
Over the Air Updates for an IoT Security Device 

 

 

 

By:  

Sohail Iqbal 

Gerson Roger Dalton Cardozo 

Ryan Thomas  

 

12/03/18  



 
 

1 

 

Table of Contents 

1) Executive Summary 3 

2) Approach 4 

● Problem Statement 4 

● Requirements 5 

● Solutions and Alternatives 6 

● Contribution of each Team Member 7 

3) Technical Section 9 

● Top Level Views 9 

● MSP432 to FPGA 11 

● MSP432 to Arducam 11 

● MSP432 to PIR Motion Sensor 12 

● MSP432 to Xbee S2C 12 

● MSP432 to Xbee S2C 13 

● FPGA (IGLOO nano) 13 

● Microcontroller (MSP-432P4111) 14 

● Camera (Arducam OV2640) 14 

● Motion Sensor (PIR HC-SR501) 15 

● Wireless Communication (Xbee S2C) 15 

● Gateway (Raspberry Pi 3) 16 

● PCB Design 17 

4) Experimentation 23 

5) Experimental validation using evaluation criteria 26 

6) Other Issues 28 

● FPGA 28 

● MSP432 29 

● PCB 30 

7) Administrative Parts 31 

● Funds Spent 33 

● Man Hours 34 

8) Lessons Learned 35 



 
 

2 

● Pay attention to device documentation 35 

● Better re-planning for primary expectations when undermanned 35 

● Read software Documentation 36 

● Datasheets and time are crucial to build PCBs 36 

9) References 37 

10) Appendix A: Proposal (ECE-492) 38 

11) Appendix B:  Design Document (ECE-492) 54 

12) Appendix C:  Software printout 98 

● MSP Related Files (in BSL Folder) 98 

● FPGA Related Files (in BSL Folder) 98 

● PCB Related Files 98 

 

  



 
 

3 

1) Executive Summary 

IoT devices are becoming increasingly popular for commercial use due to the ever-increasing size 

of the smart home industry. With the proliferation of more complex smart devices throughout the 

households; the question of security becomes an issue. If a security flaw in the smart home network device 

is discovered and the functionality of the device could be compromised, the need arises for a simple way 

for users to push software security updates while protecting the integrity of the software on the device. As 

of now if a user to needed update the software of one of their smart home devices they would have to 

disconnect their smart home device from the network and connect the device to their PC via a USB cable. 

Then the user would use the device manufactures software to push said update to device through the USB 

cable. The user must then reconnect their smart home device to the smart home network. 

Therefore, there is a need for a simple, fast, user friendly system that is currently not available in 

the smart home market. The specifications for our solution is to develop an “Over the Air” software 

update system for a security IoT device, by writing and using in device software to receive update files 

and program update files to itself and other devices via a proprietary wireless protocol through simple user 

input via an application. The primary objective is to develop a security device that can receive updates 

wirelessly while providing the status of update progress with the secondary objective of detecting motion 

then taking and sending photos to the user in a cost-effective manner.  

The solution developed to address this problem is a microcontroller programmed to interface with 

a FPGA, motion sensor, camera, and Xbee wireless module. The microcontroller will receive updates 

from a Raspberry Pi wirelessly via Xbee modules and program updates to itself and update the FPGA 

through bit banging. The microcontroller when not updating will function as a security camera being 

triggered by motion detection then sending the photo to the Raspberry Pi wirelessly via Xbee modules. 



 
 

4 

2) Approach 

IoT devices are becoming increasingly popular for commercial use due to the rise of the smart 

home industry. Home appliances ranging from refrigerators and washing machines to ceiling lights and 

trash cans; every device in the house are becoming to be connected to the internet. As a result, more, 

devices are connected to the internet in one house than there were on a entire neighborhood street ten 

years ago. A point has reached where household appliances have the same amount of hardware 

complexity as a smartphone. With the rise of this complexity, the question of security becomes an issue. If 

a security flaw in the smart home network is discovered and the functionality of the devices has been 

removed or modified. The need arises for a simple way for users to push software security updates while 

protecting the integrity of the software on the device. 

● Problem Statement 

An Over the Air (OTA) Update system is needed to provide security patches to the wireless sensor 

devices that can be easily integrated into current smart home networks. The system would need to be cost 

effective, use existing smart home technology, and use a low amount of power for long use durations.  The 

solution to this problem was to develop a software implementation for packaging, sending, and 

programing binary files while using existing hardware found in smart home networks. 

  



 
 

5 

Figure 1.0: User level explanation of what the overall system should look like. 

 

Figure 1.0  

● Requirements 

○ Secure Communication 

■ Data sent to the node is sent through an exclusive private channel.   

○ Long battery life 

■ Low power device selection and efficient programming methods.  

○ Reprogrammable Wirelessly 

■ Microcontroller and FPGA can be updated from our gateway without wires 

○ Secure Update Delivery 

■ Node software Updates must have a verification system 

○ Provide Update progress 

■ User must be notified of software update progress  



 
 

6 

● Solutions and Alternatives 

The user would have an application installed on their phone that would communicate to a company 

server in order to communicate with the gateway to check the software version of nodes on a smart home 

network. The Server would compare version numbers and push a software update if the version hosted on 

the server is newer than version located on the nodes of the smart home network. Software updates pushed 

by the server would be received by the gateway then unpacked, parsed and repackaged in a manner than is 

compatible for a wireless node on the network. In the event that the update becomes corrupt or there is 

packet loss on the network, the update process must restart from the beginning or resume progress 

depending on what is causing information loss. On the device end, software must be written for a 

microcontroller to be able to receive updates even upon losing connection, program itself using its 

bootloader program and program any other devices connected to it such as a field programmable gate 

array while being power efficient and maintaining the core functionality of the device. 

 

An alternative costlier solution to this problem is to connect a wifi enabled module to the existing 

wireless smart home device and program the microcontroller to directly pull software updates from 

dropbox or github using the protocols provided in the wifi module. All packet loss is handled via the built 

in protocols of the wifi module. Additional software would need to be written for the module to handle 

any other data outside the microcontroller’s software update file. An app to push software updates is 

provided through the manufacturer of the wifi module and microcontrollers. This version of the system is 

costly and not easily integrable into existing smart home networks but provides the utmost security and 

reliability when needed. 

 



 
 

7 

● Contribution of each Team Member 

Ryan Thomas is responsible for leading the project by providing schedules, meeting and deadlines 

that need to meet throughout the course of the semester and following up with team members to make sure 

that they meet their deadlines. He also provided contingency plans in case one aspect of the project did not 

work. He also researched and prototyped the feasibility of updating the MSP432 via the bootloader. Ryan 

developed python code to parse, package send software updates from a Raspberry Pi to MSP432 

microcontroller via the UART data protocol.  Additionally, he developed code to integrate the Xbee 

module, PIR motion sensor and camera to MSP432 microcontroller. Ryan also configured hardware and 

did hardware testing for the PIR, camera, and Xbee modules.  He provided assistance in designing the 

circuit for PCB as it integrates all components. Ryan finally ported FPGA programming source code 

MSP432.  

 

Sohail Iqbal completed all the required research about the programming of FPGA. He optimized 

the elliptic curve security algorithm first in Libero SOC environment. Inputs and outputs are assigned 

using a separate tool. (Multiview navigator). He also generated the required files to program the FPGA.  

He also optimized the nonfunctional DirectC code first in IAR environment and then in code composer to 

be successfully built and compiled. Additionally, he is responsible for keeping up with the required group 

documents such as in progress report, in progress presentation and final draft and report.  

 

Gerson Dalton oversees the PCB layout and the wireless communication. He researched and 

analyzed the different tools to build the PCB and chose the appropriate modules and protocols for the 

wireless communication depending on the requirements specified. He created the schematics and layout 

boards in KiCad. He collaborated with Sohail and Ryan to keep up with the changes inflicted to the 



 
 

8 

schematics throughout the progress of configuring the circuit connection between the different 

components of the device. He had to analyze the different datasheets and footprints of the components to 

build the circuit considering the current limitations. He collaborated with Sohail in the creation of the final 

slides and report of the project.    



 
 

9 

3) Technical Section 

● Top Level Views 

 

Level 0 of the overall system of inputs and outputs are displayed in Figure 1.1 

Figure 1.1 

Level 1 view of the update process of the system are displayed in Figure 1.2 

 

Figure 1.2  



 
 

10 

Level 1 view of the photo taking process of the system are displayed in Figure 1.3 

Figure 1.3 

 

Level 1 view of the system architecture is displayed in Figure 1.4 

Figure 1.4  



 
 

11 

● MSP432 to FPGA 

Level 2 view of JTAG programing connections between microcontroller and FPGA that are needed for the 
MSP432 to update IGLOO nano security algorithms in Figure 1.5 

Figure 1.5 

● MSP432 to Arducam 

Level 2 view of connections between the microcontroller and Arducam that are needed for the MSP432 
to configure the camera via I2C and take pictures via SPI in Figure 1.6 

Figure 1.6  



 
 

12 

● MSP432 to PIR Motion Sensor 

Level 2 view of connections between the microcontroller and PIR motion sensor that are needed for the 
MSP432 to take detect motion via GPIO in Figure 1.7 

Figure 1.7 

● MSP432 to Xbee S2C 

Level 2 view of connections between the microcontroller and Xbee S2C that are needed for the MSP432 
to communicate with the gateway via UART in Figure 1.8 

Figure 1.8 
           



 
 

13 

● MSP432 to Xbee S2C 

Level 2 view of connections between the Raspberry and Xbee S2C that are needed for the Pi to 
communicate with the node via UART in Figure 1.9 

Figure 1.9 

 

● FPGA (IGLOO nano) 

The Actel IGLOO nano is one of the low costs, 

low power FPGAs on the market. The main 

purpose device is to hold encryption 

algorithms for encrypting keys of the device. 

