

Open Source High-Speed Oscilloscope

(OSHO)

Final Project Report

Team Members:

 Timothy Bullock, Afnan Ali, Evan Hoffman, Umair Aslam, Zaeem Gauher

 Faculty Advisor:

Jens-Peter Kaps

ECE493-001

Date of Submission: May 4th, 2019

George Mason University
4400 University Dr, Fairfax VA 22030

1

1. Executive Summary

 Oscilloscopes are one of the most useful devices in engineering applications

where time-varying electrical signals need to be measured, analyzed, and recorded.

Some of these applications require the use of high performance oscilloscopes due to

the high frequencies of the signals that need to be measured. However, many students,

hobbyists, and small engineering firms cannot afford these high performance devices

due to their costs. Therefore, we have proposed a low-cost, open-source, and high

performance alternative to the commercially available devices. This Open-Source High

Speed Oscilloscope (OSHO) provides a 500Mhz bandwidth along with a 1 GSPS

sampling rate at the fraction of the relatively low cost of $587. The following report

details this proposed solution through its entire development process.

The solution can be categorized by three main aspects including the analog

front-end circuit for measuring and digitizing the signal, the FPGA datapath for

processing and routing the digitized data, and the software design for creating a user-

interface and plotting. The approach and requirements used in the derivation of this

modular design are discussed in detail. Furthermore, not only the high-level design but

also the detailed circuit schematics, VHDL datapath, and software implementation are

presented through this report. The testing methodology is introduced and the results are

discussed for each of the three project aspects including the discussion of any

deviations due to the pandemic situation at the time of this report. This project has been

developed under the supervision and guidance of Dr. Jens-Peter Kaps.

Figure 1: OSHO PCB CAD Model

2

2. Table of Contents

1. Executive Summary 1

2. Table of Contents 2

3. Problem and Solution Approach 10

3.1 Problem Statement 10

3.2 Proposed Design Solution 10

3.3 Project Mission Requirements 12

3.4 System Operational Requirements 12

3.4.1 Input/Output Requirements 13

3.4.2 External Interface Requirements 13

3.4.3 Functional Requirements 13

3.4.4 Technology and System-Wide Requirements 13

3.5 Alternative Design Approaches 14

3.5.1 One vs Multiple ADCs 14

3.5.2 Using a MPSoC Development Board vs. a Single Board Solution 14

3.5.3 A Web-Based GUI vs. Physical Controls and On-Device Display 15

3.6 Team Member Contributions 15

3.6.1 Afnan Ali 15

3.6.2 Umair Aslam 15

3.6.3 Timothy Bullock 15

3.6.4 Zaeem Gauher 16

3.6.5 Evan Hoffman 16

4. High Level Design 16

4.1 Level Zero Functional Decomposition 17

4.2 Level One Functional Decomposition 17

4.3 Level Two Functional Decomposition 18

4.3.1 Analog Input Preconditioning Stage 18

4.3.2 Analog to Digital Conversion Stage 24

4.3.3 ADC Sampling Clock Generation Stage 24

4.3.4 Data Deserialization Stage (FPGA Datapath) 24

4.3.5 Data Processing and Hosting Stage (Server and Back-End Software)
 24

4.3.6 Graphical User Interface (GUI) Stage 22

4.4 Overall System Architecture 23

4.5 Physical Architecture 24

5. Technical Design 25

5.1 Analog Front End 26

5.1.1 Discussion of Design 64

3

5.1.2 OSHO Board Schematics 64

5.1.2.1 Power Circuitry 1 64

5.1.2.2 Power Circuitry 2 64

5.1.2.3 Power Circuitry 3 37

5.1.2.3 Analog Front End 64

5.1.2.4 Channel A Input Stage 64

5.1.2.5 Analog Offset Generation 64

5.1.2.5 Channel B Input Stage 64

5.1.2.6 Low Noise and Variable Amplifiers 64

5.1.2.7 Low Pass Filters 64

5.1.2.8 Analog-Digital-Converter (ADC) 64

5.1.2.9 Sampling Clock Generation 64

5.1.2.10 Digital Connectors 64

5.2 PCB Design 66

5.2.1 High Level Layout Approach 73

5.2.2 Controlled Impedance Design 73

5.2.3 Noise Control and Analog/Digital Separation 68

5.2.4 Differential Pairs and Length Matching 70

5.2.5 Heat Dissipation 73

5.2.6 Ultra 96 Design Constraints and Physical Layout Limitations 73

5.2.7 Select PCB Layers 73

5.2.7.1 Top Silk Screen View 76

5.2.7.2 Top Copper Layer 76

5.2.7.3 Top Inner Copper Layer (Ground Plane) 76

5.2.7.4 Bottom Inner Copper Layer (Power Planes) 76

5.2.7.5 Bottom Copper Layer 76

5.2.7.6 Bottom Silk Screen View (Flipped) 76

5.3 FPGA Datapath Design 76

5.3.1 Datapath Overview 79

5.3.2 The Deserializer IP 77

5.3.3 Bit Clock Alignment 79

5.3.4 Frame Clock Alignment 79

5.3.5 FPGA LVDS Data Inputs 80

5.3.6 Processor 80

5.4 Software Design 81

5.4.1 Software Overview 86

5.4.2 Software Models 86

5.4.3 Waveforms Live Design 86

5.4.6 Backup GUI 86

6. Implementation, Experimentation, and Success Evaluation 88

4

6.1 Current Implementation Status 88

6.1.1 Analog Front End Implementation 89

6.1.2 PCB Layout Implementation 89

6.1.3 FPGA Datapath Implementation 89

6.1.4 Software Implementation 89

6.2 Design Changes Since ECE492 Design Document 89

6.2.1 Analog Front End Circuitry 93

6.2.2 Backup GUI 93

6.2.3 COVID-19 Project Related Scalebacks 93

6.3 Experimentation and Testing Plans 94

6.3.1 High Level Acceptance Testing 94

6.3.1.1 Waveform Comparison With Commercial Oscilloscope 95

6.3.1.2 Measured Frequency Sweep 95

6.3.1.3 External Clock Input Verification 95

6.3.2 Unit Integration Testing 96

6.3.2.1 Analog Front End Testing 98

6.3.2.1.1 Power Architecture 96

6.3.2.1.2 Input Coupling and Offset 96

6.3.2.1.3 Attenuators 96

6.3.2.1.4 Low Noise Amplifier (LNA) 96

6.3.2.1.5 Variable Gain Amplifier (VGA) 97

6.3.2.1.6 Phase-Locked Loop (PLL) 97

6.3.2.2 VHDL Firmware Testing 98

6.3.2.3 Server and GUI Testing 98

6.4 Experimentation Validation and Testing Results 103

6.4.1 FPGA Firmware Test Results 98

6.4.2 Data Visualization and GUI Test Results 101

6.5 Solution Operational Requirements Analysis 103

6.5.1 Input/Output Requirements 103

6.5.2 External Interface Requirements 103

6.5.3 Functional Requirements 104

6.5.4 Technology and System-Wide Requirements 104

6.6 Project Success Evaluation 105

6.6.1 Analog Front End and PCB 106

6.6.2 FPGA Datapath and Firmware 106

6.6.3 Software and GUI 106

6.6.4 Overall Project 106

7. Administrative Project Aspects 108

7.1 Project Continuation and Future 112

7.2 Project Challenges 109

5

7.2.1 Project Scope and Complexity 109

7.2.2 Design Change Delays 109

7.2.3 Problems with Existing Project Materials 109

7.3 Non-Planned Activities 110

7.3.1 Major Analog Front End Changes at Beginning of ECE493 110

7.3.2 Development of the New Custom AXI Deserializer IP Core 110

7.3.3 Switch from Waveforms Live to Backup GUI 110

7.3.4 Response of Project to COVID-19 Pandemic 110

7.4 OSHO PCB BOM and Solution Cost Breakdown 110

7.6 Funds Spend 111

7.7 Man-Hours Devoted to Project 112

8. Lessons Learned 113

8.1 Additional Knowledge and Skills Acquired 113

8.2 Team Experience 114

8.2.1 Teamwork and Team Environment 114

8.2.2 Project Management and Scheduling 114

9. References 115

9.1 Overall Project References 115

9.2 Analog Front End References & Datasheets 115

9.3 PCB References 116

9.4 FPGA References 117

9.5 Software References 117

10. Appendix A: Project Proposal (ECE 492) 119

1. Executive Summary 121

2. Problem Statement 122

2.1 Motivation and Identification of Need 122

2.2 Market Review 123

3. Approach 126

3.1 Problem Analysis 126

3.1.1 Problems to be Addressed 126

3.1.2 High Commercial Cost 127

3.1.3 Bandwidth and Sampling Speed 127

3.1.4 Special Features and Ease of Use 127

3.2 Our Preferred Approach 127

3.2.1 A Modular Solution 127

3.2.2 The Analog Front-End 128

3.2.3 The Processing Subsystem 128

3.2.4 The Web-Based GUI 129

3.2.5 Benefits of this Approach 129

6

3.3 Alternative Approaches 130

3.3.1 Overview 130

3.3.2 One vs. Multiple ADCs 130

3.3.3 Using a MPSoC Development Board vs. a Single Board Solution 130

3.3.4 A Web-Based GUI vs. Physical Controls and On-Device Display 131

3.4 Introduction to Background Knowledge 131

3.4.1 Overview 131

3.4.2 Oscilloscope Specifications 131

3.4.3 High-Speed Analog Front End 132

3.4.4 High-Speed PCB Design 133

3.4.5 FPGA Programmable Logic 133

3.4.6 Web Server 134

3.4.7 Web Client & Graphical User Interface(GUI) 134

3.5 Requirements Specification 134

3.5.1 Mission Requirements: 134

3.5.2 Operational Requirements: 134

4. System Design 136

4.1 System Functional Decomposition 136

4.1.1 Level Zero 136

4.2.2 Level One 137

4.2.4 Level Two 138

4.2 System Architecture 142

4.2.1 Physical Architecture 142

4.2.2 Overall System Architecture 142

5. Preliminary Experimentation and Testing Plan 143

5.1 Overview 143

5.2 Internal Systems Testing 144

5.2.1 Attenuator 144

5.2.2 Low-Noise Amplifier (LNA) 144

5.2.3 Variable Gain Amplifier (VGA) 144

5.2.4 Phase-locked loop 144

5.2.5 Firmware testing 144

5.3 High Level System Testing 145

5.3.1 External Trigger System 145

5.3.2 Input variation 145

5.3.3 Frequency Sweep 145

5.3.4 Sampling rate 145

6. Preliminary Project Plan 146

6.1 Overview 146

6.2 Allocation of Responsibilities 147

7. Potential Problems 148

7

7.1 Required Skills Training 148

7.2 Risk Analysis 148

8. Citations and References 149

11. Appendix B: Design Document (ECE492) 152

1. Problem Statement 156

2. System Requirement Specifications 156

2.1 Mission Requirements: 156

2.2 Operational Requirements: 156

2.2.1 Input/Output Requirements 156

2.2.2 External Interface Requirements 156

2.2.3 Functional Requirements 157

2.2.4 Technology and System-Wide Requirements 157

3. System Decomposition & Architecture 157

3.1 Level Zero Decomposition 158

3.2 Level One Decomposition 158

3.3 Level Two Decomposition 159

3.3.1 Analog Input Signal Preconditioning Stage/Function 159

3.3.2 Analog to Digital Conversion Stage/Function 160

3.3.3 ADC Sampling Clock Generation Stage/Function 161

3.3.4 Data Buffering and Routing Stage/Function 162

3.3.5 Data Processing and Hosting System 163

3.3.6 User Interface 164

3.4 Overall System Architecture 165

3.5 Physical Architecture 166

4. Background Knowledge Used in Design 167

4.1 Analog Front-End 167

4.1.1 Attenuator Design: 168

4.1.2 Low-Noise Amplifier (LNA): 169

4.1.3 Variable Gain Amplifier (VGA): 170

4.1.4 Anti-Aliasing LPF: 171

4.1.5 Phase-locked loop(PLL): 171

4.1.6 Analog to Digital Converter(ADC): 172

4.2 FPGA Datapath and Firmware 173

4.2.1 Zynq Architecture 173

4.2.2 Advanced eXtensible Interface (AXI) 174

4.2.3 FPGA Datapath 175

4.3 Server and GUI 176

4.3.1 Server and Back-End Software 176

4.3.2 GUI 176

5. Detailed Design 178

8

5.1 Analog Front-End Schematics 179

5.1.1 Power Circuitry 1 179

5.1.2 Power Circuitry 2 180

5.1.3 Power Circuitry 3 181

5.1.4 Power Circuitry 4 182

5.1.5 Input Attenuation Stage for Analog Inputs (note: page cropped for visibility)
 183

5.1.6 Amplification and Filtering Stage for Analog Input 1 (note: page cropped for
visibility) 185

5.1.7 Amplification and Filtering Stage for Analog Input 2 (note: page cropped for
visibility) 188

5.1.8 ADC Schematics 190

5.1.9 PLL Schematics 191

5.1.10 Ultra 96 SoC Connectors 192

5.2 Analog Front-End Component Selection 193

5.2.1 Switching Circuit Elements 193

5.2.2 Phase Locked Loop 194

5.2.3 Variable Gain Amplifier 194

5.2.4 Low Noise Amplifier 195

5.2.5 Analog to Digital Converter 195

5.3 FPGA Datapath Design 197

5.3.1 Bit Clock Alignment 197

5.3.2 Frame Clock Alignment 199

5.3.3 Post-Deserialization 199

5.4 Software Design and Models 200

6. Prototyping & Early Testing Progress Report 205

6.1 Analog Front-End HACD Board Testing 205

6.1.1 10:1 Attenuator Path Simulation 205

6.1.2 20:1 Attenuator Path Simulation 206

6.1.3 LPF simulation (500MHz cutoff frequency) 207

6.1.4 LPF simulation (250 MHz cutoff frequency) 208

6.2 VHDL Firmware Testing Progress 208

6.2.1 Vivado Project and Xilinx Zedboard Testing 208

6.2.2 Jupyter Notebook Prototyping Progress 209

6.3 Software Development & Waveforms Live Cloning 210

7. Testing Plan for ECE493 211

7.1 Analog Front-End Testing 211

7.1.1 Attenuator 212

7.1.2 Low-Noise Amplifier (LNA) 212

7.1.3 Variable Gain Amplifier (VGA) 212

7.1.4 Phase-locked loop 212

7.2 VHDL Firmware Testing 212

7.2.1 Pynq Linux Port Testing 212

9

7.2.2 Firmware Testing 212

7.2.3 Jupyter Notebook Testing 213

7.3 Server Testing & GUI Testing 213

7.4 High-Level Overall System Testing 214

7.4.1 Input variation 214

7.4.2 Frequency Sweep 214

7.4.3 External Trigger System 214

7.4.4 External Clock Input 214

8. Task Allocations for Remainder of Project 214

8.1 Analog Front-End 214

8.2 PCB Design 215

8.3 FPGA & Firmware Development 215

8.4 Server Back-End & GUI Web Client Development 215

9. Schedule for Remainder of Project 217

10. References 218

12. Appendix C: OSHO PCB Bill of Materials 220

10

3. Problem and Solution Approach

3.1 Problem Statement

Digital oscilloscopes are indispensable tools for many engineering and scientific

industries. Digital oscilloscopes “enable the user to debug, visualize and measure

various signals,” which is especially crucial in lab settings where circuit testing and

signal measurements are performed. However, in many applications such as RF

design, high frequency signals can not be measured with standard low-cost

oscilloscopes. This is especially a problem for students, hobbyists, and small

engineering firms where funds are very limited. This not only a hindrance to the

progress of their work, but also a detriment to education and innovation overall.

Currently, oscilloscopes capable of high frequency analysis typically cost upwards of

$6,000. Even with these high costs, these oscilloscopes often lack various features and

usability aspects such as lack of external clock synchronization and a user friendly data

download process. Although there are a few low cost options available on the market,

their performance is extremely limited. Therefore, our project’s motivation is to create a

low-cost, open-source, and high-speed oscilloscope solution that will be able to

overcome these performance and financial limitations.

3.2 Proposed Design Solution

 Our proposed solution is to create a system with three main components, an

analog front end (in the form of a high speed custom PCB), a processing system (in the

form of a MultiProcessor System on Chip (MPSoC) development board, and a user

interface (in the form of of a web-based GUI). This solution Figure 2 below shows how

this solution would interact with users, external inputs, and with itself in the form of the

three main components of the system.

11

Figure 2: Proposed System Model

The analog front-end subsystem will primarily consist of the analog circuitry to

precondition the incoming analog signals so that they may be optimally digitized by the

ADC. The tasks that will be performed by the conditioning circuitry will include:

attenuation, anti-aliasing filtration, variable gain amplification, coupling selection (AC or

DC), DC offset selection, circuit overvoltage protection, and ADC clock

generation/synchronization. Configurable aspects of this system such as DC offset will

be configured through SPI commands from the processing subsystem. Once the analog

inputs are conditioned properly, they will then be digitized by the ADC and sent to the

processing subsystem. This front-end circuitry will be routed on a custom high-speed

PCB that will be designed by our team. This board will be able to interface with the

processing system through high and low speed mezzanine connectors.

The processing subsystem will consist of a MPSoC development board which

includes programmable logic in the form of an FPGA as well as an ARM-based

processor. The specific development board that will be used for this application will be

the Avnet Ultra96-V2 which uses a Xilinx Zynq UltraScale+ MPSoC ZU3EG A484, has

2GB of LPDDR4 memory, and provides essential integrated peripherals such as

USB3.0, an SD card slot, WiFi, and Mini DisplayPort. The programmable logic portion of

this board will be used in conjunction with custom intellectual property (IP) blocks that

will buffer the incoming raw digital data from the ADC and transform it to a standardized

data packet format. These packets will then be sent to the system’s main memory

where processing can be conducted through an ARM processor that hosts a linux-

based web server. The end user will be able to view and download waveform data and

system status information as well as send configuration commands through this

webserver.

The final foundational aspect of our preferred approach is a web-based GUI

subsystem that will act as a client to the web server running on the Ultra96 board. This

subsystem will act as the primary interface between the user and the overall system.

12

This subsystem will allow the user to enter system configuration commands (such as

toggling between AC/DC coupling, configuring waveform triggers, etc) and

download/display captured waveform data. This custom user interface should be

responsive, intuitive, and effectively display captured waveform data. This aspect of the

project will likely be programmed in Angular, and implemented incrementally, providing

basic features at first, but adding more advanced features as time permits.

Providing a modular design proves to be the optimal solution to the problem

because it will minimize cost while providing excellent analog capture performance.

Additionally this approach will also provide a good basis for further open-source

development.

This modular solution optimizes low-cost for multiple reasons. Much of the

hardware cost will be absorbed by the fact that an external computer will be utilized for

user interface. Furthermore, the front-end circuitry will be designed with cost-effective

parts. For instance, the chosen ADC for this project is the HMCAD1511, which offers

excellent performance for its price. Additionally, the effective price of the system is

reduced if a compatible FPGA development board is already owned by the end user.

As stated earlier, this approach ensures that the system will be an excellent

platform for future open source development. It will consist of open source software as

well an open source development board, allowing the end users to customize it to their

needs. The fact that the analog front-end is separate from the development board

means that the front-end board could be used with other compatible MPSoC

development boards (with minimal firmware porting). Additionally, the GUI for this

system can also be customized and improved by users in an open source fashion.

3.3 Project Mission Requirements

Below is an outline of the project mission requirements for our project that were

outlined at the beginning of the project. They served as an outline for what will define

success in executing the project.

● The project shall design an oscilloscope that is an open source, low-cost

alternative to commercially available oscilloscopes, and a high performance,

feature rich alternative to existing open-source oscilloscopes.

● The project shall design a custom high-speed PCB that will easily interface with

an Ultra96-V2 development board, as well as develop the supporting firmware

and graphical user interface for the device.

3.4 System Operational Requirements

Below is an outline of the proposed system operational requirements for our

solution that were outlined at the beginning of the project. They served as an outline for

what will define a complete and functional system.

13

3.4.1 Input/Output Requirements

- The device shall have at least two analog input channels, one external clock

input, and one external trigger input.

- The system will receive control and configuration commands as well as be able

to responsively display captured data through a web client with an intuitive and

responsive GUI.

3.4.2 External Interface Requirements

- The device will provide support for 1x and 10x passive probe inputs (50Ω and

1MΩ).

- Bayonet Neill–Concelman (BNC) connectors shall be used for the analog inputs,

external clock input, and external trigger inputs.

- The system shall interface with a network capable computer through USB3.0 or

WiFi.

- The system shall receive power from an external 5V DC power supply.

3.4.3 Functional Requirements

- The analog-to-digital converter (ADC) shall sample one input channel at 1 GSPS

or two channels at 500 MSPS.

- The device will be able to measure analog inputs with a maximum input voltage

of ±10V.

- The input analog circuitry shall achieve a 500 MHz bandwidth.

- The ADC shall be able to be configured to sample using either the FPGA clock or

an external clock input (between 30 MHz and 1 GHz).

- The ADC output sample resolution shall be no less than 8 bits.

- The system’s data capture shall have the ability to be triggered using both

configurable edge triggers as well as a configurable external trigger input.

3.4.4 Technology and System-Wide Requirements

- The front-end device shall use a single 1GSPS ADC chip.

- The ADC data shall be processed and hosted on an onboard Linux web server

using a Xilinx Zynq UltraScale+ multiprocessor systems-on-chip (MPSoC)

aboard the Ultra96 Board.

- The analog front-end custom PCB should interface with the Ultra96 Board for

data processing.

- Target FPGA development board shall have device driver firmware for interfacing

with the ADC, and routing and storing ADC sample data in a memory device.

- Front-end programmable devices will be controlled using the Serial Peripheral

Interface (SPI) or other serial protocol.

- The custom high-speed PCB and Ultra96 devices will interface with each other

via the Ultra96’s high-speed and low speed mezzanine connectors.

- The device should be low-cost ($600 or less).

14

3.5 Alternative Design Approaches

There are many possible solutions to the problem of providing a low-cost, high-

speed, and feature-rich oscilloscope. Although the approach discussed above is the one

that was determined to provide the best compromise between cost, performance, and

features, it was still important to consider some alternative approaches at the beginning

of this project. This ensured that our preferred approach was the optimal solution and as

well as had backup approaches in case problems arose with our preferred approach.

Alternative approaches that were considered are: using multiple ADCs, incorporating

the MPSoC onto the same board as the analog front-end, and incorporating a display

and physical controls as part of the device hardware.

3.5.1 One vs Multiple ADCs

In the development of our solution, having two analog input channels was listed

as a key requirement as this provides a much more useful device. However, the issue

with this is that there is no low-cost ADC that supports two channels at 1GSPS each.

According to our preliminary research, the Analog Devices HMCAD1511 ($64) is the

only low-cost ADC that supports 1GSPS [17]. This device can support multiple

channels, but does not provide 1GSPS for each channel. Instead, the sampling rate is

reduced immensely as more channels are utilized. This raised the question of whether

multiple ADCs should be used to provide support for multiple analog inputs. It was

concluded that due to cost limitations, this was not feasible. Due to this, we chose to

utilize only one HMCAD1511 ADC, but offer a mode where the user can configure the

analog front-end to handle two inputs at a lower sampling speed of 500MSPS.

Additionally, data bandwidth issues were also cited as a reason to use lower sampling

speeds with multiple input channels. However, if this proves to be overly complex and

unexpectedly expensive, using separate ADCs for each channel may be reconsidered.

3.5.2 Using a MPSoC Development Board vs. a Single Board Solution

As the hardware for the Utra-96-V2 development board is open source, it was

questioned whether or not this hardware should be incorporated into the front-end

custom PCB to provide a more portable, single board solution. However, this was

rejected in favor of using a development board that interfaces with the analog front-end

through mezzanine connectors. This is because of two primary reasons. The first being

that this provides unnecessary complexity to the hardware development and adds to the

cost of production. Secondly, providing a single board solution would be a drawback to

our target market of academics and hobbyists as they might only require the front-end

device without our firmware for their specific application. Furthermore, they might prefer

the multi-board solution so that the Utra-96 V2 remains reusable for different

applications.

15

3.5.3 A Web-Based GUI vs. Physical Controls and On-Device Display

The last major alternative approach that was debated was the use of a graphical

user interface vs physical controls and an incorporated display such as those in

traditional bench oscilloscopes. It was decided that the web-based GUI solution should

be favored over physical controls and on-device display. This was not only chosen

because it minimizes the cost of the device, but also because it allows us to continually

add more advanced controls to the device though software updates. Additionally, most

users of this device would likely own a network capable computer which has a nicer

display than any low-cost physical display we could include in our device. Furthermore,

if a network connected device is used as the interface for this oscilloscope, it would

ease the process for downloading captured data for external processing. However, the

physical controls/display approach may prove a useful alternative for specific device

controls for which a software approach may be too inconvenient.

3.6 Team Member Contributions

In order to successfully implement our chosen solution, each project team

member was assigned specific responsibilities related to the project at the start of this

project. Each of these assignments were devised so that they would align with the team

member’s abilities, interests, and experience. A summary of each member's roles and

contributions is outlined below.

3.6.1 Afnan Ali

- Project Lead for GUI

- Waveforms Live GUI development, debugging, testing

- SimplePlotter development, debugging and testing

3.6.2 Umair Aslam

- Project lead for FPGA Logic Design

- HACD firmware and Jupyter Notebook code debugging

- HACD firmware testing and revision

- OSHO Deserializer IP core development

3.6.3 Timothy Bullock

- Project Manager, responsible for major administrative aspects of project

- Project lead for printed circuit board layout and design

- Revisions to analog front end circuitry

- Selection of analog front end components and BOM generation

- Layout and routing of high speed PCB

- Responsible for component and PCB acquisition

16

3.6.4 Zaeem Gauher

- Project lead for Front-end Analog Circuit Design

- HACD board testing and revision

- Initial schematic design for analog front end circuit

- PCB assembly of OSHO PCB

3.6.5 Evan Hoffman

- Project lead for Server development

- Create server GUI workflow

- Assist ultra96 server discovery

17

4. High Level Design
4.1 Level Zero Functional Decomposition

In order to provide a detailed overview of the system architecture for our solution,

it is best to start with a functional decomposition of the system so that the system’s

functions can be related in a hierarchical manner. This decomposition will provide a top

level overview of the system, then work downward to identify each of the main

processes of the system, then continue downwards to identify the sub functions of each

of these processes. The level zero decomposition provides a top level overview of the

overall solution; it shows the overall system inputs and outputs. For our system, this is

shown below in figure 3. It shows that the overall system will take in two analog inputs,

an external clock input, an external trigger output, user commands, and DC power. The

system then outputs status information and digitized waveform data.

