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There are several methods to emulate the NES, including software or hardware 

emulation, with the latter being a more authentic emulation. We emulated the NES on a BASYS-

3 Artix-7 FPGA and minimized overall cost of components needed to create a portable/handheld 

device. Our NES FPGA emulation device will be comparable to existing devices in terms of 

price and capabilities. We used existing functionalities of power systems and of P-MOD 

accessories for the BASYS-3 to create a singular breakout PCB to interface with the BASYS-3. 

Additionally, this project is designed to be open source to allow future expansion of capabilities 

and to provide an opportunity to learn about retro console emulation. 
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Executive Summary 

Current options for Nintendo Entertainment System (NES) emulation, with the 

requirements of being portable and hardware emulated, are limited and costly. In response, our 

solution is to design a breakout printed circuit board (PCB) with necessary interfaces and 

inputs/outputs for the BASYS-3 Artix-7 Field Programmable Gate Array (FPGA), to design an 

3D-printed encasing for the purpose of being portable/handheld, and to include cost effective 

components such as the LCD screen, battery, SD card, and audio speaker. This project results in 

allowing the BASYS-3 to be a new platform for NES emulation and in providing a new option 

for DIY NES emulation. Our team is composed of five members, majoring in Computer 

Engineering and Electrical Engineering: 

Team Member Relevant Experience Skills 

Samuel Kebadu (CpE) (PM) ECE 445, 446, 447, 448 

FPGA Internship 

Verilog, VHDL, C++, C, 

Computer Architecture 

Amilcar Paniagua (CpE) ECE 286, 447, 448 VHDL, C++, C, Circuit 

Design, Soldering, PCB 

Design 

Brooks Corbett (EE) ECE 286, 447, 436 

Hardware Engineering 

Internship 

Circuit Design, PCB Design, 

Power system design, 

Soldering, 

Joshua Riggs (EE) ECE 448, 445, 436, 447 VHDL, Digital Design, PCB 

Design 

Anthony Tang (EE) ECE 286, 445, 447, 436  AutoCAD, Circuit Design, 

Soldering, C  

CpE: Computer Engineering 

PM: Project Manager 

EE: Electrical Engineering 
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1. Approach 
 

1.1  Origin 

 

Since original NES consoles are not commercially sold anymore, or are expensive to 

purchase secondhand, we wanted to develop a cheaper alternative that still maintains portability 

and simplicity. In addition, some current market alternatives use hardware locked FPGAs; we 

have planned to have our NES FPGA project to be “unlocked” to allow programmability to the 

BASYS-3 in case the user desires to use the FPGA platform for other purposes. 

1.2  Solution 

 

In order to prototype our project, we started with the BASYS-3 and hardware language. 

Credit is given to Brian Bennett, who provided his recreation of the NES architecture written in 

Verilog, available to the public on GitHub [3]. Input and output signals in the constraints file 

were adjusted to match the P-MOD pins of the BASYS-3. A VGA display, an NES controller, 

and an audio speaker were required to playtest the emulated NES, along with two BASYS-3 

PMOD expansions for audio amplification and SD card reading. The NES architecture can be 

stored in the BASYS-3 as its default program via USB Universal Asynchronous Receiver-

Transmitter (UART) communication, which can also load the NES game ROMs. This 

functionality was planned to be integrated into the Verilog code to read game ROMs from an SD 

card through Serial Peripheral Interface (SPI). 

Additional components, such as a small LCD screen and a battery power source, were 

chosen to allow the device to have portable/handheld functionality. To minimize the dimensions 

of our device, we designed and printed our own breakout PCB that contains the audio amplifier 



circuit, SD card reading circuit, button interface circuit, video output circuit, and power 

management circuit.  

1.3  Alternative Designs 

 

There were possible several alternatives that were considered:  

• External display, controllers, and audio instead of embedded 

• Not using the BASYS-3, instead simply using an FPGA soldered to the breakout 

board 

• Using a different storage solution as opposed to an SD card i.e., memory bank 

• Using a wired power connection as opposed to battery 

Using external components would make the device lose its portability and handheld 

functionality. Next, switching out the BASYS-3 with a soldered FPGA to the breakout board 

would minimize the device’s dimensions. Another alternative was using a memory bank in the 

BASYS-3 to store game ROMs; however, this would disallow a user to “plug and play” their 

own game ROMS via SD card. The last alternative was to use a wired power connection and 

eliminate the use of a battery. Handheld functionality can be preserved but portability of the 

device would be lost. These alternatives would have greatly shifted the time and budget 

specifications of this project. 

As mentioned before, Brian Bennett’s FPGA project of the NES architecture on GitHub 

was implemented into the BASYS-3. He reported that his project is missing mappers and the 

Delta Modulation Channel (DMC). He also provided a C++ windows application named NesDbg 

that will allow communication to the FPGA via USB UART. NesDbg can be used to run tests 

and to load game ROMs. 



1.4  Team Member Contributions 

 

Our project will consist of five main tasks: 

o Circuit design 

o PCB design 

o Enclosure design 

o Game selection menu program 

o RTL code for memory 

Brooks was responsible for circuit design, with the help of Anthony. Their objective was to 

design the circuitry and schematics for the breakout board in EasyEDA. Simulations were 

conducted in computer SPICE software by Amilcar. 

Amilcar was responsible for designing the PCB layout, with the help of Brooks. They 

used the circuits designed by Brooks and Anthony to design a PCB layout in EasyEda. They 

were responsible for soldering required electronic components to the PCB and testing/debugging 

the PCB. 

When the breakout board dimensions and externals were finalized, Anthony had the 

responsibility of designing the 3D-printed enclosure with the help of Amilcar. They constructed 

the device with all the necessary large components such as the LCD screen and the battery in 

mind. 

While the tasks above were sequential, Josh and Sam helped one another on the 

software/RTL responsibilities. Sam’s main responsibility was to create code for RTL 

functionality for manipulating memory locations in the memory map on the NES architecture. 

Josh, in tandem, was responsible for programming and designing a game selection menu on 

boot-up to work with the RTL design. 



2. Technical section 
 

2.1  Function Decomposition (Level 0) 

 

Fig. 1 Functional Decomposition (Level-0) 

Fig. 1 shows the level-0 top-down perspective of the NES FPGA; it consists of three 

main inputs and three main outputs, alongside being electrically powered. The power switch will 

allow the NES FPGA system to be powered on. Then, the user will input signals via buttons to 

select a program to load. The NES FPGA will run instructions to output both display and audio 

to the user, as well as system status LEDs to determine both battery and power status. 



2.2  Function Decomposition (Level 1) 

 

Fig. 2 Functional Decomposition (Level-1) 

 Fig 2 shows the level-1 Functional Decomposition diagram of the NES FPGA. There are 

five main modules: Accept User Input, Load Program, Battery Management, Run Program 

Instructions, Control Display, and Control Audio. 

  



2.3  Function Decomposition (Level 2) 

 

Fig. 3 Functional Decomposition (Level-2) Accept User Input 

 Fig. 3 shows the level-2 diagram for the Accept User Input module. This function is 

based on the NES controller, which is composed of a single shift register. The user will input 

button signals to the shift register, which can be controlled by a request from the program. When 

the program requests for inputs via a clock signal, the shift register will send input data to the 

program. 

Fig. 4 Functional Decomposition (Level-2) Load Program 

 Fig. 4 shows the level-2 diagram for the Load Program module. Storage is an insertable 

SD card that is read by the FPGA through program selection and load data functions. The user 

will be able to select a program to run. The FPGA will take the location of the program and load 

it from storage. 

 



Fig. 5 Functional Decomposition (Level-2) Battery Management 

 Fig. 5 shows the level-2 diagram for the Battery Management module. 5V of Electric 

power is sourced from a DC power supply which charges the battery. The battery distributes 

3.7V, which is converted back to 5V to power the system. 

Fig. 6 Functional Decomposition (Level-2) Run Program Instructions 

Fig. 6 shows the level-2 diagram for the Run Program Instructions module. This module 

represents all the inputs and outputs of the BASYS-3 board. The Decode Instructions, Render 

Graphics, and Synthesize Audio modules exist in the Verilog Code. The BASYS-3 is powered 

by 5V and receives input data from the user and the memory/game ROM from the SD card. The 

ROM is decoded and the FPGA renders graphics and synthesizes the audio. 



Fig. 7 Functional Decomposition (Level-2) Control Display 

Fig. 7 shows the diagram for the Control Display module. The BASYS-3 outputs VGA 

signals, which is converted to HDMI signals. The LCD screen we chose requires an HDMI 

signal. 

 

Fig. 8 Functional Decomposition (Level-2) Control Audio 

Fig. 8 shows the diagram for the Control Audio module. The PWM audio signal is 

amplified by 12dB. The volume of this audio can then be adjusted by the user via a 

potentiometer. The audio jack will have switching functionality: if no device is plugged into the 

jack, the audio will play through the speaker; if a device is plugged into the jack, audio will play 

through the device. 

