

1

FPGA Enhanced Wireless Sensor

Node for IoT Applications

Team

Ishak Nur
Logan Robson
Jesse Esquivel

Mohammed Marjan
Hung Tran
Irfan Malik

Faculty Advisor
Dr. Jens-Peter Kaps

2

Executive Summary

 Unfortunately, the Internet of Things(IoT) is not perfect. Up to date there has been

numerous attacks on IoT devices, leaving users vulnerable to data & identify theft, eavesdropping,

blackmail, etc. Securing the IoT is a primary concern and one that must be resolved to fulfill the IoT

paradigm. Securing the IoT is a broad topic and involves expertise in many fields. In this document,

we focus on securing communication between an IoT device and a gateway device while aiming to

increase power efficiency of a Wireless Sensor Node (WSN), which plays the role of an IoT device

in our application. We also devise simple, but effective methods to achieve an easy user interface

along with other requirements to ensure a successful design.

3

Table of Contents

Executive Summary .. 2

1. Approach .. 5

1.1 Motivation .. 5

1.2 Solution ... 5

1.3 Alternative Designs .. 6

1.3.1 XBee vs CC2530 .. 6

1.3.2 Camera Module .. 6

1.4 Team Member Contributions .. 7

1.4.1 Hung Tran ... 7

1.4.2 Logan Robson ... 7

1.4.3 Irfan Malik .. 7

1.4.4 Ishak Nur .. 8

1.4.5 Mohammad Marjan .. 8

1.4.6 Jesse Esquivel ... 8

2. Technical Section ... 9

2.1 System Models ... 9

2.1.1 System Architecture ... 9

2.1.2 Functional Decomposition .. 9

2.2 Description of System Elements ... 11

2.2.1 Elliptic Curve Cryptography(ECC) .. 12

2.2.2 FPGA .. 12

2.2.3 Microcontroller ... 12

2.2.4 Wireless Communication.. 12

2.2.5 Sensors .. 13

2.2.6 User Interface ... 13

2.2.7 Gateway .. 13

2.3 Physical Design .. 14

2.3.1 Schematics .. 15

2.3.2 PCB ... 19

3. Experimentation.. 21

3.1 Experiments Performed .. 21

3.2 Data ... 21

4. Experiment Validation .. 23

4.1 Results .. 24

4

4.1.1 Power Consumption .. 24

4.1.2 Android App Design .. 24

4.1.3 Session Key .. 24

5. Other Issues .. 27

6. Administration .. 29

6.1 Task Completion... 29

6.2 Changes .. 29

6.3 Extra Activities ... 29

6.4 Funds Spent...30

6.4.1 Development Costs .. 30

6.4.2 Production Costs .. 31

6.5 Man Hours .. 32

7. Lessons Learned ... 33

7.1 Knowledge and Skills Learned ... 33

7.2 Team Experience .. 33

References .. 34

Appendix A: Proposal .. 35

Appendix B: Design Document .. 36

5

1. Approach

1.1 Motivation

 Internet of Things (IoT) is the global phenomenon of connecting homes, cars, wearables,

and much more to the internet. Today, IoT is evolving at an alarming pace in terms of the

functionality of applications, usability, and number of devices being connected to the internet.

While this simplifies the lives of many using IoT applications, it also brings about unavoidable

issues that must be tackled for the IoT to take off and be fully accepted. Security is arguably the

biggest challenge facing the advancement of IoT, flaws in security can have major consequences,

jeopardizing the user's privacy, identity, and data , possibly leading to financial risk. Power

consumption of IoT devices is another major concern. IoT devices such as wireless sensor nodes are

devices that sense for specific targets in their physical environment, digitally process what they

have sensed, and finally transmit digital information that can be easily understood to an end user.

WSNs are usually battery powered and deployed in all kinds of environments and places, and so a

need for the devices to have low power consumption arises to increase battery life

1.2 Solution

 In our project, we offer a solution to many security vulnerabilities that are prevalent with

IoT devices, as well developing a Wireless Sensor Node that focuses on lower power operation and

design. As there are many applications a wireless sensor node can take, our specific example for

development and proof of concept is a wireless security camera. The basic function is that when

motion is detected within a certain area, an image is captured and sent to the user via an android

app. The node contains a microcontroller for reading and sending information and commands to the

sensors and the user, a camera, PIR motion sensor and an FPGA for security enhancement. The

Gateway, consists of a BeagleBone Black, which communicates information to and from the user

such as images and data requests from the node.

 When designing our wireless sensor node, we concentrated our selection of components on

ones that would achieve the greatest balance of power consumption and performance. However

only selecting efficient components is not enough, we also needed to integrate them in a way that

takes advantage of their benefits. Such as with our microcontroller selection, when the

microcontroller is not in an active, processor intensive mode, we power it down to the lowest power

operation possible while still providing the functionality we need. Additionally, the FPGA is turned

off when not being used, also reducing the amount of power consumed. And finally, our

transmission and receive devices were selected such that they offer the greatest balance of data rate,

range and security while consuming the lowest power and offering a various sleep modes.