Figure 3: Level Zero Functional Decomposition of System

4.2 Level One Functional Decomposition

After the system is understood at the highest input/output level (level zero), the

next step of functional decomposition is to identify the top level processes of the

system. For our system this would include the analog front end power architecture,

analog signal preconditioning, analog to digital conversion, ADC clock generation, data

deserialization, data processing and hosting, and finally, display and interface

processing. This is summarized in the level one diagram shown below (Figure 4). Once

each of these main processes is identified at this level, they can then be further

decomposed and discussed at the level two decomposition level. It is worth noting that

from now on, the background color of each functional diagram will have a green, red, or

blue background corresponding to which of the three main components each function is

18

located on. As shown below the green background will correspond to the analog front

end PCB, red to the Ultra96 development board, and blue to the user’s networked

computer. Additionally, red arrows will correspond to the flow of power, green arrows, to

the external inputs to the system, yellow arrows, to the flow of control via the serial

peripheral interface (SPI), blue arrows will represent outputs to the system, and finally,

gray arrows will reprepresent other internal data and control signals.

Figure 4: Level One Functional Decomposition of System

4.3 Level Two Functional Decomposition

Once the functionality of the system is understood at the level one demoposition

level, the next step to providing a detailed overview to the system design is to take each

of these top level processes and decompose them into their subprocesses. This is done

for each of the top level processes shown in the level one functional architecture block

diagram above (Figure 05). From each of these level two decompositions, we can then

easily explain in great detail the hardware circuits, FPGA IPs, and software components

that make up our solution’s design; this will be done in section 5, Technical Design.

4.3.1 Analog Input Preconditioning Stage

The purpose of the analog input signal preconditioning stage/function is to take in

the analog inputs and modify them so they can be most optimally digitized by the ADC.

The functions that occur in this main process are: overvoltage protection, coupling

selection, input impedance control, and offset generation, variable attenuation and

amplification, and finally passing through a low pass anti-aliasing filter. The input signals

are first passed though overvoltage protection to protect the remainder of the circuitry.

These single ended signals are then modified by selecting DC or AC coupling, then put

through a circuit to modify the input impedance of the analog inputs (creating either a

50Ω or 1MΩ input impedance as seen by the external circuitry). Next, the analog are

attenuated so that the signals can fit within the full-scale range (FSR) of the ADC, and

19

depending on the effective DC component of the measured signals, the desired offset is

added to the signal. Next, the signals are converted to a differential signal and are

variably amplified so their amplitude more accurately fits the FSR of the ADC. Finally,

the signals are sent through a low pass filter to reduce high frequency noise and limit

the signals to the Shannon-Nyquist frequency dictated by the ADC maximum sampling

rate. Configurable aspects of this system such as DC offset will be configured through

SPI commands from the processing subsystem. This stage is located on the custom

high-speed PCB that our team has designed.

Figure 5: Level Two Decomposition: Analog Input Preconditioning Stage

4.3.2 Analog to Digital Conversion Stage

After the signals have been preconditioned, they are then sent to the analog to digital

conversion stage/function. This stage is the simplest stage as it only consists of one

main function and component, the high sampling speed ADC. This stage takes the

preconditioned analog signals and outputs digital LVDS signals representing the

digitized sample data. This digitized data is sent to the data deserialization stage in the

programmable logic portion of the Ultra96 development board. This stage is also

located on the custom high-speed PCB that has been designed by our team.

20

Figure 6: Level Two Decomposition: Analog to Digital Conversion Stage

4.3.3 ADC Sampling Clock Generation Stage

Another major function of the overall system is to generate the clock signal for

the ADC to sample with. In this stage/function, either the FPGA clock, the external clock

input, or a crystal oscillator reference are toggled between as an input into the phase

locked loop (PLL) which matches or multiplies the frequency of the input signal to

generate a low jitter clock signal for the ADC. This is the third stage/function that is

located on the team’s analog front end custom PCB.

Figure 7: Level Two Decomposition: ADC Sampling Clock Generation Stage

4.3.4 Power Architecture Stage

21

 The final stage that is located on the analog front end PCB is the power

architecture stage. The purpose of this stage is to power the various components on the

analog front end. In this stage/function DC power is provided from an external DC

power supply. This power is then checked for overvoltage to protect the following

circuitry, filtered to reduce common mode current and noise, and then

regulated/converted in order create all of the required voltages for the remainder of the

analog front end (such as 5V for the relays and input buffers, 3.3V for the PLL circuitry,

etc.).

Figure 8: Level Two Decomposition: Power Architecture Stage

4.3.4 Data Deserialization Stage (FPGA Datapath)

The next stage/function of the system is the Data Deserialization Stage. The

purpose of this stage is to receive data from the ADC, deserialize the data, and create

64-bit AXI packets which can then be loaded into main memory via direct memory

access (DMA). This stage will also process the external trigger input in order to

generate necessary control signals and stop the flow of digitized waveform data into

memory. This stage will be implemented using the programmable logic (PL) portion of a

MPSoC development board. More Specifically, this stage will be implemented on the

Xilinx Zynq Ultrascale+ MPSoC ZUEG A484 that is on the Ultra96 V2 board and using

custom and Xilinx provided Intellectual Property (IP) cores connected using the

Advanced eXtensible Interface (AXI). The figure below shows the data deserialization

stage (to the left) as well as the data hosting and processing stage to the right in order

to show how the deserialized data gets sent to processor memory.

22

Figure 9: Level Two Decomposition: Data Buffering and Routing Stage

4.3.5 Data Processing and Hosting Stage (Server and Back-End Software)

After the output data from the adc is stored in main memory, the next thing that

must happen to it is that it must be processed and hosted on a web server running on

the ARM processor portion of the MPSoC. This ARM processor will be running a server

which will host the web server that communicates with the user interface which will be

implemented as a web client on a remote computer. This processor will also be running

additional software in order to generate the commands to control the various

components on the custom analog front-end via SPI, perform basic processing on the

waveform data such as downsampling and converting the data into the desired protocol

for the webserver, and finally to communicate with and control the PL portion of the chip

via the AXI interface. This stage is shown on the right portion of the diagram below.

Figure 10: Level Two Decomposition: Data Processing and Hosting Stage

4.3.6 Graphical User Interface (GUI) Stage

The final stage/function that is required for our system is the user interface so

that the user can control the system and view the digitized waveform data. This stage

will consist of a webclient that will be running in a web browser running on the user’s

network capable computer. This web client will communicate with the server running on

the Ultra96 in order to pass control and configuration information to the system and

output waveform and status information.

23

Figure 111: Level Two Decomposition: Graphical User Interface (GUI) Stage

4.4 Overall System Architecture

In Figure 12 below is a diagram of the main system components integrated into

the overall system architecture. It can clearly be seen that the system will be divided

into the three main subsystems: the analog front-end, the processing subsystem, and

the web-based GUI. This diagram serves as the model in which data, power, and

control flow throughout the system.

24

Figure 12: Overall System Architecture

4.5 Physical Architecture

An alternative representation of the system architecture is the physical

architecture. The physical architecture consists of a hierarchical diagram that shows the

main configuration items that make up the system. This includes major hardware and

software components. This serves as a hierarchical overview of the major physical

resources that will be required in our solution.

25

Figure 13: System Physical Architecture Architecture

5. Technical Design

26

5.1 Analog Front End

5.1.1 Discussion of Design

 5.1.1.1 Power Architecture

The overall purpose of the power architecture of the analog front-end

circuit is to essentially produce all the supply voltages required by various circuit

elements used in the design. However, this process is a little more involved than

it sounds. The input to the power circuitry is a 5V external power supply that can

be received in two different ways. Through the use of a switch, the user can

choose between a 5V external supply (through a barrel jack connector) or a 5V

supply from the Ultra96-V2 board itself. It should be noted that the power

supplied from Ultra96-V2 is only viable for a max current consumption of 3A. This

5V input is then filtered to remove any voltage spikes that might harm circuit

elements using a common mode filter. High frequency noise is also removed

throughout the overall circuit using ferrite beads. To further protect circuit

elements, overvoltage protection is provided at the initial power supply input

using an overvoltage protection controller. Lastly, various voltage regulators are

used to produce any intermediate voltages and supply voltages for all chips in

the circuit.

 5.1.1.2 Analog Preconditioning Circuitry

It is extremely important to “condition” the input signals before they are

digitized using the ADC. This not only protects the ADC from damage but also

ensures that the signal does not contain unacceptable noise. There are various

other aspects of signal conditioning that are discussed hereafter. The two analog

input channels have a BNC connector interface and include gas discharge tubes

at each input to protect against fast rising transients that could damage other

chips. High speed relays are used to select between AC and DC coupling

depending on if the DC component needs to be removed from signal. Another

high speed relay is required for each signal to select between a 50 ohm and 1

Mohm impedance path. The 1 Mohm path is selected when a probe is being

used to measure the signal. To increase the input signal range, a 20:1 pi

attenuator is used to attenuate the signal. There is also a 1:1 path for each

channel that can be selected for smaller signals using yet another high speed

relay. The analog circuitry also contains a signal offset generation capability

through the use of a digital potentiometer which is configured through Serial

Peripheral Interface(SPI). Although many oscilloscopes use an analog

potentiometer to control the offset, our design allows the user to control offset

from the GUI itself. The signal preconditioning stage uses two amplifiers in each

channel to amplify the signal such that their amplitude fits well within the full

scale range of the ADC. This is done through the use of a low noise amplifier

(LNA) and a variable gain amplifier (VGA). The LNA ensures that the signal is

amplified without the noise being amplified along with it. The VGA (controlled via

27

SPI) fine tunes the gain/attenuation of the LNA output before it is sent to the

ADC. Finally, the signals are sent through a 7th order Chebyshev low pass

filter(LPF) to reduce high frequency noise and limit the signals to the Shannon-

Nyquist frequency dictated by the ADC maximum sampling rate. The cutoff for

the LPF in one channel mode is 500MHz as that is the bandwidth of the ADC.

However, in two channel mode, the bandwidth is essentially split in half so two

250Mhz LPFs are utilized.

 5.1.1.3 Sampling Clock Generation Circuitry

Another major function of the front-end circuit is to generate the clock

signal for the ADC. With this circuitry, either the FPGA clock, the external clock,

or the crystal oscillator is multiplexed as an input into the phase locked loop

(PLL) which matches or multiplies the frequency of the input signal to generate a

low jitter clock signal for the ADC. The PLL is configured through SPI by the

software aspect of this project.

5.1.1.4 ADC Circuitry

After the signals have been preconditioned, they are then sent to the

analog to digital converter. The ADC chip takes the preconditioned analog

signals and outputs digital LVDS signals representing the digitized sample data.

This data is sent to the data and buffering and routing stage on the FPGA board.

The trace lengths of the digital LVDS outputs need to be matched on the PCB in

high frequency applications for timing purposes.

5.1.1.5 Other Analog Front End Circuitry

 There are a few other front-end analog circuitry elements that are worth

noting. One of these elements is the bidirectional voltage level translator used to

convert the 1.8V logic signals from the Ultra96-V2 to 3.3V logic levels for the

various chips in the circuit and vice versa. These logic signals are mainly the

Serial Peripheral Interface (SPI) signals used to configure elements such as the

VGA, PLL, ADC, potentiometer, etc. There are also various LEDs used in the

front-end circuit to indicate between AC vs. DC coupling, impedance, paths, etc.

This not only improves user-experience but also makes debugging easier. Two

important digital connectors used in the circuit are the high speed and low speed

mezzanine connectors. Both of these connectors are used as an interface

between the front-end PCB and the Ultra96-V2 board. The low speed connector

is used as an interface for all control and SPI signals whereas the high speed

connector is used to route the ADC data to the FPGA.

28

5.1.2 OSHO Board Schematics

29

30

Figure 14: Schematic Cover Page

31

 5.1.2.1 Power Circuitry 1

32

33

Figure 15: Power Architecture Schematics (Page 1 of 3)

34

 5.1.2.2 Power Circuitry 2

35

36

Figure 16: Power Architecture Schematics (Page 2 of 3)

37

 5.1.2.3 Power Circuitry 3

38

39

Figure 17: Power Architecture Schematics (Page 3 of 3)

40

 5.1.2.3 Analog Front End

41

42

Figure 18: Analog Front End Schematics Hierarchical Page

43

 5.1.2.4 Channel A Input Stage

44

45

Figure 19: Analog Input for Channel A Schematics

46

 5.1.2.5 Analog Offset Generation

47

48

Figure 20: Analog Input Offset Generation Schematics

49

 5.1.2.5 Channel B Input Stage

50

51

Figure 21: Analog Input for Channel B Schematics

52

 5.1.2.6 Low Noise and Variable Amplifiers

53

54

Figure 22: Low Noise Amplifiers and Variable Gain Amplifiers Schematics

55

 5.1.2.7 Low Pass Filters

56

57

Figure 23: Low Pass Filters Schematics

58

 5.1.2.8 Analog-Digital-Converter (ADC)

59

60

Figure 24: ADC Schematics

61

 5.1.2.9 Sampling Clock Generation

62

63

Figure 25: Sampling Clock Generation Schematics

64

 5.1.2.10 Digital Connectors

65

66

Figure 26: Digital Connector Schematics

5.2 PCB Design

5.2.1 High Level Layout Approach

 The printed circuit board layout was conducted in order to provide best

electromagnetic, thermal, and efficient performance for the board. In order to

accomplish this, considerations were taken in impedance matching, noise control,

mixed signal design, heat dissipation, length matching, and physical constraints

following PCB design best practices. The following sections provide a brief overview of

these design principles and illustrate the final board design.

5.2.2 Controlled Impedance Design

Impedance controlled design refers to designing PCB traces with specific

physical parameters such as trace width and dielectric values so that the trace has a

specific characteristic impedance. As shown below in figure 27, a trace’s characteristic

impedance refers to the effective resistance and reactance per unit length. These

values typically vary by depending on several factors including dielectric thickness,

dielectric type, trace width, trace spacing, and even whether there is a solder mask on

top of the trace. The values can be derived using electromagnetic equations, but are

typically found using calculators as they are typically well established.

Figure 27: A PCB Coplanar Waveguide Trace and Equivalent Circuit

Controlled impedance design is critical when performing high speed and

precision PCB layout as when any traces are longer than 1/10th of the minimum

wavelength of the signals that the trace carries must be treated as a transmission line

67

with a characteristic impedance equal to the transmitter’s output impedance and the

receiver's input impedance. Otherwise, if there is an impedance miss-match, signal

power will be reflected back to the source transmitter causing a standing wave and a

loss in signal integrity. Typically, in RF applications, traces are designed to a common

characteristic impedance of 50 Ohms. In our PCB, high speed single-ended analog

signals are designed to this impedance, and high speed differential signals (both analog

and digital) are designed to an odd mode impedance of 100 Ohms. This was achieved

by designing the widths and spacing of traces to match these values for chosen PCB

stackup.

Originally these values were calculated using several different professional PCB

calculators, however, it was discovered that these calculators do not account for the

drop in characteristic impedance that via stitching and soldermasks create. Therefore

an electromagnetic simulator was used to determine the appropriate width of the

differential and single ended coplanar waveguides. A sample of these simulations can

be seen below and were compared against the results of physical tests done by other

electrical engineers. Using this method proved to be much more accurate in determining

the characteristic impedance of the traces than just using PCB calculator tools.

68

Figure 28: A PCB Single and Differential Coplanar Waveguide Trace Simulations for

Selected Stackup (Single Ended - Top Left, Differential - Top Right, Simulation Result

for Single Ended - Bottom)

5.2.3 Noise Control and Analog/Digital Separation

In mixed signal, precision circuit, and high speed PCB design, many

considerations have to be taken into account in order to ensure that the circuit performs

to specification. Otherwise electromagnetic interference (EMI) and other

electromagnetic phenomena can have a great effect on the circuit performance. One

main consideration is that the ground must be as low impedance as possible to create

an accurate common ground voltage that is not affected by large return currents.This

69

typically means using a continuous ground plane. Hower, slits or separations may be

used to protect large or noisy return currents from precision circuitry or to separate

analog and digital planes in certain applications. An example of this can be seen below

in figure 29 where the precision analog circuitry is protected from the large return

current voltage drops in the ground plane using a slit.

Figure 29: Example of Ground Plane Slit

Another important consideration is to ensure that return currents are taken into account.

This includes properly separating the digital and analog components of a circuit,

ensuring that traces do not go over ground reference plane discontinuities, and that

return currents (both AC and DC) do not cause a ground loop like the one shown in the

figure below. Ground loops make the circuit susceptible to noise as it acts like a large

inductor where noise within the loop can influence the circuit.

Figure 30: Example of Ground Loop

Another major consideration in the EMI aspect of mixed signal PCB design is proper

separation between analog and digital circuits. This includes filtering between analog

70

and digital supplies with ferrite beads, the use of proper decoupling capacitors close to

power pins, an seperation of digital and analog grounds (all though this can be avoided

if components are placed appropriately in a star-ground formation). The figure below

illustrates how a mixed signal component’s power should be decoupled, and filtered to

avoid digital noise from affecting the analog circuitry.

Figure 31: Analog and Digital Separation and Filtering for Mixed Signal Component

This list of EMI aspects is not meant to be a thorough overview of these

concepts, but rather provide an overview of the types of EMI aspects that were taken

into account when producing the final PCB layout. Whole textbooks can be written on

this subject!

5.2.4 Differential Pairs and Length Matching

Another equally important aspect of high speed PCB design is trace length

matching and differential pair tuning. This is because, as shown if figure ## below, any

difference in length of high speed traces can cause a delay in the signal to arrive at its

destination with respect to another signal. This can occur both within a differential pair

(intra-pair) and across different pairs and races (inter-pair/trace). Ensuring that there is

no skew is critical in the ADC output LVDS differential pairs because any deviation of

the signal can cause misreads by the FPGA reception buffers, and is also important in

the analog paths before the ADC because any artificial delay will cause each channel to

be measured at different times. Additionally, if there is skew when the analog signals

are differential, this can cause the analog signals to have errors at the receiver and be

more susceptible to noise.

71

Figure 32: Intra-Pair and Inter-Pair/Trace Length Skew and example of resulting signal

delay

To accommodate differences in pair lengths, differential and critical single ended traces

were routed with serpentines, and inter-pair tuning adjustment following length matching

best practices. An example of this on our board is shown below. All pairs that were

length matched were matched to a skew of less than 0.05 mm.

Figure 33: Differential Pair Length and Skew Tuning Example on ADC LVDS Outputs

5.2.5 Heat Dissipation

 Another design consideration that was taken into account while performing

routing and layout was heat dissipation. Power hungry chips such as the ADC and PLL

which use a lot of power generate a lot of heat. This heat must be properly dissipated in

order for the heat not to cause damage to the components. There are several methods

of doing this but some of the methods that were employed in this design were using

thermal pads attached to ground, using thermal vias attached to ground (as shown

below in Figure 36), and using exposed thermal copper from which can be used to

radiate thermal energy or even attach an additional heat sink to if needed (also shown

below in Figure36).

72

Figure 34: Thermal Vias and Exposed Thermal Copper Pad

5.2.6 Ultra 96 Design Constraints and Physical Layout Limitations

The last major design consideration that went into the board’s design was the

physical constraints of the board. This included location of Ultra96 connectors, location

of Ultra96 switches and tall components, physical board size, digital noise

consideration. In figure 37 below, shows the physical constraints of the ultra96,

including connector position, size and location of components may cause clearance

issues with our board. In figure 37 below, shows our board model mated with a model of

the Ultra96 board to ensure that there were no clearance issues with our layout.

73

Figure 35: OSHO Board - Ultra96 Development Board Mating

5.2.7 Select PCB Layers

Below is a listing of select views that illustrate the final PCB design. They provide

a clearcut representation of the design layers and board appearance. The final physical

board design was 145m (5.7in) by 75mm (2.9in), and was designed on a standard 4

layer 0.062” FR4-Stackup. The top layer consisted mostly of sensitive analog signals on

the left and noisy digital signals on the right. The upper-inner layer consisted of a

continuous ground plane. The bottom layer consisted of several power planes for each

power domain (3.3V, 5V, 1.9V, -1.25V, 3.75V, etc.). Finally, the bottom layer consists of

mostly digital signals. Most digital signals that extend into the analog portion of the PCB

are only active/noisy when not taking measurements.

 5.2.7.1 Top Silk Screen View

74

Figure 36: OSHO Board - Top Silk Screen View

 5.2.7.2 Top Copper Layer

Figure 37: OSHO Board - Top Copper Layer

 5.2.7.3 Top Inner Copper Layer (Ground Plane)

Figure 28: OSHO Board - Top Inner Copper Layer (Ground Plane)

75

 5.2.7.4 Bottom Inner Copper Layer (Power Planes)

Figure 39: OSHO Board - Bottom Inner Copper Layer (Power Planes)

 5.2.7.5 Bottom Copper Layer

Figure 40: OSHO Board - Bottom Copper Layer

76

 5.2.7.6 Bottom Silk Screen View (Flipped)

Figure 41: OSHO Board - Bottom Silk Screen View (Flipped)

5.3 FPGA Datapath Design

5.3.1 Datapath Overview

Figure 42: FPGA Datapath and the Processing System in Zynq Architecture

As shown in figure 42, the FPGA receives low-voltage differential signals (LVDS)

from the ADC. These include the serial data bits, the frame clock and the bit clock. The

frame clock (FClk) is a digitized and phase-shifted version of the ADC’s sample clock

while the high-speed bit clock (DCLK) is a 90° phase-shifted signal to the data. Data is

valid at both edges of the bit clock leading to a double data-rate (DDR) interface. The

low-voltage differential signals are buffered and then deserialized using the custom AXI

IP core. This data is then passed through a FIFO (first-in, first-out) buffer for clock

domain crossing from the ADC’s sampling clock frequency to the global FPGA clock

domain. The FIFO IP core uses the AXI stream protocol which does not need an

address channel and is always used to write data in one direction. Therefore, the AXI

Direct Memory Access (DMA) core is utilized for high-bandwidth direct memory access

77

between an AXI4-Stream target peripheral and the memory on the PS side. This data

stored in memory is then accessed through the processor and transmitted to a client for

plotting. Furthermore, a SPI IP core is used to send SPI signals to configure the ADC

and the AXI Interconnect IP core is used to connect all the memory mapped AXI IP

cores.

5.3.2 The Deserializer IP

Figure 43: Modules within the custom ADC Deserializer IP Core

As shown in figure 43, the LVDS signals from the ADC are buffered into the

FPGA. However, since the clocks and data pass through different routing resources,

they lose their alignment that is required to correctly deserialize the data. Therefore,

both the clocks need to be realigned. This is done by asserting the “re-align” signal to

the FPGA. Once they have been aligned, the clocks are then used to deserialize the

data. After deserialization, 8 samples, each with a resolution of 8-bits, are packed into a

64-bit AXI packet. This packet is then sent to the FIFO buffer for clock domain crossing

as mentioned in the previous section.

78

5.3.3 Bit Clock Alignment

Figure 44: Bit Clock Alignment Setup

The bit clock (DCLK) from the ADC is routed through an IDELAYE2 used in

variable mode to the input of a BUFIO and BUFR buffers. It also registers itself in the

ISERDESE2 using a delayed version of itself as a clock. This technique is used to

determine the position of the rising and falling edges of the bit clock. The Bit Clock

Phase Alignment state machine monitors the ISERDESE2 outputs and the deserialized

and parallel captured clock bits.

There are three possible ISERDESE2 output cases:

● The output data is random and changes on every clock cycle

● The output is all ‘1’s

● The output is all ‘0’s

 The output data is random when the internal bit clock and the external bit clock

are already phase-aligned and the random nature is caused by the clock jitter. In the

other two cases, the IDELAYE2 delay amount is varied so that the output from the

ISERDESE2 module becomes random and the bit clock is aligned to the original clock.

In addition, the ISERDESE2 module provided by Xilinx supports dual data rate-

(DDR) mode signals and can deserialize 8-bit words. The module also includes a built-

in bitslip operation that allows for the input data stream to be reordered. This operation

can be used to train the ISERDESE2 module to lock onto an expected / training pattern

output by the ADC as discussed in the next section.

79

Figure 45: Clock Skew through the Buffers

5.3.4 Frame Clock Alignment

Figure 46: Frame Clock Alignment Block Diagram

After the bit clock (DCLK) has been properly aligned, the frame clock pattern

discovery is begun. The LVDS frame clock from the ADC is a digitized version of the

sampling clock that is phase aligned with the data. As shown in figure 46, the

ISERDESE2 outputs are compared to a fixed value representing the expected frame

clock pattern, which is 0xF0 for an 8-bit ADC. If the outputs of the ISERDESE2 do not

match the expected value, a bitslip operation is carried out on the frame and data

signals. When this output is finally equal to the programmed pattern, the bitslip

operation is stopped and the data and frame clock signals within the FPGA are

considered valid. Next, the received data is aligned because it is shifted with the frame

80

signal. Lastly, the bit clock and frame clock signals are used to capture and deserialize

the data bits.

5.3.5 FPGA LVDS Data Inputs

The data from the ADC and the clock signals are read as LVDS inputs with

internal termination in the Zynq SoC’s I/O banks. Before being sent to the custom

deserializer IP core, the differential buffer primitives are used to support the LVDS_25

I/O standard and the internal termination of the LVDS signals.

Figure 47: Basic LVDS circuit operation

Low-voltage differential signaling (LVDS) is a technical standard that specifies

electrical characteristics of a differential, serial communication protocol. LVDS operates

at low power and can run at very high speeds using inexpensive twisted-pair copper

cables. Since, the current flows back to the driver in a loop, LVDS results in lower

radiated emission (EMI) and rejects common-mode noise.

5.3.6 Processor

 The Xilinx Zynq processing system is used as a standalone, low-level processor

in the logic design to handle the cache, interrupts, exceptions and other features such

as external I/Os and hardware peripherals. The Zynq processing system IP

implemented in the Vivado datapath contains all the processor's configuration data such

as clocking resources and the I/O mapping.

Figure 48: Block diagram of the ZYNQ7 processing system implemented in Vivado

https://en.wikipedia.org/wiki/Differential_signaling
https://en.wikipedia.org/wiki/Serial_communication
https://en.wikipedia.org/wiki/Communication_protocol
https://en.wikipedia.org/wiki/Twisted_pair

81

5.4 Software Design

5.4.1 Software Overview

 Waveforms live is a data visualization tool that works with digilent products like

the OpenScope and the OpenLogger. This product allows for data visualization on any

browser including phones. This progressive web application is written in a mixture of

HTML, CSS, and Typescript. It also leverages the ionic framework and the cordova

framework. Ionic is a software development kit that allows for cross platform usage of

the application. Cordova is another framework that is also used for cross platform usage

but specifically for mobile users.