Even after the device turns on and off. It can 

also be programmed by JTAG through GPIO 

connections on a microcontroller. A picture of 

the device is in Figure 2.0   

      

   Figure 2.0 



 
 

14 

● Microcontroller (MSP-432P4111) 

The MSP432P411 is the newest MSP432 on the market with 2MB of 

flash memory and 256 KB of RAM. It is one of low cost, low power 

microcontrollers on the market that can support what the need of 

holding an entire FPGA Update which is 243 KB. It is one of the 

primary components of the system and is used as the central hub for 

receiving updates, detecting motion, sending photos and programming 

the FPGA. 

The MSP432P4111 is pictured in Figure 2.1 

 

 

       

    Figure 2.1 

 

● Camera (Arducam OV2640) 

The Arducam OV2640 is a 2-megapixel camera that 

supports high power and lower power modes with 

configuration via I2C and data transfer via SPI is also 

supports jpeg compression to send photos efficiently. 

The Arducam OV2640 is pictured in Figure 2.2 

 

 

      Figure 2.2 



 
 

15 

 

● Motion Sensor (PIR HC-SR501) 

The HC-SR501 is the sensor we chose to detect motion 

as it commonly used in house security systems. Upon an 

intruder walking within 21 feet in front of the sensor the 

sensor will output a high signal to the MSP432. The 

Picture in Figure 2.3 is the PIR HC-SR501 Motion 

Sensor 

 
                  Figure 2.3 
 
 
 

● Wireless Communication (Xbee S2C) 

The component that we chose for this wireless 

communication is the Xbee S2C module. It's ideal for 

the purpose of our project because it’s commonly used 

in the smart home industry by companies like NEST. 

This makes it easily integrable into existing smart home 

networks. The picture on Figure 2.4 is the Xbee S2C 

module  

       

    Figure 2.4 

  



 
 

16 

● Gateway (Raspberry Pi 3) 

The component that we chose for the 

gateway was the Raspberry Pi 3. It is 

a low cost, low power 4 core ARM 

computer. It has excellent software 

support and has TX and RX pins to 

interface with the Xbee easily to 

communicate to the node support for 

python allows easy communication to 

servers and phones via APIs.  

The Raspberry Pi 3 is pictured in Figure 2.5    Figure 2.5 

  



 
 

17 

 

● PCB Design 

○ Schematics 

 



 
 

18 

 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 3.0: Front PCB Layout 



 
 

19 

 

  



 
 

20 

Figure 3.1:Back PCB Layout 

 

  



 
 

21 

Figure 3.2 and 3.3: 3D Generated Model of PCB 

 

 
  



 
 

22 

Figure 3.4: Actual Printed PCB 

 

  



 
 

23 

4) Experimentation 

Much of the experimentation is applied to hardware interfacing. At first, we used in house software to 

communicate through hardware. Each piece of hardware had to be manually configured in order to 

interact with another piece of hardware within the system. 

For the MSP432 we used their BSL scripter to test sending bootloader command to the MSP432 

before even attempting to write software that unpacked updates and sent them to the MSP432. 

Upon successfully sending update packages to the MSP432 we worked configuring the Xbee 

modules to send data wirelessly on the its own exclusive channel to test the system and verify that data 

was sent uncorrupted. We would stress test the wireless communication by sending large packets of data 

as the FPGA needs at least 230 KB of data to be sent.  



 
 

24 

Once the Xbee were done testing we moved onto creating an update package handler in python 

based on the specification BSL scripter program that the MSP432 manufacturer provided.  Then we setup 

and configured the raspberry pi to the interface with the MSP432 via Xbee with the python update 

program. 

 

Once updating the MSP432 via raspberry pi was complete. We verified that the  FPGA can be 

programed from the PC through a low cost JTAG programmer for a *.DAT file. We proceeded to start 

porting the DirectC programming source code to MSP432 in order to give it the capability to program the 

FPGA like this JTAG programmer  

 

  



 
 

25 

While JTAG programming is still worked on. Configuration and integration of the motion sensor 

and Arducam were applied to the MSP432 so that it could take and send picture upon the proper triggers. 

Once all these systems we fully tested in isolation They were all integrated together into one unit where 

any bugs could be worked out and any system noise could be resolved.  



 
 

26 

5) Experimental validation using evaluation criteria 

 

The primary evaluation criteria is based on multiple aspects. The First evaluation is visual 

hardware feedback. The goal is to develop software that provides easy indications that the program has 

been flashed to the device. The simplest way to verify this is to have two programs with different 

functionalities.  For the MSP432 one program may have a slow blinking led while the second program 

would have a fast blinking led. For the FPGA there would be two configurations where the FPGA runs a 

program that would turn on an LED based on an AND configuration while the other program would turn 

on an LED based on an OR configuration. The second piece of evaluation is software level data 

verification. The data being sent from the Raspberry Pi to the MSP432 microcontroller and FPGA needs 

to verified on a byte to byte basis. That means that all data sent from the Pi must be successfully sent 

wirelessly and flashed to the MSP432. Using the MSP432’s IDE with proper configuration we examine 

the machine code stored in flash memory and compare it to the original binary file machine code to see if 

the MSP432 has been successfully updated. The same must be done for the FPGA’s binary file. The 

FPGA programming the source code provides error codes to indicate that the FPGA has been programmed 

or an error had occurred during programming. In order to verify a successful program on a software level 

the error code returned on a software level must be zero through examination on the MSP432’s IDE in a 

debug session. The final evaluation was the evaluation of our secondary goals which was to have the 

MSP432 be able to send photos to the Raspberry Pi upon a motion detection or a user request. When the 

user walks in front of the node or receives a command the MSP432 takes a photo and sends it to the Pi. 

The Pi receives the photo and stores the photo into the specified the folder and sends the file to Dropbox 

and send a notification to the user’s phone.  



 
 

27 

The flash memory of the MSP432 when the blink_led program when programmed via the PC is 
shown in Figure 5.0 The binary file of blink_led program exported in txt format is in Figure 5.1 The flash 

memory of the MSP432 when the blink_led is programmed via the gateway is shown in Figure 5.2 

 Figure 5.0     Figure 5.1    Figure 5.2 

The photo below from left to right demonstrate the functionality of taking photos of intruders 



 
 

28 

6) Other Issues 

● FPGA 

Progress has not been conclusive as the FPGA can be programmed via LCP programmer and 

programming of FPGA via only microcontroller is not complete. 

Obstacles were that Microsemi does not provide enough documentation about the FPGA. The company 

urges to buy the LCP programmer or flash pro 4 or 5 and program the FPGA using one of those devices. 

The sample DirectC project provided by Microsemi is not functional (Does not even build). The provide 

sample project is in IAR environment. The project at first does not even built without modifications or 

optimizations. Also, we only have access to the student version of IAR tool which is code limited. Once 

more research about IAR tool and DirectC was done and possible optimizations were made to the 

provided sample DirectC project, IAR tool returns the error message saying that subscription needs to be 

upgraded to the full version. Full version of IAR tool is very expensive and does not justify being bought 

since the required project is then ported to the Code Composer environment where the FPGA will be 

programmed. IAR tool is only in the picture to fundamentally understand the DirectC code. There was an 

advice to buy the microcontroller used in the sample project. The microcontroller that is being used in the 

sample project is the Microsemi microcontroller which is not too expensive (<$48.00) however step by 

step process to program the FPGA can’t be observed since IAR code limited error comes up which can’t 

be taken care of unless complete (not code limited) IAR version is bought. Once all the required steps to 

program the FPGA are complete and FPGA was not successfully being programmed, the focus shifted 

from debugging software to debugging hardware. Oscilloscope was connected to the VJTAG and VPUMP 

pins of the FPGA when programmed via LCP programmer. It was observed that FPGA was pulling 

current from 50mA to 70mA on VPUMP pin and a fluctuating current of less than 14mA on VJTAG pin. 

When connected via microcontroller, no flow of current was observed on any of the pins(VPUMP, 



 
 

29 

VJTAG).  Datasheets clearly say there must be a current flow. To further investigate that, Microsemi 

engineer was called and they refused to help saying the FPGA being used is possibly obsolete. The LCP 

programmer header on FPGA was also tried to program to FPGA and JTAG-enable pin was hard coded to 

high, low, and clock (up and down) but success was not achieved. 

The *.DAT file is big (234 KB) and could not be hosted on our microcontroller. And another 

microcontroller (MSP432P411) was bought to resolve the memory issue. Possible alternative is to use 

LCP programmer for the programming of FPGA via microcontroller and is recommended by Microsemi. 

A GPIO to USB serial cable is required and this functionality can be achieved.  

 

● MSP432 

Issues that we ran into during of the development of this project is that setting up the development 

environment for different components took a lot more time than expected because Texas Instruments had 

recently did a massive overall of how their software development kit dependencies operate with 

MSP432P401R microcontrollers. Before any code writing began it took several weeks satisfying all 

dependencies of the MSP432 as creating a project in the IDE simply didn't allow the full feature set usage 

of the microcontroller. Once the MSP432 environment was set up the update code, motion sensor code, 

and camera code were built and tested. All interfaced devices like the Arducam, Xbee, PIR motion sensor 

and the Raspberry PI, even though they are well supported and documented didn’t work out the box and 

had to be configured and tested before interfaced with the MSP432. It was not a difficult task overall, but 

it did take time out of the originally planned schedule. In the future there will need to be time accounted 

for device configuration in the development process. 

Then work began on developing the FPGA update system. Due to the Size of the FPGA updates a 

newer MSP432 was acquired with larger flash memory and RAM.  This led to use acquiring the 



 
 

30 

MSP432P4111. The newer MSP432P4111 lead to some more issues even though it was the exact same 

device as the MSP432P401R with better specifications. The MSP432P4111 is only a year old so their was 

little documentation and the code once again had to be migrated to a new SDK environment with manual 

configuration at every level as the IDE didn’t support a example project code for non-Real Time 

Operating systems.  