  



2.4  System Architecture 
 

Fig. 9 System Architecture of FPGA NES device 

Fig. 9 shows the System Architecture. The blue boxed modules are powered by the 

Battery Management Circuit module, which can charge a li-on battery via USB from an external 

power source. Within the BASYS-3 module are three sub-modules which are contained within 

the NES architecture: the Central Processing Unit (CPU), the Picture Processing Unit (PPU), and 

the Audio Processing Unit (APU). 



2.5  Dataflow  

Fig. 10 Dataflow chart of FPGA NES device 

 Fig. 10 shows the Dataflow chart between the User and the device’s modules. Observable 

data to the user are Video output, Audio output, and Status Lights from the FPGA NES device. 



2.6  State Diagram 

 

Fig. 11 State diagram of FPGA NES device 

Fig. 11 Shows a state diagram of all the possible states the NES device will be in. The 

NES device will startup via a switch and initialize to a method for game selection. The user will 

choose the game to run by selecting it with button inputs. After choosing, the game will be 

loaded and start running, allowing the user to play the game. 

  



2.7  Circuit Schematics 

 

2.7.1 Controller  

Fig. 12 Circuit Schematic of Controller 

The original NES has eight buttons for user input and was referenced for our design [1]. 

The main IC that makes the controller work is a 4021 shift register that takes eight inputs from 

the eight buttons, a clock signal, and a latch signal. When the shift register receives the latch 

signal, it saves the state of all eight inputs. The clock signal then repeats 8 times to read all eight 

buttons. The recorded input is then sent out of the data pin to the FPGA to be interpreted while 

the corresponding actions are executed. The controller takes up half of one of the four PMOD 

ports. 



2.7.2 Power/Charging  

Fig. 13 Circuit Schematic of Power/Charging 

 In order to achieve portability of the system, a battery needed to be included. The battery 

is connected to a 5V boost converter in order to supply power to the BASYS-3. A charger IC is 

also connected so that once an external 5V source is connected, the battery will be able to 

recharge when needed. There are status LEDs that show when the battery is charging and when 

the battery is fully charged. Additionally, a protection IC is included so that the battery will not 

reach a state of overcharge or over discharge. Schottky diodes are included on the main power 

lines so that if there are any spikes in voltage the connected components will not be damaged.   



2.7.3 Audio  

Fig. 14 Circuit Schematic of Audio 

The audio that comes out of the BASYS-3 is a PWM signal that is sent through an audio 

amplifier which applies a gain of 12.1 dB. Once the signal is amplified, the user has the option to 

control the volume via a potentiometer. There are two different destinations for the audio once 

the volume is set: the first being the default speaker that is on-board; the second option is when 

the user plugs a device into the 3.5mm audio jack and the audio will automatically switch over to 

that device. The audio module takes up the other half of the PMOD port that the controller uses.  



2.7.4 Memory  

Fig. 15 Circuit Schematic of Memory 

This circuit is simply a breakout for the SD card slot. Each signal is pulled high via a 20k 

resistor. The logic for this module is handled on the FPGA. The memory module takes up an 

entire PMOD port. 



2.7.5 Display  

Fig. 16 Circuit Schematic of Display 

In order to display onto the LCD, we needed to convert the native VGA signal on the 

BASYS-3 to a digital signal. This was done using the TFP410PAP IC from Texas Instruments. 

There is also another IC from Lattice Semi called the SII164 that can be used if the TI chip is 

unavailable. These ICs take in the red, blue, and green signals along with horizontal and vertical 

sync and a clock signal to convert to the differential pair signals that works with the LCD’s 

HDMI interface. This digital signal is then connected to a female HDMI port and a male-to-male 

HDMI ribbon cable is usedto connect the PCB to the LCD. The display module takes up the two 

remaining PMOD ports on the BASYS-3. 

  



2.8  Software 

 

2.8.1 Rebuild 

 

In order to use the open-source implementation of the NES from Brian Bennett we had to 

fix and modify the Verilog to get it running on the BASYS-3. One of the issues was that of 

constraints; the board used by Bennet was the Nexys-6 with a Spartan 6 FPGA [3]. Modifying 

constraints was trivial because the BASYS-3 had most of the I/O that the Nexys-6 had. One 

difference was that Bennett was using a breakout board for the NES Joypad controller [3]. This 

meant that we had to use the PMOD slots on the BASYS-3 directly. Bennett’s project didn’t 

make use for all the VGA color channels and so we modified the Verilog to include those on the 

BASYS-3 [3]. 

2.8.2 Start Menu 

 

The start menu is implemented using VGA and consists of a module for the generation of 

all the sync signals for the Vertical and Horizontal axis. This module is also responsible for 

generating the Pixel Clock and Enable signal. In order to display characters, we made a module 

for text generation that included a BRAM of ASCII characters. The X and Y axis sync signals 

were used to access the BRAM, this resulted in a text tile size of 80x30 characters. The start 

menu also includes a module to use the Joypad controller. This module is separate from the 

module used in the NES implementation because of clock domain issues. The result of these 

modules is a start screen of 9 Save game states that can be chosen with the joypad using the UP 



and DOWN buttons and selected with the A button. The start screen was then multiplexed with 

the NES Implementation so that the start screen is initialized on boot-up. 

 Fig. 17 Game selection menu 

2.8.3 Game Storage 

 

Nesdev Wiki provided a plethora of information on programming topics for the NES [4]. It 

was used when we development started for a game selection menu and for changing memory 

map values accordingly to each game stored on the SD card. 

 

  



2.9  Hardware 

 

2.9.1 VGA to HDMI 

 

Fig. 18 VGA to HDMI converter PMOD 

We based our display circuitry on the PMOD Digital Video Interface by 1BitSquared [2]. 

It uses two PMOD ports and converts the VGA signal from the BASYS-3 to an HDMI signal. 

 

2.9.2  SD Card 

Fig. 19 MicroSD card reader PMOD 



We based our memory circuitry on the MicroSD Card Slot by Diligent, a simple breakout 

board for the MicroSD card. 

2.9.3 BASYS-3 

Fig. 20 BASYS-3 FPGA board 

Our project revolves around the use of the BASYS-3, an FPGA prototyping board that all 

CEC Students have at GMU. The BASYS-3 holds the NES CPU architecture and will handle all 

input and output signals. 

2.9.4 Display 

Fig. 21 HDMI 5’’ Display Backpack 



We chose to have an HDMI 5” display backpack. The NES architecture outputs VGA 

signal, therefore in the display circuit on the PCB, the VGA signal is converted to HDMI by a 

TFP410PAP IC. 

2.9.5 Battery 

Fig. 22 3.7V 4000mAh Li-ion Rechargeable Battery 

We used a 3.7V 4000mAh Li-Po rechargeable battery to power our project. Within the 

PCB circuit, the battery power is boosted to 5V in order to power the BASYS-3. 

2.9.6 PCB 

Fig. 23 PCB containing all necessary circuits  



The PCB was designed in EasyEDA software and manufactured by JLCPCB. We 

designed the PCB to contain all necessary circuits needed for controller, power management/ 

charging, audio, SD card memory, and display output. To interface on top of the BASYS-3, we 

integrated PMOD headers on bottom of the PCB. 

  



2.9.7 CAD  

 

CAD design was conducted in FreeCAD software and printed in The Mason Exchange 

(The MIX) located in Horizon Hall at George Mason University. CAD design was alongside 

PCB design in order to create a case that would enclose the manufactured PCB and other 

component as well as leave openings for the user to handle such as the potentiometer for volume 

control, audio jack, and ports from the BASYS-3 and PCB. 

2.9.7.1 3D Models 

Fig. 24 CAD Design Top Screen Front Panel 

  



Fig. 25 CAD Design Button 

Fig. 26 CAD Design Hinge 

 



Fig. 27 CAD Design Bottom Case 



Fig. 28 CAD Design Internal Plate 2 

Fig. 29 CAD Design Internal Plate 1 (Battery Hold) 

  



Fig. 30 CAD Design Case Bottom Panel 

 

Fig. 31 CAD Design Top Screen Back Panel 

  



2.9.7.2 Orthographic Projections (mm) 

 

Fig. 32 CAD Design Top Screen Front Panel Orthographic Projection (mm) 

Fig. 33 CAD Design Button Orthographic Projection (mm) 



Fig. 34 CAD Design CAD Design Hinge Orthographic Projection (mm) 

 

Fig. 35 CAD Design Bottom Case Orthographic Projection (mm) 



Fig. 36 CAD Design Internal Plate 2 Orthographic Projection (mm) 

Fig. 37 CAD Design Internal Plate 1 (Battery Hold) Orthographic Projection (mm) 

Fig. 38 CAD Design Case Bottom Panel Orthographic Projection (mm) 



Fig. 39 CAD Design Top Screen Back Panel Orthographic Projection (mm) 

 

 

 

 

 

 

 

  



2.9.7.3 3D Print Results 

 

Fig. 40 CAD Design Top Screen Front Panel 3D Print 

 

Fig. 41 CAD Design Button 3D Print 

 

 

 



Fig. 42 CAD Design Hinge 3D Print 

 

Fig. 43 CAD Design Bottom Case 3D Print 

 



Fig. 44 CAD Design Internal Plate 2 3D Print 

 

Fig. 45 CAD Design Internal Plate 1 (Battery Hold) 3D Print 

 



Fig. 46 CAD Design Case Bottom Panel 3D Print 3D Print 

 

Fig. 47 CAD Design Top Screen Back Panel 3D Print 

 

  



3. Experimentation 
 

3.1  Introduction 

 

Three experiments were conducted to confirm the playability and the portability of our 

NES FPGA device: Audio and Video Synchronization, Button Response Time, and Battery 

Lifetime on Full Charge. The success of these experiments was crucial to the user experience 

needed to use our NES FPGA device. Before we could measure latency experiments, we first 

decided to create our own NES “game”, named ECE493TESTER (Fig. 48), for testing purposes 

only; it is essentially for display button inputs on screen and for playing a sound when a button is 

pressed. Nesdoug’s tutorial on coding an NES game was used for our testing program [5]. 

