detail Design - Device Case
8.1 Device Case Overview
The primary purpose of designing a case for our device was to prevent damage to the hardware
components, and make the final product look more visually appealing to the end user. Design of
the case was done in Autodesk Inventor Professional 2024. The design is composed of two pieces, a
sleeve that holds the attached PCB/MCU and the cover that attaches to the back. The files for the
sleeve and cover were then converted to stl file types and printed using a Makerbot Replicator 3D
Printer. The final version was printed in PLA plastic with a 25% infill density.
8.2 Cad Rendering of Case Sleeve

Figure 32: Case Sleeve - Isometric View
8.3 Cad Rendering of Case Cover

Figure 33: Case Cover - Isometric View

George Mason University
Department of Electrical and Computer Engineering 38

8.4 Cad Assembly View of Case

Figure 34: Assembled Case View - Isometric View
8.5 Top View of Assembled Case

Figure 35: Top View of Assembled Case with Dimensions

George Mason University
Department of Electrical and Computer Engineering 39

8.6 Front View of Assembled Case

Figure 36: Front View of Assembled Case with Dimensions

8.7 Side View of Assembled Case

Figure 37: Side View of Assembled Case with Dimensions

George Mason University
Department of Electrical and Computer Engineering 40

8.8 Printed Case Model

Figure 38: Printed Case Model in PLA - 25% Infill

9. Experimental Plan and Selection of Evaluation of Criteria
9.1 Overview

This project will be completed over the course of two semesters and will be split into two phases
(ECE 492 and 493). The project itself can be broken down into three core categories that are integral
to the design and functionality of the finished product. These divisions are the analog front end
architecture and PCB design, microcontroller unit programming, and graphical user interface
programming. Designated team members will be working in parallel to complete required tasks. It is
expected that by the end of ECE 492 that we will have a functional prototype on a breadboard, so
that PCB development can begin at the start of ECE 493 at the latest.

9.1.1 Hardware design
We will use generic op amps in the analog front end to condition the signal from the MCU. We
will have to design the circuit to correctly apply the gain and offset voltage. We will also have to
design the circuit for the buck and boost regulators. Finally, we will have to design and populate
a PCB for this circuit.

George Mason University
Department of Electrical and Computer Engineering 41

9.1.2 MCU
For this project, we shall use the NUCLEO -F303RE development board with STM32F446RE
MCU. This particular board was selected by a team working on an oscilloscope design under
similar constraints. Given that integration of their oscilloscope design and our arbitrary
waveform generator is an eventual possibility it makes sense to use the same board as we will
still have access to the two digital to analog converters necessary.

9.1.3 GUI Programming
The graphical user interface was designed using PyQtGraph, a scientific graphics and GUI
library for python. This library can be used to create the GUI as well as plot waveforms with data
being provided. Users must be able to enter certain data to define the waveform in order to be
sent to the MCU. Upon clicking the generate button, a visual display of the waveform must be
displayed on the GUI.

10. Experimentation and Success Evaluation
10.1 Experimentation of MCU

10.1.1 Communication Testing:

Figure 39: Communication Protocol Testing Setup

George Mason University
Department of Electrical and Computer Engineering 42

In order to test the communication between the GUI and MCU, we attached an
Adeept LCD screen to show the data being passed through. When running the
GUI from a terminal, the same data is displayed on the PC side as well. The
handshake ID, acknowledgement, and various packet data like the sampling
rate. From here, we were able to confirm that the graphical user interface and microcontroller
can adequately send data between one another, with or without the hardware attached.

10.1.2 PWM Signal Testing:

Figure 40: PWM Signal Testing Setup

The purpose of pulse-width modulation (PWM) testing is to determine if the MCU is capable
of taking an analog signal and converting it to a digital signal.PWM signals are just square
waves where voltage is either supplied or not supplied. This test confirmed that our written
microcontroller code is able to use the digital-analog converter (DAC) and analog-digital
converter (ADC) to convert between signal types.

George Mason University
Department of Electrical and Computer Engineering 43

10.1.3 Pre-Defined Wave Testing:

Figure 41: Pre-Defined Wave Testing Setup

In order to verify that the MCU can properly send waves, we supplied sine, triangle, and
square waves to see the output before passing it across our custom analog hardware. These
tests verified that our MCU is capable of taking wave data from the GUI with relative
accuracy. The precision of the PCB is ultimately necessary for making sure that the proper
scaling and amplification is done at the output.

George Mason University
Department of Electrical and Computer Engineering 44

10.2 Experimentation of GUI

10.2.1 Predefined Wave Testing - with Buttons - Different Operating Systems

Figure 42: GUI Testing on Fedora Linux (Left) and Windows 11 (Right)

One of our key objectives was to ensure that our application functioned seamlessly across multiple
operating systems. The application relies on a variety of Python packages, which it is designed to
download automatically. However, each operating system has its unique method for handling this
automated package downloading process. Our testing process, therefore, not only involved verifying the
successful download of these packages across different platforms but also encompassed a thorough
examination of the application's functionality through user application and QA testing. An additional
critical aspect was testing the compatibility of different operating systems with the hardware,
considering that operating systems recognize and label external devices differently.

During our multi-system testing, we encountered issues that were not related to the operating system
but rather to the hardware. For instance, we observed that on devices with a built-in dark mode (notably
the primary PC used for testing), the entire GUI would default to dark mode, even though it was not set
to this theme. Conversely, on devices with a built-in light mode, the GUI would display in light mode.
This discrepancy highlighted areas where certain colors, especially for buttons, were hardcoded. This
realization prompted us to revise our approach to the visual design of the application.

Furthermore, we noted that the layout of widgets within the GUI was affected by the hardware,
particularly the screen size. This variability necessitated additional adjustments to ensure a consistent
and user-friendly interface across different devices and screen sizes.

George Mason University
Department of Electrical and Computer Engineering 45

10.2.2 AWGWave Drawer Testing - Matplotlib

Figure 43: Wave Drawer Testing - Matplotlib
One critical aspect of the GUI is making sure that all information being displayed to the user is
accurate. So it is important that user drawn waves are displayed correctly on the main GUI and
the samples are not corrupted between the time that they are generated and when they are
displayed. The initial prototype generated samples in a csv file to be read in the main GUI.
During testing we ensured that the samples generated were the same as the sample being used in
the main GUI’s display function

10.2.3 AWGWave Drawer Testing - PyQtGraph

Figure 44: Wave Drawer Testing - PyQtGraph
In later stages of the project, the task of saving and loading arbitrary waveforms was done
internally rather than the user needing to access separate files. Thus, the array of samples was

George Mason University
Department of Electrical and Computer Engineering 46

being passed directly to the main GUI. Similarly to previous prototype testing we could ensure
that the samples were unchanged.

10.3 Experimentation of integrated MCU and PCB
The MCU and PCB were tested together. An automated script was used to configure the MCU to output
a specific wave and record the signal coming out of the PCB with and AD2.
This allowed for a number of tests, such as the DAC linearity, error in offset, and amplitude falloff with
higher frequency

10.3.1 DAC Sweep with constant offsets / gains

Figure 45: DAC Sweep Testing Results

These two figures represent DAC_sweep. This occurs when the offset equals 0. X-axis is DAC and
Y-axis is output. As we know, the output equals DAC + offset. Therefore, the results match our
expectations. We also have results measured when the offset equals other values, as shown in
Appendix. Error evaluation: There’s tiny error between the results and expectations. The slope is
supposed to pass through (0,0), however, it has a tiny intercept, which is caused by the 2% error of
the diode from the circuit we designed. Additionally, the high gain errors are all smaller than the
low gain errors, regardless of the values of the DAC.

George Mason University
Department of Electrical and Computer Engineering 47

10.3.2 Offset Sweep with constant DAC values/gains

Figure 46: Offset Sweep Testing Results

Offset_sweep when DAC=0
These two figures represent offset_sweep. This occurs when DAC equals 0. X-axis represents
set-offset and Y-axis represents measure-offset. As we know, measure-offset equals DAC +
set-offset. Therefore, the results match our expectations. We also have results measured when DAC
equals other values, as shown in Appendix.
Error evaluation: There’s tiny error between the results and expectations. The slope is supposed to
pass through (0,0); however, it has a tiny intercept, which is caused by the 2% error of the diode
from the circuit we designed. Additionally the high gain errors are all smaller than low gain errors,
regardless of the values of the set-offset.

George Mason University
Department of Electrical and Computer Engineering 48

10.3.3 Frequency Response Testing

Figure 47: Frequency Response Testing Results

Frequency response when offset =0.
These two figures represent Frequency Response. This occurs when DAC equals 0. X-axis is
frequency and Y-axis is gain. We also have results measured when the offset equals other values,
as shown in Appendix.
Error evaluation: There's error between the results and expectations. The Y-axis is supposed to start
at 1; however, it starts around 1.1, which is due to the error of the resistor we used in the circuit we
designed. Additionally, we can’t obtain the value of cutoff frequency which is because the result is
too large, and we are not able to measure it.

George Mason University
Department of Electrical and Computer Engineering 49

10.4 Project Success Evaluation
10.4.1 Overall Project Evaluation

Figure 48: Project Requirement to Outcome Comparison

Overall, the project can be considered a success. The GUI team successfully created an interface that
is both user friendly and complements interfaces already in use by students today like Digilent
Waveforms, or Scopy. This interface is able to connect to the MCU via a communication protocol
that communicates data from the GUI over a serialized USB connection to the MCU. From there the
MCU is able to process those data packets into information that can be passed off to the analog front
end for offset adjustment and gain amplification. The device is then able to output the predefined or
custom waveform specified by the user in the GUI in its corresponding output channel.

10.4.2 Other Issues
● Reason for the Project: The American economy follows this natural boom and bust cycle

every 8-10 years throughout its entire history. If we were to go back, then we could notice the
Oil Embargo of 1990, then the DotCom crash of 2000, the housing-crisis of 2009, and more
recently the COVID-19 pandemic of 2019; we see a common pattern. As Engineers, the
supply and demand chain as well as the causes of these crashes; gives us new problems to
solve.

With the onset of the COVID-19 pandemic, demand for computer chips increased while
production or supply decreased. The workforce and students alike were sent home to
complete work from home. For electrical engineering students, their curriculum consists of a
series of hardware lab classes where state of the art bench equipment is required to simulate
and test hardware. However, due to the online nature of classes, the on-campus lab rooms
were unavailable for use; forcing students to buy all-in-one USB devices to complete their
experiments.

George Mason University
Department of Electrical and Computer Engineering 50

Devices like the Analog Discovery 2 by Digilent or the ADALM2000 were recommended by
ECE professors for use in these experiments. Currently the AD2 costs around $399, and the
ADALM costs around $230; unaffordable to the average college student. This project sought
to develop a cheaper alternative to these devices as apart of a three-team/project effort. In
May of 2023, a group of students successfully developed a two-channel oscilloscope based
off the STM32-F303RE MCU, the same one we are using. Our project solved the need for
AC signals processing by designing the Arbitrary waveform generator, and lastly the logic
analyzer component will be built by a future senior design team. Since all three components
are based on the same MCU, there will be a group that combines our three projects, making a
more affordable laboratory tool at around a $50 price range; significantly cheaper than the
other alternatives on the market today.

● Use Cases of the Project: The main use cases of the project are undergraduate electrical and
computer engineering students that are required to complete coursework where the
simulation and testing of hardware using integrated circuit chips and low-level discrete
electronics. In addition, it can marketed to hobbyists and academic researchers where access
to moderate electrical engineering bench equipment is needed.

● Final Design Maintenance: By creating a design case where the end user only has access to
the USB connector, channel outputs, and external tap-in to the power supply; we eliminate
any maintenance that will need to be done on the side of the hardware. The device will
require minimal maintenance and if any is needed, they would be the replacement of the
connectors from physical wear and tear. The GUI will periodically require updates of python
packages, as updates to the GUI would be released via GitHub or the product’s website.

● Life Cycle of Final Design: All parts and components in this project were sourced from
common vendors like Digikey and Mouser, and replacements can be easily found online. Its
unlikely that our particular operational amplifier or power supplier chips are discontinued,
but in the event that they are then similar alternatives could be found. In addition, there are
many alternative waveform generator device schematics online, so if replacement
components can not be found; our design could be modified to have the same functionality
but perhaps with a different amplifier or with additional buffer stages added, etc. When it
comes to the disposal of our device, it would be considered E-Waste and can be sent to any
recycling center where other devices containing computer chips are sent. This project can be
constantly improved and thus does not truly have an end of lifetime.

George Mason University
Department of Electrical and Computer Engineering 51

11. Administrative Section
11.1 Project Progress

11.1.1 Front-End: After developing version one of the analog hardware pcb, we found
issues with noise and bandwidth capacity of the opamps selected. In the first two months of
ECE-493, we developed two new revisions of the PCB with different properties. One
revision was simply revision one but with an added buffer stage to allow for better filtering
of noise. The second revision switched from two-channel opamps to four-channel opamps
with better resolution and less noise on the supplied waves.

11.1.2 MCU: The MCU was configured using the STMCube Integrated Development
Environment (IDE). In the first few months of ECE-493, we tested the configuration of the
DAC and timers to ensure transfer of data from the GUI to the MCU via our communication
protocol. In addition, we also tested the pulse-width modulation (PWM) or the supply of a
square wave through the MCU.

11.1.3 GUI: Our graphical user interface was developed using PyQtGraph6, but is also
compatible with PyQtGraph5. The GUI allows the user to generate predefined waveforms for
channels one and two via a dropdown list, or open a wave-drawer to specify a user-defined
wave. In the wave-drawer window, the user can start with a preset wave shape or a wave
generated using a formula and click and drag with their mouse to get the desired shape. The
user can store waves as arbitrary wave objects that contain the name of the wave and
samples. These arbitrary wave objects are stored in a list passed to the main GUI and the list
is updated automatically when waves are created or deleted . We also generated executable
files for each operating system that users can download and run as a standalone application
on their desktop computers.

11.2 Project Challenges
11.2.1 Front-End:
Throughout the development of the Analog Front End, we encountered issues with two
things,creation of custom footprints and compactness.
11.2.2 MCU:
One significant challenge encountered during the project was the lack of detailed online
documentation and examples specific to our application, particularly in configuring and
managing the DAC, DMA, and timers of the STM32 microcontroller. This scarcity of
resources made it difficult to ascertain the best practices for starting, stopping, and
fine-tuning these components. Another major hurdle was developing a robust technique for
handling data transmission from our device, where again, relevant documentation was
minimal. Additionally, we faced hardware challenges, as evidenced by the failure of two
boards, which could have been attributed to either hardware faults or software glitches.
Compounding these issues was the complexity and non-intuitive nature of the debugging
feature in STM32CubeIDE, which presented a steep learning curve and hindered efficient
troubleshooting.

George Mason University
Department of Electrical and Computer Engineering 52

11.2.3 GUI:
During the development of our GUI, we encountered two primary challenges. The first issue
pertained to integrating the wave drawer, developed using Matplotlib, into the main
application, which was created with PyQt. As a standalone component, the wave drawer
functioned correctly and would activate upon pressing the designated button. However, when
embedded into the main GUI, it failed to register mouse activities and presses. Despite
extensive research and attempts to resolve this issue, we found that Matplotlib and PyQt
seemed to have compatibility limitations, hindering the interaction between the wave drawer
and the main GUI. This interaction led to us having to recreate the wave drawer with pyqt.
The second major challenge was the variability in the GUI's behavior across different
operating systems. The most evident differences were in the GUI's appearance, including
layout and color scheme, which varied significantly between operating systems. Additionally,
each operating system had its distinct method for the automatic installation of the required
packages for the application, adding to the complexity of cross-platform functionality.
Another significant issue was the detection of the microcontroller unit (MCU). Each
operating system had a different approach to recognizing the MCU, and we noted that
particularly in the macOS version of the application, it would not function correctly if the
MCU was not detected, even during development stages. These challenges underscored the
need for a more adaptable and robust design approach to ensure consistent performance and
appearance across various operating systems.

11.3 Man-Hours Devoted to the Project

Figure 49: Project Work Hours Breakdown
Throughout the project, we spent about 585 total hours of time spread across the different areas
of the project, but also on clerical functions like documentation and routine team meetings. If we
were to evenly divide this amount among the six of us, each of us worked on the project roughly
90-100 hours each. This is consistent with the project being treated like a three credit class and
the notion of putting in an hour of work outside of class for every hour spent inside of the class.

George Mason University
Department of Electrical and Computer Engineering 53

11.4 Funds Spent
11.4.1 Front End - Version 1

Figure 50: Front End Prototype Funds Spent Breakdown
11.4.2 Front End - Versions 2 and 3

Figure 51: Front End Versions 2 and 3 Funds Spent Breakdown

George Mason University
Department of Electrical and Computer Engineering 54

11.4.3 MCU

Figure 52: MCU Funds Spent Breakdown
11.4.4 Total Funds Spent

Figure 53: Total Funds Spent Breakdown

11.4.5 Cost Per Unit

Figure 54: Cost Per Unit

George Mason University
Department of Electrical and Computer Engineering 55

11.5 Individual Team Member Contributions

11.5.1 Front End
● German Kuznetsov worked on designing the PCBs and subsequent revisions, also
soldered the boards
● Bill Denham worked on designing the PCBs and the revisions, also soldered the
boards

11.5.2 MCU
● James Schaeffler: Created the setup for pyserial USB communication between the
PC and MCU, using a virtual com port.
● Yifei Gao: Wrote python code coverage test cases

11.5.3 GUI
● Hussain Zainal: Wrote the main interface that generates pre-defined and arbitrary
waves for channels one and two in Python using the PyQt library
● Vikram Arunachalam: Wrote the wave drawer program for generating arbitrary,
user-defined waveforms in Python using PyQtGraph

11.5.4 Project Management
● Bill Denham: Served as project manager, responsible for seeing all aspects of team

dynamics, communication, and human resources
12. Lessons Learned
12.1 Additional Knowledge and Skills Learned

12.1.1 Front-End:
When developing custom printed circuit boards, we found that the creation of the footprints and the
sizes of the components affected assembly of the boards. In some cases, where defined footprints
were not defined, we had to create our own and that introduced a bit of sizing issues due to human
error in measurement. In addition, we sought to compact our pcb as much as possible while trying to
match the size of the MCU protoboard. The issue with this is that the more compact the PCB is, the
harder it is to solder and place components without having to go back and manually straighten or fix
components. Taking a more scientific approach to creating custom footprints and the tolerances of
those footprints would go a lot further in the success of manufacturing future boards. However, when
it comes to mass production, we would probably outsource PCB manufacturing and have a company
provide the fabrication service, where there would likely be a quality assurance check before putting
our device out to the end consumer.
12.1.2 MCU
The NUCLEO-F091RC microcontroller unit initially did not fulfill all the project requirements. The
primary challenge encountered was the inadequate bandwidth of the onboard USB port. This
limitation was effectively addressed by leveraging the GPIO pins to power an externally soldered
USB port, thereby enhancing the board's capabilities. This experience imparted a valuable lesson
about the potential for hardware modifications in microcontrollers to meet specific project needs.

George Mason University
Department of Electrical and Computer Engineering 56

Additionally, a significant learning point was the process of establishing effective communication
and cooperation between the microcontroller unit and the front-end graphical user interface (GUI).
Through proactive discussions and clear communication of expectations and requirements among
the teams, we were able to streamline the project workflow. This collaboration not only facilitated a
more efficient project development but also underscored the importance of inter-team
communication in achieving project goals.
12.1.3 GUI
In the course of our project, we gained a wealth of knowledge, with lessons that extended far beyond
the technical aspects of software development. One of the primary areas of learning was navigating
and effectively utilizing the software development ecosystem. This involved mastering tools like
GitHub and Git, which are pivotal for version control and collaborative development. We learned not
only the technical skills to manage code changes and project versions but also the art of efficient
communication within the team. This included setting clear expectations, systematically addressing
requests, and maintaining a continuous and transparent dialogue about our progress and challenges.