 As we stated previously, security is one of the main vulnerabilities for IoT devices. We

alleviate this issue by securing all the devices and channels in our wireless security camera. There

are two main issues with security, one is making it easy for the user to setup said security such as

device authentication and the other is securing devices with complex keys that cannot be easily

deciphered, while also having a means to update and change keys frequently. We achieve this by

first allowing the user to easily setup up a node in the Wireless Sensor Network, via QR code in our

android app. The data from the QR code is uploaded to a Dropbox server via a secure login, and

6

then retrieved onto the gateway for use.

 This QR code contains the node’s public key and the node’s address, this information is

used to start our encryption algorithm as well as adding the node to the network. On the gateway

device, a session key is generated using the Elliptic Curve El-Gamal encryption scheme. The

scheme also generates points needed to decrypt the session key. These points are then sent over to

the Node, which contains a microcontroller and FPGA. The FPGA follows the same El-Gamal

scheme and uses these points to decrypt the session key. Now any data sent between the Node and

the Gateway is encrypted with the communication modules built in 128-bit AES but using the

decrypted session key as the key for AES. An extension of this is that if more Nodes for different

purposes besides a wireless security camera are added to the network, they will have different

session keys. Therefore, in the case of a security breach if one component is compromised, other

components in the network are not.

1.3 Alternative Designs

1.3.1 XBee vs CC2530

Initially we decided on our communication device to be the CC2530, which also uses the

ZigBee 802.15.4 protocol. However, after receiving the device we found it difficult to program and

implement all the features we would like the modules to have. The setup was very involved, which

included flashing the modules with Z-stack software among many other things. Therefore, we

decided to go with the XBee modules, which still uses the ZigBee 802.15.4 protocol, but takes care

of the underlying software for you. Thus, allowing us to focus on the other aspects of designs, while

also implementing a design that is scalable for future development.

1.3.2 Camera Module

One of the alternative designs we considered, specific to the demonstration of our system,

was the choice of camera module. The CMOS sensor we are using comes in two main varieties, the

first of which is a breakout board with a limited number of resistors and capacitors, and is interfaced

via I2C to change the sensors settings, and parallel 8-bit data output of image data, with VSYNC

and HREF signals to delineate image frames and lines, respectively. The CMOS sensor produces a

new 8-bits of data at a minimum frequency of 6Mhz, which is too fast for many low power

microcontrollers. The second variety seeks to alleviate this problem by including an on-board

FPGA and FIFO memory. The FPGA is used to read in image/frame data from the image sensor

into the FIFO memory, and provide a SPI interface to the FIFO, so that external devices, too slow to

read in the image/frame data unassisted, can receive the image/frame data via a SPI interface. The

first variety (without an FPGA or FIFO) costs around $10, while the second variety costs around

$25.

In our design, we worked with both varieties, with the intention of achieving the lowest

power consumption at the lowest price. The microcontroller in our design is too slow to use the first

variety (without an FPGA or FIFO) to read in image data, so we implemented a similar design to

the second variety, using the FPGA on our board, as well as a Cellular RAM, however due to time

constraints on our project this implementation was not fully realized, and we decided to use the

second, more expensive, variety of the camera module. Ideally, our design would use our on-board

FPGA along with a SDRAM and the cheaper camera module, to achieve identical results to that of

7

the more expensive camera module.

1.4 Team Member Contributions

1.4.1 Hung Tran

 User Interface

 Develop an Android app as user interface

 Implement the QR droid library in QR code scanner function.

 communicate between the app and Dropbox. Also, firebase and the app.

 implement the Dropbox API in android app.

 Send user request from the app to node.

 Send session key change from the app to BeagleBone Black

 App gets an alert notification from firebase when image is uploaded and allows user to view

image

 BeagleBone Black

 Communicate between Dropbox and BeagleBone Black include download, upload, and delete

files.
 Detect new images in BeagleBone Black.

 Cloud

 Connect Dropbox and Google firebase backend.

 Detect new files on the cloud.

1.4.2 Logan Robson

 Arducam OV2640 Camera Interfacing with MSP432

 Initialize OV2640 CMOS sensor via I2C using arrays of address, value pairs to be

written to the OV2640 registers.

 Use SPI to communicate with the Arducam to send command to capture image, poll the

Arducam via SPI for the capture done bit, burst read image data from Arducam to

MSP432

 XBee X2C Interfacing with MSP432

 Use UART to do basic transmission and receiving between the XBee modules.

 Use UART to enter “Command Mode” of the XBee module, as well as code to configure

the XBee module using several different AT commands.

 MSP432 C Code Misc.

 Code to interrupt/ISR for PIR motion sensor interrupt.

 Code to enter a low power state, interrupting every 30 seconds using the RTC on the

MSP432, and waking the XBee module to perform polling of the XBee coordinator.

 Schematic and PCB

 Created schematic for different components needed for MSP432 and Actel Igloo FPGA,

as well as connectors and components for Arducam OV2640, HC-SR501 PIR and XBee

S2C.