 

Fig. 48 The ECE493TESTER running on the Mesen Emulator while pressing the button A 

 

 



3.2  Audio and Video Synchronization 

 

3.2.1 Experiment Introduction 

 

The goal of this experiment was to measure the latency between audio and video. In other 

words, we wanted to observe if audio cues from a game match up with the actions in-game that 

cause the audio. 

3.2.2 Results 

 

We decided to collect data of the audio and video by human observation, and we 

concluded that at the human level, the audio and the video are synchronized with an undetectable 

latency. We also observed that the quality of the audio speaker was subpar. Incorrect filtering or 

speaker component choice are factors that could affect the sound quality. 

  



3.3  Button Response Time 

 

3.3.1 Experiment Introduction 

Fig. 49 The video recording was analyzed within HitFilm 

 

The goal of this experiment was to measure the response time between a button press and 

an on-screen response. To take the measurements, we used a Samsung S10 smartphone with 960 

fps and viewed the video in HitFilm, a video editing software (Fig. 49). The number of frames 

were counted in between, then the response time was calculated: 

1

960 𝑓𝑟𝑎𝑚𝑒/𝑠𝑒𝑐𝑜𝑛𝑑
 =  1.04 𝑚𝑠/𝑓𝑟𝑎𝑚𝑒 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒 = 𝐶𝑜𝑢𝑛𝑡𝑒𝑑𝐹𝑟𝑎𝑚𝑒𝑠 ⋅ 1.04 𝑚𝑠/𝑓𝑟𝑎𝑚𝑒 

3.3.2 Results 

 P1 R1 P2 R2 

Counted Frames 85 87 85 75 

Response Time (ms) 88.4 90.4 88.4 78 

P: Press         Average = 86.32 ms   

R: Release 

Table 1 Measurements of frame data 



3.4  Battery Lifetime on Full Charge 

 

3.4.1 Experiment Introduction 

Fig. 50 Super Mario Bros. being played on the NES FPGA 

 

The goal of this experiment was to test and compare our theoretical calculations of the 

battery life with experimental results of our measured battery life. We set up the experiment by 

loading the ROM for Super Mario Bros. and starting the game. In the game, Mario has about 2 

minutes and 40 seconds to complete a level; when the time runs out, Mario loses a life. Since 

Mario only has 3 lives, the level needed to be manually reset every 8-10 minutes. This process 

was repeated until the NES FPGA lost power. 

 

3.4.2 Results 

 

After 3 hours and 3 minutes, the NES FPGA started to lose power to the display. Our 

initial battery life calculations gave us an estimated battery life of 3.36 hours:  

𝐿𝐶𝐷 𝑊𝑎𝑡𝑡𝑠 + 𝑆𝑝𝑒𝑎𝑘𝑒𝑟 𝑊𝑎𝑡𝑡𝑠 + 𝐹𝑃𝐺𝐴 𝑊𝑎𝑡𝑡𝑠 

Our experimental results yielded 10% less battery life than we had expected.    



4. Experiment Validation  
 

We had collected data on how our system performed but it was also important to validate 

our system qualitatively. We wanted our project to be as close to the real NES as possible in 

order to make sure that the user would get the same experience. The process for validating these 

results was relatively simple, we played Super Mario on the console and made sure to check for 

any input latency issues, display issues, or audio latency issues. This validation resulted in us 

concluding that the device offers an acceptably similar experience to the original NES. 

The goal of this project was to provide a platform on which other systems can be 

emulated. We had to take careful account of how we used our FPGA’s resources in order to 

allow growth. From Fig. 51, we have a very large margin for growth. Our only real limiting 

resource would be IO, but the amount of IO needed would remain relatively constant across 

platforms unless we decided to emulate something far more modern than the NES or SNES. 

 

 

 

Fig. 51 Utilization graph for FPGA 



  

5. Project Lifetime 
  

5.1  Maintainability/Maintenance of Final Design  

 

The end user should have little maintenance when it comes to just using the device. The 

user may have to replace buttons as they wear down or replace the battery as it degrades. The 

overall casing that houses the system should be able to last a long time, though if necessary, it 

too can be replaced if the user has access to the 3D model stl file. We expect the electrical 

components such as the display, Basys-3, and PCB to last throughout the product’s lifetime.  

5.2  End of Project’s Lifetime  

 

All parts and components used in this project are easily sourced via electronic suppliers 

and it is quite unlikely that any given parts will reach the end of their lifetime and stop being 

manufactured. Moreover, all the parts used have standard alternatives that the user can easily 

substitute in place of our chosen components. When it comes to disposing of the device it is 

considered E-waste because of the battery so this means the user must dispose of it correctly. 

While the constructed project is able disposed of at the end of its “lifetime,” this project is 

capable of being replicated and improved upon should another choose to do so, so this project 

does not truly have an end.  

 

 

 

  



6. Administration 
 

6.1  Progress 

 

With the start of ECE 492, we went through our planning and design process for the 

project. We touched on topics of how the device should visually look and what functionalities it 

should have. We then came up with solutions to solve our problem statement. In ECE 492, we 

conducted part selection after we finalized our design. This included searching for parts for the 

display, audio, battery, and storage. We did some preliminary work on schematic capture for the 

circuits, which also included prototypes of our controller and audio circuits via breadboards. We 

also explored some solutions for storing the game ROMs in memory. 

During ECE 493, we started on the schematic capture and layout for the PCB that would 

mount onto the BASYS-3. Alongside the development of the PCB, we started work on the CAD 

enclosure that would house the BASYS-3, battery, display, and PCB systems, as well as the 

wires that connect them. The manufactured PCB we designed took two iterations with a few 

changes done in-between before it was properly functional. The CAD enclosure went through 

several different iterations, featuring various designs and implementations for each part. We also 

started writing the RTL for the storage and attempting to save game ROMs onto the SD Card. 

The RTL was written for the VGA-HDMI converter and for the start menu screen. We ran into 

issues with saving game ROMs onto the SD Card and were not able to complete that 

functionality by the end of ECE 493.  

 

  



6.2  Changes to Design 

 

We had to make several changes to the design especially for the design concerning 

memory storage of the video game ROMs. Starting out the goal was to use the 6502 core inside 

the NES implementation to run software that would load the ROMs that the user wanted to play. 

We decided to not pursue this design and instead opted for a Verilog implementation of a start 

menu. The start menu works by being the first screen that the user sees when the device is 

powered on. In the start menu, the user will be able to choose the game to play. This is opposed 

to the software approach where this start menu would’ve been entirely in software ran by the 

6502 core. 

When deciding on how to get our video signal to the LCD, we initially were going to use 

a ZIF connector on the PCB so that we could use a ribbon cable coming out of the case to take 

up less space. In order to do that we would have had to use a ZIF to HDMI converter PCB to 

connect to the LCD. We thought this was not the best solution, so we decided on replacing the 

ZIF connector on the PCB with a female HDMI and finding a ribbon cable HDMI cord to get the 

signal to the LCD. 

During the circuit design process there were multiple other times where a component was 

unavailable or not what we needed/wanted. In our audio module we ran into a problem where the 

chip we wanted to use was out of stock and the only one we had was a very small BGA 

configuration so we were not confident that we could solder it onto our PCB without damaging 

the board or creating a short. This issue led us to find another mono-channel audio amplifier that 

would have an adjustable gain and not consume too much power.  Another circuit design issue 

was the display module. When looking for a solution to make our display portable, we had to 



look to VGA to HDMI conversion because we could not find a small enough VGA screen. To do 

this we started by breaking open a cheap VGA to HDMI converter cable and seeing what was 

inside. After doing that we ran into the problem of not being able to obtain the required chip and 

its datasheet to know if we were hooking it up correctly or not. Finally, after some more 

searching and research we were able to find a company that had previously done VGA to HDMI 

conversion through PMOD and decided to recreate it so it would work with the BASYS-3. 