The most significant lesson, however, revolved around the importance of modular coding and the
intricacies of developing system-dependent software. We learned that modular coding ensures each
part of the code can function independently yet integrate seamlessly. This approach was crucial in
allowing us to adapt our application to different operating systems and hardware configurations. It
taught us about the flexibility and foresight needed in design and development to anticipate and
effectively handle potential variations and dependencies in software environments.
12.1.4 CAD Design
In the area of CAD design, we were able to take skills that were taught to us in ENGR-107,
Introduction to engineering. In that class, we were taught the basics of engineering and the agile
engineering design process, and also how to model 3D objects in Autodesk Inventor. Objects that
can then be taken and turned into actual products via 3D printing. These skills were able to be
translated into creating a custom case enclosure that makes our device look like it can be marketed
like our competitor devices, the AD2 and ADALM2000. We learned that 3D modeling via CAD and
3D printing is a cheap and efficient way to realize a product before sending it off for the final
manufacturing of the device.

12.2 Teaming Experience
Throughout the project, our team met twice a week to update the faculty supervisor and each other on
progress made. We typically met with the faculty supervisor earlier in the week to update him on the
previous week’s accomplishments, while having working sessions together as a team, later in the week.

12.2.1 Project Sub-Teams:
For the project we split up into three smaller sub-teams, GUI, MCU, and PCB. Each sub-team or
pair of students was responsible for development for its portion of the project, but could additionally
help out in other areas depending on the need that week.

George Mason University
Department of Electrical and Computer Engineering 57

12.2.2 Team Communication/Dynamics:
One of the most difficult parts of this project was working through team communication and the
dynamics of the different members of the team. It's well known that the stereotypical engineer is
really adept at solving challenging problems, but not always the most skilled at working in teams,
nor communicating their ideas in a constructive and polite way. Our team was no different, as we are
all very well versed in various disciplines of the project, but for some of us it was a challenge
communicating back to the others in a way that was both respectful and constructive. Ultimately, this
proved to be one of the largest challenges that our team experienced as it caused resentment between
different team members towards others. We probably spent an equal amount of time with team
member disputes as we did doing technical development.

12.2.3 Project Management/Schedule
In order to keep the team and project on schedule, we utilized a few different forms of
communication and project management tools. The first was our team Discord server which had
separate channels for each area of the project, where discussion could occur asynchronously. It also
contained means of uploading pictures and data for use in documentation. The next tool was our
GitHub, which contained all source code for the GUI, MCU, and KiCad schematics of the PCB
designs. We utilized Smartsheets for our Gantt chart and overall timeline for the project that could be
referenced by any member of the team at any time. The Google Drive contained all deliverables like
the design document, progress reports, and presentations. Lastly, were our weekly face-to-face
meetings in the Engineering building with Dr. Kaps. With the face to face meetings, we could update
Dr. Kaps on the project progress, obtain any constructive feedback from him, as well as work
through any technical obstacles, or team dynamics issues.

George Mason University
Department of Electrical and Computer Engineering 58

13. References

[1] “ADALM2000,” Evaluation Board | Analog Devices, 09-Jan-2023. [Online]. Available:
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/adal
m2000.html#eb-documentation. [Accessed: 26-Feb-2023].

[2] “Campus covid-19 data archive,” George Mason University. [Online]. Available:
https://www.gmu.edu/campus-covid-19-data-archive. [Accessed: 26-Feb-2023].

[3] “Dataman 531 arbitrary waveform generator,” Device Programmers & ISP Programming by
Dataman Programmers. [Online]. Available:
https://www.dataman.com/dataman-531-arbitrary-waveform-generator.html. [Accessed: 26-Feb-2023].

[4] Hantek2000 series - hantek electronic & your testing solution provider. [Online]. Available:
http://www.hantek.com/products/detail/13174. [Accessed: 26-Feb-2023].

[5] “Picoscope 2000 specifications,” PicoScope 2000 Specifications | Pico Technology. [Online].
Available: https://www.picotech.com/oscilloscope/2000/picoscope-2000-specifications. [Accessed:
26-Feb-2023].

[6] S. K, “Analog discovery 2,” Analog Discovery 2 - Digilent Reference. [Online]. Available:
https://digilent.com/reference/test-and-measurement/analog-discovery-2/start. [Accessed: 26-Feb-2023].

[7] “Wiki,” Reference Manual (Understanding the Internals) [Analog Devices Wiki]. [Online].
Available: https://wiki.analog.com/university/tools/m2k/users/reference_manual. [Accessed:
26-Feb-2023].

George Mason University
Department of Electrical and Computer Engineering 59

14. Appendix A: Project Proposal (ECE 492)

ECE 492 Senior Advanced
Design Project

Arbitrary Waveform Generator
Project Proposal

Team members: James Schaeffer
German Kuznetsov
Hussain Zainal

Vikram Arunachalam
Yifei Gao

William Denham

Faculty Advisor: Dr. Jens-Peter Kaps

ECE 492
Date of Submission: March 29, 2023

George Mason University
Department of Electrical and Computer Engineering 60

Contents:
1. Executive Summary……………………………………………………………………4
2. Problem Statement……………………………………………………………………..4

2.1 Motivation and Identification of Need……………………………………………..4
2.2 Market Review……………………………………………………………………..5

3. Approach……………………………………………………………………………….6
3.1 Problem Analysis…………………………………………………………………..6
3.2 Our Approach………………………………………………………………………6
3.3 Alternative Approaches…………………………………………………………….7
3.4 Background Knowledge……………………………………………………………8
3.4.1 Microcontroller Unit (MCU)...8
3.4.2 Graphical User Interface (GUI)...8
3.4.3 Digital to Analog Converter (DAC)..8
3.4.4 Operational Amplifier (OpAmp)...8

3.5 Project Requirements Specification………………………………………………...9
3.5.1 Mission Requirements………………………………………………………….9
3.5.2 Operational Requirements……………………………………………………...9
3.5.3 Technology and System Wide Requirements…………………………………..9

4. System Design………………………………………………………………………...10
4.1 Functional Decomposition………………………………………………………...10
4.2 Physical Architecture……………………………………………………………...10
4.3 System Architecture…………………………………………………………….....10

5. Preliminary Experimentation Plan…………………………………………………….11
5.1 Preliminary Experiment…………………………………………………………...11
5.2 Testing Plan for Components (ECE 492)...………………………………………..11
5.2.1 Analog Front End……………………………………………………………...11
5.2.2 MCU…………………………………………………………………………..11
5.2.3 GUI……………………………………………………………………………11

5.3 Testing Plan for Prototype with integration (ECE 492/493)..................................11
6. Preliminary Project Plan………………………………………………………………13

6.1 Overview…………………………………………………………………………..13
6.2 Detail Project Plan Timeline ECE 492 (14 Weeks) ………………………………13
6.3 Detail Project Plan Timeline ECE 493 (14 Weeks)...13

7. Potential Problems…………………………………………………………………….14
7.1 Required Technical Skill Set……………………………………………………...14
7.2 Analog Front End…………………………………………………………………14
7.3 Microcontroller Unit (MCU)..14
7.4 Graphical User Interface (GUI)..15

8. References……………………………………………………………………………16

George Mason University
Department of Electrical and Computer Engineering 61

1. Executive Summary

This project involves the design and construction of a USB Waveform generator device that
meets the academic requirements of Electrical and Computer Engineering undergraduate
students. The primary purpose of this is to design an affordable USB Waveform generator that
can be readily available and at low cost, even in chip shortage conditions. The secondary purpose
of this device should be to have high accuracy and precision. The design should have similar
features to other portable electrical engineering test tools such as the ability to supply typical
sine, square, and triangular waveforms; as well as an arbitrary waveform specified by the user.

The planning stages of the project will occur in ECE 492, where the team will be split up into
three separate teams of the front-end circuit design, microcontroller (MCU), and Graphical User
Interface. Individual team members will be tasked with researching and coming up with potential
designs to better understand and develop a solution to their part of the project. They will come up
with conceptual design sketches for the front-end, graphical user interface, and the
microcontroller; then compare each design against the design criteria to select the best design.
Design and implementation of a beta GUI will be developed in these stages, as well as the
breadboarded version of the analog front-end. The implementation and testing stages will occur
in ECE 493, where the individual components will come together into the completed system. The
testing and implementation will determine whether design criteria has been met and thus the
problem considered solved.

2. Problem Statement
2.1 Motivation and Identification of Need

For many years, undergraduate Electrical and Computer Engineering students have been
required to purchase all-in-one oscilloscope tools such as the Analog Discovery 2 (AD2)
and the Advanced Active Learning Module (ADALM 2000) to complete laboratory
experiments. This was due to the inability to access state of the art bench equipment in
the lab, during the COVID-19 pandemic. These devices allow students to conduct lab
experiments anywhere, without the need to rely on the availability of the hardware labs.
The pandemic has led to a resurgence in demand for these devices as students around the
world are trying to get one for their academic studies. As a result of this increased
demand, there is a chip shortage and prices continue to rise as chip supply fails to meet
the demand.

George Mason University
Department of Electrical and Computer Engineering 62

Tools such as the ALAM2000 and Analog Discovery 2 cost around $236 and $399
respectively, which is not affordable to the average college student. In order to reduce the
amount required to purchase one of these tools, this project aims to create an affordable
usb waveform generator. This project will have a USB communication port with a two
channel, 12-bit resolution Digital-Analog converter. The sampling rate will operate at 2
MHz and the sampling rate will be around 5 MSPS. This device will come with a custom
design Graphical User Interface (GUI) where students can supply pre-programmed
waveforms as well as user-specified waveforms to circuits. This new device will pair
with the oscilloscope being designed and developed by another senior design team to
create a new multifunction laboratory tool for use by undergraduate Electrical and
Computer Engineering students.

2.2 Market Review

Table 1: Current Alternative Waveform Generators and Oscilloscope Multifunction Tools

George Mason University
Department of Electrical and Computer Engineering 63

3. Approach:
3.1 Problem Analysis
The problem requires the creation of a low cost AWG able to communicate with a GUI
program running on the PC, and generate the waveforms requested by the user.

The problem will require the usage of DACs to create the waveforms, as well as op-amps
to condition the waveforms to the correct output voltage levels. Furthermore, this
problem will require two pieces of software that can communicate via USB - the GUI
software running on the PC, and the MCU firmware responsible for running the device
and generating the waves. Also required will be a pair of regulators to generate a dual
polarity voltage rail for the op-amps.

3.2 Our Approach

One way to reduce cost is to reduce complexity. By selecting a MCU with built in
peripherals like DACs and USB, we can reduce the cost of our device. However, the
MCU should still be powerful enough so that the AWG remains a viable option when it
comes to being used in an academic setting.

3.2.1 Hardware Approach

We settled on the STM32-F303RE MCU as our microcontroller of use. Despite
its price tag of 10$, the STM32 includes two DACs, DMA, and USB, meaning it
is very well suited for our use. The two DACs can be used to produce the two
waveforms channels, and the DMA can be used to supply the DACs with data
without load on the CPU. The USB interface could allow the MCU to
communicate with a computer without the need for an external USB<->UART
converter, which is needed for microcontrollers like the AVR (used in Arduino).

George Mason University
Department of Electrical and Computer Engineering 64

The MCU can only generate a wave in the 0-3.3V range. In order to condition the
signal to the right levels, we will need to use op-amps to apply a gain to the signal
and shift the signal to the right levels. By carefully designing the circuit, we can
minimize parts count and keep cost down.

To supply the aforementioned op-amps, we will need to generate a positive and
negative voltage rail to power the op-amps. This will require a boost and a buck
converter, to generate the positive and negative voltage rails respectively.
Considering that our output signal should be in the -5 to 5V range, and that typical
(non rail-to-rail) op-amps cannot reach their supply voltage, the negative supply
rail should be less than -5V and the positive supply rail should be over 5V.

3.2.2 Graphical User Interface Approach

Our graphical user interface must be capable of allowing the user to specify the
waveform they want, And transmitting these settings to the user. There are 4 main
specifications for the waveform:
- Frequency of the waveform.
- Amplitude.
- Offset.
- Shape (triangle, square, sign, or user defined)

Furthermore, we could extend the functionality to allow the user to enter duty
cycle for square waves, and phase when there are more than two waves. These
options will be configured via graphical user interface elements such as numerical
text boxes or drop down menus, and a preview of the output waveform will be
displayed in the GUI. To simplify coding, we chose to use the GUI library PyQt.
It can be used via python, and works with any of the major three operating
systems.

3.3 Alternative Approaches

There are not a lot of alternative approaches when it comes to the opamp and power
supply of the AWG hardware. However, there are some alternative MCUs to use. One
example is the RP2040. It has a ARM Cortex CPU with higher clock speeds than the
STM32. It is also cheaper. However, it does not come with an internal DAC and would
require an external DAC. Another approach would be to use a Direct Digital Synthesis IC
such as the AD9837 instead of a DAC. This approach would completely alleviate the task
of generating the waveform from the MCU, allowing us to use a very anemic MCU.
However, a chip like the AD9837 is expensive at $6.77, and only has one channel.

George Mason University
Department of Electrical and Computer Engineering 65

3.4 Background Knowledge:
3.4.1 Microcontroller Unit
(MCU)
MCU is an intelligent semiconductor IC that
consists of Arithmetic and Logic Unit(ALU),
Register set, Control Unit, Internal bus, and
Interface to System bus which is to connect to
memory and I/O ports. The MCU is used in
lots of different types of applications which
include washing machines, radio, and
controllers. MCU is similar but less
sophisticated than System on a Chip. The first
MCU was developed in 1971 which is called
TMS1000. For MCU characteristics, it has a
low price for high-volume applications. It has
lower clock frequencies when compared to
DSPS and it is up to 100MHz. Also, low power
consumption and limited memory. For our
project, we use the NUCLEO-F091RC as our
boardand the microprocessor on it is STM32F091RC. For the MCU we use, its
frequency is up to 48 MHz. It has 128 to 256 Kbytes of Flash memory. 32K bytes
of SRAM with HW parity. It has a 12-channel DMA controller. One 12-bit, 1.0us
ADC, and its conversion range is 0 to 3.6V.

3.4.2 Graphical User Interface (GUI)

We will use PyQtGraph(Figure 2) which is a
GUI module to design the GUI for this
project. PyQt supports both C++ and python
and it is widely used for creating large-scale
GUI-based programs. It provides creators with
lots of different pre-built designs which helps
creators save time. The QtWidgets has
graphical components and related classes,
such as buttons, windows, status bars,
bitmaps, colors or fonts. Also, PyQt can run
on Windows, Linux, Mac OS, and various
UNIX platforms. For our project, on the user

George Mason University
Department of Electrical and Computer Engineering 66

side, they can choose a hand drawn arbitrary waveform, sine, square, triangle and
sawtooth.

3.4.3 Digital to Analog Converter

A D/A converter takes the precise number and
converts it into a physical quantity. Usually,
the digital signal is a finite-precision time
series data and the analog signal is a
continually varying physical signal.

3.4.4 Operational Amplifier (OpAmp)

An operational amplifier is an integrated
circuit that can amplify electrical signals. It
has 2 input pins and 1 output pin. Usually, an
operational amplifier isn’t used alone but
connected to other circuits’ components. For 1
op-amp circuit, it can be a non-inverting
amplifier circuit, inverting amplifier circuit,
voltage follower, etc. For this project, the
circuit we design needs to let the output signal
be large enough and also can drive a 20mA
load.

3.5 Project Requirements Specification:

3.5.1 Mission Requirements:

The project shall develop an affordable USB-powered arbitrary waveform
generator that has a low cost requirement for undergraduate electrical and
computer engineering students to perform laboratory experiments anywhere. The
device shall utilize a custom PCB design for the analog front end and
microcontroller that can interface to a Graphical User Interface to display the
results.

George Mason University
Department of Electrical and Computer Engineering 67

3.5.2 Operational Requirements:

Input/output requirements:
● The device should have 2 analog output channels.

External Interface Requirements:
● Communication of the device is from the USB

Function requirements
● The device shall be controlled via SCPI
● The device shall create arbitrary waveforms, triangular, rectangular, sine
● The output bandwidth should be around 2MHz.
● The Sample Rate will be around 5 MSPS.
● The output shall be peak-to-peak 10V, adjustable +-2.5V.
● The output will be able to drive a 20 mA load and 12 bits resolution.
● The output shall display the wave, frequency, amplitude and offset

selected.

3.5.3 Technology and System-Wide Requirements:

In order to run the device, the SMT32 IDE and Python based GUI will be able to
work on most operating systems, i.e. Windows, Mac OS, and Linux.

George Mason University
Department of Electrical and Computer Engineering 68

4. System Design:
4.1 Functional Decomposition

George Mason University
Department of Electrical and Computer Engineering 69

4.2 Physical Architecture

4.3 System Architecture

George Mason University
Department of Electrical and Computer Engineering 70

5. Preliminary Experimental Plan
5.1 Preliminary Experiment and Testing Plan (ECE 492)

Testing for the prototype and final designs will be split based on the three core
components of the function generator: analog front end, MCU programming, and GUI.
Each of which will need to be tested individually as well as collectively once the
components are integrated.

5.1.1 Analog Front End

The analog front end should be thoroughly tested for correct operation of the gain
and offset functionality.

Test #1: Gain
1. Input a sine wave to the analog front end with an amplitude of 1V.
2. Go through all possible gain settings.
3. Measure the output amplitude with each setting.

This test will ensure the gain functionality is working correctly, and allow
us to measure the error.

Test #2: Offset
4. Input a DC voltage to the analog front end.
5. Sweep the offset from the max to min value.
6. Measure the output DC voltage.
7. Repeat at different Gain levels.

This test will ensure the offset is correctly added to the input signal, and
the output range goes from the max to min value while the offset goes
from the max to min value. This test will also allow us to measure the
error.

Test #3: Bandwidth
This test will ensure the front end has enough bandwidth to pass signals at our
max output frequency without losing significant amplitude.

1. Perform a frequency sweep on the input of the analog front end.
2. Measure the output level
3. Repeat at different Gain levels or with different offsets.

5.1.2 MCU

George Mason University
Department of Electrical and Computer Engineering 71

The Nucleo-F303RE board is a popular development board used for prototyping
and testing embedded systems. When designing a waveform generator, it is
important to thoroughly test the hardware and software before moving to
production. Testing with the Nucleo-F091RC board is an essential step in this
process as it allows the team to verify that the waveform generator is functioning
as intended and to identify and address any potential issues. This IDE is new to all
of the members, so preliminary testing is required.

Test #1:
The first test will be used as preliminary testing for the STM32 Nucleo board.
Verify the jumper positions, install the USB driver, and connect the board to a PC
to ensure that the LED lights are functioning correctly when the button is pressed.
Additionally, the team will use the available demonstration and software
examples to test the software functionality and compatibility. Any issues with
jumper positions, LED lights, or software functionality could be identified and
corrected before moving to production.

Test #2:

1. Hardware setup: Connect an LED and a current-limiting resistor to the
GPIO output pin of the DAC. Connect the ground of the LED to the
ground pin of the DAC.

2. Code setup: Write a simple code that sets the GPIO output pin of the DAC
to a known logic level (e.g., high or low), and continuously updates the
output value.

3. Verification: Run the code on the microcontroller and observe the LED.
The LED should turn on or off, depending on the logic level set in the
code.

4. Repeat: Repeat the test with different output values to verify that the GPIO
output of the DAC can be set accurately and consistently.