 Designed PCB using KiCad/PCBNew.

1.4.3 Irfan Malik

 XBee Interfacing with MSP430 and BeagleBone Black

 Transmit and receive data using UART with the XBee module

 Enter XBee “command mode” via UART, to setup security, sleep, coordinator, end

8

device etc.

 Upload images to cloud with timestamp

 BeagleBone Black

 Send and receive information between the two XBee modules individually

 Setup gateway to transmit images from node to cloud

 Read user requests from cloud and execute desired actions based on request

 Delete files on cloud and BBB after use

 Run El-Gamal encryption scheme on BeagleBone Black to generate session key for

AES on XBee

1.4.4 Ishak Nur

 Debug, update, and setup peripherals on the BeagleBone Black gateway device.

 Researched and learned about Elliptic Curve Cryptography and its various

implementations.

 Assisted Jesse in getting ECC core to work on FPGA.

 ECC on the BeagleBone Black

o Implement Point Addition, Point Subtraction, Point Doubling, and Scalar

Multiplication functions (Open source code used from [12]).

o Implement the Encryption part of an El-Gamal ECC Cryptosystem, which works

with FPGA (Got Assistance from [16]).

o Update session key upon user request

 Final Presentation Slides & Diagrams.

1.4.5 Mohammad Marjan

 Power the circuit that will convert from 5V to precise voltage needed to power different

parts for our circuit node.

 Motion sensor circuit using MSP432

 Prototyping motion sensor

 Testing motion sensor

1.4.6 Jesse Esquivel

 MSP430 Interfacing with Nexys 4 Board

 Wrote C code for the MSP430 to act as a master in I2C communication during testing

phases. Data gets sent and receive using interrupts.

 Modified Open Source I2C Slave Unit[6] in VHDL in order to better fit our needs to

communicate between microcontroller and FPGA.

 Created a transmit/Receive Unit in VHDL to facilitate data transfer to and from the

ECC core.

 Took care of testing/debugging VHDL design using Xilinx ISE Simulator for test

benches during testing phases.

 MSP430 interfacing with Actel Igloo nano Board

 Port VHDL code onto Libero SoC.

 Perform final testing/ debugging on Actel Igloo nano FPGA starter kit for design.

 Cryptography

 Researching the field of Cryptography, specifically Elliptic Curve Cryptography.

9

Figure 1

2. Technical Section

2.1 System Models

2.1.1 System Architecture

Figure 1 - Overview of System Architecture

 Figure 1 shows our overall system that includes our App, the Gateway, and the Node. The

App connects to the Gateway via the cloud using both wireless and wired communication. The

gateway connects to the Node via wireless communication. The Gateway is connected to Mains

power as it is intended to be constantly on, while the node is battery powered.

2.1.2 Functional Decomposition

2.1.2.1 Top Level

Figure 2 - Top Level Design

10

 Figure 2 shows our top most level. This top most level includes four main functions that our

overall system performs. As inputs into the overall system we have motion and user request. Motion

sensor comes from the PIR on the sensor node while the user request comes from the buttons on the

App. As outputs from the system we have an alert notification and image captured both which get

sent back to the App.

2.1.2.2 Functional Breakdown

Figure 3 - Node Addition & Rekeying Functions

 Figure 3 shows a deeper insight into how our system works, Specifically for our Node

addition and Rekeying functions. We see two user request buttons: Rekey and Node addition. In

order to have insert a node into the network, the app scans the QR code on the sensor node which

contains information such as Node Public Key and Node Address both of which the Gateway needs.

With this information, the Gateway can now generate a session key and encrypt it passing it along

to the sensor node. The sensor node decrypts the session key as well. Ultimately both the Gateway

and the Node pass the session key into their respective Radio modules which contain AES

encryption. It creates a secure channel between the Gateway and the Node.

11

2.2 Description of System Elements

2.2.1 Elliptic Curve Cryptography(ECC)

Elliptic Curve Cryptography is a public key cryptosystem and is a strong alternative to other

cryptosystems such as RSA because of the fact that it uses smaller keys and ultimately requires less

storage and less memory. ECC is based off elliptic curve arithmetic. An elliptic curve has many

points within a finite field. Basic operations performed on these points include point addition, point

doubling, and scalar multiplication which is essentially adding a point to itself k(scalar) times. Now,

how exactly did we use ECC? We implemented an El-Gamal scheme specifically using the ECC

operations mentioned to generate a session key, encrypt it, and finally decrypt it.

Figure 2: Elliptic Curve El-Gamal[15]

Proof:

C − xR = (kY + M) − xR

 = (kY + M) − xkP

 = (kY + M) − k(xP)

 = (kY + M) − kY

= M

m: x-coordinate of M is our session key

As we can see through the diagram and through the proof, The value of "M" is able to be securely

distributed between two parties such as in our case with the Gateway and Node.