One of our design choices was about determining the physical design or construction of 

the device. Originally, we went with a single block design, where the controls and screen were 

on the same face of the case. This would have meant our PCB design would have had to been 

changed to support both the buttons and display next to each other. We opted to go for a display 

that is hinged and allows us to close the display.  This would have also affected how much 

filament we would use and how we designed the daughter board, however the effects and 

impacts of using this design are unknown. 

A design choice involving the display was either using an adapter cable for VGA to 

HDMI or using a chip specially made for converting VGA to HDMI. We opted to go for the chip 

specially made for this situation. This allowed us to place it on the PCB and save space inside the 

case of the device. The adapter on the other hand was bulky, unwieldy and too complicated to 

power inside the case. 

  



6.3  Unplanned Activities 

 

We faced a variety of obstacles through the duration of this project. One of the more 

impactful obstacles was sourcing the PCB and the components itself. Ordering parts that 

originate from a different country proved to take longer than we thought, and the shipping is 

unreliable. 

 

  



6.4  Funds Spent 
  

Buyer Quantity Part Cost 
Cost 
w/ Quantity 

Shippi
ng Tax Total Cumulative Cost 

Amilcar 1 P-MOD Audio Amp 9.99 9.99 4.99 0.6 25.57 Total 

Total 
w/o shippin
g and tax 

Anthony 1 P-MOD MicroSD 6.99 6.99 0 0 6.99 547.97 428.61 

Josh 1 P-MOD MicroSD 6.99 6.99 9.99 0 16.98   

Sam 1 P-MOD MicroSD 5.94 5.94 0 0 5.94   

Brooks 1 
NES Controller 
(Potted) 7.79 7.79 0.47 0 8.26   

Brooks 1 
NES 
Controller (Genuine) 8.98 8.98 4.89 0 13.87   

Sam 1 
Lithium Battery 
3.7v 4000mah 13.99 13.99 0 0.88 14.87   

Sam 1 Digital Caliper 8.99 8.99 0 1.56 10.55   

Sam 1 VGA to HDMI 16.99 16.99 0 0 16.99   

Sam 1 Adafruit Lipoly Charger 12.5 12.5 0 0 12.5   

Sam 1 
3pcs DC to DC 
booster 9.99 9.99 0 0.6 10.59   

Brooks 1 VGA to HDMI  17.99 17.99 0 0.95 18.94   

Brooks 1 
Controller 
Components 1.87 1.87 8.82 0 10.69   

Brooks 1 
VGA-
hdmi components 1.48 1.48 8.54 0 10.02   

Brooks 1 VGA-hdmi chips 17.56 17.56 6 1.05 24.61   

Josh 2 
VGA-hdmi break-
out board 19.45 38.9 7 0 52.9   

Sam 1 
3 
inch embedded display 37.99 37.99 0 6 43.99   

Anthony 2 

HATCHBOX 
1.75mm True Blue 
PLA 3D Printer 
Filament, 1 KG Spool, 
Dimensional Accuracy 
+/- 0.03 mm, 3D 
Printing Filament 24.99 49.98 0 1.5 52.98   

Brooks 1 PCB Prototype 93.75 93.75 20.01 0 113.76   

Sam 1 5 inch display 59.95 59.95 13.42 3.6 76.97   

Table 2 Total funds spent during ECE 492 and ECE 493 

 

 



6.5  Man-hours Spent 

Task Sam Josh Anthony Amilcar Brooks Total 

Overhead 53 40 40 44 40 217 

Storage 90 15 0 0 0 105 

Video 20 73 0 0 0 93 

Rebuild 80 80 0 0 0 160 

Circuit 0 0 20 36 130 186 

PCB 0 0 4 56 25 85 

Case 2 0 57 6 2 67 

Documentation 15 12 20 80 15 142 

Testing 19 19 10 15 5 68 

Manufacturing 0 0 62 0 0 62 
Component 

Research 10 10 10 10 40 80 

       

Total Hours/Person 289 249 223 247 257 1265 

       

Table 3 Hours each person spent on tasks 

 

Division Sam Josh Anthony Amilcar Brooks Total 

Overhead 68 52 60 124 55 359 

FPGA (HDL) 190 168 0 0 0 358 

PCB Design 31 29 101 123 202 486 

Manufacturing 2 0 119 6 2 129 

 

Table 4 Hours each person spent on division 

 

 Fig. 52 Chart of total man-hours spent on our project in ECE 492 and ECE 493 

 



 

7. Lessons learned 
 

7.1  Skills 

 

Time management was essential for the project. During ECE 492 and ECE 493, there 

were many moments where we would be behind our intended schedule and had to work harder as 

a result to catch up with our plans. Teamwork was another group skill that we worked through 

and improve as the year passed. As our members were split into sub-sections, we worked 

together as each group coordinated with each other as progress was made. Finally, we worked on 

our documentation skills as we prepared for proposals, progress reports, and presentations 

throughout the year. There were some challenges with document formatting, providing correct 

and necessary information, and making our work professional to be given to our faculty 

supervisor for review. 

7.2  Knowledge 

 

7.2.1 Verilog 

 

During this project, we had to learn many different skills. One of the skills we had to 

learn, in which we had no prior exposure to, was the Verilog HDL. The original NES 

implementation was entirely in Verilog, and converting such a project to VHDL, a language we 

had learned in our GMU courses, was unfeasible. We decided on learning Verilog HDL and 

implementing our solution entirely in Verilog HDL. 

  



7.2.2 PCB Design 

 

During the process of designing the PCB, we learned how to fit all necessary components 

onto the PCB with a predefined amount of space and only two layers to work with. The use of 

vias and copper areas helped with these limitations. Also, having to find different components 

that take up less space also helped.  

7.2.3 6502 Architecture 

 

 

 

7.2.4 CAD Design 

 

During ECE 493, alongside the PCB design, we had to learn to design, model, and print 

an enclosure for our system. The main goal was to design an enclosure that would be able to fit 

all the components we chose for our project and still be a manageable size to be handled. 

Measurements were carefully taken to allow the PCB design and 3D prints to fit smoothly 

together and allow the necessary parts such as audio jack and potentiometer be accessible to the 

user. 
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Executive Summary 

Options for Nintendo Entertainment System (NES) emulation are limited with the 

requirements of being portable and hardware emulated. Our solution is to design a breakout 

board with necessary interfaces and inputs/outputs, design an encasing for the purpose of being 

portable/handheld, and include cost effective components such as the LCD screen, battery, SD 

card, and audio speaker. This project will result in allowing the BASYS-3 to be a new platform 

for NES emulation and in providing a new option for DIY NES emulation. Our team is 

composed of five members, majoring in Computer Engineering and Electrical Engineering: 

Team Member Relevant Experience Skills 

Samuel Kebadu (CpE) (PM) ECE 447, 448 

FPGA Internship 

Verilog, VHDL, C++, C, 

Computer Architecture 

Amilcar Paniagua (CpE) ECE 286, 447, 448 VHDL, C++, C, Circuit 

Design, Soldering 

Brooks Corbett (EE) ECE 286, 447 

Hardware Engineering 

Internship 

Circuit Design, PCBA 

Design, Power system design, 

Soldering 

Joshua Riggs (EE) ECE 448, 445, 436 VHDL, Digital Design, PCB 

Design 

Anthony Tang (EE) ECE 286, 445, 447  AutoCAD, Circuit Design, 

Soldering, C  

 

Problem Statement 

NES emulation can vary in range of prices, with each method containing their advantages 

and disadvantages. We are motivated to seek a more cost-effective method for hardware 

emulating the NES in a portable package, meant to be hand-operated with a self-contained power 

source. We are also motivated to bring a new option for NES emulation with the BASYS-3. 

As of Q1 2022, original NES home consoles can only be obtained secondhand. The most 

convenient method to play an NES is emulation by software. However, software emulation runs 



on personal computers with general architectures, which results in large overhead from trying to 

interpret hardware instructions meant for one architecture as software instructions. The more 

authentic solution is to recreate the NES via hardware. Some advantages of genuine replication 

of the original architecture include zero performance overhead, as well as accurate execution of 

programs, including any bugs or exceptional cases in either program or hardware. The best way 

of recreating hardware designs quickly and flexibly is through a Field-Programmable Gate Array 

(FPGA); a chip of programmable hardware logic. In fact, this is not the first redesign of the NES 

using an FPGA. 

There are a few products in the current market that allow the NES to be played. Nintendo 

officially sells the NES Classic: a smaller-sized version of the home console. This runs NES 

games through software emulation on an ARM processor, meaning there are inaccuracies with 

the emulation, and only works with games purchased in its separate online store. More market 

options include the Pocket and NT Mini from the company Analogue. Both are High-end 

hardware “emulators” built on FPGA’s for not only the NES but other consoles as well. While 

both offer full recreation, and the Pocket is also portable, these systems are priced over $300 and 

lock their FPGAs and hardware to prevent tampering. For more flexible hardware 

implementations, there are DIY options. Some DIY projects, however, are complex in such a 

way that it may require many external parts and multiple levels embedded hardware and circuit 

design knowledge. One example is the MiSTer FPGA. Our NES FPGA project will allow 

flexibility within the build; our solution aims to be portable, handheld, cost-effective, hardware 

unlocked, DIY-friendly, and modular.  