● PCB 

PSPICE was chosen at the beginning to build the design. However, it turned out to be difficult and 

time consuming to learn and use that software. Therefore, KiCad was chosen later on the progress of the 

project to handle the design. Once the schematics were completed, we built the circuit design in a 4-layer 

setup. However, this setup wasn’t efficient enough since it could be reduced to a 2-layer setup .Datasheets 

and footprint were really important in this portion of the design since we could have had problems if some 

components wouldn’t match their footprints or pins allocation .The main issue of the 2 layer setup was 

that we needed more time to minimize the layout of the board considering the many different connections 

that were to be made ,and also taking care of the keep out areas of the different components such as the 

Xbee. Another issue is that the PCB design is always evolving with the changes to the circuit design 

throughout the semester. Once everything was ready, we finally manufactured the PCB and soldered the 

components onto the board to test the hardware. 

  



 
 

31 

7) Administrative Parts 

     At the end for the semester we were able to complete two out of the three goals we originally set out to 

do but on a smaller scope. We were able to develop and update MSP432 microcontroller portion of the 

node wirelessly, develop an update verification system for the node, as well as take and send photos from 

the node to the gateway and then to the cloud. What we were not able to accomplish is update the FPGA 

through the microcontroller. 

 

     One of the most unexpected issues that we ran into while developing the project is the loss of two team 

members during the development process..We lost one computer engineer after ECE 492 ended and we 

lost one electrical engineer during ECE 493. It required a massive shift on how roles were delegated. The 

project was comprised of three electrical engineers and two computer engineers. The original roles were 

Ryan  and Sohial would work on updating the FPGA via the MSP432; Aneesh would work on updating 

the MSP432 and leading the team; Mohamed would work on the updating delivery system through the 

App, server, and gateway; and Roger would design, manufacture and solder the PCB.  This would have 

allowed for a concurrent development for 4 weeks, then upon development completion we would work for 

2 weeks on system integration, and the remainder 4 weeks would be left for testing the whole system. 

 

     After losing a member in 492 the new roles were delegated as follows. Ryan would lead the team, work 

on Updating the MSP432 and work closely with Sohial on updating FPGA; Roger worked on designing 

manufacturing and soldering PCB, and Mohamed would develop the Update system on the gateway, 

server and app. As development progressed through the semester Mohamed who was responsible for the 

Update system through the App, Server, and Gateway consistently did not show up to our weekly 

meetings, we as a team were patient with him as he stated that he was going through some health issues 



 
 

32 

but as time progress he would stop responding to communication through text or even phone calls. We 

kept Mohamed in all emails and group messages with the hope that he would respond but he did not. 

 

     After a team evaluation the decision was made in late October reduce the scope of the project to not 

have the application or homegrown server backend, however a GUI was still needed for the user to update 

the node and receive photos from the node. During 493 the new roles were delegated as follows. Ryan 

would lead the team, work on Updating the MSP432, write a program for the gateway to update the node 

and work closely with Sohial on updating FPGA; Roger would work on designing, manufacturing, and 

soldering the PCB. requires at least two Computer engineers as there is a heavy amount of embedded 

system programing in this project. With the loss of two team members, tasks move from being completed 

concurrently to being completed linearly. Once work on the MSP432 update and photo taking systems 

were completed and tested focus of all team members was shifted to primarily get the FPGA updated or 

programmed by the MSP432. This in turn pushed back the development of the PCB design as Roger 

started to assist us with hardware debugging. 

 

Without a dedicated member to work on programming the FPGA via a microcontroller, most of the 

development and testing did not occur until the final 4 weeks of the project. We did our best to get out of 

our comfort zones and meet the deadlines that we originally set out for but the inherent lack of manpower 

held us back drastically in fully realizing the original scope of the project. On the bright side we were still 

able to complete some of the major aspects of the project we set out to do. 

  



 
 

33 

● Funds Spent

 

ITEM QUANTITY COST 

Actel Igloo Nano Starter Kit 1 Donated 

MSP432P401R Launchpad 2 $25.98 

MSP432P4111 Launchpad 1 $17.99 

Arducam OV2640 2 $51.98 

HC-SR501 Motion Sensor 5 $08.89 

XBee S2C 2 $53.90 

XBee breakout board 2 $13.98 

PCB 3 $89.70 

Raspberry Pi 1  $35.00 

 Total: $297.42 

  



 
 

34 
● Man Hours 

● Ryan (Project Manager): 375 Man Hours 
● Creating update verification systems and update packages. 
● Responsible for writing C code to have the MSP432 take photos, 

reprogram itself. 
● Assisting with FPGA- MSP communication interface. 
● Programming the MSP432 boot-loader. 
● Write python code to update the node via Raspberry Pi. 
● Test hardware and debug software. 

● Sohail: 325 Man Hours 
● Working on implementing DirectC code for JTAG interface. 
● Optimizing elliptic curve security algorithm to generate the required 

FPGA files for programming.   
● Writing documentation and creating slides. 
● Test hardware. 

● Gerson: 325 Man Hours 
● Create final PCB design for the Node. 
● Handle any issues interfacing via ZigBee to any of the components. 
● Wireless communication between the Xbee modules  
● Test hardware. 
● Collaborating with Sohail to write the slides. 

● Total Hours: 1025 Hours  



 
 

35 
8) Lessons Learned 

 

● Pay attention to device documentation 

When doing the research about FPGA, the exact model shown in the datasheet 

provided by Microsemi was not matching with the one in hand. It was assumed that the 

FPGA that has somewhat similar naming convention on the datasheet to the FPGA board 

that is in hand are the same. Also if the *.DAT file was factored in when decision was 

being made about the microcontroller then some problems could have been resolved 

earlier. There certainly was some ambiguity about be able to program the FPGA by 

downloading the bit file to the microcontroller in smaller blocks and do the programming 

block by block.  But even with that, going with MSP432P411 at first instead of going with 

MSP432P401 would have been a better decision since the cost difference is minimal.  

 

● Better re-planning for primary expectations when undermanned 

From the beginning of this project, only 2 out 5 members are working on the things 

that are the major requirements. (Be able to remotely update the device). Working with 

devices and performing research on the devices that are used at graduate level can be very 

time consuming. Assigning more members there to work first on the major expectations 

would have been a wise and smart thing to do. In the last 4 weeks there was only 1 FPGA 

and 1 MSP432P4111 that one person would have at time. A better approach would be to 

put a procedure in place and make a schedule of when and who will have the device for 

how long. We needed at least one more member proficient in microcontroller, but we 

would have had a better chance of being successful. 



 
 

36 
● Read software Documentation 

A substantial amount of time was devoted to setting up the IDE of the FPGA and 

the microcontroller as we were seeking to have the most up to date SDK and device feature 

set. The syntax for programming setting up project for the MSP432P4111 were drastically 

different from MSP430 and lead to lose of a few weeks. Also interacting the MSP432 

bootloader was very difficult as the MSP432P4111 is a year-old device and has numerous 

security protocols that needs to meet for the device to be modified in substantial ways. 

 

● Datasheets and time are crucial to build PCBs 

 While building the PCB layout, we learned that having to place and connect the 

different components can be challenging because there can be many connections and a 4-

layer setup was considered ideal as a solution for this problem. However, it isn’t optimal 

since we can use a 2-layer setup with more difficulty making the connection and taking 

care of the keep out areas. We had to create certain footprints when it wasn’t available to 

us. Datasheets were very important into the creation of this footprints because one single 

error in the pin layout of a component could give us many problems. 

  



 
 

37 
9) References 

● http://www.ti.com/lit/ug/slau356h/slau356h.pdf  MSP432 Programmers Guide 
● http://www.ti.com/lit/ds/symlink/msp432p4111.pdf  MSP432 Datasheet 

● https://www.microsemi.com/document-portal/doc_view/130695-ds0110-igloo-nano-
low-power-flash-fpgas-datasheet   IGLOO Datasheet 

● http://www.uctronics.com/download/cam_module/OV2640DS.pdf  Arducam 
OV2640 Datasheet 

● https://www.raspberrypi.org/documentation/hardware/computemodule/datasheets/r
pi_DATA_CM_1p0.pdf  Raspberry Pi Datasheet 

● https://www.digi.com/resources/documentation/digidocs/pdfs/90002002.pdf  Xbee 
Datasheet 

● https://www.mpja.com/download/31227sc.pdf  PIR Motion Sensor Datasheet 

● http://kicad-pcb.org/  Kicad PCB Software 

 

  



 
 

38 
10) Appendix A: Proposal (ECE-492)  

 

 

George  Mason  University 
 
 
 
 
 
 

Implementing  OTA  Updates  for  an  IoT 
Security  Device 

 

Proposal  
Document 

 
 
 
 
 

Authors: 
Gerson Dalton  Cardozo 
M. Sohail Iqbal 
Aneesh Malhotra 
Mohamed Nur 
Ryan Thomas 

 
 
 

Supervisor: 
Dr.  Jens-Peter Kaps

 
 
 
 
 

May 20, 2018 
  



 
 

39 

 

 
 

Contents 
 
 
1  Executive  Summary                                                                                                             
2 

 
2  Approach                                                                                                                                  
3 

2.1  Motivation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       
3 

2.2  Problem Analysis  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       
3 

2.3  Solution   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       
4 

2.4  Requirements Specifications   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       
4 

2.5  Top-Level Design  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       
4 

2.6  Alternative Designs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       
6 

2.6.1  Dropbox .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       
6 

2.7  FPGA Programming  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       
6 

 
3  System  Architecture                                                                                                            
7 

3.1  Architecture with Pseudo-Code   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       
7 

3.2  Architecture 2 .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       
7 

3.3  Node State Diagram   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       
8 

3.4  Gateway state diagram  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       
9 

3.5  Gateway State Diagram   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       
9 

 



 
 

40 

 

4  Background  Information                                                                                                  
10 

4.1  Current System  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     
10 

4.2  PCB Design  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     
11 

4.3  Server   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  
.     11 

4.4  FPGA/MSP432  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     
11 

4.5  Security   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     
11 

4.5.1  Elliptic Curve Cryptography    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     
11 

4.5.2  Securing the Update  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     
13 

 
5  Prototyping  Progress                                                                                                        
13 

5.1  List of Acquired Components   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     
13 

5.2  Current Working Components  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     
13 

5.3  Testing Plans   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     
13 

5.4  Task for Next Semester .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     
13 

5.5  Task List    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     
13

 
 
 
 
 

 

 

  



 
 

41 

 

1    Executive Summary 
 
This project will build upon a previous ECE 492 project FPGA Enhanced Wireless Sensor 
Node  for  IoT  Applications.  The  project  sought  to use  an FPGA  to enhance  the  
security of a wireless sensor node network while maintaining low power consumption.  
The network that this was implemented on was an in-home security system, which 
detects motion using an IR sensor  on a node,  and  sends  a picture  of the  intruder  to 
the  user  via  the  gateway. Security  can  be  an  issue  in  wireless  sensor  networks  
and  it  may  be  necessary  to  update the  private  key  of  compromised  node  or  
update  the  firmware  of  a  node  to  enhance  its performance and functionality.  The 
most efficient and inexpensive way to distribute such an update to many users without 
having to dismantle the system is over-the-air (OTA). In this process a manufacturer will 
distribute a secure update to its users and the system will update its own firmware.  Our 
goal in this project is to provide OTA update capability to the in-home security system 
developed by the previous group.