12

2.2.2 FPGA

 The FPGA was an essential part to this project as it was used to perform heavy duty ECC

point arithmetic computation. Examples of point arithmetic have already been mentioned in the

previous section. Ahmad Salman, a graduate student and member of the Cryptographic Engineering

Research Group(CERG) at George Mason University provided us with an ECC Core, written in

VHDL, which performs the correct point arithmetic operations needed.

 We specifically chose the ACTEL IGLOO nano AGLN250V2-VQG100 as our design

FPGA due to its low power and flash-based characteristics. Because we only used the FPGA when

needed, such as when adding a node to the network and rekeying, the majority of the time it is

turned off. The flash based characteristic of the FPGA was beneficial as upon every power up of the

FPGA our VHDL design was already stored in the FPGA meaning we did not have to manually

program it. During the testing phase we used the Actel Igloo nano Starter kit[8] to validate and

ensure our VHDL and ensure that our overall design was able to fit within the FPGA size limits and

resources.

2.2.3 Microcontroller

 The microcontroller was used for the processing in the sensor node, and to facilitate

communication between the different peripherals and components of our system. Specifically, the

microcontroller remains in a low power state, and wakes on periodically using the RTC or via

external interrupt from the PIR sensor. On an RTC interrupt, the microcontroller checks the receive

buffer from the wireless communication to process any pending request, if needed. During the setup

and rekeying phase, the microcontroller handles communicates from to and from the wireless

communication module to the FPGA. The microcontroller receives points generated from the El-

Gamal encryption scheme coming from the Gateway, which is then passed to the FPGA via I2C,

decrypted to a session key, and passed back to the AES module of the wireless communication

module via UART.

2.2.4 Wireless Communication

The wireless communication devices are used to send the image data from the node to the

gateway, which then uploads the data to Dropbox, or convey user requests from the gateway to the

node. The data is sent from one module to another with a 9600 Baud rate and using UART protocol.

We selected XBee devices for communication for many reasons that comply with the requirements

of our project. One of which is power consumption, the XBee modules can be placed into a sleep

mode during which they are sleeping for a certain amount of time, and are waken up to check for

input, then go back to sleep. This sleep state uses very small amounts of current draw thus

prolonging the life of the Node. Our current setup, which can be changed depending on application,

sets the node transceiver module to sleep for 50 seconds, then wakes up for 10 seconds to see if any

requests were sent from the gateway or if the Node itself needs to send something to the gateway,

then repeats this process. However, since we want to send data when motion is detected, we also

connected a wake-up pin, which is triggered when motion is detected, which wakes up the Node

transceiver if sleeping, sends the data to the gateway, then enters sleep mode again.

13

 Additionally, XBee provides AES encryption with 128-bit keys, we generate these keys

from our ECC El-Gamal encryption scheme and set the AES session keys for the modules to these

values. Once the communication is encrypted no other device can receive or send data to the

modules. To allow for more dynamic key changing we added an option where the user can generate

keys for the AES encryption periodically, this is done remotely by entering the command mode of

the XBee modules, and giving the gateway and node module the new generated session key,

however all the user needs to do is click the “new key” button in the android app.

2.2.5 Sensors

 The two sensors in our design are a PIR sensor, as well as a CMOS image sensor. While the

sensors themselves are a part of our design, the microcontroller does not interface directly with the

actual sensor, instead with peripherals on the breakout boards of the particular sensor. The PIR

breakout board features a BISS0001 PIR controller which interfaces to the microcontroller via a

GPIO pin. The breakout board for the CMOS image sensor features an FPGA and an FIFO for

storing image and frame data. The FPGA provides a SPI interface to the FIFO, which the

microcontroller uses to read in image data. Additionally, the CMOS sensor features an I2C

interface, which is used to set the setting registers of the image sensor.

2.2.6 User Interface

We created an android smart phone app to function as our user interface. The app is

developed with two layers: a main layer and a sub-layer. The main layer four buttons to perform

four functions such as set up a new node, access cloud storage, image request and change session

key. The second sub-layer is used for potential functions in future use. The setup node function

opens a QR code app to scan the node’s QR code and uploads the data to the Dropbox cloud. The

access cloud storage function allows the user access to the Dropbox cloud to see all the data. The

image request function generates a file to send to the node through Dropbox and the gateway

device. The last function, change session key, is used to signal the gateway and node to generate a

new session key for the AES encryption. The user is alerted of new data in two ways. The first way

is by an in-app notification which is executed by the cloud when a new image appears on the cloud.

The second way is by text message alert, the gateway sends a text message to a phone also when a

new image is uploaded to the cloud.

2.2.7 Gateway

 The BeagleBone Black is the central hub of our IoT application, it connects the node to our

smart phone App. The purpose of the Gateway device is to listen to both the Node and cloud

awaiting commands and managing data traffic. From the Node, the Gateway intakes an alert and an

image once motion is detected, which is then pushed to the cloud. From the cloud side, the Gateway

awaits commands from the App to either request an image to be taken, add a Node to the network,

or change session key between Node and Gateway as described earlier.

 Another key role of the Gateway is how it plays part of an Elliptic Curve El-Gamal scheme.