 Waveforms live was the base for our data visualization tool. With an already

functional status that meets our design requirement of being able to perform high

frequency analysis we figured it would be a good place to start as it would save more

time than starting from scratch. Although the premise of saving time by using an already

existing product as our base was valid we neglected to account for the time that it would

take to become knowledgeable with the already existing code base. We also

underestimated the amount of time it would take us to iteratively add to waveforms live.

Not knowing what a large chunk of the source code did and how it functioned as well as

not having a person who directly worked on this project before us led to a lot of lost time

reading code/documentation and not fully understanding it. This also led to a lot of trial

and error without much resolution.

 As a result of lost time, the shift to isolationism, and the end of semester time

crunch our final software for visualization was a python script that utilized matplotlib to

take data and visualize it on a plot. This script took data samples from the hardware,

translated them to representable values and then plotted them. We were also able to

develop separate scripts that allow for zooming in and zooming out of the graph as well

as showing the data values with a cursor. These separate scripts were tested in

isolation but not able to be successfully integrated into one unified script. We also were

able to modify the waveforms live GUI to have an additional button that began a

websocket connection with a web server hosted by the Ultra 96. Once the web socket

was connected we were able to transmit data back and forth. Unfortunately we were not

able to fully control the source of the data nor start plotting the data. The data being

pushed was from a counter function that incremented a data value by 1 and sent it to

the connection.

 We understand that the current state of the GUI is intermediate and there are

next steps to be taken by whatever team continues this project. We think integrating the

separate scripts into 1 is the next immediate step in the development of the GUI.

5.4.2 Software Models

 Our original model (figure shown below) was made with the assumption of

working with waveforms live. The goal was for us to have the GUI contained on the

Ultra96 and have the user connect to it via the computer. Once connected via ssh and

82

ethernet cable the user would go to the localhost on their web browser and that would

redirect them to the modified waveforms live instance running on the Ultra96. The user

would be able to interact with the web application to plot and modify the capture settings

for their data.

 The new model for our modified visualization tool (shown below) is significantly

simpler. This is because we shifted from using waveforms live with a websocket to

running a python script that will run on the processor side of the Ultra96 which is also

being used to access the data from the PCB via direct memory access.This data is

taken from the DMA and then plotted. Buttons being clicked on the GUI result in

visualization changes..

Figure 49: High Level GUI State Diagram Waveforms Live

83

Figure 50: High Level GUI State Diagram SimplePlotter

.

5.4.3 Waveforms Live Design

 As stated in previous sections the team ended up having 2 different GUIs

partially implemented. The Waveforms Live GUI was designed to be built on top of the

existing GUI that Digilent made. We added a websocket server and websocket client

that were utilized to transfer data from the DMA to the GUI. We also added a specific

button to the GUI to allow the user to select the Ultra96 as the hardware being used.

We also added tooltips that provide additional information when the user hovers over

the buttons we added.

84

Figure 51: Custom Button Added for Ultra 96 Usage

Figure 52: Tooltips added for Ultra96 button

85

Figure 53: Confirmation screen for selecting Ultra 96

Figure 54: Websocket throwing out dummy data

86

5.4.6 Backup GUI

 As stated in previous sections the team ended up having 2 different GUIs

partially implemented. The SimplePlotter was implemented using Matplotlib, Tkinter,

and numpy. These are standard libraries for data analysis. This GUI was created from

the ground up because not knowing about the surrounding code for Waveforms Live

that we did not write became prohibitive to us making progress on the GUI. Every

addition we made required us to read through numerous different files to track down

why the addition did not work or what proper approach we needed to use to implement

the addition.The SimplePlotter was broken into different features that were supposed to

be integrated into 1 uniform GUI. Unfortunately, because we started working on the

SimplePlotter so late in the semester we were not able to integrate all the features. We

were however able to create them in isolation and test them.

Figure 55: Buttons to adjust zoom level

87

Figure 56: Tracing the waveform with a cursor and showing data values

Figure 57: Plotting data values as they come in

88

6. Implementation, Experimentation, and Success
Evaluation

6.1 Current Implementation Status

6.1.1 Analog Front End Implementation

 Currently, the analog front-end schematics have been finalized. Although there

were many changes discussed with our faculty supervisor, all of those changes have

been implemented. The only aspect of this design that is left is testing the OSHO board

and finding any errors in the circuit design. Only after these errors are found, a second

version of the schematics can be created.

6.1.2 PCB Layout Implementation

 As soon as the analog front end schematics were finalized, work on the PCB

layout began with first finalizing the selection of passive components, generating an

initial bill of material for the project, and acquiring the component footprints required for

the layout. Next, the layout of components was generated such that design

considerations of EMI performance, proper grounding, manufacturability, and physical

constraints were met. Most of this work was done over winter break. However, major

changes to the analog front schematics end were made in the second half of this

project, so much of this work had to be redone. Additionally, a second board layout was

done in order to reduce the board from approximately 29 square inches to just under 17

square inches. These two setbacks delayed this project aspect significantly but the final

layout was routed successfully with the design considerations listed above being met

and the routing of differential and sensitive signals done properly. As of the time of this

report, the analog front end PCB has been commercially printed and is being

incrementally soldered and tested. Due to the unfortunate circumstances of COVID-19,

the commercial printing and shipping of the PCB also experienced delays. However,

team members have expressed interest in continuing with this aspect of the project after

ECE493. Through the result of testing this first revision of the PCB, if any major design

flaws or design changes for better EMI performance are required, these changes will be

made after the completion of ECE493.

6.1.3 FPGA Datapath Implementation

Even though initial progress of the firmware development was slow because of a

big gap in the background knowledge required to be able to understand all the

resources and the VHDL code, the firmware development’s pace picked up in the

second half of the project. A lot of progress was made and the firmware can now

properly process, deserialize and plot digitized data from the ADC at up to 720 MHz

sampling frequency. To thoroughly verify the functionality of the firmware, the digital

logic design was first simulated in Xilinx Vivado. Next, the bitstream generated from the

design was used to program the Xilinx Zynq-7000 Zedboard SoC, and tested using the

89

ADC Evaluation board. The output data was verified using internal logic analyzers

(ILAs) within Vivado at sampling speeds of upto 100 MHz. To test the firmware at higher

sampling speeds (100 MHz - 720 MHz), python code was written to access the ADC

data in memory using an overlay and then plot it using matplotlib. This code was

executed using the Jupyter Notebook server on the Zedboard.

6.1.4 Software Implementation

 The software was originally supposed to be built on top of the Digilent

Waveforms Live product. We began by reading the code base to become more familiar

with what is happening at a high level.We also tried to learn javascript, HTML, and CSS

to be more familiar with the typescript, HTML, and CSS being used. Once we had some

level of understanding of the languages being used we added a button in the HTML and

added functions that it activates on click in the Typescript. The project structure that

Digilent used was not typical so finding code pieces and understanding it was difficult

and delayed. Once we found someone who could help us understand the code and

approach it we began to make more progress. The usage of the Ionic library however

meant that there were a lot of reference files that were supposed to make the project

easier to build. Having all these additional files made it difficult for us to locate

dictionaries and objects that we needed to add to in order to allow the GUI to register

our custom functions and buttons.

 For our SimplePlotter we read up on the Matplotlib library and found sample code

to create a plot. Then we looked at sample code to animate a plot so that we could have

constant plotting instead of static plotting. With these sample codes we made

modifications so that we could do so in 1 process. We then modified the code so that

the plot would always plot left to right instead of just scrolling to the right. This allows for

a more natural feel and prevented the visualization from moving when we had the same

shape plotted on top of itself. Once we got the basic plotting feature we created

separate files for the zoom feature and the data tracing feature. Tkinter requires

python3 so to integrate we will need to upgrade our plotter and cursor follower to use

python3. The separate files were created and tested until we got the basic functionality

out of them and then we began trying to integrate them all into 1 file by giving each its

own process that would run concurrently. Unfortunately we were not able to have the

concurrent processes working. We think the error might have been synchronization of

the plotting process not lining up with the input from the zoomin process. Additionally

the control logic for some process requires a while loop to keep running whereas the

library function being used in the process is not supposed to be looped.

6.2 Design Changes Since ECE492 Design Document

6.2.1 Analog Front End Circuitry

The analog front-end schematics were changed multiple times after the ECE 492

design presentation and report. These changes were in accordance with the guidelines

given by our faculty supervisor. Some of these changes took place due to concerns for

90

cost whereas others were required for the correct operation of the circuit. The amount of

relays used in our design was reduced by changing the design so that the cost and

power consumption would decrease. Another major change is the fact that an

impedance path for 1Mohm was added to comply with the probe connection. Few other

components such as gas discharge tubes were added for protection against voltage

spikes. LEDs were also added to indicate between AC or DC coupling, attenuation,

channel mode, power, and the two impedance paths. A GPIO expander chip was added

since the Ultra96-V2 Programmable Logic did not have enough pins to be used for SPI

interface with all the required chips. Lastly, a voltage level translator was also added to

convert the 1.8V logic from theUltra96-V2 to 3.3V logic which the chips in the circuit

operate with. These Design Changes can be seen below:

91

92

93

Figure 58. Analog Front End Changes to input impedance control, attenuation and

offset (Before - Top 3 Sheets, and After - Last Sheet)

6.2.2 Backup GUI

 Originally we thought we would be able to add to the Waveforms Live product.

However, because the surrounding code of the Waveforms Live GUI was too time

consuming and difficult to navigate/understand effectively we created the SimplePlotter

as a backup GUI that we would be able to use so that the hardware team was not stuck

waiting for us. This backup GUI was made with the mindset of being a much simple

viable product that could achieve the basic task of plotting in a less elegant but equally

effective way.

6.2.3 COVID-19 Project Related Scalebacks

 Unfortunately, due to the circumstances of the coronavirus pandemic, many

aspects had to be scaled in order to meet the additional constraints associated with the

pandemic including limited production resources, meeting and working remotely, and

delays in acquiring components. These changes mainly involved simplifying the project

so that major project aspects would still be demonstrated but a complete integration and

special features would be delayed. As such, due to the pandemic (as well as other

94

technical delays), the testing plans for our system, GUI plans, and scale back in the

progress of the programmable logic portion of the project all had to be altered to

achieve demonstrable results. In terms of the FPGA firmware, the overall design, once

tested successfully on the Zedboard SoC, was supposed to be migrated to the Ultra96-

V2 Xilinx Zynq UltraScale+ MPSoC. However, we decided to focus on improving the

performance and the maximum clocking speed of the deserializer IP core first as this

was a riskier aspect of the project that needed to be worked out first. Additionally, the

trigger IP Core was also willingly delayed in favor of developing a new deserializer IP

that could utilize dynamic calibration and operate at higher frequencies. Also, the trigger

IP was seen as a more full scale integration feature so was put on hold till the end. As

for the GUI, the plans for the Waveform’s Live integration was swapped in favor of the

backup simple GUI as mentioned above. Finally, the testing plan was revised so that we

could demonstrate the more complex aspects of the project though unit testing, thereby

proving the concept of this solution with managing the setbacks and delays of the

project. With all of these changes, we think we made the best of an unfortunate

situation, compensated the best we could for our technical delays, and provided a good

scaled down proof of concept for the system.

6.3 Experimentation and Testing Plans

6.3.1 High Level Acceptance Testing

 Due to the technical delays within the project and COVID-19 setbacks

surrounding the project, we were not able to reach full integration with the proposed

system solution. However, we thought it was still prudent to outline our initial plans for

high level acceptance testing as it is what will define the system tests for the

continuation of the project and outline a benchmark for what a successful complete

implementation will perform. Below is an outline of the full integration testing plans we

had outlined at the beginning of ECE493.

6.3.1.1 Waveform Comparison With Commercial Oscilloscope

The ability of the OSHO system to measure and record waveform data will be

verified and the accuracy will be compared against a commercial oscilloscope. The

overall device will be tested by applying a waveform to either of the analog inputs.

These input waveforms will be varied between DC signals, sine waves, square waves,

and triangular waves. Additionally, for each of the waveforms listed above, the input

voltage levels will be changed from 0 VPP to 20 VPP in steps of five volts to confirm that

the input voltage requirement is met. Furthermore, the signal input will be varied to the

following frequencies: 100Hz, 100KHz, 1MHz, and 200 MHz.

First, the GUI will be first visually tested to ensure the system can accurately

display these waveforms on the GUI. Screenshots of the GUI will be taken to record and

demonstrate this functionality. Then during ten of these waveforms tests, the

oscilloscope accuracy will be compared with a high-speed commercially available

95

oscilloscope. This will be done by measuring the same waveform with both the OSHO

system and an 8-bit commercial 1GSPS oscilloscope. The waveform data from both be

saved and converted to a .csv format for processing. Using Excel, each of the two

waveform records will be aligned, and plotted on a superimposed graph showing the

waveforms over time. The average difference between each waveform over time will

also be calculated. This test will be deemed a success if the average error for each

signal comparison is less than 5%.

6.3.1.2 Measured Frequency Sweep

In this test the bandwidth and frequency response of the OSHO system will be

demonstrated in both single and dual channel modes. A function generator will be used

to provide a 5VPP sine wave to the device. A frequency sweep from 0Hz to 550MHz will

be conducted in steps of 10MHz and the absence of aliasing shall be verified for the

bandwidth of our device (500MHz). The Amplitude of the measured signal shall be

recorded at each frequency and the results shall be presented in a graph showing

measured amplitude vs. frequency. This will be repeated in dual channel mode where

the frequency sweep will be conducted from 0Hz to 300MHz, as the device bandwidth is

halved for dual channel mode (250. For this test to be deemed a success, the measured

amplitude of the waveform shall not vary by more than ±3% of the ideal value of 5VPP

for 95% of the device's bandwidth (since the bandwidth is measured at the point of -

3dB).

6.3.1.3 External Clock Input Verification

This test verifies and demonstrates the system’s external clock input and the

system’s ability to synchronize ADC sampling with the external clock input. The external

clock signal will be generated with a frequency synthesizer and will be used to test the

function of the device at five different frequencies: 50MHz, 100MHz, 200MHz, 500MHz,

and 1GHz. A very high-speed commercial oscilloscope (>5GSPS) will be used to

measure the external clock signal and the ADC clock signal (measured at test points on

board). The PLL synchronize operation will be applied to align the phase of the two

clocks. The commercial oscilloscope data will be downloaded and the waveforms will be

superimposed on the same graph to show the differences between the two clocks. This

processing will be done in excel. This will be completed three times for each frequency

and the average difference in both frequency and phase of the two clock signals will be

recorded. This test will be a success if, for each test, the phase and frequency of each

clock signal does not differ by more than 2%.

96

6.3.2 Unit Integration Testing

 6.3.2.1 Analog Front End Testing

 6.3.2.1.1 Power Architecture

The power circuitry on the OSHO PCB will be tested initially to ensure that all

other chips in the circuit receive the correct supply voltage. This testing includes

measuring the voltage at each test point (outputs of voltage regulators) and comparing

them with the expected value. The measurements will be carried out through the use of

a multimeter and then recorded in table format.

6.3.2.1.2 Input Coupling and Offset

This test will verify the coupling and offset functionality of the front-end circuit.

Particularly, an arduino will be used to configure the digital potentiometer through SPI

commands. For each potentiometer setting, the offset on the output waveform will be

measured and recorded in table format. To test the AC-DC coupling capacity, the

arduino will again be used to configure the high speed relay through SPI commands.

Both the AC coupled and DC coupled waveforms will be recorded through an

oscilloscope. The input and output waveforms will be captured and presented.

6.3.2.1.3 Attenuators

This test will verify the level of attenuation obtained from each of the three

different attenuation paths in the front-end circuitry. For unit testing of the attenuators,

an arduino microcontroller will be utilized to provide the SPI commands through the pin

headers on the PCB. These SPI commands will configure the high-speed relays to

choose each of the three attenuation paths one by one. For each attenuation path, the

input and output waveform will be captured through the use of an oscilloscope.

Furthermore, the peak to peak voltage values of the input and output waveforms will be

recorded in table format. The attenuation factor will then be calculated for each of these

paths and also recorded in the table. The waveforms used for testing will be generated

through the use of a function generator and will range from 100Hz-500MHz in

frequency. Furthermore, a DC voltage of +5V will also be tested for each of the three

paths to ensure proper operation for DC and AC signals.

6.3.2.1.4 Low Noise Amplifier (LNA)

This test will verify the correct operation of the low noise amplifier. Input signals

with a varying range of frequencies and amplitudes will be provided to the LNA and the

relationship between input/output voltage (gain) will be recorded. A function generator

and oscilloscope will be used to generate the test waveforms and measure the output

respectively. Furthermore, the frequency response relationship will be plotted by

increasing the input signal frequency from 100Hz to 500MHz incrementally. A graph

with a logarithmic scale will be created displaying the gain (in dB) versus the input

97

frequency (Hz). This will allow a clear understanding of the voltage levels or frequency

cut-offs where the output signal starts to saturate.

6.3.2.1.5 Variable Gain Amplifier (VGA)

In this test, the operation of the VGA will be verified by comparing input and

output signals from the chip. For unit testing, an arduino will be used to configure the

VGA to 5 unique gain settings. A function generator will be utilized to provide input

signals with voltages ranging up to the max input rating of the VGA. The gain of the

VGA will be recorded in a table format and verified for each different setting configured

through SPI. A commercial oscilloscope will be used to record the input and output

waveforms.

6.3.2.1.6 Phase-Locked Loop (PLL)

This particular test will verify the clock multiplier functionality of the phase-locked

loop. An external differential clock will be provided to the reference input of the PLL. An

arduino will be used to configure the PLL through SPI commands. The output frequency

of the PLL clock signal will be measured through a commercial oscilloscope and

recorded in table format. Five different reference frequencies will be tested.

 6.3.2.2 VHDL Firmware Testing

Once the VHDL code had been debugged, it was simulated with some random

serial data being sent to the firmware using the testbench. Next, the ADC was

configured to send a test ramp signal which is the output of an 8-bit counter (0x00 to

0xFF). The ADC was sampled at incremental sampling frequencies and the output data

of the deserializer IP core was viewed using Xilinx’s internal logic analyzers (ILAs). To

test analog input data, the Analog Discovery 2 kit was used to send various input

signals to the ADC. Again, the output deserialized data viewed using the ILAs was

compared to the known input data.

However, after making much progress over the winter break and being able to

deserialize data at sampling frequencies of up to 150 MHz, no more headway was

made towards the beginning of Spring 2020 and there was no improvement in the

maximum sampling frequency. Since the Deserializer IP core uses static calibration

(determines the delay required to get the frame pattern and then delays the data by the

same amount), it was decided to try and make a new Deserializer IP core that would

utilize dynamic calibration and could potentially achieve a higher sampling speed. This

new OSHO IP core has been completed and though in theory it is better for

deserialization as compared to the upgraded HACD deserializer IP core, it still needs

some debugging. However, due to timing constraints created especially due to COVID-

19, the debugging of this new OSHO Deserializer IP core as a viable solution was

halted and testing of the HACD IP core was resumed.

98

After further modifications and optimizations to the HACD IP core, including

modifying the operation of the DMA core so that it does not timeout, the firmware’s

operating frequency increased to 720 MHz.

 Figure 59: FPGA Utilization Report

 6.3.2.3 Server and GUI Testing

 For the Waveforms Live GUI we tested the websocket with sample data. We

were able to get the sample data from the websocket to the GUI but were not able to

control where it went. As a result the GUI would print the dummy data in the networking

tab of the developers console but not display it anywhere else. We tried to modify the

function that handled the sample data on the GUI side but were not knowledgeable

enough in Typescript and progressive web app design to be effective in this approach.

We asked an expert who works frequently with Typescript and progressive web apps

but they were not able to understand the design approach that the original Waveforms

Live team used as it was not standard. This made it difficult for our expert to help us.

Once we hit this point of not knowing what to do or how to be impactful we tried to play

with the code with little success. In order to continue being effective in our usage of time

we made the SimplePlotter.

 For the SimplePlotter GUI we broke the functionality down into different features

that were created in separate files with the ultimate goal of integrating them into 1 file all

together. Unfortunately we began the process of working on the SimplePlotter too late in

the semester and were able to create separate features in separate files but not

integrate them into 1 product.

6.4 Experimentation Validation and Testing Results

6.4.1 FPGA Firmware Test Results

First the firmware was simulated in Xilinx Vivado. As seen in the following figure,

upon asserting the re-align input the state machine looks for and locks onto the

expected frame pattern (0xF0).

99

 Figure 60: Deserializer IP Simulation Results

After verifying the clock alignment circuitry, the Zedboard SoC was programmed

with the generated bitstream and tested with the ADC Evaluation test board. A PLL

frequency synthesizer was used to provide the high-speed sampling clock to the ADC.

Using python code and the Jupyter Notebook server, SPI commands were sent to

configure the HMCAD1511 ADC to send a test ramp signal. As shown in the following

figure, the deserializer IP core is successfully able to deserialize the digitized samples

and provide a waveform that is identical to the input ramp signal.

 Figure 61: Vivado ILA Waveform

 Since sampling frequencies of over 100 MHz exceed the ILA’s Nyquist

frequency, python code was written and run on the processor’s Jupyter Notebook

server. The code read data from the memory and plotted it using matplotlib. The

following picture shows the result of reading the data (stored as 64-bit packets) from

memory.

100

 Figure 62: Digitized Data In Zynq PS Memory

The following pictures show the data plotted using matplotlib in Jupyter Notebook

server. The plotted signals match the analog input signals that were sampled by the

ADC verifying the successful operation of the firmware.

 Figure 63 Ramp Signal Sampled at 550 MHz

 Figure 64: 1 MHz Triangular Input Signal from Analog Discovery 2 Sampled at

550 MHz

101

 Figure 65: 500 kHz Square Wave Input from Analog Discovery 2 Sampled at 720

MHz

6.4.2 Data Visualization and GUI Test Results

 Our Waveforms Live implementation of the GUI was not able to plot any data but

we were able to send data back and forth with a websocket.

Figure 66: Data being passed through the websocket

102

 The SimplePlotter was able to plot data but not with all the features in 1 product.

We had success plotting data in Linux and Windows environments but when we took

the same code to the jupyter notebook environment of the Zed board that the hardware

team was using we were only able to plot one data point at a time. This means that we

would have to rerun the script 50 times to plot 50 pieces of data. Although that was not

how we intended the GUI to work we do not think that will affect the overall product as

the final product is going to run on the Ultra96 which runs Linux.

Figure 67: Successful plotting on a Windows and Linux environment

Figure 68: Single datapoint plotting on Jupyter Notebook

103

6.5 Solution Operational Requirements Analysis

Below is an analysis of whether our implemented solution meets all of the

operational requirements as outlined in the beginning of the project.

6.5.1 Input/Output Requirements

Requirement: The device shall have at least two analog input channels, one

external clock input, and one external trigger input.

Analysis: The system has two analog input channels, one differential clock input

and one external trigger input, although the trigger input functionality has yet to be

implemented in firmware and software. This feature can be added at a later date with

further VHDL and software development. Therefore, this aspect of the project can be

seen as successful.

Requirement: The system will receive control and configuration commands as

well as be able to responsively display captured data through a web client with an

intuitive and responsive GUI.

Analysis: The system currently only has a basic backup GUI so this requirement

is only marginally implemented.

6.5.2 External Interface Requirements

Requirement: The device will provide support for 1x and 10x passive probe inputs (50Ω

and 1MΩ).

Analysis: The system supports both 50Ω and 1MΩ probes with both 1x and 10x

attenuation amounts. Therefore this requirement was successfully implemented.

Requirement: Bayonet Neill–Concelman (BNC) connectors shall be used for the analog

inputs and external trigger inputs.

Analysis: The analog front end PCB has BNC connectors for each of these inputs,

therefore this requirement was successfully implemented.

Requirement: The system shall interface with a network capable computer through

USB3.0 or WiFi.

Analysis: The Ultra96-V2 implements network connection through both WiFi and

USB3.0 (acting as a network adapter), therefore this requirement has been met.

Requirement: The system shall receive power from an external 5V DC power supply.

Analysis: The Analog Front End is powered by an external 5V DC power supply,

therefore this requirement is successfully met.

104

6.5.3 Functional Requirements

Requirement: The analog-to-digital converter (ADC) shall sample one input channel at 1

GSPS or two channels at 500 MSPS.

Analysis: The analog-to-digital converter (ADC) samples one input channel at 1 GSPS

or two channels at 500 MSPS. This requirement was successfully implemented.

Requirement: The device will be able to measure analog inputs with a maximum input

voltage of ±10V.

Analysis: The analog front end is designed for an input of ±50V using 1MΩ input mode

and ±10V using 50Ω input mode. Therefore this requirement has been met and

exceeded.

Requirement: The input analog circuitry shall achieve a 500 MHz bandwidth.

Analysis: Channel A has a Bandwidth of 500 MHz in single channel mode and both

channels have a bandwidth of 250Mhz in dual channel mode. Therefore, this

requirement was successfully met.

Requirement: The ADC shall be able to be configured to sample using either the FPGA

clock or an external clock input (between 30 MHz and 1 GHz).

Analysis: The analog front end has a differential SMA external clock input as well as an

auxiliary crystal oscillator sampling clock reference, therefore this requirement

was met and exceeded.

Requirement: The ADC output sample resolution shall be no less than 8 bits.

Analysis: The ADC resolution is 8 bits; this requirement was successfully met by our

design.

Requirement: The system’s data capture shall have the ability to be triggered using both

configurable edge triggers as well as a configurable external trigger input.

Analysis: Trigger implementation is not currently implemented in software but is

implemented in hardware, and therefore this requirement is not currently met.

However this can be implemented in the future.

6.5.4 Technology and System-Wide Requirements

Requirement: The front-end device shall use a single 1GSPS ADC chip.

Analysis: The front-end board uses a single HMCAD1511TR which is a 1GSPS ADC;

this requirement was successfully met.

Requirement: The ADC data shall be processed and hosted on an onboard Linux web

server using a Xilinx Zynq UltraScale+ multiprocessor systems-on-chip (MPSoC)

aboard the Ultra96 Board.

105

Analysis: The waveform data can currently be accessed via the Ultra96 development

board but is limited in terms of full implementation, therefore this requirement is

implemented marginally unsuccessfully.

Requirement: The analog front-end custom PCB should interface with the Ultra96 Board

for data processing.

Analysis: The analog front-end custom PCB successfully mates with the Ulta96

Development Board, and thus this

Requirement: Target FPGA development board shall have device driver firmware for

interfacing with the ADC, and routing and storing ADC sample data in a memory

device.

Analysis: The FPGA firmware has had firmware developed and tested at ~750 MHz on

the Zedboard/Easyboard setup. Therefore this requirement is mostly successful.

Requirement: Front-end programmable devices will be controlled using the Serial

Peripheral Interface (SPI) or other serial protocol.

Analysis: Front-end programmable components are controlled using the Serial

Peripheral Interface (SPI) and this requirement has been successfully met.

Requirement: The custom high-speed PCB and Ultra96 devices will interface with each

other via the Ultra96’s high-speed and low speed mezzanine connectors.