 
 

42 

 

 
 

2    Approach 
 
2.1    Motivation 

 

Many IoT devices now use wireless-sensor networks in which a user is able to control 
several devices called ”nodes” through a single device called a ”gateway”.  These kinds 
of networks are  used  in  many  popular  smart  home  devices  such  as  Google’s  Nest  
and  Phillips  Hue, most  of  which  already  provide  OTA  update  capability.   
Additionally,  security  for  these networks is becoming a concern.  Wireless sensor 
networks are often deployed to monitor and respond to events occurring in the 
environment and are meant to be left unattended, making them susceptible to a variety of 
attacks [Sen, 2013].  With the versatile capabilities of FPGA’s, we see many researchers 
using FPGA’s to enhance the capabilities of wireless sensor networks, including security 
[G et al., 2016].  As FPGA’s make their way into more wireless sensor networks, we will 
need to be able to be able to equip them with OTA update capability.  Our  goal  is  to  
provide  this  capability  to  our  network  that  uses  an  FPGA  for enhanced security. 

 
2.2    Problem  Analysis 

 

The  problem  we  face  is  to  be  able  to  provide  OTA  updates  to  the  node  of  the  
previous system (Figure 1).  Since the node is not directly connected to a computer, we 
must be able to  reprogram  the  node  using  only  the  existing  hardware  on  the  node.   
Additionally,  the node  consists  of  an  MSP432  microcontroller  and  an  Actel  IGLOO  
FPGA.  Updating  the security features such as the private key and the algorithm on the 
FPGA will require us to be able to reprogram the FPGA remotely.  Likewise, updating the 
firmware and capabilities of the microcontroller will require us to be able to reprogram the 
MSP432 remotely. 

 

 
 

Figure 1:  Top Level Diagram of Camera Security System



 
 

43 

 

 
 
2.3    Solution 

 

Our solution to this problem is to redesign the system to be able to request updates from 
an external sever, download the update to the Gateway, push the update to the MSP432 
via  the  XBee,  and  allow  the  MSP432  to  reprogram  both  itself  and  the  FPGA  
through  a bootloader.  The update will simply consist of a .zip file that consists of a 
YAML file, the updated  code,  and  some  header  information.  Our  goal  is  to  be  able  
to  parse  the  update on the Gateway,  and send bootloader commands to the node.  
The MSP432 on the node will then use these commands to reprogram its own program 
memory, as well as interface to and reprogram the FGPA. 

 
2.4    Requirements Specifications 

 

•  External Server 
 

–  Contains secure signature and contains update ?les. 

–  Stores user data collected from the node such as images. 
 

•  Update Contains a .zip file with a YAML ?le as well as the source code.  The YAML 
file  will  have  an  MSP432  and  FPGA  section,  and  will  be  converted  to  
bootloader commands. 

 

•  Phone Provides interface to user Checks for and initiates updates Allows for 
rekeying and initiating capture from the node camera. 

 

•  Gateway 
 

–  Main system component 

–  Contains a BeagleBone Black running Linux and an XBee to communicate 
with the node 

–  Parses YAML ?le, and maps it to bootloader commands for the MSP432. 

–  Takes in data from the node and makes it accessible to the user. 
 

•  Node 
 

–  Secondary system component 

–  Contains  an  MSP432,  Actel  IGLOO  FPGA,  an  XBee,  an  ArduCam  v5  
5MP 

camera, and an IR sensor. 

–  The MSP432 controls all other components and will have the capability to re- 
program itself and the FPGA. 

–  The node will capture an image and send it back to the Gateway. 
 

 



 
 

44 

 

2.5    Top-Level Design 
 

 
 
Figure 2:  The camera security system no longer uses Dropbox, but rather a server to 
host the updates. 

 
 

1.  The server contains a file with the version number and location of an update. 
 

2.  The user compares the version number of the update to that of the system. 
 

3.  If the version numbers do not agree, the user will have the option to begin an 
update. 

 
4.  The Gateway will request the complete update, process it, push the the update and 

appropriate MSP432 commands to the node. 
 

5.  MSP432 will receive the update from the Gateway as well as instructions for repro- 
gramming itself and the FPGA. This will be done via Bootloader commands. 

 
The following diagram depicts this workflow.



 
 

45 

 

 
 
 

Update 
is 
availabl
e 

User 
Accept
s 
Update 

Gatewa
y 

Reques
ts 

Update 

Gatewa
y Pro- 

cessing 

 

XBe
e 
Link 

MSP43
2 

Boot- 
loade

r
 
 
 

Figure 3:  Update Workflow 
 
 
2.6    Alternative Designs 

 

2.6.1     Dropbox 
 

We had initially decided to use Dropbox as a cloud storage system.  Since the gateway is 
not  a  member  of  the  local  area  network,  this  would  have  made  communication  
between the Android  device  and the gateway to be much simpler.  This communication,  
however, is  much  slower.   Additionally  a  company  pushing  a  firmware  update  to  a  
user  will  not typically  have  access  to  a  user’s  Dropbox  account.   A  user  can  also  
accidentally  delete important configuration files such as the ones used for rekeying, 
making it less reliable and less realistic than a dedicated server.  For these reasons, we 
decided to use a dedicated web server for distributing updates and storing data. 

 
2.7    FPGA  Programming 

 

There  are  many  ways  about  which  we  can  program  the  ACTEL  IGLOO  Nano  
using  a microcontroller.    One  method  was  rather  simple,  and  involved  using  a  
power  FET  to control the different operating modes, but this component is rather 

 

 
 

Figure 4:  Different Operating Modes of the Actel IGLOO Nano



 
 

46 

 

 
 

3    System Architecture 
3.1    Architecture  with  Pseudo-Code  

 
Gateway

 

Server                                          BeagleBone 

Update File 

 
•  YAML file 

 
•  MSP432 Code 

 
•  FPGA Code 

 
 

Version File 
 

•  Version V x.s 
 

•  Filename 
 

•  Update Location 

 
Update File 

p = 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V x.s 

•  Version V x.g 
 

•  Python parses 

YAML File 
 

•  Prepares data to 
send to node 

 

 
 
 
V x.g 
 

Application 
 

Application 
i f    (Vx . s  >  Vx . g ){ 

p  =   u s e r   p e r m i s s i o n 
( ) ; 

i f    ( p  ==  1) 
i n i t i a t e   u p d a t e ( ) 
; 

else    i f    ( p  ==  0) 
i g n o r e   u p d a t e ( ) ; 

 

 
OTA Update 
 

Node 

MSP432 
i f    ( update  ==  1){ 

e n t e r   b o o t l o a d e r 
( ) ; 
u p d a t e   s e l f ( ) ; 
update  FPGA ( ) ; 
}

} 
 
 
 
 
 
 

Periodically Check 
 
 
3.2    Architecture  2



 
 

47 

 

 
 

 
 

Figure 5:  The system architecture with all components and functionality 
 
 
3.3    Node State  Diagram 

 

The following is the state diagram of the node in the IoT Device.  
 

 
Figure 6:  State diagram for the node 



 
 

48 

 

 
 
3.4    Gateway state  diagram 

 
 

 
 

Figure 7:  State diagram for the node 
 
 
 
3.5    Gateway State  Diagram 

 

 
 

Figure 8:  State diagram for the gateway 
 
 

  



 
 

49 

 

4    Background Information 
 
The project we are building is an addition to a previous Senior Design Project the back- 
ground knowledge required can be broken up into the following sections: 

 
4.1    Current System 

 

•  Memory 
 

–  Current Flash Main Memory usage is 7.5KB based on current program 

–  Current SRAM usage is 2KB for the program and 60KB for the photo 

–  Current total SRAM Usage is 62 KB with 8KB of SRAM remaining 
 

•  Serial Communication 
 

–  eUSCI A Modules 

–  UART is utilized by the Xbee S2C 

–  eUSCI B Modules 

–  GPIO is used be Arducam OV2640, IGLOO nano, and HC-SR501 PIR 
MOTION DETECTOR 

–  SPI is used be Arducam OV2640



 
 

50 

 

 
 
4.2    PCB  Design 

 

For  the  PCB  we  will  need  to  optimize  the  design  for  testing.    We  will  need  to  make 
each component accessible for testing the power consumption of each component (using a 
multimeter).  We will use KiCad for the PCB design, and will need to learn to use KiCad. 

 
4.3    Server 

 

We  will  be  using  Node.js  to  implement  an  HTTPS  sever  that  can  store  the  update  
and some user data.  Since this will be used instead of Dropbox, we will have to use the 
server to store pictures sent from the node to the gateway, since the phone is unable to 
connect directly to the BeagleBone.  We can implement this as a website where images are 
stored. 