This test can help ensure that the GPIO output of the DAC is functioning correctly
and can be set as expected, which is important for a range of applications, such as
controlling external devices or triggering other circuit components. Any issues
with the GPIO output of the DAC could be identified and corrected before
moving to production.

George Mason University
Department of Electrical and Computer Engineering 72

Test #3:

1. Hardware setup: Connect the Nucleo board to a PC via USB using a
Type-A to Mini-B cable. Connect via ST-LINK to the Nucleo board using
the SWD (Serial Wire Debug) interface.

2. Software setup: In STM32CubeIDE, create a project that sets up a simple
data transfer routine, such as sending a string of characters from the
microcontroller to the PC over the ST-Link interface. In Python, use the
Pyserial library to set up a serial communication object and read the data
being sent by the microcontroller over the ST-Link interface.

3. Verification: Build and upload the project to the Nucleo board using
STM32CubeIDE. Verify that the data is being transmitted and received
correctly, and that there are no errors or data loss during the transfer.

4. Repeat: Repeat the test with different data transfer rates and different data
formats to verify that the ST-Link communication is reliable and
consistent.

This test can help ensure that the ST-Link communication between the PC and
Nucleo board is functioning correctly and can transfer data reliably, which is
important for many applications. Any issues with data transfer or communication
can be identified and corrected before moving to production.

5.1.3 GUI

The GUI is how the user interacts with the system specifically when it comes to
selecting types of waveforms and setting values for criteria such as frequency,
offset, and amplitude. Thus, it is important to confirm that the GUI is both
displaying desired changes as well as transmitting the proper information to the
MCU.

Test #1: The first test is meant to verify that the GUI is properly plotting functions
based on user input to ensure that the user has accurate visuals at all times.

1. Design several examples of settings for each of the standard waveform
shapes.

2. Input values into both the GUI and the waveform generator on the AD2
3. Verify that the waveforms match relative to the respective axis.

George Mason University
Department of Electrical and Computer Engineering 73

Test #2:

1. Design several waveform examples for testing or use the waveforms from
test 1.

2. For each waveform record and display the data that is to be transmitted to
the Nucleo board.

3. Verify that the data received matches the sent data for each of the example
waveforms.

5.2 Testing Plan for Prototype with integration(ECE 492/493)

The purpose of this testing is to verify that individual components are functionally
operational when integrated together.

5.2.1 Analog Front End

Test:

1. Connect the Nucleo-F303RE board to the PC using a USB cable.
2. Using either Waveforms Live or PyQtGraph, generate a digital signal with

a specified amplitude and frequency.
3. Adjust the gain and offset settings on the analog front end of the board

using the GUI.
4. Measure the output signal using an oscilloscope.
5. Record the output signal amplitude and frequency for each gain and offset

setting.
6. Analyze the results to determine the gain and offset error and ensure that

the gain and offset functionality is working correctly.
7. Repeat the test with different digital signal amplitudes and frequencies to

ensure the accuracy and reliability of the analog front end.

Overall, this test would allow you to use a GUI to adjust the gain and offset
settings on the Nucleo-F303RE board and test the functionality of the analog front
end with a digital signal generated by the PC. This would ensure that the board is
functioning correctly and provide accurate and reliable measurements for your
project.

George Mason University
Department of Electrical and Computer Engineering 74

5.2.2 MCU/GUI

Test:

1. Use Pyserial to send the digital signal from the PC's GUI to the
Nucleo-F303RE board.

2. Adjust the gain and offset settings on the analog front end of the board using
the MCU firmware.

3. Measure the output signal using an oscilloscope or other measurement
equipment.

4. Record the output signal amplitude and frequency for each gain and offset
setting.

5. Analyze the results to determine the gain and offset error and ensure that the
gain and offset functionality is working correctly.

6. Repeat the test with different digital signal amplitudes and frequencies to
ensure the accuracy and reliability of the analog front end.

The purpose of this test is to verify Pyserial’s ability to accurately send/receive
data between the user controlled GUI interface and MCU’s IDE. Subsequent
testing will include removing STM32CubeIDE’s involvement with the User to
create a simpler User experience.

Using DMA to transfer data between memory and I/O devices, the CPU can
perform other tasks while the data transfer is taking place. With the DAC, DMA
can be used to offload the task of transferring data from the MCU to the DAC,
reducing the MCU's resource load and improving system performance.The main
testing criteria for the MCU is to ensure system resources are kept low while also
producing accurate results.

5.2.3 PCB

Designing a custom PCB can be challenging and requires careful consideration of
component placement, trace routing, trace widths, and trace lengths to prevent
common issues during testing. The trace width affects the resistance and current
carrying capacity of the circuit, while the trace length affects the propagation
delay of the signal and can introduce issues such as signal skew or reflection.
During testing, it's important to inspect the board for physical defects, verify the
power supply, and check the resistance between different points on the PCB.
Taking the time to optimize the circuit and ensure proper component placement,
trace routing, and appropriate trace widths and lengths can help prevent issues
during testing and ensure the successful operation of the board.

George Mason University
Department of Electrical and Computer Engineering 75

6. Preliminary Project Plan
6.1 Overview

This project will be completed over the course of two semesters and will be split into two
phases (ECE 492 and 493). The project itself can be broken down into three core
categories that are integral to the design and functionality of the finished product. These
divisions are the analog front end architecture and PCB design, microcontroller unit
programming, and graphical user interface programming. Designated team members will
be working in parallel to complete required tasks. It is expected that by the end of ECE
492 that we will have a functional prototype on a breadboard, so that PCB development
can begin at the start of ECE 493 at the latest.

6.1.1 Hardware design

We will use generic op amps in the analog front end to condition the signal from
the MCU. We will have to design the circuit to correctly apply the gain and offset
voltage. We will also have to design the circuit for the buck and boost regulators.
Finally, we will have to design and populate a PCB for this circuit.

6.1.2 MCU

For this project, we shall use the NUCLEO -F303RE development board with
STM32F446RE MCU. This particular board was selected by a team working on
an oscilloscope design under similar constraints. Given that integration of their
oscilloscope design and our arbitrary waveform generator is an eventual
possibility it makes sense to use the same board as we will still have access to the
two digital to analog converters necessary.

6.1.3 GUI Programming

The graphical user interface will be designed using PyQtGraph, a scientific
graphics and GUI library for python. This library can be used to create the GUI as
well as plot waveforms with data being provided.

George Mason University
Department of Electrical and Computer Engineering 76

6.2: Allocation of Responsibilities

The individual tasks are divided based upon background, skills, and general interest in
the project area.

● Yifei Gao / James Schaeffer : Microcontroller Unit (MCU) Programming
● Vikram Arunachalam / Hussain Zainal : Graphical User Interface (GUI)

Programming
● German Kuznetsov / William Denham : Hardware Design

6.3 Detail Project Plan Timeline ECE 492 (14 Weeks)

George Mason University
Department of Electrical and Computer Engineering 77

6.4 Detail Project Plan Timeline ECE 493 (14 Weeks)

7. Potential Problems
7.1 Required Technical Skill Set

After identifying the core aspects of this project we are aware that there are required
technical skills that we will need to develop a functioning prototype and final design. The
following set of skills and knowledge areas will be critical during this project:

● PCB Design, Analog Design
● Programming Languages: Python , C, Matlab
● Device and programming debugging
● GUI Design using PyQtGraph

7.2 Hardware design
When designing a PCB, mistakes may cause the need for revisions, which may waste
precious time. Furthermore, no one in our group has SMD soldering experience so we
may have trouble assembling the board at first. Another potential problem is that in order
to achieve accurate results, we may need to use more precise resistors, which may drive
up the cost.

George Mason University
Department of Electrical and Computer Engineering 78

7.3 Microcontroller Unit (MCU)

Given that we are unfamiliar with the MCU being used, there is a lot of documentation to
go through in order to resolve programming issues. Fewer members of the team are fully
proficient in C as well, so we can expect that much more time will need to be allocated to
programming and debugging code for the MCU. The hardware specifications of the
MCU satisfy the current operational requirements of the project, but should we need to
resort to an alternative we may face potential issues with stock and delivery timing.
Furthermore, we are unsure if the MCU will be able to generate the waveform at the
specified frequency while also managing the USB connection and other tasks.

7.4 Graphical User Interface (GUI)

The PyQtGraph library being used in the design of the GUI supports both Python and
C++. While no members of the team have used this library before we all have experience
with python. Those working primarily on the GUI have experience with working with
documented python libraries.

George Mason University
Department of Electrical and Computer Engineering 79

8. References

[1] “ADALM2000,” Evaluation Board | Analog Devices, 09-Jan-2023. [Online]. Available:
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evalua
tion-boards-kits/adalm2000.html#eb-documentation. [Accessed: 26-Feb-2023].

[2] “Campus covid-19 data archive,” George Mason University. [Online]. Available:
https://www.gmu.edu/campus-covid-19-data-archive. [Accessed: 26-Feb-2023].

[3] “Dataman 531 arbitrary waveform generator,” Device Programmers & ISP
Programming by Dataman Programmers. [Online]. Available:
https://www.dataman.com/dataman-531-arbitrary-waveform-generator.html.
[Accessed: 26-Feb-2023].

[4] Hantek2000 series - hantek electronic & your testing solution provider. [Online].
Available: http://www.hantek.com/products/detail/13174. [Accessed: 26-Feb-2023].

[5] “Picoscope 2000 specifications,” PicoScope 2000 Specifications | Pico Technology.
[Online]. Available:
https://www.picotech.com/oscilloscope/2000/picoscope-2000-specifications.
[Accessed: 26-Feb-2023].

[6] S. K, “Analog discovery 2,” Analog Discovery 2 - Digilent Reference. [Online].
Available:
https://digilent.com/reference/test-and-measurement/analog-discovery-2/start.
[Accessed: 26-Feb-2023].

[7] “Wiki,” Reference Manual (Understanding the Internals) [Analog Devices Wiki].
[Online]. Available:
https://wiki.analog.com/university/tools/m2k/users/reference_manual. [Accessed:
26-Feb-2023].

George Mason University
Department of Electrical and Computer Engineering 80

15. Appendix B: Design Document (ECE 493)

ECE 492 Senior Advanced
Design Project

Arbitrary Waveform Generator
Design Document

Team members: James Schaeffler
German Kuznetsov
Hussain Zainal

Vikram Arunachalam
Yifei Gao

William Denham

Faculty Advisor: Dr. Jens-Peter Kaps

ECE 492
Date of Submission: May 5, 2023

George Mason University
Department of Electrical and Computer Engineering 81

Contents:
1. Executive Summary ……………………………………………………………….…...…5
2. Problem Statement ………………………………………………………………………..5

2.1 Motivation and Identification of Need ……………………………………….……….5
2.2 Market Review ………………………………………………………………………..6

3. Approach ………………………………………………………………………………….7
3.1 Problem Analysis ……………………………………………………………………..7
3.2 Our Approach …………………………………………………………………………7

3.2.1 Hardware Approach ………………………………………………………...7
3.2.2 Graphical User Interface Approach ………………………………………...8

3.3 Alternative Approaches ………………………………………………………………8
3.4 Background Knowledge ………………………………………………………………9
3.4.1 Microcontroller Unit (MCU) ……………………………………………………..9
3.4.2 Graphical User Interface (GUI) …………………………………………………..9
3.4.3 Digital to Analog Converter (DAC) …………………………………………….10
3.4.4 Operational Amplifier (OpAmp) ………………………………………………..10

3.5 Project Requirements Specification …………………………………………………………10
3.5.1 Mission Requirements …………………………………………………………..10
3.5.2 Operational Requirements ………………………………………………………11
3.5.3 Technology and System Wide Requirements …………………………………...11

4. Experimentation Plan and Selection of Evaluation Criteria……………………………..11
4.1 Overview…………………………………………………………………………….11

4.1.1 Hardware Design ………………………………………………………….11
4.1.2 MCU………………………………………………………………………12
4.1.3 GUI Programming ………………………………………………………...12

5. System Design …………………………………………………………………………..12
5.1 Functional Decomposition ………………………………………………………….12
5.2 Physical Architecture …………………………………………………………….....13
5.3 System Architecture …………………………………………………………….......13
5.4 State Machine Diagram ………………………………………………………….....14
5.5 Flowcharts ……………………………………………………………………….....15

5.5.1 Configure State Flowchart …………………………………………….....15
5.5.2 Wait for User Input State Flowchart .…………………………………....16
5.5.3 Redraw Signal Display State Flowchart ………………………………....17
5.5.4 MCU Receive Data State ……………………………………………..…18

6. Detail Design …………………………………………………………………….……19
6.1 Analog Hardware Front End Design Circuit Schematic ………………………….19

6.1.1 Falstad Circuit Simulation ………………………………………………19
6.1.2 Op Amp Selection ………………………………………………………19
6.1.3 Front End Design - Part 1- Gain and Offset …………………………….20

George Mason University
Department of Electrical and Computer Engineering 82

6.1.4 Front End Design - Part 2 - Offset ……………………………………….21
6.1.5 Front End Design - Part 3 - Power Supply Unit …………………………21
6.1.6 PCB Design Schematic …………………………………………………..22
6.1.7 PCB Design 3D Rendering ……………………………………………....22
6.1.8 PCB Design - Hardware Breakdown …………………………………….23
6.1.9 PCB Board and Discrete Hardware Components ………………………..23

6.2 Microcontroller Design ……………………………………………………………24
6.2.1 NUCLEO-F303RE USB Hardware Design ………………………….….24

7. Preliminary Experimentation Plan …………………………………………………….24
7.1 Preliminary Experiment and Testing Plan (ECE 492) …………………………….24

7.1.1 Analog Front End ……………………………………………………….25
7.1.2 MCU…………………………………………………………………….25
7.1.3 GUI ……………………………………………………………………...27

7.2 Testing Plan For Prototype With Integration(ECE 492/493) ……………………..28
7.2.1 Analog Front End ……………………………………………………….28
7.2.2 MCU/GUI ……………………………………………………………….29
7.2.3 PCB ……………………………………………………………………..29

8. Prototyping Progress Report ………………………………………………………….30
8.1 Analog Hardware Prototyping ……………………………………………………30

8.1.1 Soldering PCB Components…………………………………………….30
8.1.2 Soldering PCB Components - Microscope Placement………………….31

8.2 Microcontroller Hardware & Software Prototyping ……………………………..32
8.2.1 MCU Waveform Generation using Timer/DMA/DAC ………………...32
8.2.2 MCU Hardware Setup ………………………………………………….36
8.2.3 MCU USB Communication ……………………………………………37
8.2.4 Data Transmission from PC to MCU over serial ………………………37

8.3 Graphical User Interface Prototyping ……………………………………………39
8.3.1 Default Waveform Shapes ……………………………………………..39
8.3.2 Signal Modifications …………………………………………………..41
8.3.3 Current GUI Layout …………………………………………………...41
8.3.4 Arbitrary Waveform Display…………………………………………..42

9. Schedule and Milestones ……………………………………………………………43
9.1 Allocation of Responsibilities ………………………………………………….43
9.2 Course Project Plan Timeline ECE 492 (14 Weeks) ……………………………43
9.3 Course Project Plan Timeline ECE 493 (14 Weeks) ……………………………44
9.4 Detailed Project Plan Timeline by Sub-System ECE 492 ………………………44

10. Problems Encountered ………………………………………………………………45
10.1 Hardware Design ………………………………………………………………45
10.2 MCU…………………………………………………………………………...45
10.3 GUI …………………………………………………………………………….45

George Mason University
Department of Electrical and Computer Engineering 83

11. References …………………………………………………………………………46

George Mason University
Department of Electrical and Computer Engineering 84

1. Executive Summary

This project involves the design and construction of a USB Waveform generator device that
meets the academic requirements of Electrical and Computer Engineering undergraduate
students. The primary purpose of this is to design an affordable USB Waveform generator that
can be readily available and at low cost, even in chip shortage conditions. The secondary purpose
of this device should be to have high accuracy and precision. The design should have similar
features to other portable electrical engineering test tools such as the ability to supply typical
sine, square, and triangular waveforms; as well as an arbitrary waveform specified by the user.

The planning stages of the project will occur in ECE 492, where the team will be split up into
three separate teams of the front-end circuit design, microcontroller (MCU), and Graphical User
Interface. Individual team members will be tasked with researching and coming up with potential
designs to better understand and develop a solution to their part of the project. They will come up
with conceptual design sketches for the front-end, graphical user interface, and the
microcontroller; then compare each design against the design criteria to select the best design.
Design and implementation of a beta GUI will be developed in these stages, as well as the
breadboarded version of the analog front-end. The implementation and testing stages will occur
in ECE 493, where the individual components will come together into the completed system. The
testing and implementation will determine whether design criteria has been met and thus the
problem considered solved.

2. Problem Statement
2.1 Motivation and Identification of Need

For many years, undergraduate Electrical and Computer Engineering students have been
required to purchase all-in-one oscilloscope tools such as the Analog Discovery 2 (AD2)
and the Advanced Active Learning Module (ADALM 2000) to complete laboratory
experiments. This was due to the inability to access state of the art bench equipment in
the lab, during the COVID-19 pandemic. These devices allow students to conduct lab
experiments anywhere, without the need to rely on the availability of the hardware labs.
The pandemic has led to a resurgence in demand for these devices as students around the
world are trying to get one for their academic studies. As a result of this increased
demand, there is a chip shortage and prices continue to rise as chip supply fails to meet
the demand.

George Mason University
Department of Electrical and Computer Engineering 85

Tools such as the ALAM2000 and Analog Discovery 2 cost around $236 and $399
respectively, which is not affordable to the average college student. In order to reduce the
amount required to purchase one of these tools, this project aims to create an affordable
usb waveform generator. This project will have a USB communication port with a two
channel, 12-bit resolution Digital-Analog converter. The sampling rate will operate at 2
MHz and the sampling rate will be around 5 MSPS. This device will come with a custom
design Graphical User Interface (GUI) where students can supply pre-programmed
waveforms as well as user-specified waveforms to circuits. This new device will pair
with the oscilloscope being designed and developed by another senior design team to
create a new multifunction laboratory tool for use by undergraduate Electrical and
Computer Engineering students.

2.2 Market Review

Table 1: Current Alternative Waveform Generators and Oscilloscope Multifunction Tools

George Mason University
Department of Electrical and Computer Engineering 86

3. Approach:
3.1 Problem Analysis
The problem requires the creation of a low cost AWG able to communicate with a GUI
program running on the PC, and generate the waveforms requested by the user.

The problem will require the usage of DACs to create the waveforms, as well as op-amps
to condition the waveforms to the correct output voltage levels. Furthermore, this
problem will require two pieces of software that can communicate via USB - the GUI
software running on the PC, and the MCU firmware responsible for running the device
and generating the waves. Also required will be a pair of regulators to generate a dual
polarity voltage rail for the op-amps.

3.2 Our Approach

One way to reduce cost is to reduce complexity. By selecting a MCU with built in
peripherals like DACs and USB, we can reduce the cost of our device. However, the
MCU should still be powerful enough so that the AWG remains a viable option when it
comes to being used in an academic setting.

3.2.1 Hardware Approach

We settled on the STM32-F303RE MCU as our microcontroller of use. Despite
its price tag of 10$, the STM32 includes two DACs, DMA, and USB, meaning it
is very well suited for our use. The two DACs can be used to produce the two
waveforms channels, and the DMA can be used to supply the DACs with data
without load on the CPU. The USB interface could allow the MCU to
communicate with a computer without the need for an external USB<->UART
converter, which is needed for microcontrollers like the AVR (used in Arduino).

The MCU can only generate a wave in the 0-3.3V range. In order to condition the
signal to the right levels, we will need to use op-amps to apply a gain to the signal

George Mason University
Department of Electrical and Computer Engineering 87

and shift the signal to the right levels. By carefully designing the circuit, we can
minimize parts count and keep cost down.