Analysis: The OSHO PCB uses both the Ultra96’s low speed and high speed

connectors, and therefore this requirement has been successfully met.

Requirement: The device should be low-cost ($600 or less).

Analysis: The device costs $587 including the cost of a Ultra96-V2 development board

and therefore this requirement has been met.

6.6 Project Success Evaluation

6.6.1 Analog Front End and PCB

 Overall, the analog front end design and PCB layout aspects of this project were

very successful. The analog front-end schematics were finalized at the beginning of the

Spring 2020 semester and the PCB layout has been completed to the exact

specifications required by the project. The only aspect of analog front-end circuit that

has not been completed is the soldering and testing of the board. Although this is an

integral part of the project, it could not be completed due to COVID-19 lockdowns. Due

to this restriction, we have declared that this aspect of the project is successful as

allowed by the current situation.

106

6.6.2 FPGA Datapath and Firmware

 Tremendous progress was made in terms of the operation of the firmware. The

maximum operating frequency was increased from 50 MHz at the end of ECE 492 to

720 MHz as of now. The deserializer IP core is able to correctly deserialize data and the

datapath then stores it in memory. The test results discussed in 6.4.1 verify the

firmware’s success. Despite the overall progress, however, the firmware was not able to

reach its required frequency of operation of 1 GHz. The reason is that since the LVDS

data is coming serially over 8 LVDS channels, the sampling frequency is reduced from 1

GHz to 125 MHz. And since the PL layer of the SoC is being clocked at 100 MHz, it

cannot handle this frequency. However, the firmware was able to operate at up to 720

MHz which is very close to the maximum possible ADC sampling frequency of 800

MHz. One possible solution is to change the FCLK_CLK0 (PL clock) frequency and

rebuild the FPGA’s first stage boot loader. The same design should then be able to

handle a 1 GHz input.

6.6.3 Software and GUI

 As a whole we think that the GUI achieved the base task of plotting data but did

not achieve all the separate features we initially intended on providing. The original goal

was to have a plotting tool that integrates into Waveforms Live so that we could

leverage all Oscilloscope functionality that Waveforms Live has in addition to adding

functionality like triggers and AXI/SPI control. We invested a lot of time in trying to

understand Waveforms Live and being able to control it because we knew that if the

investment paid off we would end up with a higher quality product for visualizing the

data. The knowledge gap was too much for the GUI team to overcome so all the time

they spent on Waveforms live was essentially unfruitful. This forced the GUI team to

create another plotter from the ground up so they could have full control over it and

more easily integrate it together. This also allows the GUI team to not be empty handed

in their deliverables. There was at least something they could show for the work they

put in. We understand that the current implementation of the GUI is not in the best

condition it could be but it does achieve the base goal of plotting. We think the next step

for the GUI is integrating the different features into 1 base product and taking a 2nd look

at waveforms live from someone who has a stronger Typescript/progressive web app

background.

6.6.4 Overall Project

 From the start, this project was a very challenging task given the project timeline

and our previous experience. However, we have achieved a tremendous amount of

progress on the project as a whole. Each part mentioned above was completed to the

full extent possible. Although the original measure of success for this project was full

integration and testing, this could not be completed due to the pandemic. Progress on

some of these aspects is still scheduled to continue but at this point, the overall project

is still considered a successful proof of concept given the COVID-19 situation and

107

technical setbacks we encountered. The project was a successful learning experience

and interesting senior design project.

108

7. Administrative Project Aspects
7.1 Project Continuation and Future

 As far as the analog front-end design is considered, the soldering and testing of

the OSHO board will continue and any errors that are found will be fixed in the next

version of the schematics and PCB layout. However, this testing cannot be completed

without full access to a lab.

 In case of the firmware, the next step would be to increase the FPGA’s global

clock speed so that it can handle and process input data of higher frequencies (> 720

MHz). Testing and debugging the new OSHO IP core will also allow for more accurate

data since it only deserializes and outputs valid data when the clocks are properly

aligned.

For the GUI we know the next steps of the project require integration of the 3

different SimplePlotter features. The other option for continuation on the GUI side is to

re-approach with Waveforms Live by reading the code with an expert. This will allow

better understanding of the underlying code so that the team can be knowledgeable

enough to effectively add to it. The team needs to add a function that is run when the

confirmation button is pressed to use the Ultra96. That function should start the

websocket client that is already written and once the connection is made it should open

the plotting tool of Waveforms Live. The team should also make another websocket

server and client that handles the sending of SPI commands. This server should start

when the Ultra 96 boots up (just like the data websocket server). The client should be

launched once the plotting tool is launched. An AXI websocket client and server should

also be created for doing the same communication but for the AXI commands.

Luckily, Team Members have expressed interest in continuing the project, and

the open source nature of our project allows us to continue this project past the scope of

ECE492 and ECE493. This project has real marketable and engineering value, and thus

should be continued in the future. A Github page for the project has been setup

(https://git.gmu.edu/tbulloc2/osho/-/tree/master/OSHO%20Hardware) for all project

resources and will create a great site for contributors to add to the project in the future.

The future of our project in terms of our product retirement, maintenance, and

disposal, our solution provided minimal impact as the only hardware solution that we

provide that cannot be reused (like the Ultra96-V2) is the analog front end PCB, and

software aspects can be updated in an open source fashion. At the end of the lifecycle

of the PCB the board will need to be properly disposed of. PCBs are not biodegradable

so they need to be recycled in the proper way through websites such as

https://www.webuyics.com/scrap-pcb.htm. The parts can be desoldered if the user

wishes to hold onto them. Because the GUI and FPGA Firmware is code it does not

have a lifecycle defined by when it stops working but rather when the newest update

https://git.gmu.edu/tbulloc2/osho/-/tree/master/OSHO%20Hardware
https://www.webuyics.com/scrap-pcb.htm

109

needs to be pushed. With this in mind the GUI will have a relatively short lifecycle as we

know that there are improvements that still need to be made. Once the GUI is updated

the appropriate course of action is to download the new update from where it is being

stored and begin to use that version.

7.2 Project Challenges

7.2.1 Project Scope and Complexity

 Although the analog front-end circuit design and VHDL code development were

concepts that the team was familiar with, the amount of detail required in the designs of

these was beyond the knowledge gained in undergraduate courses. Concepts such as

noise filtering, impedance and trace matching, clock alignment, developing AXI IP

cores, and others required extensive research.

 The GUI design team was challenged with adding functionality to an already

existing complex product that had to fully integrate into the already existing code. This

was difficult as the team had no prior experience working with Typescript, HTML, CSS

or the Ionic framework. To have the first Typescript project someone works on to be a

fully functional oscilloscope that adds functionality to an already existing, complex,

uncommented code base was more difficult than anticipated.

7.2.2 Design Change Delays

 The design changes discussed in section 6.2 essentially required that the PCB

layout needed to be redone which cost at least a couple weeks of delay in progress. On

the software side, changing from the Waveforms Live GUI to the SimplePlotter resulted

in us essentially losing all the time we spent on Waveforms Live and made it so a

completely integrated GUI could no longer be achieved in the time remaining in the

semester.

7.2.3 Problems with Existing Project Materials

 Working on top of the existing Waveforms Live code base sounded like a great

way to save time but ended up costing us more time than it saved. The code base was

uncommented and not following the standard progressive web app design framework so

we had to spend a lot of time digging around the different pieces of code to understand

what was going on. The existing code base was also not commented which meant that

the GUI team had to read the code, make an educated guess as to what was going on,

try to make a change based on that educated guess and then, if it did not work, read

through the error codes and different forums to figure out what was going wrong. This

often meant that making 1 change took 3-4 iterations of code. As a result we spent a lot

of time trying to achieve tasks that on the surface looked simple.

 Furthermore, the python notebooks and deserializer IP Cores were unorganized

and uncommented. To understand their work, meetings with old HACD team members

were conducted.

110

7.3 Non-Planned Activities

7.3.1 Major Analog Front End Changes at Beginning of ECE493

 Some of the major analog front-end design changes include the reduction of

attenuation paths from three for each input channel to just two. Furthermore, 1 Mohm

impedance path was added to the circuit so that probes could be used with the

oscilloscope. Even more overvoltage and transient protection was added to the analog

input channels. Due to these changes and some others, the PCB layout had to be

restarted, thus, delaying the manufacturing process. The schematics that were

designed before these changes took place are also presented in section 6.2.1.

7.3.2 Development of the New Custom AXI Deserializer IP Core

 The HACD deserializer IP core utilizes static calibration to align the bit and frame

clocks. At the required speed, the frame clock operates at 1 GHz. This gives a sampling

window of 1 ns in an ideal case. Due to clock jitter, PCB trace length and clock

skew/uncertainty, however, this window is further reduced and is too small to capture

data with static calibration. Therefore, a new Deserializer IP core was made that would

utilize dynamic calibration and could potentially achieve a higher sampling speed. This

new OSHO IP core has been completed and was in the process of being debugged

when the task was put on hold due to timing constraints introduced due to the

unexpected new situation.

7.3.3 Switch from Waveforms Live to Backup GUI

 As a result of having GUI progress stagnate the GUI team decided to start

working on the SimplePlotter. We did not expect to have to create a whole new GUI but

because the deadline for the project was fast approaching and progress on the GUI had

stagnated we needed to make sure we had some way to plot data by the project

delivery date. As such they made the SimplePlotter and stopped working on the

Waveforms Live GUI.

7.3.4 Response of Project to COVID-19 Pandemic

 Due to the COVID-19 Pandemic we experienced many delays in shipping for

parts we ordered for the PCB. We also were no longer able to go to the ECE labs where

we could have done PCB work with the proper tools. Additionally we could no longer

meet in person with others to collaborate or seek help from experts. This forced us to

find ways to collaborate digitally which are less effective and also makes it difficult to

explain ideas fully at times.

7.4 OSHO PCB BOM and Solution Cost Breakdown

 A complete listing of the OSHO PCB bill of materials can be found in Appendix

C. The total cost of components per board at the ordered quantities (enough of each

111

component for three boards) is approximately $272, but will reduce if producing the

solution in larger quantities. This corresponds to 46.3% of the total cost of our solution

total of $587. The other costs in our solution include the Ultra96-V2 Development board

($249 or 42.4%) and the OSHO PCB itself ($66 or 11.2%). This summarized in the table

and figure below.

Analog Front End Parts: $272

Analog Front End PCB: $66

Ultra96 Development Board: $249

Total: $587

Figure 69: Cost Breakdown of Solution

7.6 Funds Spend

 The total funds spent on the project can be broken down into the funds spent by

Dr. Kaps and the funds spent by the team. The team spent a total of $260, and the total

spent by Dr. Kaps total $2291. A further breakdown of these funds can be found below:

● Funds Spent by Dr. Kaps:

○ $1018 - Analog Front End Parts with enough for 3 boards and Spare

○ $516 - ADC Evaluation Board

○ $459 - Zedboard for Testing

112

○ $298- Two Ultra96 Development Boards

● Funds Spent by Team:

○ $225 - Three PCB Boards Professionally Printed

○ $35 - Frequency Synthesizer for Testing

7.7 Man-Hours Devoted to Project

The Table below summarized the total man hours that were devoted to the project over

the course of two semesters. It is broken down into each main technical project aspect.

Project Area Total (# hours) Approximate hours per
week (Total/36 weeks)

Analog Front-End
Design

340 9

PCB Design 376 10

Firmware Development 370 10

Server and GUI
Development

304 8

TOTAL 1390

113

8. Lessons Learned
8.1 Additional Knowledge and Skills Acquired

Time allotment for component selection:

 Once the overall high level circuit design is complete, one can feel a state of

ease and think that the process is almost complete. However, this approach is

completely incorrect. We learned that choosing the right components for every stage of

the circuit is a very lengthy process. The price, performance, and availability of each

chip/element needs to be analyzed. Not only this, the availability can change on a

weekly basis so it is important to stay updated.

Importance of finalizing schematics before PCB design:

 Tim had to do several iterations of PCB layout on KiCad due to the fact that the

schematics were changed multiple times after meeting with our faculty supervisor. We

should have met with him more often to ensure that the schematics were final before

beginning PCB layout.

Reading Datasheets and Hardware User Guides:

 Reading datasheets and hardware guides is a skill that is under-appreciated.

There are many datasheets and guides that are incomplete/unclear and many that are

extremely lengthy and detailed. Reading these documents and extracting the

information we needed was a task that we were not prepared for before. However, after

this experience, we have improved our ability to quickly find the information we need.

Other skills learned:

 There are many other knowledge aspects/skills that we gained from this project

including but that limited to: power architecture design, attenuator design, phase-locked

loops, ferrite beads, chebyshev low pass filter design, and the signal conditioning

process in general

 The team also learned that it is very important to not overestimate your skills and

abilities in some task that you have never done before, especially complex firmware

design. Therefore, time taken for research and building up on background knowledge

must also be taken into account when planning goals and the timeline for the project.

Also, although time can be saved by continuing a project, one must make sure

they don't spend the saved time learning how to continue the work. It is sometimes best

to aim for achieving a slightly less complex application so that you can actually achieve

the goal. In addition, this year we tried to achieve a very complex GUI using tools that

we have never worked with and as a whole felt very confused during the process. We

had less than efficient/productive use of our time because we frequently had to look up

different forums for how to do basic things. We were able to improve our typescript,

HTML, CSS, python, and hardware/software codesign skills as a result working on the

GUI of this project.

114

8.2 Team Experience

8.2.1 Teamwork and Team Environment

 Through this project, everyone in the team learned valuable lessons about

teamwork and the team environment. Since this was one of the longest team efforts for

most of us, there were many situations that were a first time experience for us. Some of

these lessons learned are highlighted below:

Shared vs. Individual responsibility:

 Although shared responsibility seems more moral at first because everyone

takes the blame for not completing a task, it is a sure way towards failure. If a task is

assigned to the whole group, individuals think that someone else will complete it. Even if

the task doesn’t get completed, no individual feels any responsibility for the failure. Due

to this, it is very important to break tasks down into manageable sections and assign

them to individuals. Although the individuals can still ask the group for assistance, they

are still responsible so there is extra motivation to complete that task.

Online communication can be better than physical meetings sometimes:

 Even though we stayed on-topic in most weekly meetings, we realized that it was

harder to get tasks accomplished while everyone is sitting in the same room. We

learned that physical meetings should only be reserved for administrative tasks and all

research and design should be accomplished in small pairs or individually. Any

questions or concerns about specific topics were easily answered through email/text.

It is very important to frequently check in on teammates:

 We learned that sometimes, it is hard for people to ask for help if they are stuck

on a certain task. Due to this, it is important to frequently check in throughout the week

and gauge not only their progress but mental state as well. This way, everyone stays

engaged in the project and issues can be resolved quicker.

8.2.2 Project Management and Scheduling

Importance of scheduling meeting a week in advance:

 It is very important to schedule and reserve a space for the next meeting during

the current meeting. There were multiple times where we couldn’t find a desirable

location for a meeting because we did not reserve a place in advance.

Importance of sticking to Schedule:

 It is very important to stick the deadlines as described in the Gantt chart. If one

deadline is ignored. It has a snowball effect of delaying every other aspect of the

project. It is also an easy way to be demotivated. Additionally we should have built in

days for flexibility so if one aspect fell behind then we could catch up on certain days.

115

9. References
9.1 Overall Project References

[1] A. Wozneak, R. Nagpal, and R. Meruvia, “ECE - 492 Design Document.” 10-Dec-

2018.

[2] 96Boards. (2019). Ultra96. [online] Available at:

https://www.96boards.org/product/ultra96/ [Accessed 4 Oct. 2019].

[3] “Ultra96-V2 Development Board | Zedboard.” [Online]. Available:

http://zedboard.org/product/ultra96-v2-development-board. [Accessed: 05-Dec-

2019].

[4] TI, “50-Ohm 2-GHz Oscilloscope Front-end Reference Design TIDA-00826.,”

TIDA-00826 50-Ohm 2-GHz Oscilloscope Front-end Reference Design | TI.com,

Dec-2015. [Online]. Available: http://www.ti.com/tool/TIDA-00826. [Accessed: 05-

Dec-2020].

[5] “HMCAD1511 Datasheet and Product Info | Analog Devices.” [Online]. Available:

https://www.analog.com/en/products/hmcad1511.html. [Accessed: 12-Oct-2019].

9.2 Analog Front End References & Datasheets

[5] Texas Instruments, “LMH5401 8-GHz, Low-Noise, Low-Power, Fully-Differential

Amplifier” LMH5401 datasheet.

[6] Texas Instruments, “LMH6401 DC to 4.5 GHz, Fully-Differential, Digital Variable-

Gain Amplifier” LMH6401 datasheet.

[7] Texas Instruments, “CDCE62005 Four Output Clock Generator/Jitter Cleaner

With Integrated Dual VCOs” CDCE62005 datasheet.

[8] “HMCAD1511 Datasheet and Product Info | Analog Devices.” [Online]. Available:

https://www.analog.com/en/products/hmcad1511.html. [Accessed: 12-Oct-2019].

[9] Texas Instruments, “TPS2400 Overvoltage Protection Controller” TPS2400

datasheet.

[10] Texas Instruments, “TPS54327 3-A Output Single Synchronous Step-Down

Switcher With Integrated FET” TPS54327 datasheet.

[11] Texas Instruments, “TPS7A92 2-A, High-Accuracy, Low-Noise LDO Voltage

Regulator” TPS7A92 datasheet.

[12] Texas Instruments, “TPS7A7001 Very Low Input, Very Low Dropout, 2-Amp

Regulator With Enable” TPS7A7001 datasheet.

[13] Texas Instruments, “TPS7A7001 Very Low Input, Very Low Dropout, 2-Amp

Regulator With Enable” TPS7A7001 datasheet.

[13] Texas Instruments, “TPS63710 Low Noise Synchronous Inverting Buck

Converter” TPS63710 datasheet.

116

[14] Texas Instruments, “TPS7A91 1-A, High-Accuracy, Low-Noise LDO Voltage

Regulator” TPS7A91 datasheet.

[15] Texas Instruments, “CD74ACT251 8-Input Multiplexer, Three-State”

CD74ACT251 datasheet.

[16] Texas Instruments, “OPA659 Wideband, Unity-Gain Stable, JFET-Input

Operational Amplifier” OPA659 datasheet.

[17] NXP Semiconductor, “NVT2003/04/06 Bidirectional voltage-level translator for

open-drain and push-pull applications” NVT2003/04/06 datasheet.

[18] Texas Instruments, “LMH6559 High-Speed, Closed-Loop Buffer” LMH6559

datasheet.

[19] Maxim Integrated, “DS1267B Dual Digital Potentiometer ” DS1267B datasheet.

[20] Texas Instruments, “OPAx376 Low-Noise, Low Quiescent Current, Precision

Operational Amplifier e-trim Series ” OPAx376 datasheet.

[21] NXP Semiconductor, “NVT2008; NVT2010 Bidirectional voltage-level translator

for open-drain and push-pull applications.” NVT2008 datasheet.

[22] Max Linear, “XRA1405 16-BIT SPI GPIO EXPANDER WITH INTEGRATED

LEVEL SHIFTERS ” XRA1405 datasheet.

9.3 PCB References

[23] “A Practical Guide to High-Speed Printed-Circuit-Board Layout.” [Online].

Available: https://www.analog.com/en/analog-dialogue/articles/high-speed-

printed-circuit-board-layout.html. [Accessed: 7-Jan-2020].

[24] “High Speed PCB Layout Techniques.” [Online]. Available:

http://www.ti.com/lit/ml/slyp173/slyp173.pdf?ts=1588656387992. [Accessed: 7-

Jan-2020].

[25] “SUCCESSFUL PCB GROUNDING WITH MIXED-SIGNAL CHIPS.” [Online].

Available: https://www.maximintegrated.com/en/design/technical-

documents/tutorials/5/5450.html. [Accessed: 7-Jan-2020].

[26] “Grounding in mixed-signal systems demystified, Part 1.” [Online]. Available:

http://www.ti.com/lit/an/slyt499/slyt499.pdf?ts=1588656599380. [Accessed: 7-

Jan-2020].

[27] “Grounding in mixed-signal systems demystified, Part 2.” [Online]. Available:

http://www.ti.com/lit/an/slyt512/slyt512.pdf?ts=1588656638497. [Accessed: 7-

Jan-2020].

[28] “PCB Design Guidelines For Reduced EMI.” [Online]. Available:

http://www.ti.com/lit/an/szza009/szza009.pdf?ts=1588656672557. [Accessed: 7-

Jan-2020].

[29] “Grounding and Decoupling: Learn Basics Now and Save Yourself Much Grief

Later! Part 1: Grounding.” [Online]. Available:

http://www.ti.com/lit/an/szza009/szza009.pdf?ts=1588656672557. [Accessed: 7-

Jan-2020].

117

[30] KiCad Org, “KiCad Documentation,” KiCad Docs. [Online]. Available:

https://docs.kicad-pcb.org/. [Accessed: 05-Feb-2020].

[31] Yapo,, Ted “Towards a Multi-GHz Open-Source Sampling Oscilloscope,”

Hackaday. [Online].

Available:https://cdn.hackaday.io/files/1672927157420928/ted-yapo-supercon-

2019.pdf. [Accessed: 05-Feb-2020].

9.4 FPGA References

[32] “Intro to AXI Protocol: Understanding the AXI interface.” [Online]. Available:

https://community.arm.com/developer/ip-products/system/b/soc-design-

blog/posts/introduction-to-axi-protocol-understanding-the-axi-interface.

[Accessed: 06-Dec-2019].

[33] “AXI4 Overview.” [Online]. Available:

http://www.mrc.uidaho.edu/mrc/people/jff/EO_440/Handouts/AMBA

Protocols/Xilinx Docs/XTECH_B_AXI4_Technical_Seminar.pdf. [Accessed: 05-

Dec-2019].

[34] “7 Series FPGAs SelectIO Resources,” Xilinx, 08-May-2018. [Online]. Available:

https://www.xilinx.com/support/documentation/user_guides/ug471_7Series_Sele

ctIO.pdf. [Accessed: 05-Dec-2019].

[35] M. Defossez, “Serial LVDS High-Speed ADC Interface,” Xilinx, 20-Nov-2012.

[Online]. Available:

https://www.xilinx.com/support/documentation/application_notes/xapp524-serial-

lvds-adc-interface.pdf. [Accessed: 05-Dec-2019].

[36] M. Defossez, N. Sawyer, “LVDS Source Synchronous DDR Deserialization (up to

1,600 Mb/s),” Xilinx, 22-Jul-2016. [Online]. Available:

https://www.xilinx.com/support/documentation/application_notes/xapp1017-lvds-

ddr-deserial.pdf. [Accessed: 05-Dec-2019].

[37] Open.uct.ac.za. 2015. [online] Available at:

<https://open.uct.ac.za/bitstream/handle/11427/20046/thesis_ebe_2015_kemp_d

ayne_hilton.pdf?sequence=1&isAllowed=y> [Accessed 5 February 2020].

9.5 Software References

● https://matplotlib.org/3.2.1/api/index.html

● https://matplotlib.org/3.2.1/api/animation_api.html

● https://github.com/Digilent/waveforms-live

● https://www.codecademy.com/learn/paths/web-development

● https://matplotlib.org/3.1.1/gallery/misc/cursor_demo_sgskip.html

● https://docs.python.org/3/library/tk.html

● https://pythonbasics.org/tkinter-button/

https://matplotlib.org/3.2.1/api/index.html
https://matplotlib.org/3.2.1/api/animation_api.html
https://github.com/Digilent/waveforms-live
https://www.codecademy.com/learn/paths/web-development
https://matplotlib.org/3.1.1/gallery/misc/cursor_demo_sgskip.html
https://docs.python.org/3/library/tk.html
https://pythonbasics.org/tkinter-button/

118

● https://stackoverflow.com/questions/2408560/python-nonblocking-console-input

https://stackoverflow.com/questions/2408560/python-nonblocking-console-input

119

10. Appendix A: Project Proposal (ECE 492)

Open Source High-Speed Oscilloscope

(OSHO)

Project Proposal

Team Members:

 Timothy Bullock, Afnan Ali, Evan Hoffman, Umair Aslam, Zaeem Gauher

 Faculty Advisor:

Jens-Peter Kaps

ECE492-001

Date of Submission: October 11th, 2019

George Mason University
4400 University Dr, Fairfax VA 22030

1. Executive Summary 121

2. Problem Statement 122

2.1 Motivation and Identification of Need 122

120

2.2 Market Review 123

3. Approach 126

3.1 Problem Analysis 126

3.1.1 Problems to be Addressed 126

3.1.2 High Commercial Cost 127

3.1.3 Bandwidth and Sampling Speed 127

3.1.4 Special Features and Ease of Use 127

3.2 Our Preferred Approach 127

3.2.1 A Modular Solution 127

3.2.2 The Analog Front-End 128

3.2.3 The Processing System 128

3.2.4 The Web-Based GUI 129

3.2.5 Benefits of this Approach 129

3.3 Alternative Approaches 130

3.3.1 Overview 130

3.3.2 One vs. Multiple ADCs 130

3.3.3 Using a MPSoC Development Board vs. a Single Board Solution 130

3.3.4 A Web-Based GUI vs. Physical Controls and On-Device Display 131

3.4 Introduction to Background Knowledge 131

3.4.1 Overview 131

3.4.2 Oscilloscope Specifications 131

3.4.3 High-Speed Analog Front End 132

3.4.4 High-Speed PCB Design 133

3.4.5 FPGA Programmable Logic 133

3.4.6 Web Server 134

3.4.7 Web Client & Graphical User Interface(GUI) 134

3.5 Requirements Specification 134

3.5.1 Mission Requirements: 134

3.5.2 Operational Requirements: 134

4. System Design 136

4.1 System Functional Decomposition 136

4.1.1 Level Zero 136

4.2.2 Level One 137

4.2.4 Level Two 138

4.2 System Architecture 142

4.2.1 Physical Architecture 142

4.2.2 Overall System Architecture 142

5. Preliminary Experimentation and Testing Plan 143

5.1 Overview 143

121

5.2 Internal Systems Testing 144

5.2.1 Attenuator 144

5.2.2 Low-Noise Amplifier (LNA) 144

5.2.3 Variable Gain Amplifier (VGA) 144

5.2.4 Phase-locked loop 144

5.2.5 Firmware testing 144

5.3 High Level System Testing 145

5.3.1 External Trigger System 145

5.3.2 Input variation 145

5.3.3 Frequency Sweep 145

5.3.4 Sampling rate 145

6. Preliminary Project Plan 146

6.1 Overview 146

6.2 Allocation of Responsibilities 147

7. Potential Problems 148

7.1 Required Skills Training 148

7.2 Risk Analysis 148

8. Citations and References 149

1. Executive Summary

High-speed oscilloscopes are very useful for many applications where electrical

signals need to be measured. These tools can be used to measure, analyze, and

display the waveforms of high frequency and low power analog signals with impressive

precision. However, the downside of existing high frequency, commercially available

oscilloscopes is that they are extremely expensive. Today, typical commercially

available high-end oscilloscopes that have a bandwidth of 500-800 MHz cost upwards

122

of $6000. Furthermore, these devices can be quite difficult to use, and are surprisingly

limited in certain aspects. For instance, downloading the captured data off of these

devices for external processing in Matlab or Python is quite slow, and their built-in

analog-to-digital-converter (ADC) cannot be synchronized to an external clock. Lower

cost alternatives, such as entry-level commercial oscilloscopes or open source

oscilloscopes, typically only offer bandwidths of up to 100 MHz before their prices

significantly increase into the range of their more expensive counterparts.