The Gateway generates a session key that will be known to both the Node and Gateway. In the

Gateway, we pass the session key into the wireless communication module with AES capabilities.

Also, this scheme is setup so that it can easily be run again to generate new session keys. The Node

14

decrypts the session key as mentioned in the microcontroller section. This allows for data between

the Gateway and Node to be encrypted with advance keys that can be updated making this channel

even more secure.

 n the Gateway, we used python in order to deal with the encryption side of the El-Gamal

scheme. With known parameters such as Node public key, field, and curve parameters we could

perform the operations shown in Figure 4. In regards to the session keys, we used a random number

generator algorithm in order to generate them. Fortunately, there were many open source

implementations and the functions that perform these operations which were obtained from [12].

The written code is heavily interactive with an App that allows a user to update session keys.

2.3 Physical Design

Figure 5 - Final Design of our Physical System

15

2.3.1 Schematics

Figure 3 - Schematic of MSP432

16

Figure 4 - Schematic of Actel Igloo nano

17

Figure 8 - MSP432 DC-DC

Figure 9 - Voltage Regulation Circuit

18

Figure - XBee connections

Figure 10 - Pin Headers for Arducam Module and XBee Module

19

2.3.2 PCB

Figure 11 - Front PCB Layout

Figure 12 - Back PCB Layout

20

Figure 14 - Physical PCB with Labels for Different Components

Figure 13 - 3D Generated Model of PCB

21

3. Experimentation

3.1 Experiments Performed

 The main experiments performed in our project were related to power consumption of the

system in different modes of operation. Specifically, we conducted experiments in the following

modes of operations: normal, image capture. The normal mode of operation is defined as the

operation of the MSP432 in LPM3.5 waking up every 30 seconds, waking up the XBee module,

staying awake for 2 seconds, if no user request is pending, putting the XBee module back to sleep,

and going back to LPM3.5. This operation was measured over a period of 60 seconds, of which the

system is awake for 4 seconds. The next mode of operation is when an image is being captured, and

subsequently transmitted to the coordinator device. This process was found, on average, to take

approximately 15 seconds. A detailed breakdown of the current, power consumption and duty cycle

of the different components in these modes of operation can be seen in Table 1 and Table 2

respectively. Additionally, Table 3 shows the expected lifetime of the node, given the data

measured in the two aforementioned modes of operation.

3.2 Data

Figure 15 - Power Consumption Data Table 1

22

Figure 16 - Power Consumption Data Table 1

23

4. Experiment Validation

To experiment and test our overall project and confirm validation, we broke it down into different

sections:

App:

 The individual buttons on the app were tested for functionality and ease of use

 Setup Node: This button opens the QR code app that was linked to our app and scans the

code, the QR code contains the node’s public key and the address. This information is then

successfully sent to Dropbox where it is then read and deleted on the gateway.

 Key Change: This button uploads a file to Dropbox, the file is then retrieved on the gateway

and the key changed is executed, we verify this because we print out the new session key on

the BBB console.

 Access to Cloud: This button allows the user access to the images on the Dropbox cloud, it

is easily validated because we can see the images that were taken with timestamps on the

app.

 User Request: Also, like the Key Change button this also uploads a file to Dropbox but with

different content inside. The BBB retrieves this data and then sends the command to the

node and the image is captured. We verify this because we get an alert on the app that a new

image was captured and can see the image within our app.

BeagleBone Black:

● Testing and validation on the BeagleBone was essential since it behaves as a central hub

connecting the cloud and app side of our application to the wireless camera sensor node.
● Testing code validation on the BeagleBone

● Confirm and validate commands being sent from App to the node to perform various operations

● Test if our implementation of El-Gamal yielded correct results.

● Validate calibrate image sensor based on the images being received from our Node.

Node:

 The testing of microcontroller to FPGA interface was done on the MSP430 and the Xilinx

Nexys 4 Board. The microcontroller communicates with the FPGA via I2C communication. This

interface of microcontroller to FPGA allows the microcontroller to communicate specifically with

the Elliptic Curve Cryptography Core provided to us. The ECC Core is written in VHDL and is

inside the FPGA and is to ultimately perform the ECC operation of scalar multiplication needed for

our project. Upon successful transmission of data the between microcontroller and FPGA, further

testing was moved onto the MSP432 microcontroller and the Actel Igloo nano FPGA, both of which

are our chosen microcontroller and FPGA for our project. To confirm that we are able to get correct

ECC scalar multiplication outputs back to the microcontroller, we compared them with NIST Test

Vectors. Also in order to confirm our full decryption of the session key output we printed the

python session key from the Gate way and also the output coming from the FPGA into the console

of Code Composer in Figure 23. Fortunately, our results matched.