To supply the aforementioned op-amps, we will need to generate a positive and
negative voltage rail to power the op-amps. This will require a boost and a buck
converter, to generate the positive and negative voltage rails respectively.
Considering that our output signal should be in the -5 to 5V range, and that typical
(non rail-to-rail) op-amps cannot reach their supply voltage, the negative supply
rail should be less than -5V and the positive supply rail should be over 5V.

3.2.2 Graphical User Interface Approach

Our graphical user interface must be capable of allowing the user to specify the
waveform they want, And transmitting these settings to the user. There are 4 main
specifications for the waveform:
- Frequency of the waveform.
- Amplitude.
- Offset.
- Shape (triangle, square, sign, or user defined)

Furthermore, we could extend the functionality to allow the user to enter duty
cycle for square waves, and phase when there are more than two waves. These
options will be configured via graphical user interface elements such as numerical
text boxes or drop down menus, and a preview of the output waveform will be
displayed in the GUI. To simplify coding, we chose to use the GUI library PyQt.
It can be used via python, and works with any of the major three operating
systems.

3.3 Alternative Approaches

There are not a lot of alternative approaches when it comes to the opamp and power
supply of the AWG hardware. However, there are some alternative MCUs to use. One
example is the RP2040. It has a ARM Cortex CPU with higher clock speeds than the
STM32. It is also cheaper. However, it does not come with an internal DAC and would
require an external DAC. Another approach would be to use a Direct Digital Synthesis IC
such as the AD9837 instead of a DAC. This approach would completely alleviate the task
of generating the waveform from the MCU, allowing us to use a very anemic MCU.
However, a chip like the AD9837 is expensive at $6.77, and only has one channel.

George Mason University
Department of Electrical and Computer Engineering 88

3.4 Background Knowledge:
3.4.1 Microcontroller Unit
(MCU)
MCU is an intelligent semiconductor IC that
consists of Arithmetic and Logic Unit(ALU),
Register set, Control Unit, Internal bus, and
Interface to System bus which is to connect to
memory and I/O ports. The MCU is used in
lots of different types of applications which
include washing machines, radio, and
controllers. MCU is similar but less
sophisticated than System on a Chip. The first
MCU was developed in 1971 which is called
TMS1000. For MCU characteristics, it has a
low price for high-volume applications. It has
lower clock frequencies when compared to
DSPS and it is up to 100MHz. Also, low power
consumption and limited memory. For our
project, we use the NUCLEO-F091RC as our
boardand the microprocessor on it is STM32F091RC. For the MCU we use, its
frequency is up to 48 MHz. It has 128 to 256 Kbytes of Flash memory. 32K bytes
of SRAM with HW parity. It has a 12-channel DMA controller. One 12-bit, 1.0us
ADC, and its conversion range is 0 to 3.6V.

3.4.2 Graphical User Interface (GUI)

We will use PyQtGraph(Figure 2) which is
a GUI module to design the GUI for this
project. PyQt supports both C++ and
python and it is widely used for creating
large-scale GUI-based programs. It
provides creators with lots of different
pre-built designs which helps creators save
time. The QtWidgets has graphical
components and related classes, such as
buttons, windows, status bars, bitmaps,
colors or fonts. Also, PyQt can run on
Windows, Linux, Mac OS, and various

George Mason University
Department of Electrical and Computer Engineering 89

UNIX platforms. For our project, on the user side, they can choose a hand drawn
arbitrary waveform, sine, square, triangle and sawtooth.

3.4.3 Digital to Analog Converter

A D/A converter takes the precise number and
converts it into a physical quantity. Usually,
the digital signal is a finite-precision time
series data and the analog signal is a
continually varying physical signal.

3.4.4 Operational Amplifier (OpAmp)

An operational amplifier is an integrated
circuit that can amplify electrical signals. It
has 2 input pins and 1 output pin. Usually, an
operational amplifier isn’t used alone but
connected to other circuits’ components. For 1
op-amp circuit, it can be a non-inverting
amplifier circuit, inverting amplifier circuit,
voltage follower, etc. For this project, the
circuit we design needs to let the output signal
be large enough and also can drive a 20mA
load.

3.5 Project Requirements Specification:

3.5.1 Mission Requirements:

The project shall develop an affordable USB-powered arbitrary waveform
generator that has a low cost requirement for undergraduate electrical and
computer engineering students to perform laboratory experiments anywhere. The
device shall utilize a custom PCB design for the analog front end and
microcontroller that can interface to a Graphical User Interface to display the
results.

George Mason University
Department of Electrical and Computer Engineering 90

3.5.2 Operational Requirements:

Input/output requirements:
● The device should have 2 analog output channels.

External Interface Requirements:
● Communication of the device is from the USB

Function requirements
● The device shall be controlled via SCPI
● The device shall create arbitrary waveforms, triangular, rectangular, sine
● The output bandwidth should be around 2MHz.
● The Sample Rate will be around 5 MSPS.
● The output shall be peak-to-peak 10V, adjustable +-2.5V.
● The output will be able to drive a 20 mA load and 12 bits resolution.
● The output shall display the wave, frequency, amplitude and offset

selected.

3.5.3 Technology and System-Wide Requirements:

In order to run the device, the SMT32 IDE and Python based GUI will be able to
work on most operating systems, i.e. Windows, Mac OS, and Linux.

4. Experimental Plan and Selection of Evaluation of Criteria
4.1 Overview

This project will be completed over the course of two semesters and will be split into two
phases (ECE 492 and 493). The project itself can be broken down into three core
categories that are integral to the design and functionality of the finished product. These
divisions are the analog front end architecture and PCB design, microcontroller unit
programming, and graphical user interface programming. Designated team members will
be working in parallel to complete required tasks. It is expected that by the end of ECE
492 that we will have a functional prototype on a breadboard, so that PCB development
can begin at the start of ECE 493 at the latest.

4.1.1 Hardware design

We will use generic op amps in the analog front end to condition the signal from
the MCU. We will have to design the circuit to correctly apply the gain and offset
voltage. We will also have to design the circuit for the buck and boost regulators.
Finally, we will have to design and populate a PCB for this circuit.

George Mason University
Department of Electrical and Computer Engineering 91

4.1.2 MCU

For this project, we shall use the NUCLEO -F303RE development board with
STM32F446RE MCU. This particular board was selected by a team working on
an oscilloscope design under similar constraints. Given that integration of their
oscilloscope design and our arbitrary waveform generator is an eventual
possibility it makes sense to use the same board as we will still have access to the
two digital to analog converters necessary.

4.1.3 GUI Programming

The graphical user interface will be designed using PyQtGraph, a scientific
graphics and GUI library for python. This library can be used to create the GUI as
well as plot waveforms with data being provided. Users must be able to enter
certain data to define the waveform in order to be sent to the MCU. Upon clicking
the generate button, a visual display of the waveform must be displayed on the
GUI application.

5. System Design:
5.1 Functional Decomposition

George Mason University
Department of Electrical and Computer Engineering 92

5.2 Physical Architecture

5.3 System Architecture

George Mason University
Department of Electrical and Computer Engineering 93

5.4 State Machine Diagram for Arbitrary Waveform

George Mason University
Department of Electrical and Computer Engineering 94

5.5 Flowcharts
5.5.1 Configure Scenario

George Mason University
Department of Electrical and Computer Engineering 95

5.5.2 Wait for User Input Scenario

George Mason University
Department of Electrical and Computer Engineering 96

5.5.3 Redraw Signal Display Scenario

George Mason University
Department of Electrical and Computer Engineering 97

5.5.4 MCU Receive Data Scenario

George Mason University
Department of Electrical and Computer Engineering 98

6. Detail Design
6.1 Analog Front End Architecture

6.1.1 Falstad Circuit Simulation

6.1.2 Op Amp Selection

George Mason University
Department of Electrical and Computer Engineering 99

6.1.3 Front End Design - Part 1- Gain and Offset

George Mason University
Department of Electrical and Computer Engineering 100

6.1.4 Front End Design - Part 2 - Offset

6.1.5 Front End Design - Part 3 - Power Supply Unit

George Mason University
Department of Electrical and Computer Engineering 101

6.1.6 PCB Design Schematic

6.1.7 PCB Design 3D Rendering

George Mason University
Department of Electrical and Computer Engineering 102

6.1.8 PCB Design - Hardware Breakdown

6.1.9 PCB Board and Discrete Hardware Components

George Mason University
Department of Electrical and Computer Engineering 103

6.2 Microcontroller Design

6.2.1 NUCLEO-F303RE USB Hardware Design

7. Preliminary Experimental Plan
7.1 Preliminary Experiment and Testing Plan (ECE 492)

Testing for the prototype and final designs will be split based on the three core
components of the function generator: analog front end, MCU programming, and GUI.
Each of which will need to be tested individually as well as collectively once the
components are integrated.

George Mason University
Department of Electrical and Computer Engineering 104

7.1.1 Analog Front End

The analog front end should be thoroughly tested for correct operation of the gain
and offset functionality.

Test #1: Gain
1. Input a sine wave to the analog front end with an amplitude of 1V.
2. Go through all possible gain settings.
3. Measure the output amplitude with each setting.

This test will ensure the gain functionality is working correctly, and allow
us to measure the error.

Test #2: Offset
4. Input a DC voltage to the analog front end.
5. Sweep the offset from the max to min value.
6. Measure the output DC voltage.
7. Repeat at different Gain levels.

This test will ensure the offset is correctly added to the input signal, and
the output range goes from the max to min value while the offset goes
from the max to min value. This test will also allow us to measure the
error.

Test #3: Bandwidth
This test will ensure the front end has enough bandwidth to pass signals at our
max output frequency without losing significant amplitude.

1. Perform a frequency sweep on the input of the analog front end.
2. Measure the output level
3. Repeat at different Gain levels or with different offsets.

7.1.2 MCU

The Nucleo-F303RE board is a popular development board used for prototyping
and testing embedded systems. When designing a waveform generator, it is
important to thoroughly test the hardware and software before moving to
production. Testing with the Nucleo-F091RC board is an essential step in this
process as it allows the team to verify that the waveform generator is functioning

George Mason University
Department of Electrical and Computer Engineering 105

as intended and to identify and address any potential issues. This IDE is new to all
of the members, so preliminary testing is required.

Test #1:
The first test will be used as preliminary testing for the STM32 Nucleo board.
Verify the jumper positions, install the USB driver, and connect the board to a PC
to ensure that the LED lights are functioning correctly when the button is pressed.
Additionally, the team will use the available demonstration and software
examples to test the software functionality and compatibility. Any issues with
jumper positions, LED lights, or software functionality could be identified and
corrected before moving to production.

Test #2:

1. Hardware setup: Connect an LED and a current-limiting resistor to the
GPIO output pin of the DAC. Connect the ground of the LED to the
ground pin of the DAC.

2. Code setup: Write a simple code that sets the GPIO output pin of the DAC
to a known logic level (e.g., high or low), and continuously updates the
output value.

3. Verification: Run the code on the microcontroller and observe the LED.
The LED should turn on or off, depending on the logic level set in the
code.

4. Repeat: Repeat the test with different output values to verify that the GPIO
output of the DAC can be set accurately and consistently.

This test can help ensure that the GPIO output of the DAC is functioning correctly
and can be set as expected, which is important for a range of applications, such as
controlling external devices or triggering other circuit components. Any issues
with the GPIO output of the DAC could be identified and corrected before
moving to production.

Test #3:

1. Hardware setup: Connect the Nucleo board to a PC via USB using a
Type-A to Mini-B cable. Connect via ST-LINK to the Nucleo board using
the SWD (Serial Wire Debug) interface.

George Mason University
Department of Electrical and Computer Engineering 106

2. Software setup: In STM32CubeIDE, create a project that sets up a simple
data transfer routine, such as sending a string of characters from the
microcontroller to the PC over the ST-Link interface. In Python, use the
Pyserial library to set up a serial communication object and read the data
being sent by the microcontroller over the ST-Link interface.

3. Verification: Build and upload the project to the Nucleo board using
STM32CubeIDE. Verify that the data is being transmitted and received
correctly, and that there are no errors or data loss during the transfer.

4. Repeat: Repeat the test with different data transfer rates and different data
formats to verify that the ST-Link communication is reliable and
consistent.

This test can help ensure that the ST-Link communication between the PC and
Nucleo board is functioning correctly and can transfer data reliably, which is
important for many applications. Any issues with data transfer or communication
can be identified and corrected before moving to production.

7.1.3 GUI

The GUI is how the user interacts with the system specifically when it comes to
selecting types of waveforms and setting values for criteria such as frequency,
offset, and amplitude. Thus, it is important to confirm that the GUI is both
displaying desired changes as well as transmitting the proper information to the
MCU.

Test #1: The first test is meant to verify that the GUI is properly plotting functions
based on user input to ensure that the user has accurate visuals at all times.

1. Design several examples of settings for each of the standard waveform
shapes.

2. Input values into both the GUI and the waveform generator on the AD2
3. Verify that the waveforms match relative to the respective axis.

Test #2:

1. Design several waveform examples for testing or use the waveforms from
test 1.

2. For each waveform record and display the data that is to be transmitted to
the Nucleo board.

George Mason University
Department of Electrical and Computer Engineering 107

3. Verify that the data received matches the sent data for each of the example
waveforms.

Test #3:

1. Input data parameters that contain non-numerical values.
2. Verify that the input data does not allow a waveform to be generated.
3. Allow input parameters with a prefix signifying magnitude to be accepted,

converted and evaluated if the values are allowed to be maintained by the
hardware.

7.2 Testing Plan for Prototype With Integration(ECE 492/493)

The purpose of this testing is to verify that individual components are functionally
operational when integrated together.

7.2.1 Analog Front End

Test:

1. Connect the Nucleo-F303RE board to the PC using a USB cable.
2. Using either Waveforms Live or PyQtGraph, generate a digital signal with

a specified amplitude and frequency.
3. Adjust the gain and offset settings on the analog front end of the board

using the GUI.
4. Measure the output signal using an oscilloscope.
5. Record the output signal amplitude and frequency for each gain and offset

setting.
6. Analyze the results to determine the gain and offset error and ensure that

the gain and offset functionality is working correctly.
7. Repeat the test with different digital signal amplitudes and frequencies to

ensure the accuracy and reliability of the analog front end.

Overall, this test would allow you to use a GUI to adjust the gain and offset
settings on the Nucleo-F303RE board and test the functionality of the analog front
end with a digital signal generated by the PC. This would ensure that the board is
functioning correctly and provide accurate and reliable measurements for your
project.

George Mason University
Department of Electrical and Computer Engineering 108

7.2.2 MCU/GUI

Test:

1. Use Pyserial to send the digital signal from the PC's GUI to the
Nucleo-F303RE board.

2. Adjust the gain and offset settings on the analog front end of the board using
the MCU firmware.

3. Measure the output signal using an oscilloscope or other measurement
equipment.

4. Record the output signal amplitude and frequency for each gain and offset
setting.

5. Analyze the results to determine the gain and offset error and ensure that the
gain and offset functionality is working correctly.

6. Repeat the test with different digital signal amplitudes and frequencies to
ensure the accuracy and reliability of the analog front end.

The purpose of this test is to verify Pyserial’s ability to accurately send/receive
data between the user controlled GUI interface and MCU’s IDE. Subsequent
testing will include removing STM32CubeIDE’s involvement with the User to
create a simpler User experience.

Using DMA to transfer data between memory and I/O devices, the CPU can
perform other tasks while the data transfer is taking place. With the DAC, DMA
can be used to offload the task of transferring data from the MCU to the DAC,
reducing the MCU's resource load and improving system performance.The main
testing criteria for the MCU is to ensure system resources are kept low while also
producing accurate results.

7.2.3 PCB

Designing a custom PCB can be challenging and requires careful consideration of
component placement, trace routing, trace widths, and trace lengths to prevent
common issues during testing. The trace width affects the resistance and current
carrying capacity of the circuit, while the trace length affects the propagation
delay of the signal and can introduce issues such as signal skew or reflection.
During testing, it's important to inspect the board for physical defects, verify the
power supply, and check the resistance between different points on the PCB.
Taking the time to optimize the circuit and ensure proper component placement,
trace routing, and appropriate trace widths and lengths can help prevent issues
during testing and ensure the successful operation of the board.

George Mason University
Department of Electrical and Computer Engineering 109

8. Prototyping Progress Report
8.1 Analog Hardware Prototyping

8.1.1 Soldering PCB Components

George Mason University
Department of Electrical and Computer Engineering 110

8.1.2 Soldering PCB Components - Microscope Placement

George Mason University
Department of Electrical and Computer Engineering 111

8.2 Microcontroller Prototyping

8.2.1 MCUWaveform Generation using Timer/DMA/DAC

Sine Wave Oscilloscope Measurement:

George Mason University
Department of Electrical and Computer Engineering 112

Triangle Wave Oscilloscope Measurement:

George Mason University
Department of Electrical and Computer Engineering 113

User Defined Arbitrary Waveform:

George Mason University
Department of Electrical and Computer Engineering 114

User Defined Arbitrary Wave Oscilloscope Measurement:

George Mason University
Department of Electrical and Computer Engineering 115

8.2.2 MCU Hardware Setup

MCU USB Hardware Configuration:

George Mason University
Department of Electrical and Computer Engineering 116

8.2.3 MCU USB Communication

Data Transmission from MCU to PC over serial:

8.2.4 Data Transmission from PC to MCU over serial

Frequency Values Sent to MCU:

George Mason University
Department of Electrical and Computer Engineering 117

Oscilloscope Measurement: 3 kHz Test:

Oscilloscope Measurement: 100 kHz Test:

George Mason University
Department of Electrical and Computer Engineering 118

Oscilloscope Measurement: 250 kHz Test:

8.3 Graphical User Interface Prototyping
8.3.1 Default Waveform shapes:

Sine wave:

George Mason University
Department of Electrical and Computer Engineering 119

Sawtooth wave:

Square wave:

George Mason University
Department of Electrical and Computer Engineering 120

8.3.2 Signal modifications:

Triangle Wave (Amplitude: 2, Offset: 0) Triangle Wave (Amplitude 2, Offset: 1)

8.3.3 Current GUI Layout:

George Mason University
Department of Electrical and Computer Engineering 121

8.3.4 Arbitrary Waveform Display:

User created arbitrary waveform: GUI generated Waveform

8.3.5: Graph Display Validation

Prototype GUI: 1KHz, 2V Amplitude, 0V Offset

George Mason University
Department of Electrical and Computer Engineering 122

AD2 Display: 1KHz, 2V Amplitude, 0V Offset

9. Schedule and Milestones
9.1 Allocation of Responsibilities
The individual tasks are divided based upon background, skills, and general interest in
the project area.

● Yifei Gao / James Schaeffer : Microcontroller Unit (MCU) Programming
● Vikram Arunachalam / Hussain Zainal : Graphical User Interface (GUI)

Programming
● German Kuznetsov / William Denham : Hardware Design

9.2 Course Project Plan Timeline ECE 492 (14 Weeks)

George Mason University
Department of Electrical and Computer Engineering 123

9.3 Course Project Plan Timeline ECE 493 (14 Weeks)

9.4 Detail Project Plan Timeline by Sub-System ECE 492

George Mason University
Department of Electrical and Computer Engineering 124

10. Problems Encountered
10.1 Hardware design

● Footprints not being available on Kicad for various components
● Symbols not being available on Kicad for some components - having to custom

draw/create
● Compactness of PCB Design could cause problems with the assembly and make

soldering a bit more difficult
● Lead Times on Ordering Printed Circuit Boards
● Size of discrete components

10.2 MCU
● Output Buffer limiting signal to 250 kHz
● Data not being received over serial
● USB configuration requires hardware changes
● Debugging is difficult

10.3 GUI

● Packets of data were hanging when sent to the MCU after the first packet
successfully transmitted.