  



Approach 

Since original NES consoles are not commercially sold anymore or are expensive to 

purchase secondhand, we want to develop a cheaper alternative that still maintains portability 

and simplicity. In addition, some current market alternatives use hardware locked FPGAs; we 

want our NES FPGA project to be “unlocked” to allow programmability to the BASYS-3 within 

in case the user wants to use the FPGA platform for another project. 

In order to prototype our project, we start with the BASYS-3 and hardware language. 

Credit is given to Brian Bennett, who provided his recreation of the NES architecture written in 

Verilog, available to the public on GitHub. Input and output signals will be adjusted to match the 

pins of the BASYS-3. A VGA display, an NES controller, and an audio speaker will be required 

to playtest the emulated NES, along with two BASYS-3 PMOD expansions for audio 

amplification and SD card readding. The NES architecture can be stored in the BASYS-3 as its 

default program via USB Universal Asynchronous Receiver-Transmitter (UART) 

communication, which can also load the NES game ROMs. This will be integrated into the 

Verilog code to read game ROMs from an SD card through Serial Peripheral Interface (SPI). 

Additional components, such as a small LCD screen and a battery power source, will be 

chosen to allow the device to have portable/handheld functionality. To minimize the dimensions 

of our device, we will construct our own breakout board that will contain the audio amplifier 

circuit, SD card reading circuit, button interface circuit, and power management circuit.  

Time and budget constraints may arise during the prototyping phase. There are several 

alternatives that can be made:  

• External display, controllers, and audio instead of embedded 



• Not using the BASYS-3, instead simply using an FPGA soldered to the breakout 

board 

• Using a different storage solution as opposed to an SD card i.e., memory bank 

• Using a wired power connection as opposed to battery 

Using external components will make the device lose its portability and handheld functionality. 

Next, switching out the BASYS-3 with a soldered FPGA to the breakout board will minimize the 

device’s dimensions. Another alternative is using a memory bank in the BASYS-3 to store game 

ROMs, although this would disallow a user to “plug and play” their own game ROMS via SD 

card. The last alternative is to use a wired power connection and eliminate the use of a battery. 

Handheld functionality can be preserved but portability of the device will be lost. These 

alternatives will greatly shift the time and budget specifications of this project. 

As mentioned before, Brian Bennett’s FPGA project of the NES architecture on GitHub 

will be implemented into the BASYS-3. He reports that his project is missing mappers and the 

Delta Modulation Channel (DMC). He also provides a C++ windows application named NesDbg 

that will allow communication to the FPGA via USB UART. NesDbg can be used to runs tests 

and to load game ROMs. 

Nesdev Wiki provides a plethora of information on programming topics for the NES. It 

will prove to be useful when we start to develop a game selection menu and to change memory 

map values accordingly to each game stored on the SD card. 

  



Project requirements specification 

Mission Requirements 

▪ The device shall emulate the original NES by creating a breakout board 

for the BASYS-3 board. 

▪ The device will provide a new platform for emulating NES. 

Operational Requirements 

Input/Output Requirements 

▪ The device shall output audio to either speaker or headphones. 

▪ The device shall accept user input through push buttons. 

▪ The device shall display video output to an LCD. 

▪ The device shall have indicator LEDs  

External Interface Requirements 

▪ The device shall read/load games via SD card/Memory chip. 

▪ The SD card/memory chip should be programmable via micro-USB. 

Functional Requirements 

▪ The device will start on a main menu. 

▪ The device shall allow the user to be able to select a game on the menu. 

▪ The device shall allow the user to adjust audio volume level. 

▪ The device will run games at the same clock speed as the original NES 

@1.79MHz. 



▪ The device shall be able to continuously play for 3.3 hours on a full 

charge. 

Technology and System-Wide Requirements 

▪ The device should cost less than $150 

▪ The device shall use the BASYS-3 board. 

▪ The device should use VGA as its display interface 

▪ The device should be portable. 

 

  



System Design 

 

Functional Decomposition (Level-0) 

                  

 

  



Functional Decomposition (Level-1) 

 

 

 

Functional Decomposition (Level-2): Accept User Input 

                                 

  



 

Functional Decomposition (Level-2): Load Program 

                                

 

 

Functional Decomposition (Level-2): Battery Management 

                              

 

  



Functional Decomposition (Level-2): Run Program Instructions 

    

      

 

Functional Decomposition (Level-2): Control Display 

                                

  



 

Functional Decomposition (Level-2): Control Audio 

                

 

 

  



Physical Architecture 

     

  



System Architecture 

 

 

  



Preliminary Experimental Plan 

Problems may arise when testing the prototype. To validate the requirements of our 

project, several experiments can be conducted: 

o Audio and video synchronization 

o Button response time 

o Battery lifetime on full charge 

For the audio and video synchronization experiment, a general test at the human sense 

level can be performed. A high frame rate video (at least 60 fps) and audio recording of the VGA 

display may be used in video editing software to confirm that audio, such as sound effects from a 

game, are synchronized with the actions within the game. 

A button response time experiment can be done in the same manner of the experiment 

above, with a high framerate video recording (at least 60 fps) of the VGA display and a button 

being pressed. An estimated response time may be measured based on the amount of video 

frames it takes for the VGA display to change. 

Lastly, a battery life experiment will help ensure we reach our calculated 3.3 hours of 

battery life for the device. The battery will initially be fully charged, then the experiment can be 

divided into sub-experiments: 

o Idle battery lifetime 

o Playtime battery lifetime 

All the above experiments will need to be reconducted on the finalized device in ECE 493. 

 

 



Preliminary Project Plan 

In ECE 493, we will begin to develop our finalized device. Our project will consist of five main 

tasks: 

o Circuit design 

o PCB design 

o Enclosure design 

o Game selection menu program 

o RTL code for memory 

Brooks will be responsible for circuit design, with the help of Anthony. Their objective will be to 

design the circuitry for the breakout board. With the help of computer SPICE software, 

simulations can be conducted.  

Amilcar will be responsible for designing the PCB layout, with the help of Brooks. They 

will need to use the circuit designed by Brooks and Anthony to design a PCB for the breakout 

board. They will also be responsible for soldering required electronic components to the PCB. 

Once the breakout board dimensions and externals are finalized, Anthony will have the 

responsibility of designing the 3D-printed enclosure with the help of Amilcar. They will then 

construct the device will all necessary large components such as the LCD screen, battery, and 

speaker.  

While the tasks above are sequential, Josh and Sam will be helping one another on the 

software/RTL responsibilities. Josh’s main responsibility will be to create code for RTL 

functionality for manipulating memory locations in the memory map on the NES architecture. 

Sam, in tandem, will be responsible for programming and designing a game selection menu on 

boot-up to work with the RTL design. 

  



Potential Problems 

During or before ECE 493, we will need to learn skills for our corresponding 

responsibility. Most notably, CAD software for both 3D modeling the enclosure and for 

designing the PCB. Programming-wise, our knowledge of VHDL and assembly code may help 

facilitate learning Verilog and 6502 assembly with respect. Those programming skills will be 

required to implement the SD card to read and load game ROMs. Without that implementation, 

we will have to fall back to NesDbg to load the game ROMs. 

There are known missing functionalities in Brian Bennett’s NES architecture. One of the 

missing functionalities is support for mappers. Some NES games use mappers to expand the 

normal limitations of their circuitry and memory in the ROM. Games that utilize mappers may 

not work as intended when play tested on the recreated NES architecture. Another missing 

functionality is the Delta Modulation Channel (DMC). The DMC is utilized in some NES games 

to be able to play a “sampled” sound, such as a vocal phrase, or a real-world acoustic instrument. 

Playable games in the recreated NES architecture will simply not be able to output the audio 

from the DMC. 

From our testing of Brian Bennett’s NES architecture, we noticed that the VGA display 

contains a yellow tint filter. We also noticed that some character sprites, such as Mario in Super 

Mario Bros., contain slight visual errors. We hypothesize that the visual errors may be caused by 

the type of display we used during play testing. 
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There are several methods to emulate the NES, including software or hardware 

emulation, with the latter being a more authentic emulation. We will emulate the NES on a 

BASYS-3 FPGA and we will minimize overall cost of components needed to create a 
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devices in terms of price and capabilities. We will be using existing functionalities of power 

systems and of Pmod accessories for the BASYS-3 to create a singular breakout PCB to interface 
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1. Problem Statement 

Within the past decade, older/retro games are becoming much more difficult to acquire. 

As such, many players in the gaming community turn to emulation to preserve their beloved 

games. Video game console emulation can vary in range of prices, with each method containing 

their advantages and disadvantages. We are motivated to seek a more cost-effective method for 

hardware emulating the NES in a portable package, meant to be hand-operated with a self-

contained power source. We are also motivated to bring a new option for NES emulation with 

the BASYS-3. 