 
4.4    FPGA/MSP432 

 

We  will  also  require  a  profound  knowledge  of  coding  C  for  programming  the  MCU  
that controls  the  node.   Additionally,  Linux  by adding  scripting  commands  in  order  for  
the gateway to push and pull data from the node.  On a hardware level there will need to be 
able to set the clock speeds on the MCU as well configuring pins for serial communication via 
SPI, I2C, UART. Data on the MCU is handled in 1 byte chunks.  And the data transfer 
speeds are determined by the MCUs clock speeds.  We will require knowledge of the STAPL 
player for programming the IGLOO. 

 
4.5    Security 

 

Keeping the system secure is one of our main goals.  In the system that we have so far, we 
are using the following security protocols 

 

•  Security Protocols Used: 
 

–  Transport Layer Security (TLS) 

–  128   bit AES Encryption 

–  Produced by the elliptic curve scheme on BeagleBone and FPGA 

–  The FPGA has a 128 bit AES encryption within itself to protect data transfer 
 

 
  



 
 

51 

 

b

4.5.1     Elliptic  Curve  Cryptography 
 

The  previous  project  implemented  a  security  verification  scheme  based  on  elliptic  
curve cryptography.   This  is  implemented  as  asymmetric  cryptography  where  we  
generation  a session key.  This session key is used for securing the communication 
between the gateway and the node via ZigBee.  An elliptic curve is a function of the form 
under a finite field, such as the Z (mod p) 

 

y2  = x3 + ax + b 
 

 
 

Figure 9:  Elliptic Curve for a = 1 and b = 2 
 

We  can  use  these  curves  to  implement  a  security  algorithm  in  which  we  use  
elliptic curve arithmetic to generate a session key.  We define the a group operation g  on 
elliptic curves.  The BeagleBone’s private key will be some number a, and the private key 
of the Node will be some number Mb  The BeagleBone will establish a session key by 
performing the  group  operation  a  times  on  the  public  key  of  the  node  resulting  in  
S  =  Ma,  where S  is  the  session  key.   The  Node  verifies  the  session  key  in  the  
FPGA,  which  is  already programmed to handle heavy arithmetic, and forwards it to the 
ZigBee as the key used for symmetric AES encryption.



 
 

52 

 

 
 
4.5.2     Securing  the  Update 

 

The update will be secured on the server using TLS (Transport Layer Security), by 
having the BeagleBone request the update from only the server’s certificate and public 
key.  After having  this  implemented,  the  update  will  be  secured  through  the  
session  key  that  was already established. 

 
 

5    Prototyping Progress 
 
5.1    List  of Acquired  Components 

 

1.  Actel IGLOO Nano 
 

2.  MSP432 Trainer Board 
 

We still need to buy the camera, IR sensor, BeagleBone, and XBee devices. 
 

 
5.2    Current Working  Components 

 

We currently have an HTTP server built in Python,  but we will rebuild  it using Node.js to 
provide a better user interface.  Additionally, we have the FPGA side working.  We have 
a version of the app running as well. 

 
5.3    Testing  Plans 

 

We plan on testing the system by adding a noticeable change to the MSP432 code such 
as toggling  the  state  of an LED.  Testing  the programmability of the  FPGA  will  be 
done in a similar way. These experiments are simple, don’t involve as much writing as 
much code, and will allow us to focus on testing programmability. 

 
5.4    Task  for  Next  Semester

 
 
 

Server 

Development MSP432 

Programming FPGA Fixing 

Application 

Create standard for the update/security 

Implement Packetization of Update/Data 

Testing/Debugging 

 
IOT  Security  Device  Semester  2 

Weeks  1-7                                                                                                                         Weeks  
8-15 

W1            W2            W3            W4            W5            W6            W7            W8            W9           W10         W11         W12         W13         W14         W15 

100% complete 

10% complete 

30% complete 

0% complete 

0% complete 

 
 
 
 
 
 
 
0% complete 

 

 
 
 
 
 
 
 
Gantt diagram for ECE 493

 

 
5.5    Task  List 

 

1.  FPGA Programming 
 



 
 

53 

 

(a)  Simulate a JTAG interface to program the FPGA.
 
 

(b)  Once MSP432 works, test the model and see if we can change the FPGA code to 
toggle an LED 

 
2.  MSP432 Bootloader 

 
(a)  Setup MSP432 Bootloader 

(b)  Use an external signal to activate bootloader mode 

(c)  Test bootloader commands by rewriting a block of program memory. 
 

3.  Server 
 

(a)  Build HTTP server using Node.js 

(b)  Build a website to display images on 

(c)  (Theoretically) get a certificate and implement an HTTPS server. 
 

4.  Update 
 

(a)  Finalize update design,  and make sure everybody knows what the update will looks 
like 

(b)  Build a parser using Python on the BeagleBone that can read the update, and send 
information to the node. 

 
 

References 
 
[G et al., 2016]  G,  L.,  K,  S.,  and  R,  V.  K.  (2016).   Elliptic  Curve  Cryptography  imple- 

mentation on FPGA using Montgomery multiplication for equal key and data size over 
GF(2m) for Wireless Sensor Networks. In 2016 IEEE Region 10 Conference (TENCON), 
pages 468–471. 

 
[Sen, 2013]  Sen,  J.  (2013).   Security  in  Wireless  Sensor  Networks.   arXiv:1301.5065  

[cs]. arXiv:  1301.5065. 
  



 

 

11) Appendix B:  Design Document (ECE-492) 

 
 
 
 

Over the Air Updates for an IoT 
Security Device 

 
 

By: Ryan Thomas, Sohail Iqbal, 
Gerson Dalton, Mohamed Nur 

 
8/8/18 

  



 

 

 
 
Problem: 

 IoT devices are becoming increasingly popular for commercial use due to the else of the 
smart home industry. 

 With the proliferation of more complex smart devices throughout households, the 
question of security becomes an issue  

 In the event that a security flaw in the node network is discovered, there needs to be a 
way to implement security patches. 

 The security patches themselves also need a level of security in order to prevent hackers 
from delivering a security patch with a loophole. 

 
Solution: 

 An Over the Air (OTA) Update delivery system is needed to provide security patches to 
the wireless sensor nodes. 

 The node receives a security patch and enters a boot-loader mode to write the security 
patch to itself. 

 Security patches need to be held on a private server that only the nodes have access to via 
a private gateway. 

 In the event that an older security patch is uploaded to the server the gateway must 
compare the OS version of the node with the OS version on the server. 

 In the event that the server is compromised there is a checksum or private key that the 
gateway must verify in order push a security patch to the node. 

 



 
 

56 
 

 

Requirements Specification 
 External Server  

◦ Contains secure signature and contains update files. 
◦ Stores user data collected from the node such as images. 
◦ Verifies if nodes needs an update via version verification 

 Update 
◦ Contains a .zip file with a text file as well as the source code. 
◦ The text file will have an MSP432 and FPGA section, and will be converted to bootloader 

commands. 
 Phone 

◦ Provides interface to user 
◦ Checks for and initiates updates 
◦ Allows for rekeying and initiating capture from the node camera. 

 Gateway 
◦ Contains a Raspberry Pi running Linux and an XBee to communicate with the node 
◦ Parses text file, and maps it to bootloader commands for the MSP432. 
◦ Takes in data from the node and makes it accessible to the user. 

 Node 
◦ Contains an MSP432, Actel IGLOO FPGA, an XBee, an ArduCam v5 5MP camera, and an IR 

sensor. 
◦ The MSP432 controls all other components and will have the capability to reprogram itself and 

the FPGA. 
◦ The node will capture an image and send it back to the Gateway.  



 
 

57 
 

 

Conceptual Sketch 

  



 
 

58 
 

 

Functional Architecture 

  



 
 

59 
 

 

System Architecture 

  



 
 

60 
 

 

Node State Diagram 
  



 
 

61 
 

 

Gateway State Diagram  



 
 

62 
 

 

Background Knowledge 

 
Data Interfacing 
 

● SPI Data Interface 
○ Shift Registers store eight or sixteen bits 
○ Devices transfer one frame at a time 
○ A word is transferred, by the processor, to the TX buffer before it is transmitted over the 

serial link 
○ This occurs on both the master and the slave devices. 
○ One bit is transmitted at a time (serial communication) 
○ When a bit is received the register shifts and transmits the next bit 

 
 

● I2C 
Data Interface 



 
 

63 
 

 

○ The master sends a start condition by pulling SDA low while SCL is high 
○ The master starts the clock and puts the first bit of the address on SDA after SCL has gone 

low 
○ The value on SDA is valid after SCL has gone high and is read by all slaves on the bus 
○ The next 8 clock cycles are used to transmit 1 byte of data from the slave to the master 
○ There is a final cycle of the clock to set up the stop signal  



 
 

64 
 

 

 
● UART Data Interface 

○ Baud rate is the freq. at which bits (not data) are transmitted 
○ A baud rate for embedded systems is 9600 bits/sec.  
○ Data is sent in frames, each containing a one start bit ,eight data bits, and one stop bit 



 
 

65 
 

 

● JTAG Data Interface (Achieved through bit banging on MSP432) 
○ The master sends a start condition resetting the JTAG interface 
○ Then the  master starts the clock and proceeds to send series of bits that shift the state 

machine to read instructions (Capture IR, Shift IR, Exit IR) 
○ The next 8 clock cycles are used to transmit 1 byte from the master to the slave with the 

proper instruction 
○ The master will proceed to send series of bits that shift the state machine to read 

data(Capture DR, Shift DR, Exit DR) 
○ The next 8 clock cycles are used to transmit 1 byte from the master to the slave with the 

proper data 
○ There is a final cycle of the clock to reset the JTAG interface for future use  



 
 

66 
 

 

 

Detailed Design 

Communications 
This section describes the communications protocol for each action initiated by the Application or the 
Node. Each action has one flow diagram and a description of all messages sent and responses received. 
 