● Higher frequencies resulted in a poorly sampled graph to be displayed on the
GUI, this graph did not resemble the intended graph.

● Data that was either too low or too high were being able to be entered despite
safeguards implemented.

● Storing the key parameters faulted at occasions after the initial waveform
parameters were saved.

● When connecting the MCU to establish communication, different comm ports
were selected on different devices.

George Mason University
Department of Electrical and Computer Engineering 125

11. References

[1] “ADALM2000,” Evaluation Board | Analog Devices, 09-Jan-2023. [Online]. Available:
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evalua
tion-boards-kits/adalm2000.html#eb-documentation. [Accessed: 26-Feb-2023].

[2] “Campus covid-19 data archive,” George Mason University. [Online]. Available:
https://www.gmu.edu/campus-covid-19-data-archive. [Accessed: 26-Feb-2023].

[3] “Dataman 531 arbitrary waveform generator,” Device Programmers & ISP
Programming by Dataman Programmers. [Online]. Available:
https://www.dataman.com/dataman-531-arbitrary-waveform-generator.html.
[Accessed: 26-Feb-2023].

[4] Hantek2000 series - hantek electronic & your testing solution provider. [Online].
Available: http://www.hantek.com/products/detail/13174. [Accessed: 26-Feb-2023].

[5] “Picoscope 2000 specifications,” PicoScope 2000 Specifications | Pico Technology.
[Online]. Available:
https://www.picotech.com/oscilloscope/2000/picoscope-2000-specifications.
[Accessed: 26-Feb-2023].

[6] S. K, “Analog discovery 2,” Analog Discovery 2 - Digilent Reference. [Online].
Available:
https://digilent.com/reference/test-and-measurement/analog-discovery-2/start.
[Accessed: 26-Feb-2023].

[7] “Wiki,” Reference Manual (Understanding the Internals) [Analog Devices Wiki].
[Online]. Available:
https://wiki.analog.com/university/tools/m2k/users/reference_manual. [Accessed:
26-Feb-2023].

George Mason University
Department of Electrical and Computer Engineering 126

16. Appendix C: Schematic
Page 1: Analog Front end
Page 2:Connectors
Page 3: PSU
Page 4: Misc

George Mason University
Department of Electrical and Computer Engineering 127

George Mason University
Department of Electrical and Computer Engineering 128

George Mason University
Department of Electrical and Computer Engineering 129

George Mason University
Department of Electrical and Computer Engineering 130

George Mason University
Department of Electrical and Computer Engineering 131

17. Appendix D: Code Listing MCU

17.1 Interface.c

#include "interface.h"

#include "stm32f3xx.h"

#include "usb_device.h"

uint8_t awg_lut[AWG_NUM_CHAN][AWG_SAMPLES*2];

uint16_t BULK_BUFF_RECV = 0;

uint8_t *BULK_BUFF;

extern DAC_HandleTypeDef hdac1;

extern TIM_HandleTypeDef htim2;

extern TIM_HandleTypeDef htim6;

extern TIM_HandleTypeDef htim7;

extern DMA_HandleTypeDef hdma_dac1_ch1;

extern DMA_HandleTypeDef hdma_dac1_ch2;

const uint8_t ACK_STRING[ACK_STRING_LEN] = {'S', 'T', 'M', 'A', 'W', 'G',

'2', '3'};

const uint8_t HS_STRING[HS_STRING_LEN] = {'I', 'N', 'I', 'T'};

void SendAck(){

TRANS_Packet pack;

pack.packet_type = 0;

memcpy(pack.ack_string, ACK_STRING, ACK_STRING_LEN);

if (CDC_Transmit_FS(&pack, sizeof(TRANS_Packet))) {

//printLine("BUSY");

}

}

uint16_t numSamples[AWG_NUM_CHAN];

uint16_t phaseARR[AWG_NUM_CHAN];

uint16_t ARR_hold[AWG_NUM_CHAN];

void GotCDC_64B_Packet(char *ptr) {

George Mason University
Department of Electrical and Computer Engineering 132

if (!BULK_BUFF_RECV) {

RECV_Packet *packet = (RECV_Packet *) ptr;

if (packet->packet_type == 0) {

// Handle Handshake packet as before

uint8_t *magic = &(packet->Content.HandShake.handshake_string);

int match = 1;

for (int i = 0; i < HS_STRING_LEN; i++) {

if (magic[i] != HS_STRING[i]) match = 0;

}

if (match) {

SendAck();

}

} else if (packet->packet_type == 1) {

uint8_t chan = packet->Content.AWG_SET.channel;

uint16_t PSC = packet->Content.AWG_SET.PSC;

uint16_t ARR = packet->Content.AWG_SET.ARR;

uint16_t CCR_offset = packet->Content.AWG_SET.CCR_offset;

numSamples[chan] = packet->Content.AWG_SET.numSamples;

phaseARR[chan] = packet->Content.AWG_SET.phaseARR;

uint8_t gain = packet->Content.AWG_SET.gain;

BULK_BUFF_RECV = numSamples[chan] < 32 ? 128 : numSamples[chan]

*2;

BULK_BUFF = (uint8_t *) awg_lut[chan];

if(chan == 0){

TIM2->CCR1 = CCR_offset;

TIM6->ARR = ARR;

TIM6->PSC = PSC;

ARR_hold[0] = ARR;

HAL_GPIO_WritePin(GAIN_C0_GPIO_Port, GAIN_C0_Pin, gain);

}else{

TIM2->CCR2 = CCR_offset;

TIM7->ARR = ARR;

TIM7->PSC = PSC;

ARR_hold[1] = ARR;

HAL_GPIO_WritePin(GAIN_C1_GPIO_Port, GAIN_C1_Pin, gain);

}

George Mason University
Department of Electrical and Computer Engineering 133

//restart both channels to get correct phase

//stop both timers (without using HAL_TIM_Base_Stop to prevent

side effects)

__HAL_TIM_DISABLE(&htim6);

__HAL_TIM_DISABLE(&htim7);

//restart both DMAs

HAL_DAC_Stop_DMA(&hdac1, DAC_CHANNEL_1);

HAL_DAC_Stop_DMA(&hdac1, DAC_CHANNEL_2);

HAL_DAC_Start_DMA(&hdac1, DAC_CHANNEL_1,

(uint32_t*)awg_lut[0], numSamples[0], DAC_ALIGN_12B_R);

HAL_DAC_Start_DMA(&hdac1, DAC_CHANNEL_2,

(uint32_t*)awg_lut[1], numSamples[1], DAC_ALIGN_12B_R);

//reset counters, otherwise prescale counter value can mess up

wphase

TIM6 -> EGR = TIM_EGR_UG;

TIM7 -> EGR = TIM_EGR_UG;

//set clock phase

TIM6->CNT = phaseARR[0] - ARR_hold[1];

TIM7->CNT = phaseARR[1] - ARR_hold[0];

//TIM6->CNT = 0;

//TIM7->CNT = 6;

//restart both timers (again without HAL_TIM_Base_Start).

//The generated asm code should enable both within two

instruction

//this code is a bit loony and isn't perfectly synchronized

anyway

volatile uint32_t *CCR6_add = &(htim6.Instance->CR1);

uint32_t CCR6_new = *CCR6_add | TIM_CR1_CEN;

volatile uint32_t *CCR7_add = &(htim7.Instance->CR1);

uint32_t CCR7_new = *CCR7_add | TIM_CR1_CEN;

*CCR6_add = CCR6_new;

*CCR7_add = CCR7_new;

//restart of both channels complete

}

} else {

memcpy(BULK_BUFF, ptr, 64);

BULK_BUFF += 64;

BULK_BUFF_RECV -= 64;

George Mason University
Department of Electrical and Computer Engineering 134

if (!BULK_BUFF_RECV) {

SendAck();

}

}

}

17.2 Interface.h

#ifndef SRC_INTERFACE_H_

#define SRC_INTERFACE_H_

#include <stdint.h>

#define AWG_SAMPLES (1024 * 4)

#define AWG_NUM_CHAN 2

#define MAGIC_NUM 0x42

#define HS_STRING_LEN 4

#define ACK_STRING_LEN 8

#define PACK __attribute__((packed))

extern uint8_t awg_lut[AWG_NUM_CHAN][AWG_SAMPLES*2];

typedef struct {

uint8_t packet_type;

union {

struct { // packet_type = 0

uint8_t handshake_string[HS_STRING_LEN];

} PACK HandShake;

struct { // packet_type = 1

uint8_t channel;

uint8_t gain;

//uint8_t temp;

uint16_t PSC;

uint16_t ARR;

uint16_t CCR_offset;

uint16_t numSamples;

George Mason University
Department of Electrical and Computer Engineering 135

uint16_t phaseARR;

} PACK AWG_SET;

} PACK Content;

} PACK RECV_Packet;

typedef struct PACK {

uint8_t packet_type;

uint8_t ack_string[ACK_STRING_LEN];

} TRANS_Packet;

void GotCDC_64B_Packet(char *ptr);

#endif /* SRC_INTERFACE_H_ */

17.3 main.c

/* USER CODE BEGIN Header */

/**

* @file : main.c

* @brief : Main program body

* @attention

*

* Copyright (c) 2023 STMicroelectronics.

* All rights reserved.

*

* This software is licensed under terms that can be found in the LICENSE

file

* in the root directory of this software component.

* If no LICENSE file comes with this software, it is provided AS-IS.

*

George Mason University
Department of Electrical and Computer Engineering 136

*/

/* USER CODE END Header */

/* Includes

--*/

#include "main.h"

#include "usb_device.h"

/* Private includes

--*/

/* USER CODE BEGIN Includes */

#include "interface.h"

/* USER CODE END Includes */

/* Private typedef

---*/

/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define

--*/

/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro

---*/

/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables

---*/

DAC_HandleTypeDef hdac1;

DMA_HandleTypeDef hdma_dac1_ch1;

DMA_HandleTypeDef hdma_dac1_ch2;

TIM_HandleTypeDef htim2;

TIM_HandleTypeDef htim6;

TIM_HandleTypeDef htim7;

/* USER CODE BEGIN PV */

uint16_t dc_volt1[256] = {2048, 2048};

George Mason University
Department of Electrical and Computer Engineering 137

/* USER CODE END PV */

/* Private function prototypes

---*/

void SystemClock_Config(void);

static void MX_GPIO_Init(void);

static void MX_DMA_Init(void);

static void MX_DAC1_Init(void);

static void MX_TIM2_Init(void);

static void MX_TIM6_Init(void);

static void MX_TIM7_Init(void);

/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code

---*/

/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**

* @brief The application entry point.

* @retval int

*/

int main(void)

{

/* USER CODE BEGIN 1 */

/* USER CODE END 1 */

/* MCU

Configuration--*/

/* Reset of all peripherals, Initializes the Flash interface and the

Systick. */

HAL_Init();

/* USER CODE BEGIN Init */

/* USER CODE END Init */

/* Configure the system clock */

George Mason University
Department of Electrical and Computer Engineering 138

SystemClock_Config();

/* USER CODE BEGIN SysInit */

/* USER CODE END SysInit */

/* Initialize all configured peripherals */

MX_GPIO_Init();

MX_DMA_Init();

MX_USB_DEVICE_Init();

MX_DAC1_Init();

MX_TIM2_Init();

MX_TIM6_Init();

MX_TIM7_Init();

/* USER CODE BEGIN 2 */

HAL_DAC_Start_DMA(&hdac1, DAC_CHANNEL_1, (uint32_t*) dc_volt1, (uint32_t)

2, DAC_ALIGN_12B_R);

HAL_TIM_Base_Start(&htim6);

HAL_DAC_Start_DMA(&hdac1, DAC_CHANNEL_2, (uint32_t*) dc_volt1, (uint32_t)

2, DAC_ALIGN_12B_R);

HAL_TIM_Base_Start(&htim7);

volatile int a = offsetof(RECV_Packet, packet_type);

volatile int b = offsetof(RECV_Packet, Content.AWG_SET.channel);

//volatile int c = offsetof(RECV_Packet, Content.AWG_SET.temp);

volatile int d = offsetof(RECV_Packet, Content.AWG_SET.gain);

volatile int e = offsetof(RECV_Packet, Content.AWG_SET.PSC);

volatile int f = offsetof(RECV_Packet, Content.AWG_SET.ARR);

volatile int g = offsetof(RECV_Packet, Content.AWG_SET.CCR_offset);

volatile int h = offsetof(RECV_Packet, Content.AWG_SET.numSamples);

volatile int o = offsetof(RECV_Packet, Content.AWG_SET.phaseARR);

// int k = offsetof(RECV_Packet, Content.AWG_SET.channel);

static_assert(sizeof(RECV_Packet) <= 64);

HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_1);

HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_2);

TIM2->CCR1 = 2048;

TIM2->CCR2 = 2048;

George Mason University
Department of Electrical and Computer Engineering 139

/* USER CODE END 2 */

/* Infinite loop */

/* USER CODE BEGIN WHILE */

while (1) {

/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */

}

/* USER CODE END 3 */

}

/**

* @brief System Clock Configuration

* @retval None

*/

void SystemClock_Config(void)

{

RCC_OscInitTypeDef RCC_OscInitStruct = {0};

RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};

/** Initializes the RCC Oscillators according to the specified parameters

* in the RCC_OscInitTypeDef structure.

*/

RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;

RCC_OscInitStruct.HSEState = RCC_HSE_ON;

RCC_OscInitStruct.HSIState = RCC_HSI_ON;

RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;

RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;

RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;

RCC_OscInitStruct.PLL.PREDIV = RCC_PREDIV_DIV1;

if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)

{

Error_Handler();

}

/** Initializes the CPU, AHB and APB buses clocks

*/

RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK

|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;

RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;

George Mason University
Department of Electrical and Computer Engineering 140

RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;

RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;

RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)

{

Error_Handler();

}

PeriphClkInit.PeriphClockSelection =

RCC_PERIPHCLK_USB|RCC_PERIPHCLK_TIM2;

PeriphClkInit.USBClockSelection = RCC_USBCLKSOURCE_PLL_DIV1_5;

PeriphClkInit.Tim2ClockSelection = RCC_TIM2CLK_HCLK;

if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)

{

Error_Handler();

}

}

/**

* @brief DAC1 Initialization Function

* @param None

* @retval None

*/

static void MX_DAC1_Init(void)

{

/* USER CODE BEGIN DAC1_Init 0 */

/* USER CODE END DAC1_Init 0 */

DAC_ChannelConfTypeDef sConfig = {0};

/* USER CODE BEGIN DAC1_Init 1 */

/* USER CODE END DAC1_Init 1 */

/** DAC Initialization

*/

hdac1.Instance = DAC1;

if (HAL_DAC_Init(&hdac1) != HAL_OK)

{

Error_Handler();

}

George Mason University
Department of Electrical and Computer Engineering 141

/** DAC channel OUT1 config

*/

sConfig.DAC_Trigger = DAC_TRIGGER_T6_TRGO;

sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_DISABLE;

if (HAL_DAC_ConfigChannel(&hdac1, &sConfig, DAC_CHANNEL_1) != HAL_OK)

{

Error_Handler();

}

/** DAC channel OUT2 config

*/

sConfig.DAC_Trigger = DAC_TRIGGER_T7_TRGO;

if (HAL_DAC_ConfigChannel(&hdac1, &sConfig, DAC_CHANNEL_2) != HAL_OK)

{

Error_Handler();

}

/* USER CODE BEGIN DAC1_Init 2 */

/* USER CODE END DAC1_Init 2 */

}

/**

* @brief TIM2 Initialization Function

* @param None

* @retval None

*/

static void MX_TIM2_Init(void)

{

/* USER CODE BEGIN TIM2_Init 0 */

/* USER CODE END TIM2_Init 0 */

TIM_ClockConfigTypeDef sClockSourceConfig = {0};

TIM_MasterConfigTypeDef sMasterConfig = {0};

TIM_OC_InitTypeDef sConfigOC = {0};

/* USER CODE BEGIN TIM2_Init 1 */

/* USER CODE END TIM2_Init 1 */

htim2.Instance = TIM2;

George Mason University
Department of Electrical and Computer Engineering 142

htim2.Init.Prescaler = 0;

htim2.Init.CounterMode = TIM_COUNTERMODE_UP;

htim2.Init.Period = 4096-1;

htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;

htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;

if (HAL_TIM_Base_Init(&htim2) != HAL_OK)

{

Error_Handler();

}

sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;

if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)

{

Error_Handler();

}

if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)

{

Error_Handler();

}

sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;

sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;

if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) !=

HAL_OK)

{

Error_Handler();

}

sConfigOC.OCMode = TIM_OCMODE_PWM1;

sConfigOC.Pulse = 0;

sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;

sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;

if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1) !=

HAL_OK)

{

Error_Handler();

}

if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_2) !=

HAL_OK)

{

Error_Handler();

}

/* USER CODE BEGIN TIM2_Init 2 */

/* USER CODE END TIM2_Init 2 */

HAL_TIM_MspPostInit(&htim2);

George Mason University
Department of Electrical and Computer Engineering 143

}

/**

* @brief TIM6 Initialization Function

* @param None

* @retval None

*/

static void MX_TIM6_Init(void)

{

/* USER CODE BEGIN TIM6_Init 0 */

/* USER CODE END TIM6_Init 0 */

TIM_MasterConfigTypeDef sMasterConfig = {0};

/* USER CODE BEGIN TIM6_Init 1 */

/* USER CODE END TIM6_Init 1 */

htim6.Instance = TIM6;

htim6.Init.Prescaler = 0;

htim6.Init.CounterMode = TIM_COUNTERMODE_UP;

htim6.Init.Period = 65535;

htim6.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;

if (HAL_TIM_Base_Init(&htim6) != HAL_OK)

{

Error_Handler();

}

sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;

sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;

if (HAL_TIMEx_MasterConfigSynchronization(&htim6, &sMasterConfig) !=

HAL_OK)

{

Error_Handler();

}

/* USER CODE BEGIN TIM6_Init 2 */

/* USER CODE END TIM6_Init 2 */

}

/**

George Mason University
Department of Electrical and Computer Engineering 144

* @brief TIM7 Initialization Function

* @param None

* @retval None

*/

static void MX_TIM7_Init(void)

{

/* USER CODE BEGIN TIM7_Init 0 */

/* USER CODE END TIM7_Init 0 */

TIM_MasterConfigTypeDef sMasterConfig = {0};

/* USER CODE BEGIN TIM7_Init 1 */

/* USER CODE END TIM7_Init 1 */

htim7.Instance = TIM7;

htim7.Init.Prescaler = 0;

htim7.Init.CounterMode = TIM_COUNTERMODE_UP;

htim7.Init.Period = 65535;

htim7.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;

if (HAL_TIM_Base_Init(&htim7) != HAL_OK)

{

Error_Handler();

}

sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;

sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;

if (HAL_TIMEx_MasterConfigSynchronization(&htim7, &sMasterConfig) !=

HAL_OK)

{

Error_Handler();

}

/* USER CODE BEGIN TIM7_Init 2 */

/* USER CODE END TIM7_Init 2 */

}

/**

* Enable DMA controller clock

*/

static void MX_DMA_Init(void)

{

George Mason University
Department of Electrical and Computer Engineering 145

/* DMA controller clock enable */

__HAL_RCC_DMA1_CLK_ENABLE();

__HAL_RCC_DMA2_CLK_ENABLE();

/* DMA interrupt init */

/* DMA1_Channel3_IRQn interrupt configuration */

HAL_NVIC_SetPriority(DMA1_Channel3_IRQn, 0, 0);

HAL_NVIC_EnableIRQ(DMA1_Channel3_IRQn);

/* DMA2_Channel4_IRQn interrupt configuration */

HAL_NVIC_SetPriority(DMA2_Channel4_IRQn, 0, 0);

HAL_NVIC_EnableIRQ(DMA2_Channel4_IRQn);

}

/**

* @brief GPIO Initialization Function

* @param None

* @retval None

*/

static void MX_GPIO_Init(void)

{

GPIO_InitTypeDef GPIO_InitStruct = {0};

/* USER CODE BEGIN MX_GPIO_Init_1 */

/* USER CODE END MX_GPIO_Init_1 */

/* GPIO Ports Clock Enable */

__HAL_RCC_GPIOC_CLK_ENABLE();

__HAL_RCC_GPIOF_CLK_ENABLE();

__HAL_RCC_GPIOA_CLK_ENABLE();

__HAL_RCC_GPIOB_CLK_ENABLE();

/*Configure GPIO pin Output Level */

HAL_GPIO_WritePin(GPIOA, GAIN_C1_Pin|GAIN_C0_Pin, GPIO_PIN_RESET);

/*Configure GPIO pin : B1_Pin */

GPIO_InitStruct.Pin = B1_Pin;

GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;

GPIO_InitStruct.Pull = GPIO_NOPULL;

HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct);

/*Configure GPIO pins : GAIN_C1_Pin GAIN_C0_Pin */

GPIO_InitStruct.Pin = GAIN_C1_Pin|GAIN_C0_Pin;

George Mason University
Department of Electrical and Computer Engineering 146

GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

GPIO_InitStruct.Pull = GPIO_NOPULL;

GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;

HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

/* USER CODE BEGIN MX_GPIO_Init_2 */

/* USER CODE END MX_GPIO_Init_2 */

}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**

* @brief This function is executed in case of error occurrence.