To overcome this, our senior design group will be designing an open source

high-speed oscilloscope that will provide a low-cost alternative to commercially available

oscilloscopes, while also provide a higher-performance and feature rich alternative to

the existing open-source solutions. This solution will be targeted towards academic and

hobbyist communities, where funding is often a limitation, but high-sampling speed and

bandwidth are needed [1]. Our solution will feature high-bandwidth, a high sample-rate

ADC, a responsive and intuitive web-based graphical user interface (GUI), an ADC that

can be synchronized to an external clock input, and an external trigger input.

This system will have three main components: A multiprocessor system on chip

(MPSoC) development board which includes an FPGA and ARM-based processor, a

high-speed analog front end with a custom PCB, and a web client GUI. The high-speed

analog front end will provide the interface between the analog signal being analyzed

and the FPGA, converting the signal into digital captured data. The MPSoC will buffer,

route, and process the captured data, then host it on a web server for easy display and

access by the web client. Lastly, the web client will provide the user with an intuitive and

responsive graphical user interface to control the system and view the captured

waveforms. Each of these components will be designed around the use of an 8-bit, one

giga-samples-per-second (GSPS) ADC.

We plan to keep the overall cost of the product under $600, which is significantly

less than the $6000 cost of other oscilloscopes at this performance level. The name we

have chosen for this device is Open Source High-Speed Oscilloscope, or OSHO for

short. Dr. Jens-Peter Kaps will be providing guidance on this project as he has

experience guiding teams designing high-speed capture devices such as the GMU

Logic Analyzer and the previous attempt at this project [2].

2. Problem Statement

2.1 Motivation and Identification of Need

Digital oscilloscopes are extremely useful tools for many engineering applications

where electrical signals need to be measured and analyzed. Digital oscilloscopes

“enable the user to debug, visualize and measure various signals,” and are an essential

part of any engineering lab or project [3]. Yet, in many applications such as RF design,

the signals that are being analyzed are too high frequency to be measured with

standard low-cost oscilloscopes. In these applications, high performance oscilloscopes

123

with sufficient bandwidth and sampling-speeds are needed. The problem with this is that

oscilloscopes with bandwidths greater than 500 MHz are extremely expensive. Even

moderate performance oscilloscopes with bandwidths greater than 200 MHz can cost

several hundreds to thousands of dollars. On top of this, even at these high prices,

many of the commercially available devices can be limited in certain usability aspects

and features. For example, downloading the captured data from these devices for

external processing can be quite slow, and their built-in ADC cannot be synchronized to

an external clock signal. Therefore, to overcome these limitations, it is our project’s

motivation to create a low-cost, open source, and high-speed alternative to existing

oscilloscopes.

2.2 Market Review

As our project is bridging the gap between high-speed digital oscilloscopes and

limited open source oscilloscopes, it is advantageous to first analyze these markets. As

previously stated, typical commercially available oscilloscopes that have a bandwidth of

500-800 MHz cost upwards of $6000, can be quite difficult to use, and surprisingly

limited in functionality [2]. The following table shows a sample of the cheapest

commercially available oscilloscopes with a bandwidth above 500 MHz. Clearly, the

price point of these devices is an obstacle to overcome in settings where funding is

limited.

Table 1: Cheapest Oscilloscopes with a Bandwidth of 500MHz

Model Device Picture Bandwidth

(MHz)

Sampling

Rate

(GSPS)

of

Analog

Channels

Sampling

Resolution

(Bits/Sam.)

Price

($)

124

Rigol

DS4052

[4]

500 4 2 12 5,999

Tektronix

MDO3052

[5]

500 2.5 2 8 9,570

PicoTech

PicoScope

6000 Series

[6]

500 5 4 8 6,595

Keysight

DSOX3052

A

[7]

500 4 2 8 9,439

It should be noted however, that nearly all of the offerings at this bandwidth

contain higher sampling speeds than we plan to offer. If you filter oscilloscopes by

sampling speed, there are cheaper devices, but their bandwidth is typically limited to

just 100 to 200 MHz. A sample of mainstream 1 GSPS oscilloscopes with the highest

available bandwidth is shown in Table 2 below.

Table 2: Current 1 GSPS Oscilloscopes with Highest Bandwidths

Model Device Picture Bandwidth

(MHz)

Sampling

Rate

(GSPS)

of

Analog

Channels

Sampling

Resolution

(Bits/Sam.)

Price

($)

125

Rigol

DS1104Z-S

Plus

[8]

100 1 4 12 699

Tektronix

DPO2022B

[9]

200 1 2 8 2,520

PicoTech

PicoScope

2000

Series

[10]

100 1 2 8 679

PicoTech

PicoScope

5000

Series

[11]

200 1 2 8 to 16

(depending

on mode)

1,945

The other market that needs to be analyzed is the market for open source

oscilloscope hardware. Typically, the hardware from open-source oscilloscope projects

have an average price point between $150 and $300, making it a much more affordable

option. However, when even considering the fastest of these devices, their speeds

come nowhere close to the specifications that our device will be designed to offer. A

sample of these devices is shown below in Table 3. Our closest competitor would be

Scopefun, which provides a bandwidth of 100 MHz and a top sampling speed of

500MSPS.

Table 2: Current Open Source Alternative Oscilloscopes

Model Device Picture Bandwidth

(MHz)

Sampling

Rate

(MSPS)

of

Analog

Channels

Sampling

Resolution

(Bits/Sam.)

Price

($)

126

ScopeFun

[12]

100 500

(Single

Channel)

250 (Dual

Channel)

2 10 650

BitScope 10

[13]

100 40 2 8 or 12

(depending

on mode)

245

Digilent

OpenSCope

MZ

[14]

2 6.25 2 12 149

OpenADC

[15]

40 105 1 10 137*

*Plus the cost of an FPGA Development Board

3. Approach

3.1 Problem Analysis

3.1.1 Problems to be Addressed

In order to provide a successful solution to the problems described above,

the designed system will have to overcome three main problems: The device

hardware should be low-cost, the device should be high-performance with a high

bandwidth and sampling speed, and the device should have features that other

low-cost oscilloscopes do not conventionally have.

127

3.1.2 High Commercial Cost

 The primary thing that needs to be overcome by our solution is the high

cost of existing high speed oscilloscopes. As shown in Section 2.3, typical

commercial digital oscilloscopes are extremely expensive, and open source

oscilloscopes are functionally limited. Clearly, if our device can achieve a 500

MHz bandwidth with 1 GSPS at a final design price of under $600 (including the

cost of an Ultra96 development board), our device would be a market leader. It

would provide the same high bandwidth as extremely expensive oscilloscopes at

a lower cost while being the fastest open source oscilloscope platform. This price

will put our solution at an excellent price point given its significantly higher

specifications. In order to accomplish this, we will be very selective with our

design and component choices.

3.1.3 Bandwidth and Sampling Speed

 The next thing that needs to be analyzed is the performance aspect of our

solution. As shown above in section 2.3, there are low-cost alternatives that offer

moderate performance, but nothing close to the speed required for many high-

frequency applications. At a bandwidth of 500 MHz with a sampling rate of 1

GSPS, our solution will provide a good compromise between price and speed.

At this speed, the system will be “powerful” enough to measure signals from

high-speed applications such as RF signal analysis in the VHF to UHF range, or

EM side-channel analysis. If we were to increase the sampling speed beyond

this, it would substantially increase the cost of the device due to the unavailability

of cheap ADCs with a higher sampling speed.

3.1.4 Special Features and Ease of Use

 Finally, the last hurdle that should be overcome by our solution is the lack

of particular features in low-cost and even some high-cost oscilloscopes. This

includes three main things: the inability to synchronize the sampling clock to an

external clock, the lack of a quick and easy transfer of sample data to an external

computer for processing, and finally the lack of an external trigger input. All of

these problems will be addressed in our solution as they do not add too much to

the final price of the system, and they will make this device an extremely

powerful tool.

3.2 Our Preferred Approach

3.2.1 A Modular Solution

To successfully overcome the cost, speed, and feature limitations

associated with existing commercial and public-domain oscilloscopes, our team

will be providing a modular solution that minimizes the cost of the various system

components while still providing the features discussed earlier. Our preferred

128

approach to tackling this is to split the overall system into three modular

subsystems: A web-based GUI subsystem, a processing subsystem, and an

analog front-end subsystem. This is summarized in the External System Diagram

below (Figure 1).

Figure 1. External System Diagram

3.2.2 The Analog Front-End

The analog front-end subsystem will primarily consist of the analog

circuitry to precondition the incoming analog signals so that they may be

optimally digitized by the ADC. The tasks that will be performed by the

conditioning circuitry will include: attenuation, anti-aliasing filtration, variable gain

amplification, coupling selection (AC or DC), DC offset selection, circuit

overvoltage protection, and ADC clock generation/synchronization. Configurable

aspects of this system such as DC offset will be configured through SPI

commands from the processing subsystem. Once the analog inputs are

conditioned properly, they will then be digitized by the ADC and sent to the

processing subsystem. This front-end circuitry will be routed on a custom high-

speed PCB that will be designed by our team. This board will be able to interface

with the processing system through high and low speed mezzanine connectors.

3.2.3 The Processing Subsystem

The processing subsystem will consist of a MPSoC development board

which includes programmable logic in the form of an FPGA as well as an ARM-

based processor. The specific development board that will be used for this

application will be the Avnet Ultra96-V2 which uses a Xilinx Zynq UltraScale+

MPSoC ZU3EG A484, has 2GB of LPDDR4 memory, and provides essential

integrated peripherals such as USB3.0, an SD card slot, WiFi, and Mini

DisplayPort [16]. The programmable logic portion of this board will be used in

129

conjunction with custom intellectual property (IP) blocks that will buffer the

incoming raw digital data from the ADC and transform it to a standardized data

packet format. These packets will then be sent to the system’s main memory

where processing can be conducted through an ARM processor that hosts a

linux-based web server. The end user will be able to view and download

waveform data and system status information as well as send configuration

commands through this webserver.

3.2.4 The Web-Based GUI

The final foundational aspect of our preferred approach is a web-based

GUI subsystem that will act as a client to the web server running on the Ultra96

board. This subsystem will act as the primary interface between the user and the

overall system. This subsystem will allow the user to enter system configuration

commands (such as toggling between AC/DC coupling, configuring waveform

triggers, etc) and download/display captured waveform data. This custom user

interface should be responsive, intuitive, and effectively display captured

waveform data. This aspect of the project will likely be programmed in Angular,

and implemented incrementally, providing basic features at first, but adding more

advanced features as time permits.

3.2.5 Benefits of this Approach

Providing a modular design proves to be the optimal solution to the

problem because it will minimize cost while providing excellent analog capture

performance. Additionally this approach will also provide a good basis for further

open-source development.

This modular solution optimizes low-cost for multiple reasons. Much of the

hardware cost will be absorbed by the fact that an external computer will be

utilized for user interface. Furthermore, the front-end circuitry will be designed

with cost-effective parts. For instance, the chosen ADC for this project is the

HMCAD1511, which offers excellent performance for its price [17]. Additionally,

the effective price of the system is reduced if a compatible FPGA development

board is already owned by the end user.

As stated earlier, this approach ensures that the system will be an

excellent platform for future open source development. It will consist of open

source software as well an open source development board, allowing the end

users to customize it to their needs. The fact that the analog front-end is separate

from the development board means that the front-end board could be used with

other compatible MPSoC development boards (with minimal firmware porting).

Additionally, the GUI for this system can also be customized and improved by

users in an open source fashion.

130

3.3 Alternative Approaches

3.3.1 Overview

There are many possible solutions to the problem of providing a low-cost,

high-speed, and feature-rich oscilloscope. Although the approach discussed

above is the one that was determined to provide the best compromise between

cost, performance, and features, it is still important to consider some alternative

approaches. This ensures that our preferred approach is the optimal solution and

provides us with backup approaches in case problems arise with our preferred

approach. Alternative approaches that were considered are: using multiple

ADCs, incorporating the MPSoC onto the same board as the analog front-end,

and incorporating a display and physical controls as part of the device hardware.

3.3.2 One vs. Multiple ADCs

 In the development of our solution, having two analog input channels was

listed as a key requirement as this provides a much more useful device.

However, the issue with this is that there is no low-cost ADC that supports two

channels at 1GSPS each. According to our preliminary research, the Analog

Devices HMCAD1511 ($64) is the only low-cost ADC that supports 1GSPS [17].

This device can support multiple channels, but does not provide 1GSPS for each

channel. Instead, the sampling rate is reduced immensely as more channels are

utilized. This raised the question of whether multiple ADCs should be used to

provide support for multiple analog inputs. It was concluded that due to cost

limitations, this was not feasible. Due to this, we chose to utilize only one

HMCAD1511 ADC, but offer a mode where the user can configure the analog

front-end to handle two inputs at a lower sampling speed of 500MSPS.

Additionally, data bandwidth issues were also cited as a reason to use lower

sampling speeds with multiple input channels. However, if this proves to be

overly complex and unexpectedly expensive, using separate ADCs for each

channel may be reconsidered.

3.3.3 Using a MPSoC Development Board vs. a Single Board Solution

As the hardware for the Utra-96-V2 development board is open source, it

was questioned whether or not this hardware should be incorporated into the

front-end custom PCB to provide a more portable, single board solution.

However, this was rejected in favor of using a development board that interfaces

with the analog front-end through mezzanine connectors. This is because of two

primary reasons. The first being that this provides unnecessary complexity to the

hardware development and adds to the cost of production. Secondly, providing a

single board solution would be a drawback to our target market of academics and

hobbyists as they might only require the front-end device without our firmware for

131

their specific application. Furthermore, they might prefer the multi-board solution

so that the Utra-96 V2 remains reusable for different applications.

3.3.4 A Web-Based GUI vs. Physical Controls and On-Device Display

The last major alternative approach that was debated was the use of a

graphical user interface vs physical controls and incorporated display such as

those in traditional bench oscilloscopes. It was decided that the web-based GUI

solution should be favored over physical controls and on-device display. This

was not only chosen because it minimizes the cost of the device, but also

because it allows us to continually add more advanced controls to the device

though software updates. Additionally, most users of this device would likely own

a network capable computer which has a nicer display than any low-cost physical

display we could include in our device. Furthermore, if a network connected

device is used as the interface for this oscilloscope, it would ease the process for

downloading captured data for external processing. However, the physical

controls/display approach may prove a useful alternative for specific device

controls for which a software approach may be too inconvenient.

3.4 Introduction to Background Knowledge

3.4.1 Overview

In order to further justify the technical choices of our system, and

effectively describe the system architecture and design, it is beneficial to first

provide an overview of the background knowledge required to understand the

various aspects of our solution. A brief overview of each aspect of our solution is

provided below.

3.4.2 Oscilloscope Specifications

Although most oscilloscopes are used for a similar general purpose, their

specifications greatly limit the applications in which they can be utilized. Some of

these important specifications are explained in further detail below:

Bandwidth:

The bandwidth of an oscilloscope dictates the maximum frequency range

that can be accurately measured by the device. High-speed, serial

communication, and other complex signal applications require bandwidths

of 500MHz or greater for accurate measurement.

Rise Time:

The rise time specification is very important for digital circuit applications.

Rise time is defined as the time it takes for a signal to rise from 10% to

90% of its final value. This time can also be related to the bandwidth in the

following manner: 𝑅𝑖𝑠𝑒 𝑇𝑖𝑚𝑒 = 0.35 ÷ 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ [18]. An oscilloscope

132

should have a fast enough rise time to capture rapid transitions in signals

such as square waves and pulses in an accurate manner.

Sample Rate:

The sample rate of an oscilloscope (measured in samples/second) defines

how often the device samples the signal. According to the Nyquist-

Shannon Sampling Theorem, the sampling rate needs to be twice as fast

as the highest frequency component of a signal in order to avoid aliasing.

Thus, if a sampling rate of 1GSPS is used, the maximum input frequency

should be limited to 500MHz.

Channel Resolution:

The resolution of the oscilloscope defines the granularity of the signal. If

the ADC in the oscilloscope has an 8-bit resolution, this translates to 28 =

256 digitized levels that each analog sample will be translated to [18]. An

ADC with a resolution of 8 bits is sufficient for a low-cost oscilloscope

application.

3.4.3 High-Speed Analog Front End

The front end signal measurement chain consists of many different analog

subcomponents. Together, these elements transform the input signal into digital

data that the back-end firmware can then process. These subcomponents are

listed below:

Attenuator:

The attenutor’s primary function is to reduce voltage, dissipate power, and

improve impedance matching between devices such as amplifiers.

Attenuators can be configured to adjust the amount of attenuation

manually. The utilization of an attenuator is crucial in the front-end as it

provides sufficient input amplitude adjustment to prevent saturation for

large signal swings.

Low-Noise Amplifier (LNA):

Low noise amplifiers are used to amplify very low-power signals without

negatively affecting the signal-to-noise ratio. By using a LNA close to the

input source, the effects of noise in the following stages of the front-end

stage can be greatly reduced. To ensure the maximum transfer of power

from source to amplifier, the source impedance should match the input

impedance of the LNA. This can be achieved through the attenuator

mentioned earlier.

Variable Gain Amplifier (VGA):

A VGA is used to amplify input signals based on the gain parameter. The

advantage of using a VGA is that the gain can easily be controlled through

an interface such as SPI to ensure that the output fits within the full-scale

133

input range of the ADC. This prevents clipping of the digital output

waveform.

Anti-Aliasing LPF:

An anti-aliasing low pass filter’s function is to remove unwanted high

frequency components from the input signal. This filter is crucial to ensure

that the input to the ADC has a maximum frequency of half the sampling

rate. This prevents aliasing as dictated by the Nyquist-Shannon Theorem.

Phase-locked loop(PLL):

A phase-locked loop is a voltage driven oscillator that receives a reference

signal and outputs a signal with either a matched or multiplied frequency

compared to the reference. The PLL also acts similar to a bandpass filter

to remove high frequency jitter as well as low frequency VCO jitter from

the clock signal [19]. The PLL will allow for the use of the FPGA clock in

order to provide the clock input to the ADC. Similarly, it can also be

utilized to sync the ADC clock with an external clock when that option is

selected.

Analog to Digital Converter(ADC):

The ADC is one of the most crucial features of the oscilloscope as it

determines the sampling rate, resolution, as well as bandwidth. The ADC

receives analog signals from the signal conditioning stage which includes

attenuation, amplification, and filtration. The analog signal is then sampled

and digitized before being transferred to the back-end firmware for

transferring the data into memory.

3.4.4 High-Speed PCB Design

When electrical components operate at high frequencies, the circuit

performance becomes heavily dependent on the layout of the PCB. Certain

aspects of PCB design such as trace lengths, thermal information, and

component location are of increased importance for high frequency applications.

Furthermore, power-supply bypassing needs to be implemented in order to

minimize noise. This is achieved through the use of capacitors attached across

the op-amp power supply and ground. Other aspects in high frequency

applications which could cause major problems are parasitic capacitances of

components, non-continuous ground plane configuration, long parallel traces,

among other indirect effects. These will have to be taken into account when the

PCB for the analog front end was designed.

3.4.5 FPGA Programmable Logic

The programmable logic on the FPGA refers to an array of interconnected

digital subcircuits that can be configured for specific applications. This allows for

a high level of flexibility. For the purpose of this project, the programmable logic

will be configured to buffer the raw serialized ADC output data and store it into

134

the MPSoC’s main memory. With this specific chip, the Advanced eXtensible

Interface (AXI) will then be utilized to serve as an interface between the

programmable logic and the ARM processor portion of the MPSoC.

3.4.6 Web Server

The Ultra96 board allows multiple ways to be connected to a network

capable computer. Either the board can be connected to through WiFi or when

plugged into a computer via USB, the Ultra96 is recognized as a network card.

These network connections will easily allow a web server to be hosted on the

Ultra96. A Web server is a program that uses established networking protocols to

host files and data, as well as process and service client requests from

networked computers. The Ultra96 comes with a pre-built Jupyter Notebook web

server on board that can be configured using Python 3. However, if this web

server is not able to meet our needs for the GUI, then we will use a different,

more advanced web server such as Apache. For our system, a web server will

host the data from the ADC and accept requests to configure the system.

3.4.7 Web Client & Graphical User Interface(GUI)

A web client is any sort of interface that allows you to communicate to a

web server through a network connection. Having a web client with a GUI

together allows for quick and simple communication between the user and the

ultra96 without having to interface with the command line. A key component of

this project is for the system to be very user-friendly and responsive. The web

client and GUI created for this project will be made using Angular 2 for its

responsiveness and compatibility with preexisting waveform simulators. Angular

should allow the user to interact with the waveform through the GUI in realtime

and watch it update with minimal delay.

3.5 Requirements Specification

3.5.1 Mission Requirements:

● The project shall design an oscilloscope that is an open source, low-cost

alternative to commercially available oscilloscopes, and a performance,

feature rich alternative to existing open-source oscilloscopes.

● The project shall design a custom high-speed PCB that will easily

interface with an Ultra96-V2 development board, as well as develop the

supporting firmware and graphical user interface for the device.

3.5.2 Operational Requirements:

● Input/Output Requirements

- The device shall have at least two analog input channels, one external

clock input, and one external trigger input.

https://whatis.techtarget.com/definition/server

135

- The system will receive control and configuration commands as well as

be able to responsively display captured data through a web client with

an intuitive and responsive GUI.

● External Interface Requirements

- The device will provide support for 1x and 10x passive probe inputs

(50Ω).

- Bayonet Neill–Concelman (BNC) connectors shall be used for the

analog inputs, external clock input, and external trigger inputs.

- The system shall interface with a network capable computer through

USB3.0 or WiFi.

- The system shall receive power from an external 12V DC power

supply.

● Functional Requirements

- The analog-to-digital converter (ADC) shall sample one input channel

at 1 GSPS or two channels at 500 MSPS.

- The device will be able to measure analog inputs with a maximum

input voltage of ±10V.

- The input analog circuitry shall achieve a 500 MHz bandwidth.

- The ADC shall be able to be configured to sample using either the

FPGA clock or an external clock input (between 30 MHz and 1 GHz).

- The ADC output sample resolution shall be no less than 8 bits.

- The system’s data capture shall have the ability to be triggered using

both configurable edge triggers as well as a configurable external

trigger input.

● Technology and System-Wide Requirements

- The front-end device shall use a single 1GSPS ADC chip.

- The ADC data shall be processed and hosted on an onboard Linux

web server using a Xilinx Zynq UltraScale+ multiprocessor systems-

on-chip (MPSoC) aboard the Ultra96 Board.

- The analog front-end custom PCB should interface with the Ultra96

Board for data processing.

- Target FPGA development board shall have device driver firmware for

interfacing with the ADC, and routing and storing ADC sample data in

a memory device.

- Front-end programmable devices will be controlled using the Serial

Peripheral Interface (SPI) or other serial protocol.

- The custom high-speed PCB and Ultra96 devices will interface with

each other via the Ultra96’s high-speed and low speed mezzanine

connectors.

- The device should be low-cost ($600 or less).

136

4. System Design

4.1 System Functional Decomposition

4.1.1 Level Zero

 In order to effectively design the system architecture of a system, it is best

to start with a functional decomposition of a system so that the system functions

can be related in a hierarchical manner. When functionally decomposing a

system, it is best to start at a high level, and work downwards. Level zero

provides a top level overview of the overall solution. It shows the overall system

inputs and outputs. For our device, this is shown below in figure 2. It shows that

the overall system will take in two analog inputs, an external clock input, an

external trigger output, user commands, and DC power input. The system

outputs status information and digitized waveform data.

137

Figure 2. Level Zero Functional Architecture Block Diagram

4.2.2 Level One

After the system is understood at the highest input/output level (level

zero), the next step of functional decomposition is to identify the top level

functions of the system. For our system this would include analog signal

preconditioning, analog to digital conversion, ADC clock selection/generation,

raw data buffering and routing, processing and data hosting, and finally, display

and interface processing. This is summarized in the level one diagram shown

below (Figure 3).

138

Figure 3. Level One Functional Architecture Block Diagram

4.2.4 Level Two

Once the functionality of the system is understood at the functions’ level

(level one), the next step to defining the system design is to take each of these

top level functions and decompose them into their subprocesses. This is done for

each of the top level functions shown in the level one functional architecture

diagram above (Figure 3). It is worth noting that throughout the completion of the

detailed system design that these level two subprocess blocks are subject to

slight alterations.

139

Figure 4. Level Two Functional Architecture Block Diagram -

 Analog Signal Input Preconditioning

Figure 5. Level Two Functional Architecture Block Diagram -

 Analog Digital Conversion

140

Figure 6. Level Two Functional Architecture Block Diagram -

ADC Clock Generation

Figure 7. Level Two Functional Architecture Block Diagram -

Raw Data Buffering and Routing

141

Figure 8. Level Two Functional Architecture Block Diagram -

Processing and Data Hosting

Figure 9. Level Two Functional Architecture Block Diagram -

User Interface

142

4.2 System Architecture

4.2.1 Physical Architecture

The physical architecture consists of a hierarchical diagram that shows the

main configuration items that make up the system. This includes major hardware

and software components. With the exception of the Ultra96 development board,

all of these components are currently generic as a specific bill of materials has

not yet been determined. This serves as a hierarchical overview of the major

physical resources that will be required to implement our solution.

Figure 10. Physical Architecture

4.2.2 Overall System Architecture

In Figure 11 below is a diagram of the main system components

integrated into the overall system architecture. It can clearly be seen that the

143

system will be divided into the three main subsystems that were outlined in our

approach section: the analog front-end, the processing subsystem, and the web-

based GUI. This diagram will serve as the model in which we plan to implement

the flow of data, power, and control throughout the system

Figure 11. Overall System Architecture

5. Preliminary Experimentation and Testing Plan

5.1 Overview

 In order to thoroughly verify the functionality of this device, testing will need to be

conducted through two different approaches. The first approach is to perform testing

at a white box level by examining the internal systems of the front-end board as well

as the back-end firmware. This includes the analog circuitry on the board, the tracing

144

and layout of the board itself, and the IP cores used in the FPGA firmware. Much of

this testing will be completed through the

The second approach is to perform testing at a black box level where the only

signals being analyzed are the high level inputs and outputs of the system. The

detailed list of testing plans for both approaches is presented below.