As of Q1 2022, original NES home consoles can only be obtained secondhand. The most 

convenient method to play an NES is emulation by software. However, software emulation runs 

on personal computers with general architectures, which results in large overhead from trying to 

interpret hardware instructions meant for one architecture as software instructions. The more 

authentic solution is to recreate the NES via hardware. Some advantages of genuine replication 

of the original architecture include zero performance overhead, as well as accurate execution of 

programs, including any bugs or exceptional cases in either program or hardware. The best way 

of recreating hardware designs quickly and flexibly is through a Field-Programmable Gate Array 

(FPGA), a chip of programmable hardware logic. In fact, this is not the first redesign of the NES 

using an FPGA [3]. 

There are a few products in the current market that allow the NES to be played. Nintendo 

officially sells the NES Classic: a smaller-sized version of the home console. This runs NES 

games through software emulation on an ARM processor, meaning there are inaccuracies with 

the emulation, and only works with games purchased in its separate online store. More market 

options include the Pocket and NT Mini from the company Analogue. Both are High-end 



hardware “emulators” built on FPGA’s for not only the NES but other consoles as well. While 

both offer full recreation, and the Pocket is also portable, these systems are priced over $300 and 

lock their FPGAs and hardware to prevent tampering. For more flexible hardware 

implementations, there are DIY options. Some DIY projects, however, are complex in such a 

way that it may require many external parts and multiple levels embedded hardware and circuit 

design knowledge. One example is the MiSTer FPGA. Our NES FPGA project will allow 

flexibility within the build; our solution aims to be portable, handheld, cost-effective, hardware 

unlocked, DIY-friendly, and modular.  

  



2. Project requirements specification 

In our preliminary brainstorming we came up with a few requirements that our design 

requires. Mission Requirements are abstract and design independent and focus on how our 

design relates with external uses.  Operation requirements specify what the input and outputs are, 

what the external interfaces are, any specific functional requirements and any technology 

requirements. These requirements were chosen with input from our stakeholder Dr. Kaps. 

2.1 Mission Requirements 

▪ The device shall emulate the original NES by creating a breakout board 

for the BASYS-3 board. 

▪ The device will provide a new platform for emulating NES. 

2.2 Operational Requirements 

Input/Output Requirements 

▪ The device shall output audio to either speaker or headphones. 

▪ The device shall accept user input through push buttons. 

▪ The device shall display video output to an LCD. 

▪ The device shall have indicator LEDs  

External Interface Requirements 

▪ The device shall read/load games via SD card/Memory chip. 

▪ The SD card/memory chip should be programmable via micro-USB. 

Functional Requirements 

▪ The device will start on a main menu. 



▪ The device shall allow the user to be able to select a game on the menu. 

▪ The device shall allow the user to adjust audio volume level. 

▪ The device will run games at the same clock speed as the original NES 

@1.79MHz. 

▪ The device shall be able to continuously play for 3.3 hours on a full 

charge. 

 

Technology and System-Wide Requirements 

▪ The device should cost less than $150 

▪ The device shall use the BASYS-3 board. 

▪ The device should use VGA as its display interface 

▪ The device should be portable. 

  



3. System Design 

This section will demonstrate our FPGA NES device as three levels from a top-down 

modular perspective. Level-0 is the highest representation, with each level diving deeper into the 

modules of the device. All levels show all respective inputs and outputs with named functional 

“black box” modules in between. This section will also include the physical and system 

architecture representations of our device. The physical architecture diagram shows components 

and functions in a hierarchical manner while the system architecture diagram shows specific 

modules and their data relevance with each other. 

As seen in Fig. 1, our FPGA NES system is composed of three inputs and two outputs. A 

user will be able to input controls via buttons and will be able to power on the system with a 

power switch. Program data will be sourced from an external SD card storage. The system will 

give status information through LEDs and will render both video and audio to be displayed and 

played through a speaker/headphones output. Fig. 2 shows all six of the modules that are 

contained within our system. The user input module is shown in Fig. 3. The user can provide 

input via push buttons which are read by an 8-bit shift register and fed to the system as input 

data. As shown in Fig. 4, the user will be able to choose a game through a program selection 

method. The game data at the chosen address location within the storage will then be loaded. 

Since our system will be portable, a battery management module, shown in Fig. 5, will be used. 

This module consists of a charging circuit, a protection circuit, and a boosting circuit. At the 

center of the system, in Fig. 6, the game ROM data will be decoded and will render the graphics 

and audio. The user will then be able to interact with the game by using the input module. As 

seen in Fig. 7, game video data will be loaded to a display that has its own power control system. 

Finally, Fig. 8 shows that the game audio data will be converted to analog data before becoming 



an output to a speaker/headphone. The volume of the audio will be adjustable via a 

potentiometer. Fig. 9 shows the physical architecture, with the higher hierarchical concept to the 

left. Fig. 10 shows the system architecture, where modules can be seen externally and internally 

from the BASYS3. 

 

Fig. 1 Functional Decomposition (Level-0) 

                  

 

  



Fig. 2 Functional Decomposition (Level-1) 

 

 

 

Fig. 3 Functional Decomposition (Level-2) Accept User Input 

                                 

  



 

Fig. 4 Functional Decomposition (Level-2) Load Program 

                                

 

 

Fig. 5 Functional Decomposition (Level-2) Battery Management



Fig. 6 Functional Decomposition (Level-2) Run Program Instructions 

    

      

 

Fig. 7 Functional Decomposition (Level-2) Control Display 

                                

  



 

Fig. 8 Functional Decomposition (Level-2) Control Audio 

                

 

 



Fig. 9 Physical Architecture 



Fig. 10 System Architecture 

 

 

  



4. Background Knowledge 

4.1 VGA Protocol 

 

Fig. 11 VGA pin signals 

 

The BASYS-3 has one female VGA connection and can be programmed to output VGA 

for display. The VGA protocol consists of 5 signals: RED, GREEN, BLUE, HSYNC, and 

VSYNC. The RED, GREEN, and BLUE color signals send color data to the pixel determined by 

a pixel clock signal. The HSYNC and VSYNC are used to synchronize the start and stop of the 

pixel lines of every frame.  

 



4.2 SPI Protocol 

 

Fig. 12 SPI Master and Slave connections 

 

This project will require the use of the SPI which stands for Serial Peripheral Interface. 

SPI is a synchronous, Full-Duplex communication protocol that has four pins and they consist of 

Serial Clock (SCLK), Master Out Slave In (MOSI), Master In Slave Out (MISO) and Slave 

Select or Chip Select (SS). The function of SCLK is self-explanatory, MOSI is used for sending 

data, MISO is used for receiving data and Chip Select is used to select the destination. SPI will 

be used to interface with the SD card to store NES video games. 

 

  



4.3 6502 CPU arch 

 

Fig. 13 Processor Architecture of MCS650x  

 

The NES is centered around a modified version of the popular 6502 Central Processing 

Unit (CPU) designed by MOS Technology in 1975. Our design in turn will be built off a 

hardware recreation of this architecture. The 6502 is a little-endian 8-bit processor with a 16-bit 

external address bus [2]. Within the main architecture, there are 3 major bus interfaces: the 



instruction fetch bus, the data read bus, and the data write bus. These connect the CPU shell that 

handles external system calls to the CPU core. This allows for both calling up to 65 KB of 

memory, and for direct external bus interfaces to other processing units, such as the PPU and 

APU found on the NES [1][5]. Later on, MOS Technology would create a second version of the 

6502 in 1981 that is CMOS-based: the 65c02. 

 

4.4 Power/battery Management 

There are 4 main components in our battery management system: a charging circuit, a 

circuit protection circuit, a voltage booster, and the battery itself. The BASYS-3 needs 5-volts to 

be able to run so a battery is needed to supply 5-volts. Instead of getting a battery that was above 

5-volts and dropping the voltage down, a rechargeable 3.7-volt Li-Ion battery was chosen. A 

voltage booster was used to get the voltage up to 5-volts and produce a current output of up to 4 

amps. A circuit protection aspect needs to be considered so that in the case of a spike in current 

or voltage, the circuit will not be damaged. Finally, the battery will need to be charged in order 

to keep using it repeatedly. A charging circuit with a charging IC allows this to happen with a 5-

volt input. 

 

4.5 Bennet Open-Source NES 

We will be building on top of a previous design of the NES by Brian Bennet, written in Verilog. 

Bennet constructed his version of the NES using an open-source implementation of the 6502 

processor. Bennet uses open-source software, called NesDBG, that is used for debugging the 

NES and for loading the game ROMs into the FPGA Block Random Access Memory (BRAM). 

Bennet implemented his design on a Nexys 3 Spartan-6 FPGA and used a breakout board, that is 



no longer in production, to connect the NES controller to the NES itself. Bennet also used a 

Pmod amplifier and a speaker for the audio[3]. 

  



5. Detailed Design 

In order to better model our design and describe system behavior we decided to make a data 

flow diagram and a state diagram. The data flow diagram is used to better describe the data that 

is moving throughout our design. The diagram shows how the video, audio, status lights and 

controller input interact with the user. It also shows the individual components of the system 

such as the audio processing unit, picture processing unit, central processing unit and SD card 

reader. The state diagram shows what tasks the system must accomplish and what state it will be 

in to accomplish those tasks. The diagram shows how the system moves from the game selection 

screen through user input to loading a game from the SD card. 