* @retval None

*/

void Error_Handler(void)

{

/* USER CODE BEGIN Error_Handler_Debug */

/* User can add his own implementation to report the HAL error return

state */

__disable_irq();

while (1) {

}

/* USER CODE END Error_Handler_Debug */

}

#ifdef USE_FULL_ASSERT

/**

* @brief Reports the name of the source file and the source line number

* where the assert_param error has occurred.

* @param file: pointer to the source file name

* @param line: assert_param error line source number

* @retval None

*/

void assert_failed(uint8_t *file, uint32_t line)

{

/* USER CODE BEGIN 6 */

/* User can add his own implementation to report the file name and line

number,

ex: printf("Wrong parameters value: file %s on line %d\r\n", file,

line) */

George Mason University
Department of Electrical and Computer Engineering 147

/* USER CODE END 6 */

}

#endif /* USE_FULL_ASSERT */

George Mason University
Department of Electrical and Computer Engineering 148

18. Appendix E: Code Listing GUI

18.1 Main.py

import importlib

import subprocess

import sys

import os

import wave_drawer

import subprocess

import math

import numpy as np

import pyqtgraph as pg

from connection import Connection

from pyqtgraph.Qt import QtCore, QtWidgets

from PyQt6.QtCore import pyqtSignal

from PyQt6.QtWidgets import (

QApplication, QWidget, QLineEdit, QToolBar, QPushButton, QVBoxLayout, QFrame, QLabel,

QMessageBox,QComboBox

)

from PyQt6.QtCore import Qt

from PyQt6 import QtGui

from wavegen import generateSamples

import threading

import platform

from channel import Channel

#why windows why?

if platform.system() == "Windows":

import ctypes

myappid = u'mycompany.myproduct.subproduct.version' # arbitrary string

ctypes.windll.shell32.SetCurrentProcessExplicitAppUserModelID(myappid)

def resource_path(relative_path):

"""Get absolute path to a resource, works for dev and for PyInstaller

Parameters:

relative_path (str): relative path to requested resource

Returns:

absolute path to resource that can be used when running standalone or with pyinstaller

George Mason University
Department of Electrical and Computer Engineering 149

"""

base_path = getattr(sys, '_MEIPASS', os.path.dirname(os.path.abspath(__file__)))

return os.path.join(base_path, relative_path)

class WaveformGenerator(QtWidgets.QWidget):

"""Handles the main window for the waveform generator application """

statusCallbackSignal = pyqtSignal(str, str)

"""Used to pass signals about connection updates between different threads """

def statusCallback(self, status, message):

"""Callback function for the serial connection. Updates the status label and

enables/disables the connect button.

Parameters:

status (str): The new status of the connection

message (str): if not null, a popup with this message will be shown

"""

self.status_label.setText("Status: " + status)

self.connectButton.setEnabled(status == "disconnected")

if message:

pg.QtWidgets.QMessageBox.critical(self, 'Error', message)

if status == "connected":

#reset channels to off when connected

for c in self.channels:

c.setRunningStatus(False)

def connectButtonClicked(self):

"""Function called when the connect button is clicked. Attempts to connect to the

device."""

self.connectButton.setEnabled(False)

self.conn.tryConnect()

def setSyncStatus(self, status):

""" Updates the sync status UI

Parameters:

status (bool): True/False depending on if sync is enabled

"""

if status:

self.synced_status.setText("Synced")

self.synced_status.setStyleSheet("color : green")

George Mason University
Department of Electrical and Computer Engineering 150

else:

self.synced_status.setText("Not Synced")

self.synced_status.setStyleSheet("color : red")

def updateWave(self, changed = -1):

""" Called when a channel changed a wave or when the sync setting is changed. Takes

the waves settings and sends them to connection

Parameters:

changed (int): Indicates the channel (0 or 1) that was changed. -1 indicates both

channels need to be updates (due to change of sync settings)

"""

set = [self.channels[0].waveSettings, self.channels[1].waveSettings]

syncNotPossible = (set[0].type == "dc" or set[1].type == "dc")

#the user doesn't want sync or sync is not possible

if not(self.syncButton.isChecked()) or syncNotPossible:

#updates waves

if changed == 0 or changed == -1:

self.conn.sendWave(0, freq = set[0].freq, wave_type = set[0].type, amplitude =

set[0].amp, offset = set[0].offset, arbitrary_waveform = set[0].arb, duty = set[0].duty,

phase = set[0].phase,)

if changed == 1 or changed == -1:

self.conn.sendWave(1, freq = set[1].freq, wave_type = set[1].type, amplitude =

set[1].amp, offset = set[1].offset, arbitrary_waveform = set[1].arb, duty = set[1].duty,

phase = set[1].phase)

if syncNotPossible:

self.setSyncStatus(False)

else: #check if there is sync

ns0, arr0, psc0 = self.conn.calc_val(set[0].freq)

ns1, arr1, psc1 = self.conn.calc_val(set[1].freq)

synced = (ns1 * (arr1 + 1) * (psc1 + 1)) / (ns0 * (arr0 + 1) * (psc0 + 1)) ==

(set[0].freq / set[1].freq)

self.setSyncStatus(synced)

#user wants sync

else:

#find multiple of frequencies

min = None

for a in range(1, 101):

for b in range(1, 101):

if a/b == set[0].freq / set[1].freq:

if min == None or min[0] * min[1] > a*b:

George Mason University
Department of Electrical and Computer Engineering 151

min = (a, b)

if min == None: #sync is still not possible

self.conn.sendWave(0, freq = set[0].freq, wave_type = set[0].type, amplitude =

set[0].amp, offset = set[0].offset, arbitrary_waveform = set[0].arb, duty = set[0].duty,

phase = set[0].phase)

self.conn.sendWave(1, freq = set[1].freq, wave_type = set[1].type, amplitude =

set[1].amp, offset = set[1].offset, arbitrary_waveform = set[1].arb, duty = set[1].duty,

phase = set[1].phase)

self.setSyncStatus(False)

else: #send synchronous waves

a, b = min

f_comm = set[0].freq / a #same as set[1].freq / b

self.conn.sendWave(0, f_comm, wave_type = set[0].type, amplitude = set[0].amp,

offset = set[0].offset, arbitrary_waveform = set[0].arb, duty = set[0].duty, phase =

set[0].phase, numPeriods = a)

self.conn.sendWave(1, f_comm, wave_type = set[1].type, amplitude = set[1].amp,

offset = set[1].offset, arbitrary_waveform = set[1].arb, duty = set[1].duty, phase =

set[1].phase, numPeriods = b)

self.setSyncStatus(True)

def __init__(self):

""" Initializes the window."""

super().__init__()

self.setWindowTitle('Waveform Generator')

#uses grid layout, should be replaced with a hierarchy of vertical/horizontal layouts

self.grid_layout = QtWidgets.QGridLayout()

#load the icons for file types and more

self.setWindowIcon(QtGui.QIcon(resource_path("icon/icon.ico")))

icons = {}

for x in ["run", "stop", "sine", "tri", "saw", "square", "arb", "dc"]:

icons[x] = QtGui.QIcon(resource_path("icon/" + x + ".png"))

self.grid_layout.addWidget(QtWidgets.QLabel("Waveform generator"), 0, 0, 1, 1)

self.synced_status = QtWidgets.QLabel("")

self.grid_layout.addWidget(self.synced_status, 0, 5, 1, 1)

self.setSyncStatus(False)

self.syncButton = QtWidgets.QCheckBox ("Force Sync")

George Mason University
Department of Electrical and Computer Engineering 152

self.grid_layout.addWidget(self.syncButton, 0, 6, 1, 1)

self.syncButton.clicked.connect(lambda: self.updateWave(-1))

self.open_drawer = QtWidgets.QPushButton('Open Wave Drawer')

self.grid_layout.addWidget(self.open_drawer, 0, 1)

self.open_drawer.clicked.connect(self.fun_open_drawer)

#init connection object

self.statusCallbackSignal.connect(self.statusCallback)

self.conn = Connection(self.statusCallbackSignal)

#init channel objects

self.channels = []

for i in range(2):

self.channels += [Channel(i, self.grid_layout, icons, self.updateWave)]

#this must be done AFTER both channels are created otherwise updateWave() will be

called while the second channel is still not initialized

for c in self.channels:

c.enableUpdates()

self.status_label = QtWidgets.QLabel("Status: disconnected")

self.grid_layout.addWidget(self.status_label, 19, 0, 1, 1)

self.connectButton = QtWidgets.QPushButton("Connect")

self.connectButton.setEnabled(False)

self.grid_layout.addWidget(self.connectButton, 19, 1, 1, 1)

self.connectButton.clicked.connect(self.connectButtonClicked)

Theme H Layout

themeLayout = QtWidgets.QHBoxLayout()

Dropdown label

themeLabel = QtWidgets.QLabel("Theme:")

themeLayout.addWidget(themeLabel)

Theme Dropdown

self.themeDropdown = QtWidgets.QComboBox()

self.themeList = {'Default' : self.defaultTheme, 'Blue Mode' : self.lightMode, 'Dark

Mode' : self.darkMode}

self.themeDropdown.addItems(self.themeList.keys())

self.themeDropdown.currentTextChanged.connect(lambda:

self.themeList[self.themeDropdown.currentText()]())

Custom width dropdown menu

George Mason University
Department of Electrical and Computer Engineering 153

self.themeDropdown.view().setFixedWidth(125)

themeLayout.addWidget(self.themeDropdown)

self.grid_layout.addLayout(themeLayout, 19, 2, 1, 1)

#set grid scaling

for i in range(1, 7):

self.grid_layout.setColumnStretch(i, 1)

for i in range(0, 19):

self.grid_layout.setRowStretch(i, 1)

self.setLayout(self.grid_layout)

self.defaultTheme()

def fun_open_drawer(self):

""" Function called when the open arbitrary waveform drawer button is clicked. Opens

the arbitrary waveform drawer window."""

drawer_window.show()

def closeEvent(self, event):

""" Function called when the window is closed. Closes the serial connection."""

self.conn.close()

def defaultTheme(self):

""" Sets the theme to default."""

if platform.system() != "Darwin":

app.setStyleSheet("")

else:

app.setStyle("fusion")

app.setStyleSheet("""

QWidget {

font-family: 'Verdana', sans-serif;

font-size: 12px;

color: #000000;

background-color: #ffffff;

}

QLineEdit, QComboBox, QTextEdit {

border: 1px solid #000;

padding: 2px;

background-color: #FFFFFF;

color: #000000;

George Mason University
Department of Electrical and Computer Engineering 154

}

QPushButton {

font-family: 'Verdana', sans-serif;

color: #000000;

background-color: #E0E0E0;

border: 1px solid #000;

padding: 5px 10px;

}""")

def lightMode(self):

""" Sets the theme to light mode."""

app.setStyleSheet("""

QWidget {

font-family: 'Verdana', sans-serif;

font-size: 12px;

color: #000000;

background-color: #0F3E62;

}

QLineEdit, QComboBox, QTextEdit {

border: 1px solid #105C8D;

padding: 2px;

background-color: #FFFFFF;

color: #000000;

border-radius: 2px;

}

QPushButton {

font-family: 'Verdana', sans-serif;

color: #FFFFFF;

background-color: #1874CD;

border-radius: 5px;

padding: 5px 10px;

border: 1px solid #105C8D;

}

QPushButton:hover {

background-color: #1C86EE;

}

QPushButton:disabled {

George Mason University
Department of Electrical and Computer Engineering 155

background-color: #1874CD;

color: #FFFFFF;

}

QLabel {

color: #FFFFFF;

}

QLabel#freqLabel, #ampLabel, #offsetLabel, #dcLabel, #phaseLabel{

background-color: #1874CD;

border: 2px solid #1874CD;

border-radius: 5px;

padding: 2px;

color: white;

}

""")

pass

def darkMode(self):

""" Sets the theme to dark mode."""

app.setStyleSheet("""

QWidget {

font-family: 'Verdana', sans-serif;

font-size: 12px;

color: #E0E0E0;

background-color: #2C2C2C;

}

QLineEdit, QComboBox, QTextEdit {

border: 1px solid #3C3C3C;

padding: 2px;

background-color: #2E2E2E;

color: #E0E0E0;

}

QPushButton {

color: #FFFFFF;

background-color: #32B58F;

border-radius: 4px;

padding: 5px 10px;

border: none;

}

George Mason University
Department of Electrical and Computer Engineering 156

QPushButton:hover {

background-color: #2D9C8F;

}

QPushButton:disabled {

background-color: #5E5E5E;

color: #3C3C3C;

}

QLabel {

color: #E0E0E0;

}

QCheckBox, QRadioButton {

color: #E0E0E0;

}

QGroupBox {

border: 1px solid #3C3C3C;

margin-top: 20px;

}

QGroupBox::title {

color: #E0E0E0;

subcontrol-origin: margin;

left: 10px;

padding: 0 3px 0 3px;

}

QSlider::groove:horizontal {

border: 1px solid #3C3C3C;

height: 8px;

background: #2C2C2C;

margin: 2px 0;

}

QSlider::handle:horizontal {

background: #32B58F;

border: 1px solid #2C2C2C;

width: 18px;

margin: -2px 0;

George Mason University
Department of Electrical and Computer Engineering 157

}

QSlider::add-page:horizontal {

background: #555;

}

QSlider::sub-page:horizontal {

background: #32B58F;

}

""")

pass

if __name__ == '__main__':

""" Main function that runs the program."""

app = QtWidgets.QApplication(sys.argv)

waveform_generator = WaveformGenerator()

waveform_generator.show()

waveform_generator.connectButtonClicked()

drawer_window = wave_drawer.AppWindow(waveform_generator.channels)

app.exec()

sys.exit()

18.2 Wave_Drawer.py
import pyqtgraph as pg

import os

from PyQt6 import QtWidgets

from PyQt6.QtGui import QMouseEvent

from PyQt6.QtWidgets import QComboBox, QPushButton, QLineEdit, QMessageBox

from wavegen import generateSamples, resample, sample

import numpy as np

import math

from random import random

from PyQt6 import QtGui, QtCore

SAMPLE_POINTS = 1024*4

"""Max number of samples"""

ICON_SIZE = 64

"""Size in pixels of the icon to represent a arbitrary wave"""

George Mason University
Department of Electrical and Computer Engineering 158

class AW:

"""Stores the arbitrary waveform's name, list of samples, and icon"""

def __init__(self, name, samples):

"""Creates an arbritary wave with the given name and samples.

Parameters:

name (str): name of the wave

samples (list of float): the initial samples for the wave

"""

self.name = name

self.samples = samples

self.icon = None

#generate samples if not provided

if self.samples == None:

self.samples = [0] * SAMPLE_POINTS

self.genIcon()

def lineDraw(self, buffer, x1, y1, x2, y2):

"""

Draws a line on the given buffer from (x1, y1) to (x2, y2) using the DDA(?) algorithm

"""

dx = x2 - x1

dy = y2 - y1

if abs(dx) > abs(dy):

steps = abs(dx)

else:

steps = abs(dy)

xincrement = dx/steps

yincrement = dy/steps

i = 0

while i < steps:

i +=1

x1 = x1 + xincrement

y1 = y1 + yincrement

brush = 1

_x = int(max(x1 - brush, 0))

while _x < min(x1 + 1 + brush, ICON_SIZE - 1):

_y = int(max(y1 - brush, 0))

while _y < min(y1 + 1 + brush, ICON_SIZE - 1):

buffer[(_y * ICON_SIZE + _x) * 3 + 0] = 0

buffer[(_y * ICON_SIZE + _x) * 3 + 1] = 255

George Mason University
Department of Electrical and Computer Engineering 159

buffer[(_y * ICON_SIZE + _x) * 3 + 2] = 255

_y += 1

_x += 1

def genIcon(self):

"""

Generates/updates the icon for the wave.

"""

map = [255]*(ICON_SIZE*ICON_SIZE * 3)

last = None

for x in range(ICON_SIZE):

y = -sample(self.samples, x / ICON_SIZE) * ICON_SIZE / 2+ ICON_SIZE / 2

y = max(min(y, ICON_SIZE - 1), 0)

if last:

self.lineDraw(map, last[0], last[1], x, y)

last = (x, y)

self.icon = QtGui.QIcon(QtGui.QPixmap(QtGui.QImage(bytes(map), ICON_SIZE, ICON_SIZE,

QtGui.QImage.Format.Format_RGB888)))

return

class MyPlotWidget(pg.PlotWidget):

"""Handles the custum drawable plot"""

def __init__(self, **kwargs):

"""Init"""

super().__init__(**kwargs)

self.setMouseEnabled(x=False, y=False)

self.setXRange(0, 1)

self.setYRange(-1, 1)

self.am_drawing = False

self.line = self.plot([], [], pen='c')

self.valuesX = np.linspace(0, 1, SAMPLE_POINTS, endpoint=False)

self.valuesY = [0] * SAMPLE_POINTS

self.updateGraph()

def updateGraph(self):

"""Draw the new samples on the graph"""

self.line.setData(self.valuesX, self.valuesY)

George Mason University
Department of Electrical and Computer Engineering 160

def movedPen(self, pos):

"""Called when the pen has moved to a new position. sets the samples between the old a

new position in a line. Updates the graph.

Parameters:

pos: object containing the new position coordinate

"""

newX = round(pos.x() * SAMPLE_POINTS)

newY = pos.y()

#determine the starting location and direction/slope to fill samples in

posX = self.lastX

posY = self.lastY

dirX = 1 if newX > posX else -1

if newX != self.lastX:

dirY = (newY - self.lastY) / (newX - self.lastX) * dirX

else:

dirY = 0

#sets samples while adjusting and y coordinate according to slope

while posX != newX + dirX:

if posX >= 0 and posX < SAMPLE_POINTS:

self.valuesY[posX] = max(min(posY, 1), -1)

posX += dirX

posY += dirY

self.lastX = newX

self.lastY = newY

self.updateGraph()

def mousePressEvent(self, event: QMouseEvent):

"""

Handles the mouse press event for the wave drawer.