5.2 Internal Systems Testing

5.2.1 Attenuator

 To verify the successful operation of the attenuator, a function generator

will be used to provide AC inputs ranging from 100Hz-500MHz. The output

voltage will be examined and the negative gain will be recorded at each

frequency. Furthermore, a DC input voltage will be provided to the attenuator and

the drop in voltage will be recorded again. This experiment will confirm the

functionality of the attenuator for a wide range of input frequencies.

5.2.2 Low-Noise Amplifier (LNA)

 Similar to the attenuator test, input signals with a varying range of

frequencies and amplitudes will be provided to the LNA and the relationship

between input/output voltage as well as the frequency response relationship will

be plotted. This will allow a clear understanding of the voltage levels or frequency

cut-offs where the output signal starts to saturate.

5.2.3 Variable Gain Amplifier (VGA)

 The gain of the variable gain amplifier will be modified using SPI protocol

and input signals of various frequencies will be provided through a function

generator. The gain of the VGA will be verified through a commercial

oscilloscope for frequencies up to 500MHz.

5.2.4 Phase-locked loop

 An external clock shall be provided to the PLL and the clock multiplier will

be adjusted through SPI. The output frequency of the PLL will be measured and

verified.

5.2.5 Firmware testing

 The HMCAD1511 ADC module will be used in conjunction with a function

generator to provide a digitized waveform to the Zynq Zedboard SoC. This

experiment will verify the success of the firmware in being able to display the

waveform to a user on a computer. For preliminary tests, the Jupyter notebook

web application will be utilized to view the waveforms. Other than the overall

functionality of the firmware, testbenches will also be created in order to verify

145

each IP core. For the final design, an Ultra 96 board will be used instead of a

Zynq Zedboard for running the back-end firmware.

5.3 High Level System Testing

5.3.1 External Trigger System

 The external trigger system will be used to test if repetitive waveforms can

be displayed in a steady manner for analyzation purposes. This will consist of

applying an input signal to the analog input of the oscilloscope and verifying that

the oscilloscope pauses data capture when an external trigger event occurs. This

will be verified using a high-speed commercial oscilloscope by recording both the

trigger event and the input signal.

5.3.2 Input variation

 The overall device will be tested using both 1 and 2 analog inputs. The

waveforms of these inputs will be varied between DC signal, sine waves, square

waves, triangular waves, and more. The ability of the device to accurately display

these waveforms on the GUI will be verified. The input voltage levels will be

changed from 0 VPP to 20 VPP to confirm that the input voltage requirement is

met.

5.3.3 Frequency Sweep

 A function generator will be used to provide a periodic input signal to the

device. A frequency sweep from 0Hz to 500MHz will be conducted and the

absence of aliasing shall be verified.

5.3.4 Sampling rate

 The external clock will be used to test the function of the device at

different clock frequencies.

146

6. Preliminary Project Plan

6.1 Overview

The tasks we will be completing for ECE 492 will be divided into a hardware

team and a software team. The hardware team will be focusing on testing and

validation of the first version of the front-end analog circuitry. This includes cross-

verifying the KiCad and Eagle schematics and ensuring the component models and

values match. Furthermore, signal measurements will be taken directly from the

board to ensure that the node voltages are equal to the specified values. After

testing, certain electronic circuit components will be modified and a second version

of the PCB will be created in KiCAD and sent out for printing. Besides this, the back-

end firmware will also be modified so that the external trigger and clock

functionalities can be added. For preliminary tests, the Zedboard will be utilized to

verify the firmware, but then this will be ported to the Ultra96 development board.

The main task that the software team will be focused on will be the design

and implementation of the web interface that will be used to display the waveforms

that are collected by the hardware. A main component of this will be setting up a

web server on the Ultra96 to function according to what we need for the interface to

run properly. This will consist of configuring either the Jupyter notebook web server

that is already on the board using Python 3 or creating another web server if

necessary. We will also need to modify the open source Waveforms Live application

147

to be able to display and perform regular oscilloscope functions on the waveforms it

receives.

In ECE 493, the main task for the hardware team will be to perform testing on

the second version of the front-end PCB to ensure it functions correctly. The testing

plan in section 5 will be followed to ensure each component as well as the entire

system performs as designed. The main task for the software team will be to ensure

that communication between the FPGA and the backend software runs smoothly

and efficiently, creating near seamless interaction between the initial analog

hardware and the graphical user interface.

6.2 Allocation of Responsibilities

The following is how the hardware and software teams will be divided, as well

as a breakdown of the leads for each aspect of the project:

Hardware:

● Zaeem Gauher - Analog front-end circuitry validation and customization

● Timothy Bullock – Custom circuit and PCB design for analog front-end

● Umair Aslam – VHDL programming for the back-end firmware on the

Ultra96

Software:

● Afnan Ali – Front end GUI design based on Waveforms Live Application

● Evan Hoffman – Backend software development for the web server/web

client.

The project manager has the added responsibility of ensuring the timely

completion of tasks assigned to each team member, and coordination with the

faculty supervisor. Furthermore, the team members are responsible for completing

their assigned tasks and deliverables by the agreed upon due date. Overall, each

member of the team has a vital role to play in the success of this senior design

project.

148

7. Potential Problems

7.1 Required Skills Training

There are multiple areas of knowledge as well as certain skills that will need

to be learned to ensure successful completion of this project. Specifically, the

following areas are of particular importance:

● Specifics of PCB design for high frequency analog applications

● Specific MPSoC interfaces and standards (AXI interfaces, BRAM, DMA Engine)

● GUI design using Angular

7.2 Risk Analysis

There are multiple risks associated with the development of this project.

These risks are briefly discussed below:

● Digital signals have a finite speed at which they propagate through the PCB

traces. If the trace lengths are mismatched, the measurements could potentially

be highly inaccurate due to propagation delay. This is a high priority risk because

a slight difference in trace lengths will reduce the effectiveness of the ADC.

Furthermore, this issue is also very difficult to debug.

● PCB design errors are usually common which is why boards go through several

revisions before being finalized. However, for this project, any errors will exceed

the budget and time frame by an inadequate amount which is why this is a high

priority risk. To reduce the chance of this happening, the PCB layout will be

verified multiple times in KiCad before it is approved for printing.

● Electric component damage is also another probable risk associated with the

testing of the front-end device. Since each integrated chip is being soldered by

hand, the chances of burning out the chip due to incorrect pin connections or due

to heat from soldering are quite high. Since this could increase the budget of the

149

project dramatically, extreme caution should be observed while handling the

integrated chip components (especially the ADC).

● Many times, the ADC does not achieve the full resolution as specified in the data

sheet. Due to noise, the ADC has a resolution related to the effective number of

bits (ENOB). This would decrease the accuracy in the vertical scale of

measurement. This risk is not given a high priority due to the fact that even a

slightly lower resolution is still acceptable for application in which this device will

be used.

8. Citations and References

[1] R. Beneder, M. Lechner and P. Schmitt, "Development of a low-cost,

open-source measurement equipment for undergraduate courses dedicated to

embedded systems," IEEE EUROCON 2017 -17th International Conference on

Smart Technologies, Ohrid, 2017, pp. 187-192.

[2] A. Wozneak, R. Nagpal, and R. Meruvia, “ECE - 492 Design Document.”

10-Dec-2018.

[3] V. Niculescu and A. I. Liţă, “Open source oscilloscope for hobby users,” in

2015 14th RoEduNet International Conference - Networking in Education and

Research (RoEduNet NER), 2015, pp. 203–207.

[4] “4000 Mixed Signal Oscilloscopes | RIGOL.” [Online]. Available:

https://www.rigolna.com/products/digital-oscilloscopes/4000/. [Accessed: 12-Oct-

2019].

[5] “Mixed Domain Oscilloscopes - MDO3000 Series Datasheet | Tektronix.”

[Online]. Available: https://www.tek.com/datasheet/mixed-domain-oscilloscopes.

[Accessed: 12-Oct-2019].

[6] “PC Oscilloscope, Data Logger & RF Products | Pico Technology.”

[Online]. Available: https://www.picotech.com/. [Accessed: 12-Oct-2019].

[7] “DSOX3052A Oscilloscope: 500 MHz, 2 Channels | Keysight (formerly

Agilent’s Electronic Measurement).” [Online]. Available:

https://www.keysight.com/en/pdx-x201849-pn-DSOX3052A/oscilloscope-500-

mhz-2-channels?cc=US&lc=eng. [Accessed: 12-Oct-2019].

150

[8] “1000Z Mixed Signal Oscilloscopes | RIGOL.” [Online]. Available:

https://www.rigolna.com/products/digital-oscilloscopes/1000z/. [Accessed: 12-

Oct-2019].

[9] “Untitled.” [Online]. Available:

https://www.tequipment.net/TektronixDPO2022B.html. [Accessed: 12-Oct-2019].

[10] “PC Oscilloscope, Data Logger & RF Products | Pico Technology.”

[Online]. Available: https://www.picotech.com/. [Accessed: 12-Oct-2019].

[11] “PC Oscilloscope, Data Logger & RF Products | Pico Technology.”

[Online]. Available: https://www.picotech.com/. [Accessed: 12-Oct-2019].

[12] “ScopeFun - Open Source Oscilloscope.” [Online]. Available:

https://www.scopefun.com/. [Accessed: 12-Oct-2019].

[13] “BitScope Mini Model 10 | World’s Smallest Mixed Signal PC Based USB

Oscilloscope!” [Online]. Available: https://www.bitscope.com/product/BS10/.

[Accessed: 12-Oct-2019].

[14] “OpenScope MZ: Open-source All-in-one Instrumentation,” Digilent.

[Online]. Available: https://store.digilentinc.com/openscope-mz-open-source-all-

in-one-instrumentation/. [Accessed: 12-Oct-2019].

[15] “OpenADC - NewAE Technology Inc.” [Online]. Available:

http://store.newae.com/openadc/. [Accessed: 12-Oct-2019].

[16] 96Boards. (2019). Ultra96. [online] Available at:

https://www.96boards.org/product/ultra96/ [Accessed 4 Oct. 2019].

[17] “HMCAD1511 Datasheet and Product Info | Analog Devices.” [Online]. Available:

https://www.analog.com/en/products/hmcad1511.html. [Accessed: 12-Oct-2019].

[18] “12 THINGS TO CONSIDER WHEN CHOOSING AN OSCILLOSCOPE.”

Tektronix, 2010.

151

[19] S. R. Al-Araji, K. A. Mezher and Q. Nasir, "First-Order Digital Phase Lock

Loop with Continuous Locking," 2013 Fifth International Conference on

Computational Intelligence, Communication Systems and Networks, Madrid,

2013, pp. 414-417.

152

11. Appendix B: Design Document (ECE492)

Open Source High-Speed Oscilloscope

(OSHO)

Design Document

Team Members:

 Timothy Bullock, Afnan Ali, Evan Hoffman, Umair Aslam, Zaeem Gauher

 Faculty Advisor:

Jens-Peter Kaps

ECE492-001

Date of Submission: December 6th, 2019

George Mason University
4400 University Dr, Fairfax VA 22030

1. Problem Statement 122

2. System Requirement Specifications 126

153

2.1 Mission Requirements: 134

2.2 Operational Requirements: 134

2.2.1 Input/Output Requirements 156

2.2.2 External Interface Requirements 156

2.2.3 Functional Requirements 157

2.2.4 Technology and System-Wide Requirements 157

3. System Decomposition & Architecture 136

3.1 Level Zero Decomposition 158

3.2 Level One Decomposition 158

3.3 Level Two Decomposition 159

3.3.1 Analog Input Signal Preconditioning Stage/Function 159

3.3.2 Analog to Digital Conversion Stage/Function 160

3.3.3 ADC Sampling Clock Generation Stage/Function 161

3.3.4 Data Buffering and Routing Stage/Function 162

3.3.5 Data Processing and Hosting System 163

3.3.6 User Interface 164

3.4 Overall System Architecture 165

3.5 Physical Architecture 166

4. Background Knowledge Used in Design 167

4.1 Analog Front-End 167

4.1.1 Attenuator Design: 168

4.1.2 Low-Noise Amplifier (LNA): 169

4.1.3 Variable Gain Amplifier (VGA): 170

4.1.4 Anti-Aliasing LPF: 171

4.1.5 Phase-locked loop(PLL): 171

4.1.6 Analog to Digital Converter(ADC): 172

4.2 FPGA Datapath and Firmware 173

4.2.1 Zynq Architecture 173

4.2.2 Advanced eXtensible Interface (AXI) 174

4.2.3 FPGA Datapath 175

4.3 Server and GUI 176

4.3.1 Server and Back-End Software 176

4.3.2 GUI 176

5. Detailed Design 178

5.1 Analog Front-End Schematics 179

5.1.1 Power Circuitry 1 179

5.1.2 Power Circuitry 2 180

5.1.3 Power Circuitry 3 181

5.1.4 Power Circuitry 4 182

5.1.5 Input Attenuation Stage for Analog Inputs (note: page cropped for visibility)
 183

154

5.1.6 Amplification and Filtering Stage for Analog Input 1 (note: page cropped for
visibility) 185

5.1.7 Amplification and Filtering Stage for Analog Input 2 (note: page cropped for
visibility) 188

5.1.8 ADC Schematics 190

5.1.9 PLL Schematics 191

5.1.10 Ultra 96 SoC Connectors 192

5.2 Analog Front-End Component Selection 193

5.2.1 Switching Circuit Elements 193

5.2.2 Phase Locked Loop 194

5.2.3 Variable Gain Amplifier 194

5.2.4 Low Noise Amplifier 195

5.2.5 Analog to Digital Converter 195

5.3 FPGA Datapath Design 197

5.3.1 Bit Clock Alignment 197

5.3.2 Frame Clock Alignment 199

5.3.3 Post-Deserialization 199

5.4 Software Design and Models 200

6. Prototyping & Early Testing Progress Report 205

6.1 Analog Front-End HACD Board Testing 205

6.1.1 10:1 Attenuator Path Simulation 205

6.1.2 20:1 Attenuator Path Simulation 206

6.1.3 LPF simulation (500MHz cutoff frequency) 207

6.1.4 LPF simulation (250 MHz cutoff frequency) 208

6.2 VHDL Firmware Testing Progress 208

6.2.1 Vivado Project and Xilinx Zedboard Testing 208

6.2.2 Jupyter Notebook Prototyping Progress 209

6.3 Software Development & Waveforms Live Cloning 210

7. Testing Plan for ECE493 211

7.1 Analog Front-End Testing 211

7.1.1 Attenuator 144

7.1.2 Low-Noise Amplifier (LNA) 144

7.1.3 Variable Gain Amplifier (VGA) 144

7.1.4 Phase-locked loop 144

7.2 VHDL Firmware Testing 212

7.2.1 Pynq Linux Port Testing 212

7.2.2 Firmware Testing 212

7.2.3 Jupyter Notebook Testing 213

7.3 Server Testing & GUI Testing 213

7.4 High-Level Overall System Testing 214

7.4.1 Input variation 145

7.4.2 Frequency Sweep 145

155

7.4.3 External Trigger System 214

7.4.4 External Clock Input 145

8. Task Allocations for Remainder of Project 214

8.1 Analog Front-End 214

8.2 PCB Design 215

8.3 FPGA & Firmware Development 215

8.4 Server Back-End & GUI Web Client Development 215

9. Schedule for Remainder of Project 217

10. References 218

156

1. Problem Statement
Digital oscilloscopes are extremely useful tools for many engineering applications

where electrical signals need to be measured and analyzed. Digital oscilloscopes

“enable the user to debug, visualize and measure various signals,” and are an essential

part of any engineering lab or project [3]. Yet, in many applications such as RF design,

the signals that are being analyzed are too high frequency to be measured with

standard low-cost oscilloscopes. In these applications, high performance oscilloscopes

with sufficient bandwidth and sampling-speeds are needed. The problem with this is that

oscilloscopes with bandwidths greater than 500 MHz are extremely expensive. Even

moderate performance oscilloscopes with bandwidths greater than 200 MHz can cost

several hundreds to thousands of dollars. On top of this, even at these high prices,

many of the commercially available devices can be limited in certain usability aspects

and features. For example, downloading the captured data from these devices for

external processing can be quite slow, and their built-in ADC cannot be synchronized to

an external clock signal. Therefore, to overcome these limitations, it is our project’s

motivation to create a low-cost, open source, and high-speed alternative to existing

oscilloscopes.

2. System Requirement Specifications

2.1 Mission Requirements:

● The project shall design an oscilloscope that is an open source, low-cost

alternative to commercially available oscilloscopes, and a performance, feature

rich alternative to existing open-source oscilloscopes.

● The project shall design a custom high-speed PCB that will easily interface with

an Ultra96-V2 development board, as well as develop the supporting firmware

and graphical user interface for the device.

2.2 Operational Requirements:

2.2.1 Input/Output Requirements

- The device shall have at least two analog input channels, one external clock

input, and one external trigger input.

- The system will receive control and configuration commands as well as be able

to responsively display captured data through a web client with an intuitive and

responsive GUI.

2.2.2 External Interface Requirements

- The device will provide support for 1x and 10x passive probe inputs (50Ω).

- Bayonet Neill–Concelman (BNC) connectors shall be used for the analog inputs,

external clock input, and external trigger inputs.

157

- The system shall interface with a network capable computer through USB3.0 or

WiFi.

- The system shall receive power from an external 12V DC power supply.

2.2.3 Functional Requirements

- The analog-to-digital converter (ADC) shall sample one input channel at 1 GSPS

or two channels at 500 MSPS.

- The device will be able to measure analog inputs with a maximum input voltage

of ±10V.

- The input analog circuitry shall achieve a 500 MHz bandwidth.

- The ADC shall be able to be configured to sample using either the FPGA clock or

an external clock input (between 30 MHz and 1 GHz).

- The ADC output sample resolution shall be no less than 8 bits.

- The system’s data capture shall have the ability to be triggered using both

configurable edge triggers as well as a configurable external trigger input.

2.2.4 Technology and System-Wide Requirements

- The front-end device shall use a single 1GSPS ADC chip.

- The ADC data shall be processed and hosted on an onboard Linux web server

using a Xilinx Zynq UltraScale+ multiprocessor systems-on-chip (MPSoC)

aboard the Ultra96 Board.

- The analog front-end custom PCB should interface with the Ultra96 Board for

data processing.

- Target FPGA development board shall have device driver firmware for interfacing

with the ADC, and routing and storing ADC sample data in a memory device.

- Front-end programmable devices will be controlled using the Serial Peripheral

Interface (SPI) or other serial protocol.

- The custom high-speed PCB and Ultra96 devices will interface with each other

via the Ultra96’s high-speed and low speed mezzanine connectors.

- The device should be low-cost ($600 or less).

3. System Decomposition & Architecture

158

3.1 Level Zero Decomposition

In order to provide a detailed overview of the system architecture for our solution,

it is best to start with a functional decomposition of the system so that the system’s

functions can be related in a hierarchical manner. This decomposition will provide a top

level overview of the system, then work downward to identify each of the main

processes of the system, then continue downwards to identify the sub functions of each

of these processes. The level zero decomposition provides a top level overview of the

overall solution; it shows the overall system inputs and outputs. For our system, this is

shown below in figure 1. It shows that the overall system will take in two analog inputs,

an external clock input, an external trigger output, user commands, and DC power. The

system then outputs status information and digitized waveform data.

Figure 1. Level Zero Functional Architecture Block Diagram

3.2 Level One Decomposition

After the system is understood at the highest input/output level (level zero), the

next step of functional decomposition is to identify the top level processes of the

system. For our system this would include analog signal preconditioning, analog to

digital conversion, ADC clock selection/generation, raw data buffering and routing,

processing and data hosting, and finally, display and interface processing. This is

summarized in the level one diagram shown below (Figure 2). Once each of these main

processes is identified at this level, they can then be further decomposed and discussed

at the level two decomposition level.

159

Figure 2. Level One Functional Architecture Block Diagram

3.3 Level Two Decomposition

Once the functionality of the system is understood at the level one demoposition

level, the next step to providing a detailed overview to the system design is to take each

of these top level processes and decompose them into their subprocesses. This is done

for each of the top level processes shown in the level one functional architecture block

diagram above (Figure 2). It is worth noting that throughout the completion of the

detailed system design that these level two subprocess blocks are subject to slight

alterations.

3.3.1 Analog Input Signal Preconditioning Stage/Function

The purpose of the analog input signal preconditioning stage/function is to take in

the analog inputs and modify them so they can be most optimally digitized by the ADC.

The functions that occur in this main process are: overvoltage protection, coupling and

offset selection, variable attenuation and amplification, and finally passing through a low

pass anti-aliasing filter. The input signals are first passed though overvoltage protection

to protect the remainder of the circuitry. Then the signals are then modified by selecting

DC or AC coupling, and the desired offset is added to the signal. Next, the signals are

converted to a differential signal and are attenuated so that the signals can fit within the

160

full-scale range (FSR) of the ADC. Next, the signals are variably amplified so their

amplitude more accurately fits the FSR of the ADC. Finally, the signals are sent through

a low pass filter to reduce high frequency noise and limit the signals to the Shannon-

Nyquist frequency dictated by the ADC maximum sampling rate. Configurable aspects

of this system such as DC offset will be configured through SPI commands from the

processing subsystem.This front-end circuitry will be routed on a custom high-speed

PCB that will be designed by our team.

Figure 3. Level Two Functional Architecture Block Diagram -

 Analog Input Signal Preconditioning

3.3.2 Analog to Digital Conversion Stage/Function

 After the signals have been preconditioned, they are then sent to the analog to

digital conversion stage/function. This stage is the simplest stage as it only consists of

one main function and component, the high sampling speed ADC. This stage takes the

preconditioned analog signals and outputs a digital LVDS signals representing the

digitized sample data. This data is sent to the data and buffering and routing stage.

This stage will also be located on the custom high-speed PCB that will be designed by

our team.

161

Figure 4. Level Two Functional Architecture Block Diagram -

 Analog Digital Conversion

3.3.3 ADC Sampling Clock Generation Stage/Function

Another major function of the overall system is to generate the clock signal for

the ADC. In this stage/function, either the FPGA clock or the external clock is toggled

between as an input into the phase locked loop (PLL) which matches or multiplies the

frequency of the input signal to generate a low jitter clock signal for the ADC. This is the

third stage/function that will be located on the custom PCB.

162

Figure 5. Level Two Functional Architecture Block Diagram -

ADC Sampling Clock Generation

3.3.4 Data Buffering and Routing Stage/Function

 The next stage/function of the system is the Data Buffering and Routing Stage.

The purpose of this stage is to receive data from the ADC, deserialize the data, and

create 64-bit AXI packets which can then be loaded into main memory via direct

memory access (DMA). This stage will also process the external trigger input in order to

generate necessary control signals and stop the flow of digitized waveform data into

memory. This stage will be implemented using the programmable logic (PL) portion of a

MPSoC development board. More Specifically, this stage will be implemented on the

Xilinx Zynq Ultrascale+ MPSoC ZUEG A484 that is on the Ultra96 V2 board and using

163

custom and Xilinx provided Intellectual Property (IP) cores connected using the

Advanced eXtensible Interface (AXI).

Figure 6. Level Two Functional Architecture Block Diagram -

Data Buffering and Routing

3.3.5 Data Processing and Hosting System

After the output data from the adc is stored in main memory, the next thing that must

happen to it is that it must be processed and hosted on a web server running on the ARM

processor portion of the MPSoC. This ARM processor will be running a server which will host

the web server that communicates with the user interface which will be implemented as

a web client on a remote computer. This processor will also be running additional

software in order to generate the commands to control the various components on the

custom analog front-end via SPI, perform basic processing on the waveform data such

as downsampling and converting the data into the desired protocol for the webserver,

and finally to communicate with and control the PL portion of the chip via the AXI

interface.

164

Figure 7. Level Two Functional Architecture Block Diagram -

Processing and Data Hosting

3.3.6 User Interface

The final stage/function that is required for our system is the user interface so that the

user can control the system and view the digitized waveform data. This stage will consist of a

webclient that will be running in a web browser running on the user’s network capable computer.

This web client will communicate with the server running on the Ultra96 in order to pass control

and configuration information to the system and output waveform and status information.

165

Figure 8. Level Two Functional Architecture Block Diagram -

User Interface

3.4 Overall System Architecture

In Figure 9 below is a diagram of the main system components integrated into

the overall system architecture. It can clearly be seen that the system will be divided

into the three main subsystems: the analog front-end, the processing subsystem, and

the web-based GUI. This diagram will serve as the model in which we plan to implement

the flow of data, power, and control throughout the system.

166

Figure 9. Overall System Architecture

3.5 Physical Architecture

The physical architecture consists of a hierarchical diagram that shows the main

configuration items that make up the system. This includes major hardware and

software components. This serves as a hierarchical overview of the major physical

resources that will be required to implement our solution.

167

Figure 10. Physical Architecture

4. Background Knowledge Used in Design

4.1 Analog Front-End

 In order to understand the function of the overall analog front end circuit, it is important

to understand the theory used in deriving our solution. The analog front end circuitry consists

multiple subcomponents that comprise the overall signal measurement chain. These

components include an attenuator, low noise amplifier (LNA), a variable gain amplifier (VGA),

and an anti aliasing low pass filter (LPF). Furthermore, the analog to digital conversion system

168

consists of a phase locked loop and an 8-bit ADC. The background knowledge as well as the

mathematical theory utilized to select and justify these components is described in further detail

below.

4.1.1 Attenuator Design:

The attenutor’s primary function is to reduce voltage, dissipate power, and improve

impedance matching between devices such as amplifiers. Attenuators can be configured

to adjust the amount of attenuation manually. The utilization of an attenuator is crucial in

the front-end as it provides sufficient input amplitude adjustment to prevent saturation for

large signal swings. Although there are multiple possible configurations of an attenuator,

the Pi attenuator is best suited for applications where impedance matching is important.

A circuit diagram of the differential Pi attenuator along with the calculations to design the

resistance values are presented below. For the purpose of the OSHO project, two

attenuator paths are required; a 10 to 1 as well as a 20 to 1 path are used to ensure that

the input voltage specifications are upheld.

Differential Pi configuration attenuator circuit:

Relevant Equations used to design attenuator:

169

Resistance value calculations for 10:1 attenuation path:

Resistance value calculations for 20:1 attenuation path:

4.1.2 Low-Noise Amplifier (LNA):

Low noise amplifiers are used to amplify very low-power signals without negatively

affecting the signal-to-noise ratio. By using a LNA close to the input source, the effects

of noise in the following stages of the front-end stage can be greatly reduced. To ensure

the maximum transfer of power from source to amplifier, the source impedance should

match the input impedance of the LNA. This can be achieved through the attenuator

mentioned earlier. The circuit for the low noise amplifier used in the OSHO front-end

design is based off the reference design provided by Texas Instruments for the

LMH5410 LNA. The specified voltage gain of 4V/V in the TI design is adequate for this

application due to the fact that the VGA can be used to further fine tune the gain

settings.