24

Figure 18 - Main Screen with Four Functions Figure 19 - Second Screen

4.1 Results

4.1.1 Power Consumption

Figure 17 - Power Consumption Data Table 2

 Battery Life = 0.7∗6300mAh/1.63mA = 2705 hrs. = 112 days

4.1.2 Android App Design

25

Figure 5 - In-app Notification from Google

Figure 6 - QR Code Scanner to Obtain Public

Key and Address of Node

Figure 22 - Image Browser for Images Taken

by the Node

26

4.1.3 Session Key

Figure 23 - Session Key Confirmation

 We use Code Composer Studio to print out data sent and received from the FPGA. Looking

at the session key that is being printed out in Code Composer, we see that the key it is being printed

out in little-endian form due to the fact that the ECC core outputs its values in little-endian form.

These results show us that we are able to send an encrypted session key from the gateway into the

node and properly decrypt the encrypted session key so that both the gateway and node have the

session key.

27

5. Other Issues

a. Reason for the project. Who would benefit, how would they benefit and what would the

benefit be? What could be the impact of success? Engineers solve problems to the benefit of

humanity.

The purpose of this project was to design a platform from which future IoT devices can be designed

with. As we have stated, security was a large concern with IoT devices, so this would benefit users

by assuring that their data is secured and privacy is not breached. Additionally, our specific IoT

device was also a wireless sensor node, and we designed it in a way that is expandable to many

different types of node, and also takes of advantage of low power operation.

b. Potential use of the project. Could the project lead to a marketable product, service or

function? Who might the users or purchasers of this product/service/function be? Would the

product/service/function serve only local needs or could it be applicable on a wider,

potentially global, range of users?

The project itself was not designed so that it can be sold and distributed, rather the design and

concept of the project is something that can be implemented into all types of IoT devices and sensor

nodes such as smart watches, home security systems, environment monitoring etc.

c. Cost figures for the project. Include parts, rough assembly/coding time/costs, student

time spent on design and implementation of the project, and (based on the student time spent)

estimated cost of design and this first prototype.

The total cost for parts in this project, as can be seen in section 6.4.1 was $411.41. Time spent on

this project which included software design, hardware design, building and testing prototypes was a

total of 1645 hours. At a bill amount of $30/hr. the total cost for a first prototype would be $49350.

d. Alternatives to the implemented design that could impact costs and effects on resources

use and the environment and community. Alternatives to the chosen design solution.

As we were designing this project, there were other components that were considered but were

ultimately decided against. One such component is using a microcontroller that has an integrated

ZigBee protocol and has enough processing power for the encryption and decryption. This device

would have reduced the cost for components as four separate components are all now integrated

into one. However, it would have greatly increased the development cost in terms of man hours and

labor, because this chip ran a Real-Time Operating System which none of our team members were

familiar with and would take a significant amount of time to learn and implement all our functions

with. Additionally, the encryption algorithm that we are currently using is developed in VHDL, and

converting this to the microcontroller language would require much analysis and effort.

28

e. Maintainability/maintenance of the final design solution. (Note, software must be

maintained as well as hardware.)

The design as far as software goes is easily adaptable, all the components we used are

reprogrammable and can be updated whenever needed, on the PCB we included pins that can allow

for easy updates to the microcontroller as well as the FPGA. Also, if the communication protocols

need to be changed or updated the communication module can be easily removed as it is not

soldered down directly, rather it inserted into the header pins the PCB board which are soldered.

f. Retirement, replacement, or disposal of the project at the end of its “lifetime”, i.e.

environmental disposal of parts such as batteries, recyclability of parts at time of disposal,

documentation needed to allow a replacement or upgrade to be designed.

As our project, does include batteries to power it, proper disposal is required to maintain the

integrity of the environment and those around it. Depending on where the product is used, local

laws should be followed in accordance to how batteries should disposed of. Our product used 3 AA

batteries, and in Virginia batteries such as these, alkaline batteries can be disposed of in household

trash or at waste management facilities [7].

29

6. Administration

6.1 Task Completion

 All the functionality for the project that was initially specified is complete. These functions

include, motion detection, image capture and image transmission. Additionally, we can successfully

communicate with the ECC core that was provided to us by Ahmad Salman. This core is used to

decrypt the encrypted session key, which is received from the Gateway.

 On the Gateway portion of our project, we were able to receive an image from the node

upon motion detection and manually request an image to be taken. Also on the Gateway we can run

an El-Gamal Encryption scheme used to encrypt the session key, and we can verify its functionality

because after the decryption takes place on the FGPA we acquire the same session key on both

sides. Another task that was completed is distinguishing various user requests such as rekeying,

setting up a new node, and image requests. The image request is sent over the node and the

consequent image is captured and received back on the Gateway. Rekeying, is done similarly, when

the request is received, we re-run the encryption scheme and once again both the gateway and node

acquire a new identical session key. The setup function is done so that it involves little user

involvement besides selection the “set up” button the app and scanning the QR code, which was one

of our requirements at the onset of the project.

 Finally, all these commands and images are channeled through our Dropbox server and

images are uploaded with a time stamp. This data is available for the user to access on the App.

 Unfortunately, when it came down to moving our working design into the final PCB, we had

errors due to circuit design. Because of this and time constraint we were not able to have all the

node functions operate as desired on the PCB, specifically the decryption part of the scheme which

when using development kits works as seen in the results section.