"""

if event.button().name == 'LeftButton':

pos = self.plotItem.vb.mapSceneToView(event.position())

self.lastX = round(pos.x() * SAMPLE_POINTS)

self.lastY = pos.y()

self.am_drawing = True

George Mason University
Department of Electrical and Computer Engineering 161

def mouseReleaseEvent(self, event: QMouseEvent):

"""

Handles the mouse release event for the wave drawer.

"""

if event.button().name == 'LeftButton' and self.am_drawing:

pos = self.plotItem.vb.mapSceneToView(event.position())

self.movedPen(pos)

self.am_drawing = False

def mouseMoveEvent(self, event: QMouseEvent):

"""

Handles the mouse move event for the wave drawer.

"""

if self.am_drawing:

pos = self.plotItem.vb.mapSceneToView(event.position())

self.movedPen(pos)

-"how much security vunrability do you want?"

-"yes"

def generate_code(self, code):

"""Generates a wave based on given python code.

Parameters:

code (str): a peice of python code to determine a new wave

"""

try:

tempY = self.valuesY

#setup execution environment to limit the functionality the user provided code has

access too

env = {}

env["locals"] = None

env["globals"] = None

env["__name__"] = None

env["__file__"] = None

env["__builtins__"] = None

env["math"] = math

for funct in dir(math):

if funct[0] != '_':

env[funct] = getattr(math, funct)

#go through all points

for i in range(SAMPLE_POINTS):

George Mason University
Department of Electrical and Computer Engineering 162

env["x"] = i / SAMPLE_POINTS

env["rand"] = random()*2-1

y = eval(code, env)

tempY[i] = max(min(y, 1), -1)

except Exception as e:

print(e)

return

self.valuesY = tempY

self.updateGraph()

def generate_preset(self, type):

"""Generates a wave based on a preset type (sine, square, etc). Updates the graph.

Parameters:

type (str): the wave type

"""

res = generateSamples(wavetype=type, numSamples=SAMPLE_POINTS, amplitude=1)

self.valuesY = res[1]

self.updateGraph()

def setSamples(self, samples):

"""

Sets the list of samples to the given list. Updates the graph.

Parameters:

samples (list): The list of samples

"""

self.valuesY = samples

self.updateGraph()

class AppWindow(QtWidgets.QWidget):

"""The window for the arbitrary waveform drawer"""

def __init__(self, chans):

"""

Initializes the wave drawer window with the given channels.

Parameters:

chans (list): The list of channels to update when a wave is modified

"""

super(AppWindow, self).__init__()

self.chans = chans

George Mason University
Department of Electrical and Computer Engineering 163

self.setWindowTitle('Waveform drawer')

self.currently_loaded_wave = None

self.listAW = []

self.pl = MyPlotWidget()

self.stored_waves = QComboBox(self)

self.stored_waves.currentIndexChanged.connect(self.dropDownIndexChanged)

self.stored_waves.view().setIconSize(QtCore.QSize(ICON_SIZE,ICON_SIZE))

self.dropdown = QComboBox(self)

self.dropdown.addItem('DC')

self.dropdown.addItem('Sine')

self.dropdown.addItem('Triangle')

self.dropdown.addItem('Sawtooth')

self.dropdown.addItem('Square')

self.gen_preset = QPushButton("Generate Preset")

self.gen_preset.resize(200, 50)

self.gen_preset.clicked.connect(lambda:

self.pl.generate_preset(self.dropdown.currentText().lower()))

self.code_input = QLineEdit ("rand * 0.1 + sin(x*2*pi)*0.5")

self.gen_code = QPushButton("Generate Code")

self.gen_code.resize(200, 50)

self.gen_code.clicked.connect(lambda: self.pl.generate_code(self.code_input.text()))

self.saveWaveButton = QPushButton("Save Wave")

self.saveWaveButton.resize(200, 50)

self.saveWaveButton.clicked.connect(self.saveFunction)

self.delWave_button = QPushButton("Delete")

self.delWave_button.resize(200, 50)

self.delWave_button.clicked.connect(self.delButtonClicked)

self.newWaveButtpm = QPushButton("Add new")

self.newWaveButtpm.resize(200, 50)

self.newWaveButtpm.clicked.connect(lambda: (self.addWave(), self.updateDropDown(),

self.stored_waves.setCurrentIndex(len(self.listAW) - 1)))

George Mason University
Department of Electrical and Computer Engineering 164

self.nameEdit = QLineEdit()

self.nameEdit.editingFinished.connect(self.nameEditDone)

vert = QtWidgets.QVBoxLayout()

vert.addWidget(QtWidgets.QLabel("Wave Preset"))

vert.addWidget(self.dropdown)

vert.addWidget(self.gen_preset)

vert.addWidget(self.code_input)

vert.addWidget(self.gen_code)

vert.addSpacing(300)

vert.addWidget(QtWidgets.QLabel("Select"))

vert.addWidget(self.stored_waves)

vert.addWidget(self.newWaveButtpm)

vert.addWidget(QtWidgets.QLabel("Edit name:"))

vert.addWidget(self.nameEdit)

vert.addWidget(self.saveWaveButton)

vert.addWidget(self.delWave_button)

layout = QtWidgets.QHBoxLayout()

layout.addWidget(self.pl)

layout.addLayout(vert)

self.setLayout(layout)

self.loadFile()

def dropDownIndexChanged(self, ind):

"""Called when the selected arb. waveform is changed. Updates the graph and name

textbox based on the new selected wave.

ind (int): the new index of the selected waveform

"""

if ind == -1:

return

self.nameEdit.setText(self.listAW[ind].name)

self.pl.setSamples(self.listAW[ind].samples.copy())

def nameEditDone(self):

"""Called when the name of a wave is changed, updates the dropdown via

updateDropDown()"""

self.listAW[self.stored_waves.currentIndex()].name = self.nameEdit.text()

George Mason University
Department of Electrical and Computer Engineering 165

self.updateDropDown()

def saveFunction(self):

"""

Saves the current wave to the list and generates an icon for it. Updates the dropdown

via updateDropDown().

"""

self.listAW[self.stored_waves.currentIndex()].samples = self.pl.valuesY.copy()

self.listAW[self.stored_waves.currentIndex()].genIcon()

#for c in self.chans:

c.updateAWList(self.listAW,)

#self.saveFile()

self.updateDropDown(cause = "mod", modified = self.stored_waves.currentIndex())

def updateDropDown(self, cause = "", modified = -1):

"""

Updates the drop down list of waves. Calls the channel's updateAWList() to propagate

the changes there.

Parameters:

cause (str): The cause of the update, can be "mod" for modified, "del" for deleted

or "" for other

modified (int): The index of the modified wave, -1 if no wave was modified

"""

ind = self.stored_waves.currentIndex()

#update the waves

self.stored_waves.clear()

i = 0

for aw in self.listAW:

self.stored_waves.addItem(aw.name)

if aw.icon:

self.stored_waves.setItemIcon(i, aw.icon)

i += 1

l = len(self.listAW)

self.delWave_button.setEnabled(l > 1)

#reset selected index

if l > 0 and ind != -1:

self.stored_waves.setCurrentIndex(min(ind, l - 1))

#propagate changes to the channel

George Mason University
Department of Electrical and Computer Engineering 166

for c in self.chans:

c.updateAWList(self.listAW, cause, modified)

#save changes

self.saveFile()

def saveFile(self):

"""Saves the arbitrary wave list to disk"""

with open('saved.txt', 'w') as f: # Open in 'w' mode to overwrite the file

for aw in self.listAW:

f.write(aw.name + ":")

for i in range(len(aw.samples)):

f.write(str(aw.samples[i]))

if i != len(aw.samples) - 1:

f.write(",")

f.write("\n")

def nameUsed(self, name):

"""

Checks if the name is already used.

Parameters:

name (str): The name to check

Returns:

bool: True if the name is already used, False otherwise

"""

for aw in self.listAW:

if aw.name == name:

return True

return False

def addWave(self, name = None, arr = None):

"""

Adds a new wave to the list.

Parameters:

name (str): The name of the wave. If None, a default name is used

arr (list): The list of samples. If None, a default list is used

Returns:

None

"""

George Mason University
Department of Electrical and Computer Engineering 167

if name == None:

num = 0

while True:

s = "Custum " + str(num)

num += 1

if not self.nameUsed(s):

name = s

break

self.listAW.append(AW(name, arr))

def loadFile(self):

"""

Loads the saved waves from the file, if there are no saved waves, a default wave is

added.

Parameters:

None

Returns:

None

"""

if os.path.exists("saved.txt"):

with open("saved.txt", "r") as f:

for line in f:

line = line.strip()

name = line[: line.find(':')]

strArray = line[line.find(':') + 1:]

strArray = strArray.split(",")

arr = [float(val) for val in strArray]

self.addWave(name, arr)

if len(self.listAW) == 0:

self.addWave()

self.updateDropDown()

def delButtonClicked(self):

"""

Deletes the currently selected wave.

Parameters:

None

Returns:

George Mason University
Department of Electrical and Computer Engineering 168

None

"""

ind = self.stored_waves.currentIndex()

del self.listAW[ind]

self.updateDropDown(cause = "del", modified = ind)

18.3 Wavegen.py

import numpy as np

from math import floor

def lerp(a, b, f):

"""

Performs linear interpolation between two values a and b.

Parameters:

a (float): The start value.

b (float): The end value.

f (float): The interpolation factor between 0 and 1, where 0 yields `a` and 1 yields `b`.

Returns:

float: The interpolated value between `a` and `b`.

"""

return a * (1 - f) + (b * f)

def resample(samples, newNumSamples):

"""

Resamples a sequence of data points to a new number of samples. (I don't think this is

used anywhere but might be needed in the future)

Parameters:

samples (list of float): The original sequence of sample points.

newNumSamples (int): The desired number of sample points in the resampled sequence.

Returns:

list of float: The resampled sequence of sample points.

"""

if len(samples) == newNumSamples:

return samples

values = []

for i in range(newNumSamples):

George Mason University
Department of Electrical and Computer Engineering 169

pos = i / newNumSamples * len(samples)

ind = floor(pos)

ind2 = (ind + 1) % len(samples)

f = pos - ind

#print(i, pos, ind, ind2, f)

values += [lerp(samples[ind], samples[ind2], f)]

return values

def sample(samples, x):

"""Samples a list of points with linear interpolation.

Given a floating-point index `x`, this function calculates the interpolated

value using the fractional part of `x` to blend between the nearest sample

points. `x` = 0 maps to the start of the list and `x` = 1 maps to the end of the list.

Parameters:

samples (list of float): The list of sample points to sample.

x (float): A floating-point coordinate of where to sample.

Returns:

float: The interpolated value from the `samples` list at the index `x`.

"""

x *= len(samples)

ind = floor(x)

ind2 = (ind + 1) % len(samples)

f = x - ind

return lerp(samples[ind], samples[ind2], f)

def generateSamples(wavetype="sine", numSamples=1024, amplitude=5, arbitrary_waveform=None,

duty=50, phase=0, offset=0,

timeRange=1, clamp=None, numT = 1):

"""Generates a waveform of the given type and parameters.

Parameters:

wavetype (str): Type of the waveform to generate, defaults to "sine".

numSamples (int): Number of samples to generate, defaults to 1024.

amplitude (float): The peak amplitude of the waveform, defaults to 5.

arbitrary_waveform (list of float): A list of samples for the user-defined arbitrary

waveforms, defaults to None.

duty (int): Duty cycle for square waves, defaults to 50 percent.

phase (float): Phase shift for the waveform, defaults to 0.

George Mason University
Department of Electrical and Computer Engineering 170

timeRange (float): The time range over which to generate the waveform, defaults to 1.

clamp (function or None): An optional function to clamp values, defaults to None (no

clamping is done).

numT (int): Number of periods to generate, defaults to 1.

Returns:

Tuple of (time, voltage)

"""

t = np.linspace(0, numT, numSamples, endpoint=False)

tt = t

phase = float(phase)

t = np.mod(t + phase, 1)

if wavetype == 'arbitrary':

y = np.zeros(numSamples)

for i in range(numSamples):

y[i] = sample(arbitrary_waveform, t[i])

else:

if wavetype == 'sine':

y = np.sin(2 * np.pi * t)

elif wavetype == "triangle":

t = np.mod(t + 0.25, 1)

y = (np.mod(t * 2, 1) * -(np.floor(t * 2) * 2 - 1) + np.floor(t * 2)) * 2 - 1

elif wavetype == "square":

y = np.ones(numSamples)

y[t >= float(duty) / 100] = -1

elif wavetype == "sawtooth":

t = np.mod(t + 0.5, 1)

y = np.mod(t * 2, 2) - 1

elif wavetype == "dc":

y = np.zeros(numSamples)

else:

print("bad wavetype")

tt = tt * timeRange

y = y * amplitude + offset

if clamp:

np.clip(y, clamp[0], clamp[1], y)

return (tt, y)

def samplesToBytes(samples):

George Mason University
Department of Electrical and Computer Engineering 171

"""converts a list of samples to bytes. The samples will be stored in 16 bit (2 byte)

little endian. The bytearray's length will be padded to the nearest multiple of 64.

Parameters:

samples (list of float): samples to convert to bytes

Returns:

Bytearray(?) representing the samples.

"""

ns = len(samples)

if ns % 64 != 0:

add = 64 - (ns % 64)

samples = np.pad(samples, (0,add), 'constant', constant_values=(0,))

return samples.astype(dtype = "<u2", casting='unsafe').tobytes()

18.4 Input Field
from PyQt6.QtWidgets import QLineEdit

def findBestPrefix(val, prefixes):

""" Finds the best prefix for a given value.

Parameters:

val (float): The value to find the best prefix for.

prefixes (dict of str:int): dictionary holding prefixes (m for milli, k for kilo, etc)

mapped to their value.

Returns:

(float, str): The value with the best prefix, and the prefix itself."""

for p in prefixes:

n_val = val / prefixes[p]

if n_val >= 1 and n_val < 1e3:

return (n_val, p)

return (val, "")

def endsWithLower(s, endsWithStr):

""" Checks if a string ends with another string, ignoring case.

Parameters:

s (str): the string to test

George Mason University
Department of Electrical and Computer Engineering 172

endsWithStr (str): the ending

Returns: boolean

"""

return s[-len(endsWithStr):].lower() == endsWithStr.lower()

def parseStringToVal(str_in, prefixes, expected_unit):

""" Parses a string into a value.

Parameters:

str_in (str): The string to parse.

prefixes (dict of str:int): dictionary holding prefixes (m for milli, k for kilo, etc)

mapped to their value.

expected_unit (str): The expected unit of the value.

Returns:

float: The value parsed from the string, or None if the string could not be parsed.

"""

str_in = str_in.replace(" ", "")

if endsWithLower(str_in, expected_unit):

str_in = str_in[:-len(expected_unit)]

mag = 1

for p in prefixes:

if endsWithLower(str_in, p):

str_in = str_in[:-len(p)]

mag = prefixes[p]

try:

val = float(str_in)

except Exception as e:

return None

return val * mag

def clamp(val, minVal, maxVal):

"""Clamps a value to a given range.

Parameters:

val (float): The value to clamp.

minVal (float): The minimum value of the range.

George Mason University
Department of Electrical and Computer Engineering 173

maxVal (float): The maximum value of the range.

Returns:

float: The clamped value.

"""

return float(min(maxVal, max(minVal, val)))

class Input(QLineEdit):

"""Handles a text input box with automatic range clamping, unit display, scrolling"""

def editFin(self):

"""Function called when the user has finished editing the text box. If invalid value

is entered, the text box is reset to the previous value."""

val = parseStringToVal(self.text(), self.prefixes, self.def_unit)

if val is None:

self.undo()

else:

self.setVal(val)

def keyPressEvent(self, event):

"""Event handler for key input. If the up or down arrow keys are pressed, the value is

incremented or decremented by 1, respectively.

Parameters:

event (QKeyEvent): The key event that was triggered.

"""

if event.key() == 16777235:

self.setVal(self.value + 1)

elif event.key() == 16777237:

self.setVal(self.value - 1)

else:

QLineEdit.keyPressEvent(self, event)

def wheelEvent(self, event):

"""Event handler for mouse scrolling. The value is incremented or decremented based on

the scroll direction.

Parameters:

event (QKeyEvent): The key event that was triggered.

"""

self.setVal(self.value + event.angleDelta().y() / 120)

event.accept()

George Mason University
Department of Electrical and Computer Engineering 174

def setVal(self, val, runCallback = True):

""" Sets the value of the text box.

Parameters:

val (float): The value to set the text box to.

runCallback (bool): Whether or not to run the callback function after setting the

value, defaults to True. This can be used to update a textbox when a different textbox is

updated (for example have the frequency update when period is changed and viceversa), without

causing a infinite loop of updates. But currently this isn't used.

"""

val = clamp(val, self.range[0], self.range[1])

self.value = val

val, prefix = findBestPrefix(val, self.prefixes)

self.setText(f"{val} {prefix}{self.def_unit}")

if runCallback:

self.callback_update()

def __init__(self, callback_update, range, init_val, def_unit, prefixes = [], *args,

**kwargs):

"""Initializes the object

Parameters:

callback_update (funct): function to call when the value is changed

range (tuple (float, float)): a tuple holding the min and max values the input value

can be.

init_val (float): the initial value of the input box

def_unit (str): the unit symbol (such as "v" or "hz")

prefixes (dict of str:float): dictionary holding prefixes (m for milli, k for kilo,

etc) mapped to their value.

*args: extra args

**kwargs: extra args

"""

QLineEdit.__init__(self, *args, **kwargs)

self.editingFinished.connect(self.editFin)

self.callback_update = callback_update

self.range = range

self.prefixes = prefixes

self.def_unit = def_unit

self.setVal(init_val)

George Mason University
Department of Electrical and Computer Engineering 175

18.5 Connection.py
import serial

import serial.tools.list_ports

import threading

import math

from wavegen import *

from struct import pack

import os

from queue import Queue

import time

class Connection:

"""Handles the connection to the AWG device"""

def sendHandShakePacket(self):

""" Sends a handshake packet to the device.

This function should be called when the device is first connected to and during

keep-alive."""

if self.status == "disconnected":

return

bytes = pack("B4B59x", 0, ord('I'), ord('N'), ord('I'), ord('T'))

assert len(bytes) == 64

self.sendQ.put(bytes)

def read_disconnect(self, msg):

""" Disconnects the device and emits a disconnected signal to the main UI.

Parameters:

msg (str): The reason for the disconnect.