170

Figure 11. LMH5401 Circuit

The calculation process for picking the resistance values in this reference design is laid

out in brief details below:

1) The resistance values for RF is selected based on the choice of the user.

There is great flexibility in choosing the RF resistor since it is an external

resistor.

2) Once RF is chosen, the following equations are utilized to calculate the

resistance values for RG1 and RG2. The value for RS used in these

equations is equal to 50 ohms which is the source impedance.

 …...

4.1.3 Variable Gain Amplifier (VGA):

A VGA is used to amplify input signals based on the gain parameter. The advantage of

using a VGA is that the gain can easily be controlled through an interface such as SPI to

ensure that the output fits within the full-scale input range of the ADC. This prevents

clipping of the digital output waveform. The LMH6401 VGA used in the OSHO design

has a set of internal registers which can be read to or written from using a 4 pin SPI

configuration. To enable transfer of data, an active low chip select pin is utilized. Serial

data is loaded into/out of register every 16th clock cycle due to the fact that word length

is 16 bits. The first 8 bits specify the address of the register and the next 8 bits are either

171

the data being loaded or read from the register. The SPI timing diagrams for read and

write cycles for this VGA are presented below.

SPI Write Bus Cycle

SPI Read Bus Cycle

Figure 12. SPI Timing Diagram

4.1.4 Anti-Aliasing LPF:

An anti-aliasing low pass filter’s function is to remove unwanted high frequency

components from the input signal. This filter is crucial to ensure that the input to the ADC

has a maximum frequency of half the sampling rate. This prevents aliasing as dictated

by the Nyquist-Shannon Theorem. A Chebyshev LPF filter is used for in our design due

to the fact that it provides the sharpest cut-off frequency by allowing a small ripple in the

frequency response. For the purpose of this project, the values for the elements in the

Chebyshev LPF were calculated using MATLAB software. The circuit designs as well as

simulations for the the two chebyshev filters used in this project are presented later.

4.1.5 Phase-locked loop(PLL):

A phase-locked loop is a voltage driven oscillator that receives a reference signal and

outputs a signal with either a matched or multiplied frequency compared to the

reference. The PLL also acts similar to a bandpass filter to remove high frequency jitter

as well as low frequency VCO jitter from the clock signal [19]. The PLL will allow for the

use of the FPGA clock in order to provide the clock input to the ADC. Similarly, it can

also be utilized to sync the ADC clock with an external clock when that option is

selected. A functional block diagram of the PLL used for out front-end circuit is

presented below:

172

Figure 13. CDCE62002 PLL Block Diagram

In the diagram above, the interface and control block determines the status of the PLL

when the device is powered based on the contents of the EEPROM. On the other hand,

SPI commands can also be used to directly change the output of the PLL by writing

directly to the device registers.

4.1.6 Analog to Digital Converter(ADC):

The ADC is one of the most crucial features of the oscilloscope as it determines the

sampling rate, resolution, as well as bandwidth. The ADC receives analog signals from

the signal conditioning stage which includes attenuation, amplification, and filtration. The

analog signal is then sampled and digitized before being transferred to the back-end

firmware for transferring the data into memory. Some of the important features of the

ADC are detailed below:

Bandwidth:

The bandwidth of an ADC dictates the maximum frequency range that can be

accurately measured by the device. High-speed, serial communication, and other

complex signal applications require bandwidths of 500MHz or greater for

accurate measurement.

Sample Rate:

The sample rate of an ADC (measured in samples/second) defines how often the

device samples the signal. According to the Nyquist-Shannon Sampling

Theorem, the sampling rate needs to be twice as fast as the highest frequency

component of a signal in order to avoid aliasing. Thus, if a sampling rate of

1GSPS is used, the maximum input frequency should be limited to 500MHz.

Channel Resolution:

The resolution of the ADC defines the granularity of the signal. If the ADC in the

oscilloscope has an 8-bit resolution, this translates to 28 = 256 digitized levels

173

that each analog sample will be translated to. An ADC with a resolution of 8 bits

is sufficient for a low-cost oscilloscope application.

The background knowledge for all important subcomponents of the OSHO front-end circuit are

presented above. However, it is also important to understand the theory behind the function of

the overall system.

4.2 FPGA Datapath and Firmware

4.2.1 Zynq Architecture

Figure 14. Zynq Architecture

A Field-Programmable Gate Array (FPGA) is the optimal choice for data

intensive processing, massively parallel algorithms or applications dealing with a large

number of inputs and outputs. In contrast, a microprocessor is better utilized for

complicated decision making. However, both functionalities are often required in parallel

for applications such as building a high-speed oscilloscope. Prior to the Zynq

architecture, however, communication between the FPGA element and the Processing

System (PS) was complex and this led to a collection of modules rather than an actual

system. The Zynq architecture solves this problem by using the Advanced eXtensible

Interface (AXI) standard for communication between the Programmable Logic (PL) layer

and the PS layer. The PL layer contains the configurable logic blocks (CLBs) to

implement any hardware functionality and can be used to extend the processing

system, while the PS layer contains the ARM processor, I/O peripherals and integrated

memory controllers. Utilizing the AXI standard also reduces latency and increases the

overall performance of the system. Furthermore, PYNQ Linux is loaded on the

Processing System (PS). It contains the Jupyter Notebook server which the user can

use to interact with and control the system.

174

Figure 15. Ultra96 v2 Block Diagram

 As shown in figure 14, the Ultra 96 v2 board used in this project has four AXI

high-performance slave ports (HP0-HP3) and four AXI general-purpose ports (GP0-

GP1) for PS-PL interfacing. It also provides 40-pin 96Boards low-speed expansion

header and 60-pin 96Boards high-speed expansion header to interface with peripherals.

4.2.2 Advanced eXtensible Interface (AXI)

Figure 16. AXI Channel Connections

175

Figure 17. Basic AXI Signaling

The Advanced eXtensible Interface (AXI) is part of Advanced Microcontroller Bus

Architecture (AMBA) and is a point to point interconnect designed for high-performance

and high-speed microcontroller systems. The specifications of the protocol are:

● Before transmission of any control signal/address/data, both master and slave

must extend their “hand” for a handshake via ready and valid signals.

● Separate phases exist for transmission of control signal/address and data.

● Separate channels exist for transmission of control signal/address and data.

● Burst type communication allows for continuous transfer of data.

In addition, Xilinx provides a library of AXI based Intellectual Property (IP) cores which

are preconfigured logic functions. These IP cores have been validated and rigorously

tested by Xilinx and have been optimized for Xilinx FPGAs.

4.2.3 FPGA Datapath

As shown in figure 6, the FPGA receives low-voltage differential signals (LVDS)

from the ADC. These include the serial data bits, the frame clock and the bit clock. The

frame clock (FClk) is a digitized and phase-shifted version of the ADC’s sample clock

while the high-speed bit clock (DCLK) is a 90° phase-shifted signal to the data. In

addition, these low-voltage differential signals need to be buffered and deserialized.

They also have to be converted to the AXI format to be transferred to memory. Then,

the data (AXI packet) is communicated to a first-in first-out (FIFO) buffer for clock

domain crossing (CDC) from the ADC’s sampling clock frequency to the global FPGA

clock domain. Lastly, the data is transferred to the PS memory.

176

4.3 Server and GUI

4.3.1 Server and Back-End Software

 The Ultra96 board allows multiple ways to connect to a network capable

computer. Either when the board is connected to a computer through WiFi or when

plugged into a computer via USB, the Ultra96 is recognized as a network card. These

network connections easily allow for a web server to be hosted on the Ultra96. A web

server is a program that uses established networking protocols to host files and data, as

well as process and service client requests from networked computers. The Ultra96

comes with a pre-built Jupyter Notebook web server on board that can be configured

using Python 3. However, the Ultra96 also has an Apache web server installed on it as

well which is more suitable for our needs since the code for WaveformsLive currently

uses Apache Cordova.

4.3.2 GUI

By default, the Ultra96 runs PetaLinux. This is an OS often used for

implementing embedded linux operations on xilinx products. With this linux distributions

the user can connect the Ultra96 to a monitor through the mini display port and you

essentially have a mini linux computer at your disposal with 2Gb of ram. In addition to

being a small linux machine the Ultra96 is also a programmable microcontroller with

GPIO pins that can be used to interface with the outside world. It is because of these 2

features that we plan on implementing a GUI that will serve the Ultra96. This GUI will be

launched by connecting the Ultra96 to the computer and then connecting to its IP from

your computer’s browser. Once connected to your computer, the local version of a

modified waveforms live will begin execution. The GUI that is launched is a modified

version of WaveformsLive that includes the Ultra96 as an option for users to select. This

allows the user to interact with an already known interface with some additional support

for our specific project. None of the WaveformsLive GUI overall design is to be modified

but rather we plan to change the way the data is being processed so that we can ensure

the correct visualization of the Ultra96 data.

To run the GUI locally you must be on a linux environment and have the following

software packages:

● NVM 0.35.1 (Node Version Manager)

● NPM 3.11.0 (Node Package Manager)

● Node 6.11.0 (Node.js)

● Cordova 4.2.0 (Framework for the Application)

● Ionic 2.2.2 (Frontend Software Development Toolkit)

Node Version Manager is a package that lets you select which version of NPM

and Node your computer will use when building and launching the GUI. This package

can be installed using this command:

https://whatis.techtarget.com/definition/server
https://whatis.techtarget.com/definition/server

177

 wget -qO- https://raw.githubusercontent.com/nvm-sh/nvm/v0.35.1/install.sh |

bash

After that you can use NVM to install different versions of the Node and NPM

with the command:

nvm install node v6.11.0

 node -v

This should return “v6.11.0” which means you have correctly installed the

packages. Node is an open source, cross platform javascript runtime environment that

the machine needs to actually execute the javascript code. This runtime environment is

built on Chrome’s V8 javascript engine. Node also utilizes a lightweight event-driven,

non-blocking I/O model. Normally I/O bursts are blocking which prevent other things

from happening while the I/O burst is processed. To get around this most systems need

to use multiprocessing so that there can be multiple threads/processes running the I/O

bursts. Node however, allows for non blocking I/O bursts which means that requests

can be initiated and handled in parallel. This also removes the need for multiprocessing.

A simplified diagram can be seen below.

Figure 18. Call and API Stacks, and Render and Event Queues

The diagram above shows how if a function or chunk of code needs to be

executed it would first be put on the stack where if it did not need to reference an API it

would be immediately implemented. If a function in the call stack needed to be

referenced with an API then it would be pushed into the API stack where it could then

look up the necessary API. This allows for more functions to be put on the call stack in

parallel and executed. Once the function has been looked up with an API it is then put

into the event queue. This event queue holds the API calling function execution until the

stack is empty. Once the stack is empty the API calling functions are pushed into the

178

render queue for rendering. The render queue will also check to make sure the call

stack is still empty and if the stack is still empty the API function will be executed. This

allows for the stack to not be clogged up with functions that need to do a lot of time

consuming API references. This structure is meant to interleave API function executions

in between regular function executions so that the user is able to interact with the GUI

while something like a waveform is being drawn.

In order to run the GUI you must follow the steps below:

● ssh into the Ultra96 using “ssh xilinx@192.168.3.1” in your terminal.

● Change directory to the waveforms-live directory with “cd waveforms-live”

● Run “npm install”

● Run “ionic serve” (this command boots up a development server on the localhost,

which in this case would be the Ultra96)

Once you have run the commands above the terminal will start launching the

GUI. It takes about 30 seconds to have the GUI launched. Once launched you can go to

your local computer’s web browser and enter “192.168.3.1:8100”. This will take you to

the Ultra96 hosted GUI where you can start interfacing with the oscilloscope.

5. Detailed Design

179

5.1 Analog Front-End Schematics

5.1.1 Power Circuitry 1

180

5.1.2 Power Circuitry 2

181

5.1.3 Power Circuitry 3

182

5.1.4 Power Circuitry 4

183

5.1.5 Input Attenuation Stage for Analog Inputs (note: page cropped for

visibility)

184

185

5.1.6 Amplification and Filtering Stage for Analog Input 1 (note: page cropped

for visibility)

186

187

188

5.1.7 Amplification and Filtering Stage for Analog Input 2 (note: page cropped

for visibility)

189

190

5.1.8 ADC Schematics

191

5.1.9 PLL Schematics

192

5.1.10 Ultra 96 SoC Connectors

193

5.2 Analog Front-End Component Selection

The component selection process for the major elements in the OSHO circuit consisted

of comparing multiple different commercially available components. In order to select the ideal

parts for this design, a compromise was made between the price as well as performance. The

comparison between some of the top choices is listed below for each part (components in bold

are the ones that were selected):

5.2.1 Switching Circuit Elements

ADG936 Wideband Switch 1.65VDC – 2.75VDC Power Supply
Insertion Loss= 0.9dB (1GHz)
Contact Form: Dual SPDT
Absorptive and Reflective Options Available
Low Power Consumption (1uW)
Cost=$3.20

Teledyne Series High Speed Relay
(A150-20-5)

5 VDC Coil Voltage
Insertion Loss=0.1dB (1GHz)
Relay Contact Form: SPDT
1-20dB attenuation available (no need for
external resistors)
Operating Power<1W
 Cost= $71.74

Panasonic RE High Speed Relay
(ARE104HC90)

4.5 VDC Coil Voltage
Insertion Loss ≅ 0.2dB (1GHz)
Relay Contact Form: SPDT
Operating Power= 200mW
Cost= $5.96

Axicom High Speed Relay
(IM43CGR)

5 VDC Coil Voltage
Insertion Loss ≅ -0.33dB (900MHz)
Relay Contact Form: DPDT
Operating Power=100mW
Cost= $2.93

194

5.2.2 Phase Locked Loop

CDCE62005 (Clock Generator/Cleaner) 5 Configurable Outputs(differential)
Output Frequency Range: 4.25MHz-
1.175GHz
SPI Interface
Up to 3 reference inputs
Phase Detector Frequency=40MHz
Dual VCO Architecture
Integrated EEPROM to store default settings
Cost=$9.98

LMK0482(Clock Jitter Cleaner w/ dual loop
PLLs)

14 differential clock outputs
Dual Loop PLL Architecture
Maximum Output Clock Frequency 3.1GHz
SPI Interface
Up to 3 reference inputs
Phase Detector Rate=155MHz
Dual Low Noise VCOs
Cost=$19.59

CDCE62002 (Clock Generator/Cleaner) 2 differential clock outputs
Output Frequency Range: 10.94MHz-
1.175GHz
SPI Interface
2 Reference Inputs(1MHz-500MHz)
Phase Detector Frequency=40MHz
Dual VCO Architecture
Integrated EEPROM to store default
settings
Cost=$7.82

5.2.3 Variable Gain Amplifier

Differential Variable Gain Amplifier
LMH6401IRMZR

Voltage Gain: -6dB to 26dB
Voltage Gain Step Size: 1dB

195

 Differential Input Impedance :100 Ω
Input Voltage Range=-5.5 to 5.5V
Maximum Input Difference=2.1V
SPI Interface
Cost=$19.52

Dual Channel Variable Gain Amplifier
LMH6882SQE/NOPB

Voltage Gain: 30dB to -9dB
Input Voltage Range=-0.6 to 5.5V
Voltage Gain Step Size: 1dB
Input Impedance: 50Ω or 75Ω
SPI Interface
Cost=$12.65

Dual Programmable Differential Amplifier
LMH2832IRHAT

Voltage Gain: 26dB to 6dB
Input Voltage Range=-0.5 to 5V
Voltage Gain Step Size: 0.25dB
Input Impedance: 100Ω
SPI Interface
Cost=$19.02

5.2.4 Low Noise Amplifier

LMH5401IRMST Input Voltage Noise= 1.25 nV/√Hz
Slew Rate=17,500V/ns
6GHz Bandwidth with 12dB voltage gain
Quiescent Current: 55mA
Ideal for DC and AC-coupled applications
Cost=$15.32

ADL5561 Input Voltage Noise= 2.1 nV/√Hz
Slew Rate=9.8V/ns
Max Voltage Gain: 15.5dB
Gain Accuracy= ±0.15dB
Quiescent Current: 40mA
Cost=$9.02

ADL5569 (Dual Differential Amplifier) Input Voltage Noise= 1.0 nV/√Hz a
Slew Rate=24V/ns
Max Voltage Gain:20dB
Gain Accuracy= ±0.15dB
Quiescent Current: 86mA per Amplifier
Cost=$37.20

5.2.5 Analog to Digital Converter

ADC08D1520CIY Sample Rate 1.5 GSPS

196

B/NOPB Bandwidth 2 GHz

Resolution 8 Bits

ENOB 7.4 bits @748Mhz

Price $ 563.00

ADC08D1020CIY

B/NOPB

Sample Rate 1GSPS

Bandwidth 2.0 GHz

Resolution 8 Bits

ENOB 7.4 Bits @498MHz

Price $ 388.57

HMCAD1520

Sample Rate 1GSPS

Bandwidth 700MHz

Resolution 8 Bits

ENOB N/A

Price $ 113.18

HMCAD1511

Sample Rate 1GSPS

Bandwidth 650 MHz

Resolution 8 Bits

ENOB 7.9 Bits

Price $ 64.76

197

5.3 FPGA Datapath Design

This project will leverage the preconfigured Xilinx IP cores for the majority of the

datapath. This will lead to the completion of the task in an efficient and timely manner.

As shown in the following figure, the ADC digitizes the input signal and outputs the 8-bit

sample, along with the bit-clock and the frame-clock.

Figure 19. Single channel - LVDS timing 8-bit output of the HMCAD1511 ADC

 Furthermore, the frame clock rising edge transitions are aligned with the framing

ADC data bits (D0 and D7). This alignment helps a deserializer to correctly load parallel

data after de-serialization. In addition, the bit clock is typically center-aligned and both

clock edges are used to latch serial ADC data. Therefore, the bit clock is referred to as

a double data rate (DDR) bit clock.

Within the Ultra96, when a bit is routed through a clock-capable I/O, BUFIO buffer,

and/or BUFR clock buffer, it experiences a different amount of delay than the data and

frame signals. Therefore, the phase relationship between the signals is lost. To

compensate for this, the bit clock has to be realigned to the data and frame signals.

5.3.1 Bit Clock Alignment

Xilinx provides application notes on utilizing their IP cores for various needs. One

such application note also discusses clock alignment. The complete bit clock alignment

setup within the deserializer core is shown in the following figure.

198

Figure 20. Bit Clock Alignment Setup

The bit clock (DCLK) from the ADC is routed through an IDELAYE2 core to two

buffers. It is also sent to the D input of the ISERDESE2. This technique allows the

determination of the position of the rising and falling edges of DCLK. The Bit Clock

Phase Alignment state machine monitors the ISERDESE2 outputs and the deserialized

and parallel captured clock bits. When all captured bits are equal (i.e., all 0s or all 1s),

the state machine changes the delay of the IDELAYE2 core to align the internal clock to

the external clock.

Figure 21. Clock Skew through the Buffers

199

5.3.2 Frame Clock Alignment

Figure 22. Frame Clock Alignment Block Diagram

After the bit clock (DCLK) has been properly aligned, the frame clock pattern

discovery is begun. The LVDS frame clock from the ADC is a digitized version of the

sampling clock that is phase aligned with the data. As shown in figure 22, the

ISERDESE2’s output is compared to a fixed value representing the expected frame

clock pattern, which is “11110000” for an 8-bit ADC. If the output of the ISERDESE2

does not match the expected value, a bitslip operation is carried out on the frame and

data signals. When this output is finally equal to the programmed pattern, the bitslip

operation is stopped and the data and frame clock signals within the FPGA are

considered valid. Next, the received data is aligned because it is shifted with the frame

signal. Lastly, the bit clock and frame clock signals are used to capture and deserialize

the data bits.

5.3.3 Post-Deserialization

 After deserialization, the custom Deserializer IP core combines 8-bytes from the

8 input channels into a single AXI packet and sends it to the FIFO buffer. The FIFO

buffer is being used for clock domain crossing from the ADC’s sampling clock frequency

to the global FPGA clock domain. Furthermore, the FIFO IP core uses the AXI stream

protocol which does not need an address channel and is always used to write data in

one direction. Therefore, a Xilinx AXI Direct Memory Access (DMA) core is utilized for

high-bandwidth direct memory access between an AXI4-Stream target peripheral and

the memory on the PS side. Lastly, an external trigger core will be added to the

firmware. This will enable a simple AXI-stream source which will start storing and

forwarding the data samples to the DMA block.

200

5.4 Software Design and Models

The ultimate goal is for us to have the GUI be wireless so that the user does not need to

have the Ultra96 connected to their laptop to see the visualization. This would allow many

people to see the same visualization. Also this result would be a more aesthetic and streamlined

approach. For this ultimate goal to be achieved the Ultra96 needs to start up the server on boot

so any computer on the same WIFI can type its IP into the browser to connect to it.Once the

connection is made the user will use the GUI to generate control signals. These control signals

will be sent back to the Ultra96 and processed. Once processed the Ultra96 will send back data

to the GUI for it to be visualized. A diagram illustrating this process from the GUI and server

side is shown below.

Figure 23. High Level GUI State Diagram

201

Figure 24. High Level Server and Backend Software State Diagram

This GUI is being designed with the Angular framework. This means that we will be

using the Angular paradigm for the GUI design and will have higher flexibility due to the usage

of a few key features.

Dependency Injection is one of these key features. Dependency injection allows for

object dependencies to be put into an object that can be imported by the main object. This

allows for objects and code to operate independent of its dependencies. The dependencies can

be changed and updated without requiring the main object or code that rely on the dependency

to need updating.

Another key feature is the use of typescript. GUIs can be made in a multitude of different

languages but the Angular framework relies on the usage of typescript. This language can be

thought of as a superset of javascript. The main difference between javascript and typescript is

that type script is “heavily typed”. This means that javascript is like python where you do not

need to declare types for values. This allows for easier code but can cause a lot of problems

while running due to unpredicted interactions between variables of different types. Typescript

requires every variable used to formally have a type. This prevents issues such as using the

string “10” instead of the integer 10 in intermediate calculations. An example between variable

declarations can be seen below.

Javascript:

202

Var voltage = getVoltage();

Typescript:

Let voltage : number = getVoltage();

The javascript does not verify the data type of the voltage we are fetching. This means

that it is possible to store a string in the variable voltage. This would result in errors on runtime

without much explanation. The typescript requires that voltage be of type number and will not let

the code run if the getVoltage function has the possibility to return anything else. This prevents

unexplained errors on runtime by raising them during compilation.

Another Angular feature that will be used is RxJS. This reactive programming library

allows for the developer to execute operations on streams of data instead of waiting for the data

to arrive and then operating on it. This will allow for a much more responsive GUI. The Angular

paradigm revolves around being modular. This means that most objects in Angular are made so

that they can have other objects inside of them. Having this nested structure of objects is very

powerful because once an object is made it can become a building block for a more complex

object. Additionally, with the dependency injection, objects are independent of their

dependencies so if an object that is a building block of a more complex object is updated there

is no need to update the more complex object as well.

With the Ionic framework that Angular easily integrates with, this GUI will also be

available on mobile iOS and Android devices. Despite having a screen of a completely different

screen, the GUI will still work because Angular allows for each component to have its own

HTML and CSS file that control they display on various devices.

By breaking down the GUI into its graphical, computational, and hardware-dependent

components the GUI can be much more modular and cleanly implemented. Below is a

breakdown of some services and hardware dependent components that this GUI will rely on.

Many of these components already exist in the WaveformsLive code but need to be modified to

also provide support for the OSHO.

● Utility.service.ts:

○ Determines the proper prefix for the measurement (G,M,K,m,u,n)

○ Creates name for the logging device being used for the rest of the code

○ Add OSHO to possible device names for logging and rest of code

● Ui-helper-service.ts:

○ Determines when to disable and enable buttons on the oscilloscope

control panel

○ Returns an error message when the user tries to interact with the

disabled object

● Tooltip.service.ts:

○ Creates error messages by referencing a master dictionary of potential

failures.

● Toast.service.ts:

○ Creates toast notifications (non clickable notification on bottom of screen)

with variable time and message to notify user for specific event

occurrences

203

● Storage.service.ts:

○ Manages interactions with backend SQL database

○ Gets data from SQL

○ Saves data to SQL

○ Removes data from SQL

○ Removes all data from storage

○ Saves listener settings for components

○ Loads listener settings for components

● Settings.Service.ts:

○ Loads device firmware onto data logging device

○ Saves local copy of data and log files

○ Sets up timeouts for data logging device

○ Exports CSV of data

○ Add OSHO firmware to list of firmwares to load

○ Create non AWS hosted firmware path handling

● Scaling.service.ts:

○ Manages Unit conversions for waveform display

● Logger-plot.service.ts:

○ Maintains data for time and voltage captures

○ Maintains plotting data

○ Manages data visualization window shrinking

○ Draws waveform

○ Updates divisions in for oscilloscope

● Loading.service.ts:

○ Displays loading messages

○ Add more messages to ensure user knows what operations are being

performed

○ Create more GMU oriented branding for product

● Export.service.ts:

○ Creates exports for png and csv

● Device-data-transfer.service.ts:

○ Sets trigger levels for data capture

○ Selects trigger source

○ Selects data capture channels

● Unit-format.pipe.ts:

○ Manages unit conversion and final value display

○ Modify to allow for displaying of full VPP value and increased bandwidth

● Device-manager-page.ts:

○ Maintains the different hardwares user can select

○ Add OSHO as option for collecting data from

○ Add OSHO firmware reference with non AWS path handling

● Device-manager.model.ts:

○ Manages plotting of waveform through WiFi connections

○ Implement OSHO WiFi configuration

● Pages/logger:

204

○ Maintains all data logging hardware and their respective configurations

and displays

○ Add OSHO data logging device

○ Create configuration file for OSHO communication

○ Create HTML file for OSHO GUI displaying

○ Create SCSS file for OSHO display customization

○ Create OSHO Module for all parts of the code to reference for OSHO

usage

Figure 25. Hierarchy of code project broken into main components of project

205

6. Prototyping & Early Testing Progress Report

6.1 Analog Front-End HACD Board Testing

 The preliminary testing of the power circuitry on the HACD PCB uncovered multiple

errors in design and implementation. Some of these errors are listed below:

● Ferrite bead resistance mismatch

● Negative voltage regulator used instead of positive regulator

Furthermore, these errors were corrected by ordering new components and soldering them onto

the board. On the other hand, some early prototyping progress has also been made on the

OSHO circuit design. The newly designed attenuator and Chebyshev LPF circuits were

simulated in PSPICE and the results are presented below.