6.2 Changes

 We did have to change our components a few times due to incompatibility and ease of use

that other components provided. This of course did shift our schedule a bit because we had to order

the new components and configure them properly. Additionally, what we originally scheduled to

have done a few weeks before the end of the due date was the encryption algorithm, however due to

various factors such as complexity and effort involved in implementing it in our design we had to

shift our full implementation of the encryption to the last week before the end date. And due to this

we were not able to finalize our PCB also until about a few weeks before the final date, and were

only able to send one version of the PCB out for fabrication rather than being able to send multiple

out and make any necessary changes.

6.3 Extra Activities

Other than a few component changes we did not have any unspecified activities to carry out.

30

6.4 Funds Spent

6.4.1 Development Costs

Item Quantity Cost

Actel Igloo nano Starter

Kit
1 $100.00

FlashPro4 1 $51.25

MSP430FR5994 1 $25

CC2650 Launchpad 1 $29

MSP432 Launchpad 2 $26.36

OV2640 CMOS Sensor 1 $10.49

Arducam OV2640 1 $25.99

HC-SR501 5 $12.96

XBee S2C 2 $29.99

XBee breakout board 1 10.00

PCB Cost 3 $70

BeagleBone Black 1 $50

Total: $411.04

Figure 24 - Development Cost

Most of the cost for the project was spent on purchasing the various development boards that were

necessary and then also the programming interfaces that were needed for some of them.

Additionally, the cost for the PCB was more than expected because we had to expedite the shipping.

31

6.4.2 Production Costs

Item Quantity Cost

AGLN250V2-

VQG100
1 $16.11

Arducam OV2640 1 $25.99

HC-SR501 PIR 1 $1.69

XBee S2C 1 $17.50

MSP432P401R 1 $5.29

LT1129 1 $2.92

PCB 1 $7.93

Other Components 1 $5.00

Total $82.43

Figure 25 - Production Cost

The above table represents the cost of a single node, with the MSP432, FPGA, camera and motion

sensor we selected for the project. The prices are from the lowest available options, which for some

is when bought in bulk, and the PCB is with ground shipping from the lowest cost manufacturer.

32

6.5 Man Hours

Team Member Man Hours

Irfan Malik 250

Logan Robson 300

Ishak Nur 280

Jesse Esquivel 280

Mohammed Marjan 285

Hung Tran 250

Total Hours: 1645

Figure 26 - Man Hours

 Most time spent on this project was on writing code for the various components we were

using in our project. These include the FPGA, MSP430 for testing, MSP432, the BeagleBone Black

as our gateway and camera module. Additionally, since we were all new to PCB design, we needed

to learn how to first design a PCB on KiCad and then understand how the layout should be on the

actual PCB board, this in conjunction with finding and selecting all the necessary components such

as voltage regulators and oscillators took a significant amount of time as well. Finally, since we

wanted to create an understandable and easy user interface, a good portion of time was spent on the

developing the app, and allowing all the buttons to carry out a specific function, such as requesting

an image, or setting up a new node.

33

7. Lessons Learned

7.1 Knowledge and Skills Learned

 We learned a lot of lessons including teamwork, design approach, design process, and

research. Research has been vital throughout our whole project. Also, we learned how document an

effective proposal, progress reports, and other important information related to our project. Learning

to ask for help has been another major skill we gained. Early on it was clear we needed a lot help,

and we had to learn to communicate effectively with our faculty advisor and a graduate student who

are experts in the topics included in our project.

 Among the technical skills we acquired from this project, the most prominent are in

embedded system concepts and design. Specifically, over the course of this project we have become

much more adept at using and developing with, serial protocols. Mainly the I2C, SPI and UART

protocols, in interfacing with the XBee module, Arducam and FPGA. Additionally, we gained

experience working with TI’s Driver Library, which is used in a number of TI’s microcontrollers.

 Another technical skill acquired from this project is the use of KiCad to go from a circuit

schematic to a PCB. This process entailed learning about PCB layout, PCB footprints, as well as

scouring datasheets to find parts that would work in our design. One of the biggest adjustments,

when transitioning from the circuit schematic of our design to a PCB layout, was attempting to

visualize where each of the components on the PCB should lie. For this process, we found it best to

first hand draw the ideal layout of the PCB, given the connections in the circuit schematic. For

example, the Arducam OV2640 had the majority of its connections terminating at ports on the left

side of the MSP432 (with Pin 1 oriented to the NW), hence the placement of the Arducam header

pins should be to the left of the MSP432. Another challenge was finding components necessary for

our design, available in hand-solderable footprint. This was mainly a challenge when choosing

oscillators for the MSP432 and FPGA.