Gateway to Node Update system 
Upon Pressing the Update Software button the update the Server will request the software version 
number of the node and compare it with the latest software version stored on the compute through the 
gateway.If there is newer software a signal from the app will be sent to the server to push the update. He 
gateway will receive the update and send a character to the MSP432 will exit low power mode read the 
character and if the character is correct it will send back an acknowledge character to the gateway and 
enter bootloader mode. Upon entering  bootloader mode the MSP432 will receive the command, update 
size, the address to write the update to, and the actual update to write to flash. Once the the MSP42 exits 
bootloader mode it will send an acknowledge character that the update is complete. 
 
Upon verifying the MSP432 software is up to date, the gateway will send a character to receive the FPGA 
update. The MSP432 will exit low power mode upon receiving the character, allocate ram for the FPGA 
Update and wait for the gateway to send the FPGA update. The MSP432 will receive the address to store 
FPGA update chunk in a ram and the FPGA update chunk itself. The MSP432 will store on the FPGA 
update chunk in the specified address ram then send the chunk to FPGA via JTAG while configuring the 
JTAG interface accordingly. The ram buffer will repeatedly cleared for string each chunk of the update 
until the whole update is sent, After sending the update the MSP432 will send a signal saying the FPGA 
Update is complete and enter low power mode to await further instructions. 
 
 
App/Server/Gateway Communication 
Across the millions of apps, one thing is common; That is, the strive to make a user-friendly and efficient 
app. This goal should be apparent as every goal of any app is to increase the number of users, 
regardless of the category the app falls under. Thus, making an app that the user enjoys using. 
Furthermore, in this system, the role of the app is very crucial, as it is the starting point of the relay of 
information required in the operation of our device. In the rest of this section, the process of the app 
development will be discussed along with the overall functionality of the app. This app will initially be 
available only on android only, which entails development in Android Studio using Java. 
  
App-Server Connection 
Prior to discussing the functionality of the App, we must first discuss the underlying connection between 
the Node.js server and the app. This connection is very important, as it is the connection that lays the 
foundation for all the other connections. Through this app-server connection, we will able to transmit to 



 
 

67 
 

 

and receive data from the server. Regarding the protocol used in this connection, the two main protocols 
that were considered are the HTTP and WebSocket. 
  
For this connection, the WebSocket protocol is used for a few reasons. First, since this device is dealing 
with real time data, HTTP would not be ideal to use. On the contrary, WebSocket is bi-directional, 
meaning that the server and client can each send and receive messages from the other party. With 
HTTP, the client always has to initiate connections. In addition to being bi-directional, WebSocket is fully 
Duplex and both the client and server can talk independently, while with HTTP, either the server is talking 
to the client or the client is talking to the server at any given time. Lastly, while WebSocket allows for 
communication via a single TCP connection, a new TCP connection needs to be established for every 
HTTP request/response. 

  
Figure 1: App-Server Connection 
 
Functionality/Operation 
Upon opening the app, the user’s dashboard will consist of five buttons: Update Software, Snap Photo, 
Photo Archive, Regenerate Key, and Add New Device (Link Device). For each button press, the 
interaction is explained between each component of our system. 
  
 
  
 

  



 
 

68 
 

 

Check for Updates 

 
 
 

Check Update From: App To: Server 

Initiated by: User presses “Check for Updates” button on screen 

Message Contents: ● Check Update Command 
● Gateway Name 
● Node Name 

Expected Response: 3 Messages: 
● Gateway Version Number 
● Node Software Version Number and Hardware 

Version Number 
● Latest Gateway Version Number, Latest Node 

Software Version Number and Hardware Version 
Number 

Response to Initiator: When any latest version number is greater than the installed 
version number inform the user. 
Also inform the user when no updates are available. 

Receiving Damaged 
Messages: 

Inform the user and give the option to try again 

No Response Received Wait for 20 seconds for responses. 
Inform the user about each missing response: “Device can 

Check Update 

App Server Gateway 

Check Version 

Node 

Check Version 

Return Version 
(Node SW and 

HW) 

Return Version 
(GW) 

Return Version 
(Node SW and 

HW) Return Version 
(Node SW and 

HW) 

Return Version 
(Latest Node 
SW and HW, 

Return Version 
(GW) 



 
 

69 
 

 

not be contacted, please try again later.” 

 
 

Check Version From: Server To: Gateway 

Initiated by: Check Update Message from Application 

Message Contents ● Check Version Command 
● Gateway Name 
● Node Name 

Expected Response: 2 Messages: 
● Gateway Version Number 
● Node Software Version Number and Hardware 

Version Number 

Response to Initiator: ● Gateway Software Version Number 
● Node Software Version Number and Hardware 

Version Number 
● Latest Gateway Version Number, Latest Node 

Software Version Number and Hardware Version 
Number 

Receiving Damaged 
Messages: 

Send Error Message to Initiator. 

No Response Received Wait for 18 seconds for responses. 
Send Error Message to Initiator. 

 
 

Check Version From: Gateway To: Node 

Initiated by: Check Update Message from Server 

Message Contents ● Check Version Command 
● Node Name 

Expected Response: 1 Message: 
● Node Software Version Number and Hardware 

Version Number 

Response to Initiator: ● Gateway Software Version Number 
● Node Software Version Number and Hardware 

Version Number 

Receiving Damaged 
Messages: 

Send Error Message to Initiator. 



 
 

70 
 

 

No Response Received Wait for 16 seconds for response. 
Send Error Message to Initiator. 

 

  



 
 

71 
 

 

Send Updates 

 
 
 

Send Update From: App To: Server 

Initiated by: After the app verifies Node SW version is out of date 

Message Contents: ● Send Update Command 
● Gateway Name 
● Node Name 

Expected Response: 3 Messages: 
● Update Progress Started or percentage completed 
● Node Software Version Number and Hardware 

Version Number 
● Latest Gateway Version Number, Latest Node 

Software Version Number and Hardware Version 
Number 

Response to Initiator: When  the server starts sending the update file to the 
gateway send update progress. 



 
 

72 
 

 

Inform the user if the Server isn’t able to send the update file 
to the gateway 

Receiving Damaged 
Messages: 

Inform the user and give the option to try updating again 

No Response Received Wait for 10 seconds for a response from the server 
Inform the user about each missing response: “Update cannot 
be pushed. Error Code: XX” 

 
 

Send Update File From: Server To: Gateway 

Initiated by: Receiving Update Command from App 

Message Contents ● Latest Update file 
● Gateway Name 
● Node Name 

Expected Response: 2 Messages: 
● Node update progress (Percentage Complete) 
● Node Software Version Number and Hardware 

Version Number 

Response to Initiator: ● Node update progress (Percentage Complete) 
● Recommended Instructions on interacting with Node 

(Do not unplug power from node or turn off app) 

Receiving Damaged 
Messages: 

Send Error Message to Initiator. 

No Response Received Wait every 15 seconds for progress update. 
After 60 seconds send Error Message to Initiator. 

 
 

Send Command  From: Gateway To: Node 

Initiated by: Completion of downloading the update to the gateway 

Message Contents ● Enter bootloader command Command 
● Node Name 

Expected Response: 4 Messages: 
● Node Software Update Started 
● MSP Software Updated 
● FPGA Software Updated 
● Node update completed 



 
 

73 
 

 

Response to Initiator: ● Node Update Status (Percentage Completed) 
● Node Software Version Number and Node Name 

Receiving Damaged 
Messages: 

Send Error Message to Initiator. 

No Response Received Wait for 15 seconds for response. 
After 30 seconds Send Error Message to Initiator. 

 

  



 
 

74 
 

 

Snap Photo 

 
 
 

Capture Image From: App To: Gateway 

Initiated by: User presses “Snap Photo” button on screen 

Message Contents: ● Capture Image Command 
● Gateway Name 
● Node Name 

Expected Response: 3 Messages: 
● Snap Photo Progress 
● Photo received from camera 
● Notification with date and time of photo  

Response to Initiator: Upon receive the command a message will be sent stating 
the photo is being captured. When the photo is finished being 
captures it is sent. 

Receiving Damaged 
Messages: 

Inform the user and give the option to try taking a photo again 

No Response Received Wait for 10 seconds for a response from the server 
Inform the user about each missing response: “Photo cannot 
be requested. Error Code: XX” 

 
 

Take Photo Command From: Gateway To: Node 

Initiated by: Receiving Capture Image Command from App 



 
 

75 
 

 

Message Contents ● Take Photo Command 
● Node Name 

Expected Response: 1 Message: 
● Captured Photo 

Response to Initiator: ● Photo contents 
● Photo checksum 

Receiving Damaged photo: Send Error Message to Initiator. Reinstate photo capture. 

No Response Received Send message to Initiator the Node is offline. 

 
 

Send Photo From: Gateway To: Server 

Initiated by: Completion of sending the photo to the gateway 

Message Contents ● Photo Contents 
● Latest Pinged Server Name 

Expected Response: 1 Message: 
● Acknowledgement that Photo has been received 

Response to Initiator: ● Captured Photo  
● Data and time of photo taken 

Receiving Damaged 
Messages: 

Send Error Message to Initiator.Send photo again to Server. 

No Response Received Wait for 5 seconds for response. 
After 15 seconds Send Error Message to Initiator. 

 

  



 
 

76 
 

 

Photo Archive 

 
 
 

Request Photo Archive From: App To: Server 

Initiated by: User presses “Photo Archive” button on screen 

Message Contents: ● Send Private URL 
● Latest Pinged Server Name 

Expected Response: 1 Message: 
● HTML Website containing the library of photos 

Receiving Damaged 
Messages: 

Inform the user and automatically try accessing the server 
again 

No Response Received Wait for 5 seconds for a response from the server 
Inform the user about each missing response: “Server if not 
available at this time, Trying Again” 
After 30 seconds the App will stop requesting to access the 
server. 