Fig. 14 Dataflow chart of FPGA NES device 

 

  In Fig. 14, the user will be able to both select a game and play the games with controller 

input. A status light will give the user information about the status of the battery and the loading 

process. The Central Processing Unit is responsible for loading the games and rendering both audio 



and video using the audio processing unit and the picture processing unit. The Central Processing 

Unit will also be responsible for making requests to the SD card reader to load game ROMs.  

 

 

Fig. 15 State diagram of FPGA NES device 

   

Fig 15. Shows the state machine of the FPGA NES device. On the Startup state, the FPGA 

is initialized directly to the Game Selection state where the user will input scroll direction and 

selection of a game in the menu. Once a game is selected, the Load Game state is entered where 



the ROM data will be loaded. Finally, the selected game will begin, and the user can play in the 

Game state. All states can be reset back to the Startup state to choose a new game. 

 

5.1 Software 

The goal for the software of this project is to run an NES program on startup that reads a 

list of loaded games in the SD card and presents them in a menu for the player to choose from. 

Once the player selects the game they want to load, the program will then load the game into 

RAM, then jump to the game instruction location to start the game. This software will be written 

in the 6502’s assembly language and rely on accessing game emulation ROM files through a 

fat32 structure. The 6502 assembly language does not have built in compatibility with accessing 

file structures, but open-source libraries are available for fat32 file structure navigation [2]. 

These libraries come with their own set of issues with NES hardware that is discussed later in 

this paper. The external SD Card component being read from or written to is capable of 

communication using SPI.  

 

 

 

 

 

 

 

 

  



5.2 Hardware Components 

This section contains schematics that are provided by the respective retailers of the 

components purchased for our prototype. These schematics will aid in our future circuit design 

since each electrical component is detailed.  

Fig. 16 is a Pmod amplifier that uses a single SSM2377 audio amplifier chip along with 

330, 10k, and 0-ohm resistors, 4700pF, 10uF, and .01F capacitors for sufficient filtering. Fig. 17 

is a Lithium Ion and Lithium Polymer battery charger based on the MCP73833. It uses a USB 

mini-B for connection to any computer or any USB power supply. Charging is performed in 

three stages: first, a preconditioning charge, then a constant-current fast charge, and finally a 

constant-voltage trickle charge to keep the battery topped up. The fast-charge current is 500 mA 

by default but is easily adjustable from 100 mA up to 1000 mA by soldering a through-hole 

resistor onboard. Fig. 18 is a DC-to-DC voltage booster with an input range of 3-35 volts and a 

variable output voltage of 5-40 volts. This booster's efficiency has a maximum of 94% with a 

switching frequency of 220kHz. The output voltage is determined by the choice of resistors R1 

and R2. Fig. 19 is an SD card reader that interfaces directly with the Pmod port and does not 

have any other ICs that it interfaces with. In prototyping we have decided to use a Pmod 

microSD that has the option to add a current limiting IC, but we are not using it currently. Fig. 20 

is the original NES controller that consists of an 8-bit register and some carbon printed resistors 

[4]. For our design we have used the same 8-bit register (the MC14021BCPD) that was taken out 

of an original NES controller. The value of the carbon resistors was 40k-ohm in the original 

controller, so we have replaced them with 40k-ohm ceramic resistors. 

 

 



 

 

 

 

 

 

Fig. 16 Audio Amplifier 



  

 

 

 

Fig. 17 USB LiIon/LiPoly Charger 



  

 

 

 

 

Fig. 18 DC-to-DC Booster 



 

 

 

 

 

Fig. 19 SD Card 



  

 

 

 

 

Fig. 20 Controller 



6. Prototyping Progress Report 

This section will list all the components we used and how they were used in our 

experimental setup and prototyping. A timeline of our experimental setup throughout the 

semester is also included in this section, alongside a reflection of what we have learned from our 

prototyping efforts. Next, this section will explain the roadblocks we’ve encountered along the 

way, our testing plan with experiments, and the task allocation for ECE 493. 

 

6.1 List of components 

• BASYS-3 

• Pmod Audio Amp 

• Pmod MicroSD 

• 16GB SD Card 

• 8Ω Speaker 

• NES Controller 

• Lithium Battery 3.7v 4000mAh 

• VGA to HDMI 

• Adafruit LiPoly Charger 

• DC to DC Booster 

• 480x320, 3.5-inch Touch Screen IPS TFT LCD 

6.2 Current experimental setup 

NES emulation is currently achieved by the BASYS-3 with the support for an NES 

controller, a VGA display, and audio, powered by a lithium battery. Games can be loaded by 



NesDgb via micro-USB and audio can be listened to successfully with a speaker. Each main 

component was individually tested. 

Controller 

o Breadboard controller in progress 

o Currently using a premade NES controller 

Display 

o We are planning on using a 480x320, 3.5-inch Touch Screen IPS TFT LCD 

Audio 

o Audio Amplifier Pmod is interfaced 

o Speaker and volume controller included 

o Audio is amplified by 12dB 

SD Card 

o The SD Card is connected via the Pmod pins on the Basys-3 

o It will be used to store one game of our choosing 

o The SD Card will interface via SPI and read and write raw bytes with no file 

structure. 

Battery 

o Currently using a 4000mAh battery. 

o Theoretical calculations show that we will get 7 hours of battery life. 

 



6.3 Prototyping History 

Version 4.15.2022 

• Power circuit and battery tested 

• Mini VGA display tested 

Version 4.8.2022 

• Controller breadboard tested 

Version 4.1.2022 

• Soldered Pmod audio jack tested with 8 Ω speaker 

Version 2.25.2022 

• Projector display tested for the first time 

• Conference room audio aux tried for the first time  

• NES controller tested for the first time 

 

6.4 What we learned 

From our testing of Bennett’s NES architecture, we noticed that on certain VGA 

monitors, the visual display contains a yellow tint filter. We also noticed that some character 

sprites, such as Mario in Super Mario Bros., contain slight visual errors. We discovered that the 

visual errors are caused by the type of display we used during play testing and their native 

resolutions. We hypothesize that monitors with larger resolutions are more prone to visual errors. 

 



6.5 Current Roadblocks 

We are currently attempting to implement the SD card to read and load game ROMs by 

modifying the existing Verilog. Without that implementation, we will have to fall back to 

NesDbg to load the game ROMs. Our current approach to implementing the ability to load a 

game from an SD card is to read and write to the SD card over an SPI interface as opposed to the 

official SD card interface. We decided on SPI because learning the SD card protocol may be 

time consuming and unnecessary for the scope of this project. To store a game in memory we 

will try to use the NesDbg software to load a game like it was originally supposed to but instead 

of storing the game in the cartridge ROM it will copy to the SD card. On startup, the Verilog 

code will detect a flag that signals loading from the SD card rather than the NesDbg software. 

We are also currently attempting to implement the system on a breadboard. These parts 

include the shift register that the NES controllers use, the Adafruit battery management system, 

the DC-to-DC booster, the lithium battery and the speaker. Our prototyping goals for ECE 492 

will include the implementation of all the components via breadboard and to be able to read at 

least one game from the SD card. 

 

6.6 Predicted Roadblocks 

During or before ECE 493, we will need to learn skills for our corresponding 

responsibility. Most notably, CAD software for both designing the printed circuit board (PCB) 

and for 3D modeling the enclosure. It's realized that designing the 3D enclosure will require a 

completed design of the PCB. Soldering-wise, we will need to practice using a heat gun to solder 

components only available as surface-mount technology (SMT) ball grid array (BGA). Another 

roadblock that we will run into is the fact that the fat32 file system library that we will use to 



implement our start menu requires the 6502 to have a certain amount of RAM. The problem is 

that the NES has 2 KB of ram, and the library requires 5 KB of ram. This means that we will 

have to increase the amount of RAM in the NES Verilog implementation or if that doesn’t work 

then we will need to find another way to implement the start menu functionality. Another 

problem is that the fat32 library was developed for the 65c02 and not the 6502, which means that 

there could be other unforeseen problems or bugs with it. 

 

6.7 Bonus Roadblocks 

There are known missing functionalities in Bennett’s NES architecture that will not affect 

our finalized project. These bonus roadblocks would be nice to finish but aren’t our priority. One 

of the missing functionalities is support for mappers. Some NES games use mappers to expand 

the normal limitations of their circuitry and memory in the ROM. Games that utilize mappers 

may not work as intended when play tested on the recreated NES architecture. Another missing 

functionality is the Delta Modulation Channel (DMC). The DMC is utilized in some NES games 

to be able to play a “sampled” sound, such as a vocal phrase, or a real-world acoustic instrument. 

Playable games in the recreated NES architecture will simply not be able to output the audio 

from the DMC. 

 

6.8 Testing Plan 

Problems may arise when testing the prototype other than debugging the designed PCB. 