7.2 Team Experience

Working throughout two semesters with a team to develop a challenging project helped us gain a lot

of valuable lessons and information. We’ve learned a lot from each other, all of us have something

we can contribute to the team and it is necessary to understand each other’s capabilities in order to

allocate tasks appropriately. What one of us may struggle with another may excel at, and if one of

us are stuck on a problem having another set of eyes with a different perspective can completely

change the outcome and possibly save a tremendous amount of time. Additionally, we’ve learned to

not take anything personally, if one of us is doing something incorrectly, and someone points out

the issue, ultimately it is for the benefit of the team so that we can solve the issue and continue, it’s

not to insult anyone’s work or to hinder them from continuing.

34

References

[1] http://meroli.web.cern.ch/meroli/lecture_cmos_vs_ccd_pixel_sensor.html

[2] http://www.arducam.com/arducam-mini-released/

[3] http://vip.sugovica.hu/Sardi/kepnezo/JPEG%20File%20Layout%20and%20Format.htm

[4] http://qyx.krtko.org/projects/ov2640_stm32/

[5] https://embsi.blogspot.com/2013/01/how-to-use-cellular-ram-from-micron.html

[6] https://github.com/oetr/FPGA-I2C-Slave

[7] http://www.wikihow.com/Dispose-of-Batteries

[8] www.digikey.com/product-detail/en/microsemi-corporation/AGLN-NANO-KIT/1100-1136-

ND/2745083

[9] https://www.controlanything.com/Relay/Device/A3001

[10] https://blogspot.tenettech.com/configuring-xbee-in-sleep-mode.html

[11] http://www.libelium.com/development/waspmote/documentation/x-ctu-tutorial/

[12] https://github.com/wobine/blackboard101/blob/master/EllipticCurvesPart4-

PrivateKeyToPublicKey.py

[13] khoazend, “Khoa Pham,” YouTube.https://www.youtube.com/user/khoazend.

[14] Is Dropbox safe to use? - Dropbox Help,” Dropbox .https://www.dropbox.com/en/help/27

[15] Jens-Peter Kaps. ECE 746: Lecture 3 Elliptic Curve Cryptosystems. George Mason University

[16] Ahmad Salman. Member of Cryptographic Engineering Research Group(CERG).George Mason

University

http://meroli.web.cern.ch/meroli/lecture_cmos_vs_ccd_pixel_sensor.html
http://www.arducam.com/arducam-mini-released/
http://vip.sugovica.hu/Sardi/kepnezo/JPEG%20File%20Layout%20and%20Format.htm
http://qyx.krtko.org/projects/ov2640_stm32/
https://embsi.blogspot.com/2013/01/how-to-use-cellular-ram-from-micron.html
https://github.com/oetr/FPGA-I2C-Slave
http://www.wikihow.com/Dispose-of-Batteries
http://www.digikey.com/product-detail/en/microsemi-corporation/AGLN-NANO-KIT/1100-1136-ND/2745083
http://www.digikey.com/product-detail/en/microsemi-corporation/AGLN-NANO-KIT/1100-1136-ND/2745083
https://www.controlanything.com/Relay/Device/A3001
https://blogspot.tenettech.com/configuring-xbee-in-sleep-mode.html
http://www.libelium.com/development/waspmote/documentation/x-ctu-tutorial/
https://github.com/wobine/blackboard101/blob/master/EllipticCurvesPart4-PrivateKeyToPublicKey.py
https://github.com/wobine/blackboard101/blob/master/EllipticCurvesPart4-PrivateKeyToPublicKey.py
https://www.youtube.com/user/khoazend
https://www.dropbox.com/en/help/27

35

Appendix A: Proposal

36

Appendix B: Design Document

	Executive Summary
	1. Approach
	1.1 Motivation
	1.2 Solution
	1.3 Alternative Designs
	1.3.1 XBee vs CC2530
	1.3.2 Camera Module

	1.4 Team Member Contributions
	1.4.1 Hung Tran
	1.4.2 Logan Robson
	1.4.3 Irfan Malik
	1.4.4 Ishak Nur
	1.4.5 Mohammad Marjan
	1.4.6 Jesse Esquivel

	2. Technical Section
	2.1 System Models
	2.1.1 System Architecture
	2.1.2 Functional Decomposition
	2.1.2.1 Top Level
	2.1.2.2 Functional Breakdown

	2.2 Description of System Elements
	2.2.2 FPGA
	2.2.3 Microcontroller
	2.2.4 Wireless Communication
	2.2.5 Sensors
	2.2.6 User Interface
	2.2.7 Gateway

	2.3 Physical Design
	2.3.1 Schematics
	2.3.2 PCB

	3. Experimentation
	3.1 Experiments Performed
	3.2 Data

	4. Experiment Validation
	4.1 Results
	4.1.1 Power Consumption
	4.1.2 Android App Design
	4.1.3 Session Key

	5. Other Issues
	6. Administration
	6.1 Task Completion
	6.2 Changes
	6.3 Extra Activities
	6.4 Funds Spent
	6.4.1 Development Costs
	6.4.2 Production Costs

	6.5 Man Hours

	7. Lessons Learned
	7.1 Knowledge and Skills Learned
	7.2 Team Experience

	References
	Appendix A: Proposal
	Appendix B: Design Document