 

  



 
 

77 
 

 

Regenerate Key 

 
 
 

Request Rekey From: App To: Gateway 

Initiated by: User presses “Regenerate Key” button on screen 

Message Contents: ● Request Rekey Command 
● Gateway Name 
● Node Name 

Expected Response: 2 Messages: 
● Rekey Progress 
● Rekey Completion 

Response to Initiator: When the gateway is generating a new key it will send a 
progress report to the app 

Receiving Damaged 
Messages: 

Inform the user and give the option to try rekeying again 

No Response Received Wait for 5 seconds for a response from the gateway 
Inform the user about each missing response: “Rekey is not 
responsive, please try again” 

 
 



 
 

78 
 

 

Send New Key From: Gateway To: Node 

Initiated by: Receiving Regenerate Key from App 

Message Contents ● Encrypted Key session 
● Node Name 

Expected Response: 1 Message: 
● Key Session encrypted with AES encryption 

Response to Initiator: ● Node Rekey progress (Percentage Complete) 
● Recommended Instructions on interacting with Node 

(Do not unplug power from node or turn off app) 

Receiving Damaged 
Messages: 

Send Error Message to Initiator. 

No Response Received Wait every 2 seconds for progress update. 
After 10 seconds send Error Message to Initiator. 

 
 
 

Add New Device 

 
 
 
 



 
 

79 
 

 

Send Public Key From: App To: Gateway 

Initiated by: User presses “Link Device” button on screen 

Message Contents: ● Send Public Key Command 
● Public Key 
● Node Name 

Expected Response: 2 Messages: 
● Key Progress 
● Key Completion 

Response to Initiator: While the gateway is encrypts the key session  it will send a 
progress report to the app 

Receiving Damaged 
Messages: 

Inform the user and give the option to try keying again 

No Response Received Wait for 5 seconds for a response from the gateway 
Inform the user about each missing response: “Key 
generation is not responsive, please try again” 

 

Message Contents ● Encrypted Key session 
● Node Name 

Expected Response: 1 Message: 
● Key Session encrypted with AES encryption 

Response to Initiator: ● Node Keying progress (Percentage Complete) 
● Recommended Instructions on interacting with Node 

(Do not unplug power from node or turn off app) 

Receiving Damaged 
Messages: 

Send Error Message to Initiator. 

No Response Received Wait every 2 seconds for progress update. 
After 10 seconds send Error Message to Initiator. 

 
 
 
 
 
  



 
 

80 
 

 

Get Gateway IP address 

 
 

Request IP Address From: App To: Server 

Initiated by: Pre-Assigned time to ping without User input 

Message Contents: ● Request IP Address Command 
● Router IP address 
● Gateway Name 

Expected Response: 2 Messages: 
● Gateway IP Address 
● Router IP Address 

Response to Initiator: The system sends no response 

Receiving Damaged 
Messages: 

Retrying obtaining the IP Address 

No Response Received Retrying obtaining the IP Address. Use the locally store ip to 
ping the gateway. 

 



 
 

81 
 

 

  



 
 

82 
 

 

Node State Diagram 

 

 

  



 
 

83 
 

 

Circuit Design 
The following is a diagram of the circuit with Description of each connection 

 
Xbee to MSP432 Connection: 
Xbee S2C 
Protocol: UART 
Speed: 9600 Hz 
Operating Voltage: 3.3 V 
ON/Off or Sleep: Pin 1(VCC)  
MSP432 Pins: Pin 3.2 (RX) and 3.3 (TX) 
Connector: Shrouded Pin Header,20 Pins, 4 used Pins: GND, RX, TX, VCC 
Process:  A character array of the photo data sent one byte at a time via the TX pin. 
                                   The Xbee has built RTC protocols to check data transfer. It will keep 
                                   sending a packet if a packet is lost while transferring. 
 
 
  



 
 

84 
 

 

Motion Sensor to MSP432 Connection: 
HC-SR501 PIR Motion Detector 
Operating Voltage: 3.3 V 
ON/Off or Sleep: Pin 1(VIN)  
MSP432 Pins: Pin 3.0 (GPIO) 
Connector: Shrouded Pin Header, 3 Pin: GND, VIN,OUT 

Connection: 3 Position Crimp cable between Motion Sensor and Shrouded Pin 
Header with Pin 2(OUT) connection to the MSP432 

Process:  Upon detecting motion the device will send a high voltage signal to wake 
                                   the  MSP from low power mode and capture a photo. 
 
ArduCamera to MSP432 Connection: 
Arducam OV2640 
Operating Voltage:  5.0 V 
ON/Off or Sleep:  Pin 6.0(+5V)  
MSP432 Pins:  PIN 6.5(Clock speed) for I2C (SCL) connects to the SCK pin of the 
                                    camera 

                        PIN 6.4(Data transfer) for I2C(SDA) connects to the SDI pin of the    
                                    camera 

                        PIN 1.4(Slave select) connects to the CS pin of the camera 
                        PIN 1.5(Clock) connects to the SCLK pin of the Camera 
                        PIN 1.6(Data pin) connects to the MISO pin of the Camera 
                        PIN 1.7(Data pin) connects to the MOSI pin of the Camera 

Connector: Shrouded Pin Header, 8 Pin: CS,MOSI,MISO,SCLK,GND,+5V,SDA,SCL 
Connection: 4-2-2(8) Position Crimp cable between ArduCam and Shrouded Pin 
Header  

Process:  After taking a photo the MSP432 will receive the photo via the MISO pin 
                                   and then construct character array of the photo one byte at a time while 
                                   simultaneously calculating the size of the photo. 
Software:  SPI with a clock rate of 1 MHz for photo data transfer 
                                   I2C with a clock rate of 100 kHz for camera initialization and 
                                   verification 
 
FPGA to MSP432 Connection: 
Microsemi IGLOO nano 
Operating Voltage:  3.3 V 
ON/Off or Sleep:  Pin 6.0(+5V)  
MSP432 Pins: PIN 6.5 is the Clock speed for I2C (SCL) it connects to the SCK pin of the FGPA 

            PIN 6.4 is data transfer for I2C(SDA) and connects to the SDI pin of the FGPA 
            PIN 1.4 is the Slave select pin (STE) and connects to the TMS pin of the FGPA 
            PIN 1.1 is the CLK pin  and connects to the TCK pin of the FGPA 
            PIN 1.2 this a MISO data pin  and connects to the TDO pin of the FGPA 
            PIN 1.3 this a MOSI data pin and connects to the TDI pin of the FGPA 

Connector:     Shrouded Pin Header, 8 Pin: TMS, TDO, TDI, TCLK, GND,+3.3V,SDA,SCL 



 
 

85 
 

 

Connection:    Onboard copper wire connection 
Process:         After taking a photo the MSP432 will receive the photo via the MISO pin 
                       and then construct character array of the photo one byte at a time while 
                       simultaneously calculating the size of the photo. 
Software:        SJTAG with a clock rate of 1 MHz for data transfer. Max frequency is 4 MHz 
 
FPGA Electrical Specifications 
 Voltage    Current 
 Vcc      = 1.2-1.5V   <70mA 
 Vjtag    = 3.3V           <20mA 
 Vpump = 3.3V    <80mA 
 
Vpump and Vjtag voltages are required for programming the FPGA.  
 
Vjtag and Vcc voltages are required to read the output of the FPGA. 
 
MSP432 
The TI MSP432P401R microcontroller is used for currently is reading input from the motion sensor and 
telling the Arducam OV2640 to take a photo. The MSP432 proceeds to read the photo then send it the 
XBee module to be sent to the gateway which in turn will be sent to the server, it also reads decrypted 
keys from the FPGA. The MSP432 will also be used for updating the FPGA by asynchronously reading 
data received by the XBee module via UART, storing updates into a ram buffer and pushing the update 
data to FPGA via it’s JTAG interface. 
The MSP432 will also update itself by receiving a command to enter bootloader mode and then receive 
bootloader commands to read incoming data from the XBee module via UART and write to the MSP432’s 
flash memory. 
 

Architecture      Size                   

1) SRAM      64 KBytes 

2) Flash      256 Kbytes  
 
Ram Usage: Photo Buffer: 30 KB Update Buffer: 30 KB     Program SIze: 4KB 
MSP432 Functions: There will be a total of 4 main functions for the device 

● Key Device 
○ It will receive a session key from the gateway and send it to the FPGA via I2C for 

decryption. It will the read the session key and encrypt with AES to be sent back. 
● Snap Photo 

○ It will initialize the camera via I2C and then take, calculate the size and send the 
compressed to the Xbee to be sent to the server. 

● Update MSP432 
○ The device will receive a signal to exit low power mode and enter bootloader mode. 

Bootloader will receive commands and the update file to write to flash 
● Update FPGA 

○ The device will receive a signal to exit low power mode and be on standby to receive 
update data to be placed into the ram buffer then sent to the FPGA  

MSP432 Update package 
The following is a breakdown of the what the MSP432 will receive once it enters bootloader mode. Each 
value is in hexadecimal format representing each byte. THe first byte is the header followed by the size of 



 
 

86 
 

 

the update in bytes. The next byte is the command the specifies write or erase. This is followed by the 
address bytes that specifies the flash memory’s address for where the update will be written. The next 
few bytes will be the binary file for the MSP432 followed by a checksum. 
  



 
 

87 
 

 

FPGA 
Igloo nano FPGA is used to implement the elliptic curve cryptography algorithm.  There are 2 main 
reasons Igloo nano is being chosen.  First is that the configuration memory is flash based and once 
programed, the FPGA holds its data and does not require to be programmed over and over again. The 
FPGA can be turned off after been programed and used for key verification or rekeying and can be used 
again without reconfiguring it. The second main reason is that it has a lower power consumption.   
Architecture      Size 

1. Flash Array or configuration memory  250000 System Gates  6144 Flip Flops                           
2. SRAM      1,024 bits 
3. Flash      504 kbits  

 
FPGA has different modes it can be operated however for this project purposes, it will only be in either 
ON mode implementing cryptography algorithm or being reconfigured or it will be in SHUTDOWN mode 
when it will be totally off. The operating modes of the FPGA are controlled using the voltage 
regulator.(LD59015).  