To validate the requirements of our project, several experiments can be conducted: 

o Audio and video synchronization 



o Button response time 

o Battery lifetime on full charge 

For the audio and video synchronization experiment, a general test at the human sense 

level can be performed. A high frame rate video (at least 60 fps) and audio recording of the VGA 

display may be used in video editing software to confirm that audio, such as sound effects from a 

game, are synchronized with the actions within the game. Success will be achieved when any 

video/audio sync issues are not noticeable by whoever is playing the game.  

A button response time experiment can be done in the same manner as the experiment 

above, with a high framerate video recording (at least 60 fps) of the VGA display and a button 

being pressed. An estimated response time may be measured based on the amount of video 

frames it takes for the VGA display to change. Success would be achieving a latency of 10ms or 

less, ideally a latency that is difficult to notice during play.  

Lastly, a battery life experiment will help ensure we reach our calculated 3.3 hours of 

battery life for the device. The battery will initially be fully charged, then the experiment can be 

divided into sub-experiments: 

o Idle battery lifetime 

o Playtime battery lifetime 

The success for this experiment will be achieved when we feel the game console has a sufficient 

life span, both idle and with constant play. At the moment, we are determining success for the 

idle time to be at least the calculated 3.3 hours. 

Alongside previous tests, testing of the game select screen is necessary.  This will be 

conducted once the RTL code and game selection UI is completed. The test will check if we are 



able to properly read an SD card for game data and select it on the LCD display, and success will 

be determined if the game is correctly loaded after selection. 

All the above experiments will need to be reconducted on the finalized device in ECE 493. 

 

6.9 List and Description of Tasks 

In ECE 493, we will begin to develop our finalized device. Our project will consist of 

five main tasks: 

o Circuit design 

o PCB design 

o Enclosure design 

o Game selection menu program 

o Register transfer level (RTL) code for memory 

Brooks will be responsible for circuit design, with the help of Anthony. Their objective will be to 

design the circuitry for the breakout board. With the use of computer SPICE software, 

simulations can be conducted.  

Amilcar will be responsible for designing the PCB layout, with the help of Brooks. They 

will need to use the circuit designed by Brooks and Anthony to design a PCB for the breakout 

board. They will also be responsible for soldering required electronic components to the PCB. 

Once the breakout board dimensions and externals are finalized, Anthony will have the 

responsibility of designing the 3D-printed enclosure with the help of Amilcar. They will then 

construct the enclosure will all necessary large components such as the LCD screen, battery, and 

speaker implemented. 



While the tasks above are sequential, Josh and Sam will be helping one another on the 

software/RTL code responsibilities. Josh’s main responsibility will be to create code for RTL 

functionality for manipulating memory locations in the memory map on the NES architecture. 

Sam, in tandem, will be responsible for programming and designing a game selection menu on 

boot-up to work with the RTL design. 

 

  



7. Schedule and Milestones 

7.1 Next Semester Plans 

Our plans for next semester are to move on from the prototyping stage and design an 

enclosure that will house the BASYS-3, battery, display, speaker, and a PCB. We will design a 

breakout PCB that will integrate the boost converter, battery management system, SD card 

reader, controller buttons, audio control, and circuit protection. We will also expand the storage 

functionality of our project by enabling the 6502 CPU to read from the SD card using a file 

system. To do this we will need to write a program in assembly that will act as our “start menu” 

that can choose games from the filesystem on the SD card. 

 

7.2 Milestones 

• Circuit Design 

o Schematic creation 

o Schematic design simulation 

• PCB Design 

o PCB Virtual Assembly 

o Printing PCB 

o PCB assembly and testing 

• CAD Design 

o Designing CAD model 

o Printing CAD design and testing 

• Completion of RTL Code 



• Game Selection Screen 

o Integration of 6502 code into emulator 

o Design and generate UI for game selection 

 

7.3 Gantt Chart 
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11. Appendix C: Software printout – if required by FS 

11.1 ECE493TESTER.c 
// Written by nesdoug 
// Modified by Amilcar Paniagua 
 
#include "LIB/neslib.h" 
#include "LIB/nesdoug.h"  
 
#define BLACK 0x0f 
#define DK_GY 0x00 
#define LT_GY 0x10 
#define WHITE 0x30 
// there's some oddities in the palette code, black must be 0x0f, white must 
be 0x30 
 
#pragma bss-name(push, "ZEROPAGE") 
 
// GLOBAL VARIABLES 
// all variables should be global for speed 
// zeropage global is even faster 
 
unsigned char i; 
unsigned char pad1; 
 
const unsigned char text[]="ECE 493 NES FPGA INPUT TESTER                                   
A: SFX"; // zero terminated c string 
 
const unsigned char palette[]={ 
BLACK, DK_GY, LT_GY, WHITE, 
0,0,0,0, 
0,0,0,0, 
0,0,0,0 
};  
 
// example of non-sequential vram data 
const unsigned char space_letter[]={ 
MSB(NTADR_A(16,17)), 
LSB(NTADR_A(16,17)),  
' ', 
NT_UPD_EOF}; // data must end in EOF 
 
const unsigned char space1_letter[]={ 
MSB(NTADR_A(16,17)), 
LSB(NTADR_A(16,17)),  
' ', 
NT_UPD_EOF}; // data must end in EOF 
 



const unsigned char u_letter[]={ 
MSB(NTADR_A(16,17)), 
LSB(NTADR_A(16,17)),  
'U', 
NT_UPD_EOF}; // data must end in EOF 
 
const unsigned char l_letter[]={ 
MSB(NTADR_A(16,17)), 
LSB(NTADR_A(16,17)),  
'L', 
NT_UPD_EOF}; // data must end in EOF 
 
const unsigned char r_letter[]={ 
MSB(NTADR_A(16,17)), 
LSB(NTADR_A(16,17)),  
'R', 
NT_UPD_EOF}; // data must end in EOF 
 
const unsigned char d_letter[]={ 
MSB(NTADR_A(16,17)), 
LSB(NTADR_A(16,17)),  
'D', 
NT_UPD_EOF}; // data must end in EOF 
 
const unsigned char a_letter[]={ 
MSB(NTADR_A(16,17)), 
LSB(NTADR_A(16,17)),  
'A', 
NT_UPD_EOF}; // data must end in EOF 
 
const unsigned char b_letter[]={ 
MSB(NTADR_A(16,17)), 
LSB(NTADR_A(16,17)),  
'B', 
NT_UPD_EOF}; // data must end in EOF 
 
const unsigned char st_letter[]={ 
MSB(NTADR_A(16,17)), 
LSB(NTADR_A(16,17)),  
'+', 
NT_UPD_EOF}; // data must end in EOF 
 
const unsigned char sl_letter[]={ 
MSB(NTADR_A(16,17)), 
LSB(NTADR_A(16,17)),  
'-', 
NT_UPD_EOF}; // data must end in EOF 
 
enum {SFX_JUMP, SFX_DING, SFX_NOISE}; 
 



void main (void) { 
  
 ppu_off(); // screen off 
 
 pal_bg(palette); // load the BG palette 
   
 // set a starting point on the screen 
 // vram_adr(NTADR_A(x,y)); 
 vram_adr(NTADR_A(1,5)); // screen is 32 x 30 tiles 
 
 i = 0; 
 while(text[i]){ 
  vram_put(text[i]); // this pushes 1 char to the screen 
  ++i; 
 }  
  
 // vram_adr and vram_put only work with screen off 
 // NOTE, you could replace everything between i = 0; and here with... 
 // vram_write(text,sizeof(text)); 
 // does the same thing 
  
 ppu_on_all(); // turn on screen 
  
 ppu_wait_nmi(); // waits until the next nmi is completed, also sets a 
VRAM update flag 
     // the text will be auto pushed to the PPU 
during nmi 
  
  
 while (1){ 
  // infinite loop 
  ppu_wait_nmi(); // wait till beginning of the frame 
  pad1 = pad_poll(0); // read the first controller 
   
  if(pad1 & PAD_UP){ 
   set_vram_update(u_letter); // set a pointer 
  } 
  else if(pad1 & PAD_LEFT){ 
   set_vram_update(l_letter); // set a pointer 
  } 
  else if (pad1 & PAD_RIGHT){ 
   set_vram_update(r_letter); // set a pointer 
  } 
  else if (pad1 & PAD_DOWN){ 
   set_vram_update(d_letter); // set a pointer 
  } 
  else if (pad1 & PAD_A){ 
   set_vram_update(a_letter); // set a pointer 
   sfx_play(SFX_DING, 0); 
  } 



  else if (pad1 & PAD_B){ 
   set_vram_update(b_letter); // set a pointer 
  } 
  else if (pad1 & PAD_START){ 
   set_vram_update(st_letter); // set a pointer 
  } 
  else if (pad1 & PAD_SELECT){ 
   set_vram_update(sl_letter); // set a pointer 
  } 
  else { 
   set_vram_update(space_letter); //set a pointer 
  } 
  ppu_wait_nmi(); 
 } 
} 
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