"""

if self.status != "disconnected":

self.status = "disconnected"

self.statusCallback.emit("disconnected", msg)

self.ser.close()

def read_funct(self):

""" The function that runs the read thread. This function reads data from the serial

port. Detects acknowledgments and disconnects due to timeout, emitted updates to the main UI

as needed."""

timeouts = 0

while self.status != "disconnected":

George Mason University
Department of Electrical and Computer Engineering 176

try:

buff = self.ser.read(64)

except:

buff = None

self.read_disconnect("Connection Disconnected")

break

if len(buff) == 0: #timeout

#send keep alive packets?

if timeouts == 0:

timeouts = 1

self.sendHandShakePacket()

else:

self.read_disconnect("timeout")

pass

else:

if(buff[0:9] == bytes("\0STMAWG23", "ascii")): #ack packet

timeouts = 0

if self.status == "connecting":

self.statusCallback.emit("connected", None)

self.status = "connected"

else: #bad reply

self.status = "disconnected"

self.sendQ.put(None)

self.statusCallback.emit("disconnected", "Bad packet")

#causes the write thread to wake up so that it can exit.

self.sendQ.put(None)

def write_funct(self):

""" The function that runs the write thread. This function writes packets from the

sendQ to the serial port."""

while self.status != "disconnected":

packet = self.sendQ.get()

if packet:

try:

self.ser.write(packet)

except:

pass

def close(self):

""" Disconnects the device and indirectly shutdowns the read/write threads."""

if self.status != "disconnected":

George Mason University
Department of Electrical and Computer Engineering 177

self.status = "disconnected"

self.ser.close()

def up64(self, bytes):

while(len(bytes) % 64 != 0):

bytes += [0]

return bytes

def getSkips(self, freq, numSamples, fclk):

"""Calculates the sample period in clock cycles for a given frequency, sample number,

and MCU clock speed"""

return fclk / (freq * numSamples)

def calc_val(self, freq):

"""Dynamically picks the best numSamples value, and corresponding values for the

ARR/PSC registers."""

fclk = 72e6

skipGoal = 25 #minimum sample period target

max_samples = 1024*4

numSamples = max_samples

#get close to the target sample period without going under

while (skips := self.getSkips(freq, numSamples, fclk)) < skipGoal:

numSamples /= 2

numSamples = int(numSamples)

#calculate PSC and ARR from the sample period (skips)

PSC = 1

while (ARR := skips / PSC) > 2**16:

PSC += 1

PSC -= 1

ARR = round(ARR - 1)

return numSamples, ARR, PSC

def sendWave(self, chan, freq = 1e3, wave_type = "sin", amplitude = 5, offset = 0,

arbitrary_waveform = None, duty = 50, phase = 0, numPeriods = 1):

""" Sends a waveform to the device.

Parameters:

chan (int): The channel to send the waveform to.

George Mason University
Department of Electrical and Computer Engineering 178

freq (float): The frequency of the waveform.

wave_type (str): The type of waveform to send.

amplitude (float): The amplitude of the waveform.

offset (float): The offset of the waveform.

arbitrary_waveform (list of float): A user-defined function for arbitrary waveforms,

defaults to None.

duty (int): Duty cycle for square waves, defaults to 50 percent.

phase (float): Phase shift for the waveform, defaults to 0.

numPeriods (int): Number of periods to generate, defaults to 1.

"""

if self.status == "disconnected":

return

#move constants to init or something

fclk = 72e6

dac_bits = 12

pwm_bits = 12

offset_amp = 5

PWM_ARR = 2**pwm_bits - 1

gain_amp = [5, 0.5]

#determines to use high or low gain

if wave_type == "dc" or offset > 5:

gain = 0

else:

gain = 0 if abs(amplitude) > 0.5 else 1

#calculate offset CCR value for offset

offset_pwm = max(min(offset, 5), -5)

CCR_offset = max(min(math.floor((-offset_pwm + offset_amp) / (offset_amp * 2) *

PWM_ARR), PWM_ARR), 0)

offset_dac = offset - offset_pwm

#determines numSamples, and ARR/PSC values

if wave_type == "dc":

numSamples, ARR, PSC = (2, int(2**15), 0)

else:

numSamples, ARR, PSC = self.calc_val(freq)

#skips_act = (PSC+1)*(ARR+1)

#determines phase

#this code is complicated because there are two waves of setting phase:

George Mason University
Department of Electrical and Computer Engineering 179

1) shifting the samples, which has lower resolution but a full 360 deg range

2) shifting the clock cycle on which the output starts, which has a resolution of

13.9 ns (at 72mhz)

#we want to do both

#PSC not being 0 makes things complicated and the functionality is not well tested for

slow waves.

phase_clocks = numSamples * (ARR + 1) * phase

phase_samples = phase_clocks / (ARR + 1) / numSamples

phase_arr = 0

#ALLIGNINS CLOCK SIGNAL PHASES TDOWN TO THE CLOCK CYCLE, SEEMS TO BE RANDOM BETWEEN

DEVICES AND NEEDS TO BE ADJUSTED MANUALY

if chan == 1:

phase_arr += 6 // (PSC + 1)

phase_arr += int(phase_clocks / (PSC + 1))

phase_arr = phase_arr % (ARR + 1)

#generate the samples

dac_scale = (2**dac_bits) / 2

samples = generateSamples(wavetype = wave_type, numSamples = numSamples, amplitude =

amplitude / gain_amp[gain] * dac_scale, arbitrary_waveform = arbitrary_waveform, duty = duty,

phase = phase_samples, offset = dac_scale + offset_dac / gain_amp[gain] * dac_scale, clamp =

[0, 2**dac_bits - 1], numT = numPeriods)

samples = samples[1]

#generate the packet

bytes = pack("<BBBHHHHH51x", 1, chan, gain, PSC, ARR, CCR_offset, numSamples,

phase_arr)

sample_bytes = samplesToBytes(samples)

assert len(bytes) % 64 == 0

bytes += sample_bytes

self.sendQ.put(bytes)

def tryConnect(self):

""" Attempts to connect to the device."""

if self.status != "disconnected":

return

#try to find the port with the correct vid/pid

portName = None

ports = list(serial.tools.list_ports.comports())

for port in ports:

if(port.vid == 1155 and port.pid == 22336):

George Mason University
Department of Electrical and Computer Engineering 180

portName = port.name

break

if not portName:

self.statusCallback.emit("disconnected", "device not found")

return

#add the "/dev/" for unix based systems

if os.name == "posix":

portName = "/dev/" + portName

try:

self.ser = serial.Serial(portName, 500000, timeout = 5) #BAUD rate Doesnt actually

matter

except Exception as e:

print(e)

self.statusCallback.emit("disconnected", "unable to open port")

return

self.status = "connecting"

self.sendQ = Queue()

self.sendHandShakePacket()

self.write_thread = threading.Thread(target=self.write_funct, args=())

self.write_thread.start()

#

self.read_thread = threading.Thread(target=self.read_funct, args=())

self.read_thread.start()

def __init__(self, statusCallback):

""" Initializes the connection object

Parameters:

statusCallback (pySignal): signal to use to send updates to the main UI

"""

self.status = "disconnected"

self.statusCallback = statusCallback

18.6 Channel.py
import subprocess

George Mason University
Department of Electrical and Computer Engineering 181

import math

import numpy as np

import pyqtgraph as pg

from pyqtgraph.Qt import QtCore, QtWidgets

from PyQt6.QtCore import pyqtSignal

from PyQt6.QtWidgets import (

QApplication, QWidget, QLineEdit, QPushButton, QVBoxLayout, QMessageBox, QComboBox

)

from PyQt6 import QtGui

from wavegen import generateSamples

from connection import Connection

from input_field import Input

from wave_drawer import ICON_SIZE

class WaveSettings():

"""Stores a list of settings about the waveform of a channel"""

def __init__(self, type, freq, amp, offset =0 , duty = 50, phase = 0, arb = None):

""" Initializes the WaveSettings class.

type (str): Type of the waveform to generate.

freq (float): Frequency of wave.

amp (float): Amplitude of the wave.

offset (float): DC offset of the wave.

duty (float): duty cycle of the wave (if wave is square).

phase (float): phase of the wave

arb (list of float): A list of samples for the user-defined arbitrary waveforms.

"""

self.type = type

self.freq = freq

self.amp = amp

self.offset = offset

self.duty = duty

self.phase = phase

self.arb = arb

class Channel:

"""Handles the UI and logic for a single channel"""

def update_dropdown(self):

"""Called when the wavetype dropdown is triggered. enables/disables input boxes as

needed by wavetype. Calls generate_waveform()"""

George Mason University
Department of Electrical and Computer Engineering 182

self.waveform_type = self.dropdown.currentText().lower()

if (self.waveform_type == 'square'):

self.freqInput.setEnabled(True)

self.ampInput.setEnabled(True)

self.offsetInput.setEnabled(True)

self.dutyInput.setEnabled(True)

self.phaseInput.setEnabled(True)

elif (self.waveform_type == 'dc'):

self.freqInput.setEnabled(False)

self.ampInput.setEnabled(False)

self.offsetInput.setEnabled(True)

self.dutyInput.setEnabled(False)

self.phaseInput.setEnabled(False)

else:

self.freqInput.setEnabled(True)

self.ampInput.setEnabled(True)

self.offsetInput.setEnabled(True)

self.dutyInput.setEnabled(False)

self.phaseInput.setEnabled(True)

self.generate_waveform()

def updateAWList(self, AWlist, cause, modified = -1):

""" Updates the list of arbitrary waveforms in the GUI. Calls generate_waveform as

needed.

Parameters:

AWlist (list): The list of arbitrary waveforms.

cause (str): The cause of the update, either "mod", "del", or "".

modified (int): The index of the modified waveform, defaults to -1.

"""

last_ind = self.dropdownArb.currentIndex()

#updates the AW list, updates dropdown of custom waves

self.listAW = AWlist

self.dropdownArb.clear()

ind = 0

for aw in self.listAW:

self.dropdownArb.addItem(aw.name)

if aw.icon:

self.dropdownArb.setItemIcon(ind, aw.icon)

ind+=1

George Mason University
Department of Electrical and Computer Engineering 183

#some of the last_ind!= -1 checks might not be needed here but not enough time to

check if removing them breaks anything

if a arbitrary wave was modified, and that wave is currently selected, we need to

update if the wavetype is arbitrary

if cause == "mod" and last_ind != -1 and last_ind == modified:

self.dropdownArb.setCurrentIndex(last_ind)

if self.waveform_type == "arbitrary":

self.generate_waveform()

elif cause == "del" and last_ind != -1:

#currently selected arbitrary wave was deleted, we need to change index and update

if the wavetype is arbitrary

if last_ind == modified:

self.dropdownArb.setCurrentIndex(max(last_ind - 1, 0))

if self.waveform_type == "arbitrary":

self.generate_waveform()

#decrement dropdown selection index if the deleted wave was prior to the the

selected wave

elif last_ind > modified:

self.dropdownArb.setCurrentIndex(last_ind - 1)

#reset the dropdown to the selection that was before the update

elif last_ind != -1:

self.dropdownArb.setCurrentIndex(last_ind)

def setRunningStatus(self, status):

"""Sets the running status, updates the UI of the run/stop button based on the new

status. Calls generate_waveform()

Parameters:

status (bool): The new running status.

"""

self.running = status

if self.running:

self.run_stop.setText("Stop")

self.run_stop.setIcon(self.icons["stop"])

#self.run_stop.setStyleSheet("background-color : lightblue")

else:

self.run_stop.setText("Run")

self.run_stop.setIcon(self.icons["run"])

#self.run_stop.setStyleSheet("background-color : lightgrey")

self.generate_waveform()

George Mason University
Department of Electrical and Computer Engineering 184

def generate_waveform(self):

"""Updates the waveform on the graph and calls updateWave() in main.py (via

self.updateWave) so that the new wave can be sent to the AWG device. Called anytime a

relevant setting is changed."""

#generate_waveform() will be called spuriously while initialization is happening, we

want to ignore these calls until the initialization is done.

if not self.initDone:

return

#get arbitrary waveform samples from the AW list

tr = 1 / self.freqInput.value

if self.dropdownArb.currentIndex() != -1:

arbitrary_waveform = self.listAW[self.dropdownArb.currentIndex()].samples

else:

arbitrary_waveform = None

#generate the samples for the graph

samples = generateSamples(self.waveform_type, 1000 if self.waveform_type !=

"arbitrary" else 4096, self.ampInput.value, arbitrary_waveform, self.dutyInput.value,

self.phaseInput.value / 360, offset = self.offsetInput.value, timeRange = tr, clamp = [-10,

10])

#graphs the samples

self.plot_data.setData(samples[0], samples[1])

self.plot_widget.setXRange(0, tr)

self.plot_widget.setLabel('left', text='', units='V')

self.plot_widget.setLabel('bottom', text='', units= 's')

#updates the amplitude/offset lines

self.guide_lines[0].setData([-tr, tr * 2], [self.offsetInput.value,

self.offsetInput.value])

self.guide_lines[1].setData([-tr, tr * 2], [self.offsetInput.value +

self.ampInput.value, self.offsetInput.value + self.ampInput.value])

self.guide_lines[2].setData([-tr, tr * 2], [self.offsetInput.value -

self.ampInput.value, self.offsetInput.value - self.ampInput.value])

self.guide_lines[1].setVisible(self.waveform_type != "dc")

self.guide_lines[2].setVisible(self.waveform_type != "dc")

#updates the wave settings. The AWG device has no way to turn off output, so "off" is

just a DC wave.

if self.running:

George Mason University
Department of Electrical and Computer Engineering 185

self.waveSettings = WaveSettings(type = self.waveform_type, freq =

self.freqInput.value, amp = self.ampInput.value, offset = self.offsetInput.value, duty =

self.dutyInput.value, phase = self.phaseInput.value / 360, arb = arbitrary_waveform)

else:

self.waveSettings = WaveSettings(type = "dc", freq = 1e3, amp = 5)

#we don't want to call main.py's updateWave() until all channels are initialized.

allowUpdates is used to accomplish this

if self.allowUpdates:

self.updateWave(self.chan_num)

#update the running icon UI

if self.running:

self.on_off_label.setText("ON")

self.on_off_label.setColor((0, 255, 0))

else:

self.on_off_label.setText("OFF")

self.on_off_label.setColor((255, 0, 0))

def enableUpdates(self):

"""We don't want channel to call main.py's updateWave() until all channels are

initialized. This is called when the initialization is done."""

self.allowUpdates = True

self.updateWave(self.chan_num)

def __init__(self, chan_num, grid_layout, icons, updateWave):

"""Initializes the channel.

Parameters:

chan_num (int): the number of the channel (0 or 1)

grid_layout (): the grid layout to add UI elements, TODO, replace the grid with a

hierarchy of vertical/horizontal layouts

icons (dict of str: qticon): dict mapping icon names to the icon

updateWave (funct): function to call when we want to send the wave to the AWG

device (this is just main.py's updateWave())

"""

self.icons = icons

self.chan_num = chan_num

self.updateWave = updateWave

if chan_num == 0:

George Mason University
Department of Electrical and Computer Engineering 186

GUI_OFFSET = 0

elif chan_num == 1:

GUI_OFFSET = 9

self.initDone = False

self.allowUpdates = False

#self.arbitrary_waveform = None

self.waveform_type = "sine"

self.plot_widget = pg.PlotWidget()

self.plot_widget.setMouseEnabled(x=False, y=False)

self.plot_widget.setLabel('left', text='', units='V')

self.plot_widget.setLabel('bottom', text='', units='s')

self.plot_widget.setYRange(-10, 10)

self.plot_widget.hideButtons()

#initialize the offset/amplitude lines

self.guide_lines = []

for i in range(3):

if chan_num == 0:

self.guide_lines.append(self.plot_widget.plot(pen=(255, 255, 0, 96)))

self.guide_lines.append(self.plot_widget.plot(pen=pg.mkPen(color='y',

dash=[5, 5])))

elif chan_num == 1:

self.guide_lines.append(self.plot_widget.plot(pen=(0, 255, 255, 96)))

self.guide_lines.append(self.plot_widget2.plot(pen=pg.mkPen(color='c',

dash=[5, 5])))

COLORS = ['y', 'c']

self.plot_data = self.plot_widget.plot(pen=COLORS[chan_num])

self.on_off_label = pg.TextItem()

self.on_off_label.setPos(0, 10)

self.plot_widget.addItem(self.on_off_label)

self.clabel = QtWidgets.QLabel(f'Channel {chan_num + 1}')

prefixes_v = {"m": 1e-3}

prefixes_f = {"K": 1e3, "M": 1e6}

self.freq_label = QtWidgets.QLabel('Frequency (Hz):')

George Mason University
Department of Electrical and Computer Engineering 187

self.freqInput = Input(self.generate_waveform, [1, 250e3], float(1000), "hz",

prefixes_f)

self.amp_label = QtWidgets.QLabel('Amplitude:')

self.ampInput = Input(self.generate_waveform, [-5, 5], float(5), "v", prefixes_v)

self.offset_label = QtWidgets.QLabel('Offset voltage:')

self.offsetInput = Input(self.generate_waveform, [-10, 10], float(0), "v", prefixes_v)

self.DCLabel = QtWidgets.QLabel("Duty Cycle:")

self.dutyInput = Input(self.generate_waveform, [0, 100], float(50), "%", [])

self.phaseLabel = QtWidgets.QLabel("Phase (Deg):")

self.phaseInput = Input(self.generate_waveform, [0, 360], float(0), "deg", [])

self.run_stop = QtWidgets.QPushButton()

self.run_stop.clicked.connect(lambda: self.setRunningStatus(not self.running))

self.wavetypeLabel = QtWidgets.QLabel("Wave type")

self.dropdown = QComboBox()

self.dropdown.addItem('Sine')

self.dropdown.addItem('Triangle')

self.dropdown.addItem('Sawtooth')

self.dropdown.addItem('Square')

self.dropdown.addItem('Arbitrary')

self.dropdown.addItem('DC')

self.dropdown.setItemIcon(0, icons["sine"])

self.dropdown.setItemIcon(1, icons["tri"])

self.dropdown.setItemIcon(2, icons["saw"])

self.dropdown.setItemIcon(3, icons["square"])

self.dropdown.setItemIcon(4, icons["arb"])

self.dropdown.setItemIcon(5, icons["dc"])

self.dropdown.activated.connect(self.update_dropdown)

self.arbwaveLabel = QtWidgets.QLabel("Arbitrary Wave:")

self.dropdownArb = QComboBox()

self.dropdownArb.activated.connect(self.generate_waveform)

self.dropdownArb.view().setIconSize(QtCore.QSize(ICON_SIZE,ICON_SIZE))

grid_layout.addWidget(self.plot_widget, GUI_OFFSET + 1, 0, 9, 5)

grid_layout.addWidget(self.clabel, GUI_OFFSET + 1, 5, 1, 1)

George Mason University
Department of Electrical and Computer Engineering 188

grid_layout.addWidget(self.freq_label, GUI_OFFSET + 2, 5, 1, 1)

grid_layout.addWidget(self.freqInput, GUI_OFFSET + 2, 6, 1, 1)

grid_layout.addWidget(self.amp_label, GUI_OFFSET + 3, 5, 1, 1)

grid_layout.addWidget(self.ampInput, GUI_OFFSET + 3, 6, 1, 1)

grid_layout.addWidget(self.offset_label, GUI_OFFSET + 4, 5, 1, 1)

grid_layout.addWidget(self.offsetInput, GUI_OFFSET + 4, 6, 1, 1)

grid_layout.addWidget(self.wavetypeLabel, GUI_OFFSET + 7, 5, 1, 1)

grid_layout.addWidget(self.dropdown, GUI_OFFSET + 7, 6, 1, 1)

grid_layout.addWidget(self.arbwaveLabel, GUI_OFFSET + 8, 5, 1, 1)

grid_layout.addWidget(self.dropdownArb, GUI_OFFSET + 8, 6, 1, 1)

grid_layout.addWidget(self.DCLabel, GUI_OFFSET + 5, 5, 1, 1)

grid_layout.addWidget(self.dutyInput, GUI_OFFSET + 5, 6, 1, 1)

grid_layout.addWidget(self.phaseLabel, GUI_OFFSET + 6, 5, 1, 1)

grid_layout.addWidget(self.phaseInput, GUI_OFFSET + 6, 6, 1, 1)

grid_layout.addWidget(self.run_stop, GUI_OFFSET + 9, 5, 1, 2)

self.update_dropdown()

self.setRunningStatus(False)

self.initDone = True

self.generate_waveform()

George Mason University
Department of Electrical and Computer Engineering 189

19. Appendix F: Python Code Coverage Testing
19.1 Board 1 testing result

George Mason University
Department of Electrical and Computer Engineering 190

19.2 Board 2 testing result

George Mason University
Department of Electrical and Computer Engineering 191

George Mason University
Department of Electrical and Computer Engineering 192