  
From the figure right above, it is seen that voltage regulator has 5 pins. Pin 4 is not used and not 
connected to anything. Pin EN is connected to microcontroller. Pin IN is connected to the batter and pin 
OUT is connected to FPGA. ON and OFF functionality (mode) of the FPGA will controlled by the 
microcontroller by sending an enable signal to the EN pin of the voltage regulator. 
 
Programming or updating the FPGA 
 Cryptography algorithm is given and will be implemented on the FPGA. The objective is to programme 
the FPGA using microcontroller MSP-432. The reason is a microcontroller is being used that it gives the 
capability to program and reprogram the FPGA over the air and the user is not required to bring the 
device to the factory. In system programming ISP technique is used to achieve this objective.  
To perform In-System Programming (ISP) for the FPGA, JTAG interface is required which MSP-432 
supports. Also access to the data file containing the programming data is also needed. 
Diagram from the ISP Microsemi programming guide is shown below 



 
 

88 
 

 

 
For ISP programming different files are either coded, edited or generated and guid of the tasks are 
shown in the following figure.  

  



 
 

89 
 

 

First step in ISP programming is to write the source code in VHDL using Libero SOC software provided 
by Microsemi.  For this project, since the source code is given, cryptography algorithm will simply be 
uploaded. Once loaded the DAT file is generated. In order to do so first the source code is synthesized 
and compiled.  That will generate a .PDC file. Using that in Designer software provided by Microsemi, 
following are the steps to create the DAT files. 

1) First the inputs and outputs are assigned are assigned to the desired pins. There is no constraint 
file that needs to be edited. This is achieved by using another program called I/O Attribute editor.  

 
Pin details are give in the user guide and following the pin details, Pin numbers are assigned. Once pins 
are assigned, layout is completed using designer tool. 

 
Back-Annotate is the next step and that makes the output format to SDF.  After that Programming files 
are generated. Once clicking Programming File, It gives the options of what needs to be programmed in 
the FPGA since Igloo Nano FPGA has flash memory also. It also gives the option to implement the AES 
security algorithm provided by Microsemi.  That decrypts the data and keys are generated. Configuration 
memory is called FPGA Array in Designer tool. 
 



 
 

90 
 

 

 

 



 
 

91 
 

 

After the security settings ,the designer tool gives the option to choose the required files that need to be 
generated. For our ISP purposes, .DAT file and .PDB files are needed. STPL file is generated to program 
the FPGA without a microcontroller. 
 

 
Once the files are generated successfully the Programming File icon becomes green. 

 
The generated files are in the impl1 folder in the designer folder of the project.  The DAT file generated is 
stored in the storage memory of the microcontroller. 



 
 

92 
 

 

Once the .DAT file is generated the next step is to work on the DirectC files.  These are C based 
functions. DirectC files are imported to code composer studio(MSP 432  programming software).  

 
 
 
 
DirectC code is needed to be modified . First JTAG pin bit locations are defined in the I/O register. API is 
added to support discrete toggling of the individual JTAG pins. The hardware interface functions (jtag_inp 
and jtag_outp) are modified to use the hardware API functions designed to control the JTAG port. The 
delay function (dp_delay) is modified. Memory access functions are edited to access the data blocks.  
The dp_top function with the action code desired is created. The source code is compiled. This creates a 
binary executable that is downloaded to the microcontroller for execution.  
 
Functions jtag_inp and jtag_outp are as follows. 

 DPUCHAR jtag_inp(void)  



 
 

93 
 

 

 {  
     DPUCHAR tdo = 0u;  
     DPUCHAR ret = 0x80u;  
  
 
     GPIO_SetDir(JTAG_TDOPORT, JTAG_TDO, 0);  
  
 
     tdo = (GPIO_ReadValue(JTAG_TDOPORT) >> JTAG_TDOPIN) & 1;  
  
 
     if (tdo)  
         ret = 0x80;  
     else  
         ret = 0;  
  
 
     return ret;  
 }  
 
 
void jtag_outp(DPUCHAR outdata)  
 {  
     GPIO_SetDir(JTAG_TDOPORT, JTAG_TDO, 1);  
  
 
     if(outdata & TCK)  
         GPIO_SetValue(JTAG_TCKPORT, JTAG_TCK);  
     else  
         GPIO_ClearValue(JTAG_TCKPORT, JTAG_TCK);  
  
 
     if(outdata & TDI)  
         GPIO_SetValue(JTAG_TDIPORT, JTAG_TDI);  
     else  
         GPIO_ClearValue(JTAG_TDIPORT, JTAG_TDI);  
  
 
     if(outdata & TMS)  
         GPIO_SetValue(JTAG_TMSPORT, JTAG_TMS);  
     else  
         GPIO_ClearValue(JTAG_TMSPORT, JTAG_TMS);  
  
 
     if(outdata & TRST)  
         GPIO_SetValue(JTAG_TRSTPORT, JTAG_TRST);  
     else  
         GPIO_ClearValue(JTAG_TRSTPORT, JTAG_TRST);  
  
 
     if(outdata & TDO)  
         GPIO_SetValue(JTAG_TDOPORT, JTAG_TDO);  
     else  
         GPIO_ClearValue(JTAG_TDOPORT, JTAG_TDO);  



 
 

94 
 

 

  
 
     return;  
 }  

  
 
Delay function is not complete but following is the template 

void dp_delay(DPULONG microseconds)  
{  
    volatile DPULONG i;  
    volatile DPULONG j;  
      
    #error "still working on the modification."  
      
    for(i=0;i<microseconds;i++) {  
            for (j=0;j<50;j++) ;  
        }  
}  

 
 

void dp_get_page_data(DPULONG image_requested_address) 
{ 
    #ifdef ENABLE_EMBEDDED_SUPPORT 
    return_bytes = PAGE_BUFFER_SIZE; 
       if (image_requested_address + return_bytes > image_size) 
    { 
        return_bytes = image_size - image_requested_address; 
    } 
     
     
    #endif 
    return; 
} 

 

  



 
 

95 
 

 

Prototyping progress report: 
● Acquired Components 

○ MSP432P401R Microcontroller 
○ USB to RS-232 Interface device 
○ Microsemi IGLOO nano FPGA 
○ Raspberry Pi 3 rev. B 

● Experiments 
○ Attempt to program the MSP432 to enter bootloader mode via UART and then 

send bootloader commands and an the update file for flashing. 
○ Learn to program the IGLOO nano 
○ Send a signal from a phone application to a Raspberry Pi to turn on an led.  

● Lessons learned 
○ Even with the mastery of each piece of software on the device the biggest 

challenges are debugging the hardware interfaces of each device 
 
Testing plan : 

● Data verification 
○ Most of the experiments done were primarily to validate whether we could 

successfully send bytes of the data from various types of devices that all had 
different hardware interfaces. 

○ Success was measured mainly on if we were able to successfully send a character 
to a different device without the character changing when reading on a different 
device.  Upon verification we could implement sending data and commands to 
write programs or enable devices.  



 
 

96 
 

 

Complete List of Tasks 

1. Server, gateway, and app development (3 weeks) 
1.1) Server setup 
1.2) Gateway setup 
1.3) Build app 

2. MSP432 development (3 weeks) 
2.1) Optimize Camera driver code 
2.2) Update driver code 
2.3) FPGA Update Driver code 

3. FPGA driver development (3 weeks) 
3.1) Cryptography driver code 
3.2) Update driver code 

4. Hardware development (3 weeks) 
4.1) PCB node design 
4.2) PCB node assembly 
4.3) Tuning and testing 

5. System integration (8 weeks) 
5.1) Linking Gateway and MSP432 via Xbee 
5.2) Linking MSP432 and FPGA systems 
5.3) Update functionality 
5.4) Sensor functionality 
5.5) Security functionality 
5.6) Final PCB tuning 
5.7) Node PCB test 

6. Testing (3 weeks) 
6.1) Experiment #1 
6.2) Experiment #2 
6.3) Experiment #3 

7. Reporting 
7.1) Progress report 
7.2) In-progress presentation 
7.3) Final report 

8. Milestones/Demos 
8.1) Demo #1 
8.2) Demo #2 
8.3) Demo #3  



 
 

97 
 

 

 
 

 
 
 
 

  



 
 

98 
 

 

12) Appendix C:  Software printout 

● MSP Related Files (in BSL Folder) 

○ Flashmailbox.c contains functions to configure the bootloader for UART 

○ Main.c contains functions to handle updates via bootloader, handle FPGA update, well as 

take and send photos through Xbee via UART 

○ I2c_driver.c contains functions for configure the camera for JPEG compression 

○ Spi_driver.c contains the functions to receive pictures from the camera 

○ Msp432_flashmailbox.c contains the bootloader configuration 

● FPGA Related Files (in BSL Folder) 

○ dpuser.c contains the JTAG pin interfacing to MSP432  

○ dcom.c contains the code to interface with MSP432 memory (RAM) 

○ dpalg.c Contains the function dp_top() that programs the FPGA 

○ Any other files beginning with dp are for FPGA device support  

● PCB Related Files 

○ OTA Updates for an IOT Security Device.pdf contains the pdf file of the schematics  

○ OTA Updates for an IOT Security Device.pro contains the project  

○ Any files with .sch contain the hierarchical sheets schematic 

○ Any files with .lib contain libraries to different footprints 

○ OTA Updates for an IOT Security Device.net contains the netlist 

○ PCB folder contains files for the manufacturing of the PCB 

○ Footprints folder contains additional footprints for the PCB 

○ Any files with .bak , .bck , .dmc , .cmp are files used by Kicad to support the PCB 

 