6.1.1 10:1 Attenuator Path Simulation

Figure 26. 10:1 Differential Pi Attenuation Simulation

206

6.1.2 20:1 Attenuator Path Simulation

Figure 27. 20:1 Differential Pi Attenuation Simulation

207

6.1.3 LPF simulation (500MHz cutoff frequency)

Figure 28. 500MHz Chebyshev Low Pass Filter Simulation

208

6.1.4 LPF simulation (250 MHz cutoff frequency)

Figure 29. 500MHz Chebyshev Low Pass Filter Simulation

6.2 VHDL Firmware Testing Progress

6.2.1 Vivado Project and Xilinx Zedboard Testing

 The VHDL firmware has been successfully debugged and implemented. The errors

discovered in the block diagram and the xdc file have also been fixed. After generating the

bitstream, the firmware was loaded onto the Zedboard to test it using the Easyboard. A 50 MHz

clock signal was provided from the Analog Discovery 2, and the HMCAD1511 was programmed

using Serial Peripheral Interface (SPI) commands to output a test ramp signal serially using

LVDS; this ramp pattern goes from 0x00 to 0xFF. The deserialized data measured using Xilinx’s

Internal Logic Analyzer (ILA) is shown in the following figure.

209

Figure 30. Test Ramp Signal Waveform

 After verifying the deserializer IP’s and the firmware’s functionality, the Jupyter

notebook code was modified to configure the HMCAD1511 into single channel mode

with an external input. An 800 kHz square wave was generated using a waveform

generator and input to the ADC. The ILA waveform is shown in the following figure.

Figure 31. 800 kHz Square Wave Signal Waveform

6.2.2 Jupyter Notebook Prototyping Progress

 After verifying the firmware’s functionality, the Jupyter notebook was run to extract the

ADC data and plot it using the Matplotlib library. The Jupyter notebook code obtained from the

previous HACD group was out of order, without comment and very time consuming to review

and debug. Furthermore, due to inconsistent SPI communication with the Easyboard, the output

was not exactly as expected. In addition, the data from the ADC is converted from 8-bit samples

to a 64-bit AXI packet. This 64-bit packet is then read from memory and results in the waveform

plotting taking a while. The current output of the waveform (shown below) is not an ideal ramp

signal but proves that we can get the data from memory and plot it. This is a key component of

this project. It can be noted that we are currently experiencing some clipping and flatlining but

the overall shape is still represented.

 We plan on taking this proof of concept further during the winter break and ECE 493 by

making the conversion from 8 bit packets to plotted values more efficient so there is less time in

between visualizations. We will also be working to understand how we can take this proof of

concept and integrate it with the GUI and server so that both the GUI code and the ADC send

data in the proper formats. Thus far, the Jupyter notebook code was used to extract and plot the

test ramp signal. However, during the winter break and ECE 493, we plan on testing more

dynamic waveforms as discussed in section 7.

210

Figure 32. Ramp Pattern Plotted in Jupyter Notebook

6.3 Software Development & Waveforms Live Cloning

As of now, we have successfully cloned a copy of the WaveformsLive repo and were

able to run a local version of this on the Ultra96. This means that the entire WaveformsLive GUI

is currently set up on the Ultra96 and will run if the “ionic serve” command is run in the

waveforms-live directory and then you type the IP into the address bar of any web browser.

For the GUI we have been reading through the current GUI code to better understand

how to modify and add to it without removing OpenScope functionality. It is important to us that

this product be a continuation of the previous product and not a new one all together. In addition

to this we are also learning typescript so we can know the language this project is written in.

211

Figure 33. Sample waveform from locally hosted WaveformsLive on Ultra96

7. Testing Plan for ECE493
7.1 Analog Front-End Testing

 To verify the proper operation of the analog front-end, several key components of the

circuit will be tested individually. After the operation of these individual components is

verified, the system will be tested at a black box level to demonstrate the proper

input/output functionality. This comprehensive testing plan is presented in section 7.4 of

this document. These components are listed below:

212

7.1.1 Attenuator

 To verify the successful operation of the attenuator, a function generator will be

used to provide AC inputs ranging from 100Hz-500MHz. The output voltage will be

examined and the negative gain will be recorded at each frequency. Furthermore, a DC

input voltage will be provided to the attenuator and the drop in voltage will be recorded

again. This experiment will confirm the functionality of the attenuator for a wide range of

input frequencies.

7.1.2 Low-Noise Amplifier (LNA)

 Similar to the attenuator test, input signals with a varying range of frequencies

and amplitudes will be provided to the LNA and the relationship between input/output

voltage as well as the frequency response relationship will be plotted. This will allow a

clear understanding of the voltage levels or frequency cut-offs where the output signal

starts to saturate.

7.1.3 Variable Gain Amplifier (VGA)

 The gain of the variable gain amplifier will be modified using SPI protocol and

input signals of various frequencies will be provided through a function generator. The

gain of the VGA will be verified through a commercial oscilloscope for frequencies up to

500MHz.

7.1.4 Phase-locked loop

 An external clock shall be provided to the PLL and the clock multiplier will be

adjusted through SPI. The output frequency of the PLL clock signal will be measured

and verified.

7.2 VHDL Firmware Testing

7.2.1 Pynq Linux Port Testing

To test the successful porting of Pynq Linux onto the Ultra96-v2 board, a simple Pynq

overlay will be created with an AXI GPIO peripheral to control the onboard switches and LEDs.

This will verify that the system can load a bit file onto the programmable layer of the FPGA, and

will validate the successful boot of linux OS. The test is based off of a similar test previously

performed on the Xilinx Zedboard.

7.2.2 Firmware Testing

 Having verified the firmware’s operation at 50 MHz using the Zedboard and the Analog

Discovery 2 for the clock input, the next stage would be to make sure the firmware works

properly at the required 1 GHz speed. An external fractional-n PLL frequency synthesizer will be

used for this purpose. Next the Ultra96-v2 board will be programmed with the OSHO VHDL

firmware and then tested using the Easyboard. The firmware’s functionality will be verified using

213

the ILAs. The HMCAD1511 Easyboard will be used to sample a known signal and send data to

the Ultra96 board, which will then be checked against the expected result.

7.2.3 Jupyter Notebook Testing

 The Jupyter notebook needs to be optimized to obtain data from the Ultra96 board’s

memory, process it and plot the resulting data using Matplotlib. This will be a backup for the

GUI.

7.3 Server Testing & GUI Testing

 To ensure that the GUI is successful and we never ruin the GUI version on the Ultra96

we will be testing the GUI locally on our laptops and once we have a final version we will port it

to the Ultra96. The goal is to test each new feature modularly. To achieve this we will be adding

small parts to our overall GUI on the version on our laptops, verifying that works, then porting

the code to the Ultra96. The first feature to test is the removal of the “clone me” tag on the home

page when the GUI is launched. This is a quick change as it is just graphical and can be quickly

tested on our computers.

 The next testing step would be to add the Ultra96 to the list of devices that can be used

and configuring the device. To test the success of this we will be launching the local

WaveformsLive from our laptop and seeing if the GUI crashes when we select the Ultra96. If

this results in a crash we plan to follow the debugging trace to understand where the break

occurs and resolve this issue. With the addition of the new device we will be running through the

tutorial and signal generation with this device to ensure a successful feature addition.

 Once we know that the Ultra96 option is successfully implemented we can push to the

repository from our laptops and pull that onto the Ultra96 to verify functionality from there as

well. With that feature tested we will need to use the OpenScope to test how data transfers from

one of the known working devices. With this we will get a better understanding of the method of

data visualization and can test the OpenScope on the Ultra96 mode to understand the

difference between the devices that we need to be cognizant of. With those differences in mind

we will test the waveform visualization with a sample data file on the Ultra96 and ensure that the

sample waveform can be visualized correctly. Modifications to the waveform calculation will be

made until we can get successful visualization of the sample waveform on the Ultra96 mode.

The different sample waveforms we will be using will be solid ground, solid 5V, a

5MGhz/50MGhz/100MGhz/200MGhz,500MGhz sine/square wave with Vpp of 5V, and

5MGhz/50MGhz/100MGhz/200MGhz,500MGhz sine/square wave with Vpp of 10V. This will

give us an understanding of the performance on simple waveforms at various speeds and

voltage ranges. Once that is done we can move onto testing data from a live circuit. We will do

this by making a simple circuit with a resistor and LED to verify the DC functionality. With the

DC functionality tested we will use an RC circuit to test the AC functionality. We will go through

a 286 Lab with this device to help verify with a realistic scenario.

 If at any point in time the testing seems to be hitting a wall or progress cannot be made

we plan on reaching out to our contacts that work as full time GUI developers to get their insight

into the problem.

214

7.4 High-Level Overall System Testing

7.4.1 Input variation

 The overall device will be tested using both 1 and 2 analog inputs. The

waveforms of these inputs will be varied between DC signal, sine waves, square waves,

triangular waves, and more. The ability of the device to accurately display these

waveforms on the GUI will be verified. The input voltage levels will be changed from 0

VPP to 20 VPP to confirm that the input voltage requirement is met. The results from this

test will be compared at a high-speed commercially available oscilloscope.

7.4.2 Frequency Sweep

A function generator will be used to provide a periodic input signal to the device.

A frequency sweep from 0Hz to 500MHz will be conducted and the absence of aliasing

shall be verified for the bandwidth of our device. This will repeated in dual channel

mode where the frequency sweep will be conducted from 0Hz to 500MHz.

7.4.3 External Trigger System

 The external trigger system will be used to test if repetitive waveforms can be

displayed in a steady manner for analyzation purposes. This will consist of applying an

input signal to the analog input of the oscilloscope and verifying that the oscilloscope

pauses data capture when an external trigger event occurs. This will be verified using a

high-speed commercial oscilloscope by recording both the trigger event and the input

signal.

7.4.4 External Clock Input

 The external clock signal generated with a frequency synthesizer will be used to

test the function of the device at different clock frequencies. A high-speed commercial

oscilloscope will be used to measure the external clock signal, the input signal, and the

ADC sampling clock will be measured in order to verify that the ADC sampling clock will

be synchronized with the external clock input.

8. Task Allocations for Remainder of Project

8.1 Analog Front-End

 Due to the fact that the preliminary design and component selection of the OSHO analog

front-end circuit is already complete, the task allocation for the remainder of the project are

listed below. The persons responsible for the task allocation listed above are Zaeem Gauher

and Umair Aslam. They will serve as the lead and the backup respectively.

● Complete power circuitry testing of the HACD front-end board

● Test the overall functionality of the HACD board after the power stage is finalized

● Solder power circuitry components on the OSHO board once manufactured

● Test and verify the repopulated power circuitry on OSHO PCB

215

● Solder the components that comprise the signal measurement chain and execute the

testing procedure as specified in section 7.

● Test the interface between the front-end PCB and the Ultra-96 board to verify correct

transfer of signals.

● Change schematics as well as select new components if necessary to produce a final

version of the OSHO board.

8.2 PCB Design

After the analog front-end schematics are finalized this semester, the initial design of the

custom PCB for the analog front will be conducted as early as possible to allow for a possible

second revision and adequate time for testing. This will likely be conducted over winter break so

that time is not wasted while waiting for the board is commercially printed. The lead for this

aspect of the project will be Timothy Bullock and the backup for the project will be Zaeem

Gauher. The following tasks are the tasks that are expected to make up this part of the project:

● Creation and acquisition of component footprints and three-dimensional models

● Initial planning and layout of PCB layers and overall high level layout

● Completion of preliminary component layout and trace routing

● Revision of the initial design after rules checking and advice of project advisor and PCB

layout experts.

● Final rules checking, inspection, and design validation

● Commercial printing and in-house population of components

● Potential revision of the design if design issues are found in first revision

8.3 FPGA & Firmware Development

 Since the Easyboard’s onboard oscillator and PLL were non-functional, the firmware was

tested using Analog Discovery 2’s 50 MHz clock. The next step would be to verify the firmware

works at its required 1 GHz speed. For this, an external fractional-n PLL frequency synthesizer

will be used. The firmware will most probably need further optimization to be able to meet the

timing constraints at this speed. The lead for this part of the project is Umair Aslam and the

backup for this aspect of the project is Timothy Bullock. The remaining tasks for firmware

development are:

● Modifying Jupyter Notebook code to send the appropriate SPI commands to configure

the ADC to operate in single mode at its required full speed using a 1 GHz frequency

synthesizer

● Testing the Zedboard at 1 GHz

● Porting Pynq Linux onto the Ultra96 board

● Programming the Ultra96-v2 with the OSHO firmware

● Adding an external trigger processing IP core to the datapath design

● Final design validation, verification and testing

8.4 Server Back-End & GUI Web Client Development

The following list is a review are the remaining tasks we need to complete in

order to completely develop the web server and GUI design using the Ultra96. The lead

for the GUI portion of the project is Afnan Ali, and the backup is Evan Hoffman.

216

Conversely, as these aspects of the project are very interdependent, the lead for the

server back-end portion of the project is Evan Hoffman and the backup is Afnan Ali.

● Solve timeout issue on the Ultra96 when logged in for an SSH session

● Edit configuration file for the Ultra96 so that upon startup, the web application will

immediately be launched so that the user will not have to SSH into the device in

order to get it started

● Determine the protocol that WaveformsLive uses to receive data

● Send test data to our cloned version of the WaveformsLive application in order to

verify that we are using the correct protocol and that this will be the correct

protocol for our firmware to use.

● Make basic interface modifications to the user interface of the WaveformsLive

application running on the Ultra96

● Implementation of the SPI commands on the Ultra96 and verify that these

commands are able to interact with our analog frontend. Use MSP430

Launchpad to test the SPI signals

● Modification of Waveforms Live and server to incorporate these control and

configuration aspects into the GUI

● Modification of Waveforms Live and server to visualize data from OSHO board

217

9. Schedule for Remainder of Project
With the task allocations outlined in section 8, we can now create a schedule for the

remainder of the project that incorporates major tasks in each aspect of the project, significant

project milestones, and project deliverables. A Gantt chart for the remainder of the project

including the last 3 weeks of ECE492, winter break, and ECE 493 is shown in the subsequent

figures.

Figure 34. Gantt for the Remainder of the Project: Now - Jan 19.

Figure 35. Gantt for the Remainder of the Project: Jan 20 - Mar 16.

218

Figure 36. Gantt for the Remainder of the Project: Mar 17 - Completion.

10. References

[1] A. Wozneak, R. Nagpal, and R. Meruvia, “ECE - 492 Design Document.” 10-Dec-

2018.

[2] 96Boards. (2019). Ultra96. [online] Available at:

https://www.96boards.org/product/ultra96/ [Accessed 4 Oct. 2019].

[3] “HMCAD1511 Datasheet and Product Info | Analog Devices.” [Online]. Available:

https://www.analog.com/en/products/hmcad1511.html. [Accessed: 12-Oct-2019].

[4] C. Sisterna, “Zynq Architecture 7-Series FPGA Architecture,” International Centre

for Theoretical Physics. [Online]. Available:

http://indico.ictp.it/event/8342/session/10/contribution/68/material/slides/0.pdf.

[Accessed: 03-Dec-2019].

[5] “Ultra96-V2 Development Board | Zedboard.” [Online]. Available:

http://zedboard.org/product/ultra96-v2-development-board. [Accessed: 05-Dec-2019].

[6] “Intro to AXI Protocol: Understanding the AXI interface.” [Online]. Available:

https://community.arm.com/developer/ip-products/system/b/soc-design-

blog/posts/introduction-to-axi-protocol-understanding-the-axi-interface. [Accessed: 06-

Dec-2019].

[7] “AXI4 Overview.” [Online]. Available:

http://www.mrc.uidaho.edu/mrc/people/jff/EO_440/Handouts/AMBA Protocols/Xilinx

Docs/XTECH_B_AXI4_Technical_Seminar.pdf. [Accessed: 05-Dec-2019].

219

[8] “7 Series FPGAs SelectIO Resources,” Xilinx, 08-May-2018. [Online]. Available:

https://www.xilinx.com/support/documentation/user_guides/ug471_7Series_SelectIO.pdf

. [Accessed: 05-Dec-2019].

[9] M. Defossez, “Serial LVDS High-Speed ADC Interface,” Xilinx, 20-Nov-2012.

[Online]. Available:

https://www.xilinx.com/support/documentation/application_notes/xapp524-serial-lvds-

adc-interface.pdf. [Accessed: 05-Dec-2019].

[10] M. Defossez, N. Sawyer, “LVDS Source Synchronous DDR Deserialization (up to

1,600 Mb/s),” Xilinx, 22-Jul-2016. [Online]. Available:

https://www.xilinx.com/support/documentation/application_notes/xapp1017-lvds-ddr-

deserial.pdf. [Accessed: 05-Dec-2019].

[11] N. Sawyer, “LVDS Source Synchronous 7:1 Serialization and Deserialization

Using Clock Multiplication,” Xilinx, 18-Jul-2018. [Online]. Available:

https://www.xilinx.com/support/documentation/application_notes/xapp585-lvds-source-

synch-serdes-clock-multiplication.pdf. [Accessed: 05-Dec-2019].

[12] Digilent, “Digilent/waveforms-live,” GitHub, 08-Oct-2019. [Online]. Available:

https://github.com/Digilent/waveforms-live. [Accessed: 07-Dec-2019].

[13] P. Patel, “What exactly is Node.js?,” freeCodeCamp.org, 25-Jun-2019. [Online].

Available: https://www.freecodecamp.org/news/what-exactly-is-node-js-ae36e97449f5/.

[Accessed: 07-Dec-2019].

[14] “React vs Angular: An In-depth Comparison,” SitePoint, 30-Jan-2019. [Online].

Available: https://www.sitepoint.com/react-vs-angular/. [Accessed: 07-Dec-2019].

[15] O. Temitope, “Dependency Injection Explained in Plain English,” Codementor.

[Online]. Available: https://www.codementor.io/olotintemitope/dependency-injection-

explained-in-plain-english-b24hippx7. [Accessed: 07-Dec-2019].

[16] Sk, “How To Install NodeJS On Linux,” OSTechNix, 25-Nov-2019. [Online].

Available: https://www.ostechnix.com/install-node-js-linux/. [Accessed: 07-Dec-2019].

[17] Texas Instruments, “LMH5401 8-GHz, Low-Noise, Low-Power, Fully-Differential

Amplifier” LMH5401 datasheet.

[18] Texas Instruments, “LMH6401 DC to 4.5 GHz, Fully-Differential, Digital Variable-

Gain Amplifier” LMH6401 datasheet.

[19] Texas Instruments, “IM01CGR High Speed RF Relay” IM01CGR datasheet.

[20] TE Connectivity, “High Speed Multi-Mode 8-Bit 30 MSPS to 1 GSPS A/D

Converter” HMCAD1511 datasheet.

[21] Texas Instruments, “CDCE62002 Four Output Clock Generator/Jitter Cleaner

With Integrated Dual VCOs” CDCE62002 datasheet.

[22] Texas Instruments, “LP3878-ADJ Micropower 800-mA Low-Noise "Ceramic

Stable" Adjustable Voltage Regulator for 1-V to 5-V Applications ” LP3878-ADJ

datasheet.

220

[22] Texas Instruments, “LP38513-ADJ 3A Fast-Transient Response Adjustable Low-

Dropout Linear Voltage Regulator” LP38513-ADJ 3A datasheet.

[22] Texas Instruments, “TPS54327 3-A Output Single Synchronous Step-Down

Switcher With Integrated FET ” TPS54327 datasheet.

[23] Texas Instruments, “TL7660 CMOS VOLTAGE CONVERTER” TL7660

datasheet.

[24] Texas Instruments, “LMR70503 SIMPLE SWITCHER Buck-Boost Converter For

Negative Output Voltage in µSMD ” LMR70503 datasheet.

[25] Texas Instruments, “TPS79301 Low-Noise, High PSRR, RF, 200-mA Low-

Dropout Linear Regulators in NanoStar™ Wafer Chip Scale and SOT-23 ” TPS79301

datasheet.

[26] Texas Instruments, “TPS72301 200-mA, Low-Noise, High-PSRR, Negative

Output Low-Dropout Linear Regulators” TPS72301 datasheet.

[27] Dallas Semiconductor, “DS1267 Dual Digital Potentiometer Chip” DS1267

datasheet.

12. Appendix C: OSHO PCB Bill of Materials

Reference Value Manufacturer Part # Quantity

Per

Board

Quantity

Per 3

Boards

Price

Per 1

Price

Per 10

Price

Per

100

Total Per

Component

(At Ordered

Price Point)

C1 47uF TAJB476M010TNJ 1 3 $0.28 $0.280 $0.183 $0.28

> C2-C4, C12,

C13, C18, C21,

C22, C27, C30,

C31, C33, C35,

C37-C39, C46,

C50, C51, C56,

C59-C61, C68,

C73, C75, C81,

C87, C94, C96,

C182, C184,

C185, C188,

C190, C199,

C203

10uF GRM188R61A106KE69J 37 111 $0.18 $0.122 $0.062 $2.29

> C5, C6, C14,

C17, C19, C20,

C23, C26, C28,

C29, C32, C34,

C36, C45, C47,

C52, C55, C57,

C58, C67, C69,

0.1uF CC0402KRX7R7BB104 81 243 $0.10 $0.024 $0.009 $0.73

221

C74, C76-C78,

C80, C82-C84,

C86, C88, C90,

C91, C95, C97,

C151, C164,

C181, C183,

C186, C187,

C189, C191-

C198, C200-

C202, C204-

C231

> C7, C141,

C144, C145,

C148, C153,

C156, C158,

C161

10pF CC0402KRNPO9BN100 9 27 $0.10 $0.019 $0.009 $0.08

> C8, C9 47uF EMK107ABJ475KA-T 2 6 $0.26 $0.121 $0.082 $0.24

> C10, C48,

C70, C72, C93,

C150, C163,

C167, C168,

C170, C173,

C175, C177-

C179

1uF EMK107B7105KA-T 15 45 $0.12 $0.043 $0.029 $0.44

> C11, C15,

C24, C53, C99-

C101, C104,

C106, C108,

C109, C112,

C114, C116-

C118, C121,

C123, C125,

C126, C129,

C131, C140,

C149, C152,

C157, C162,

C165, C166,

C169, C171,

C172, C174,

C176

0.01uF CC0402KRX7R9BB103 34 102 $0.10 $0.018 $0.009 $0.31

> C16, C25,

C40, C41, C43,

C44, C54, C62,

C63, C65, C66

22uF GRM188R61A226ME15D 11 33 $0.34 $0.236 $0.133 $1.46

> C42, C64,

C180

2.2uF LMK107BJ225KAHT 3 9 $0.15 $0.062 $0.042 $0.19

> C49, C71 0.22uF TMK107B7224KA-T 2 6 $0.11 $0.037 $0.025 $0.07

> C79, C85,

C89, C92

1uF TAJA105K016RNJ 4 12 $0.31 $0.216 $0.117 $0.86

> C98, C102,

C103, C105,

C107, C110,

C111, C113,

C115, C119,

C120, C122,

C124, C127,

C128, C130

2200pF GRM155R71H222KA01D 16 48 $0.10 $0.029 $0.013 $0.21

> C132, C135,

C136, C139

5.1pF CC0402CRNPO9BN5R1 4 12 $0.10 $0.020 $0.009 $0.04

> C133, C134,

C137, C138

11pF 0402N110J500CT 4 12 $0.10 $0.038 $0.020 $0.08

> C142, C143,

C146, C147,

C154, C155,

C159, C160

22pF 0402N220G500CT 8 24 $0.10 $0.038 $0.017 $0.14

222

> D1, D5, D6,

D9-D12, D16,

D17, D20-D23,

D30, D31

LTST-C191TBKT LTST-C191TBKT 15 45 $0.48 $0.260 $0.122 $1.83

> D2-D4, D7,

D13-D15, D18,

D28, D29

1N4148W-7-F 1N4148W-7-F 10 30 $0.16 $0.150 $0.053 $0.53

> D8, D19, D24-

D27, D32-D34

MMBD452LT1G MMBD452LT1G 9 27 $0.38 $0.246 $0.106 $0.95

> FB1, FB3,

FB5, FB11

BLM18SG260TN1D BLM18SG260TN1D 4 12 $0.13 $0.075 $0.051 $0.30

> FB2, FB4,

FB6-FB10,

FB12, FB13

BLM18SG121TN1D BLM18SG121TN1D 9 27 $0.13 $0.075 $0.051 $0.68

> FB14-FB20 BLM18KG102SN1D BLM18KG102SN1D 7 21 $0.10 $0.067 $0.036 $0.25

> GDT1-GDT3 SH90 SH90 3 9 $1.47 $1.250 $0.967 $3.75

J1 PJ-202AH PJ102AH 1 3 $0.75 $0.566 $0.495 $0.75

> J2, J3, J6 1-1337543-0 1-1337543-0 3 9 $1.45 $1.450 $1.190 $4.35

> J4, J5 CONSMA001-G CONSMA001-G 2 6 3.14 2.9 2.73 $6.28

J7 57202-G52-20LF 57202-G52-20LF 1 3 $4.95 $4.550 $3.960 $4.95

J8 2-5177986-2 2-5177986-2 1 3 $4.98 $4.180 $3.980 $4.98

 JP1 826926-3 826926-3 1 3 $0.27 $0.235 $0.182 $0.27

L1 ACM7060-301-2PL-TL01 ACM7060-301-2PL-TL01 1 3 $2.03 $1.530 $1.400 $2.03

L2 3uH SRN6028-3R0Y 1 3 $0.39 $0.271 $0.246 $0.39

> L3, L4 2.2uH LQM21PN2R2MCHD 2 6 $0.31 $0.276 $0.189 $0.55

> L5, L7, L8,

L10

22nH LQW18AN22NG80D 4 12 $0.24 $0.210 $0.140 $0.84

> L6, L9 26nH LQW15AN26NG80D 2 6 $0.26 $0.223 $0.149 $0.45

> L11, L13, L14,

L16, L17, L19,

L20, L22

44nH LQW18AN44NG80D 8 24 $0.24 $0.210 $0.140 $1.68

> L12, L15, L18,

L21

52nH LQW18AN52NG80D 4 12 $0.24 $0.210 $0.140 $0.84

Q1 CSD18532Q5B CSD18532Q5B 1 3 $2.37 $2.010 $1.610 $2.37

> Q2-Q10 2N7002K 2N7002KT7G 9 27 $0.17 $0.160 $0.057 $0.51

> R1, R28, R29,

R38-R41, R56,

R57, R66-R69,

R75, R79, R91,

R95, R106, R107

90.9 RC0402FR-0790R9L 19 57 $0.10 $0.012 $0.004 $0.08

> R2, R7, R10,

R13, R18, R19

10k RC0603FR-0710KL 6 18 $0.10 $0.018 $0.006 $0.04

R3 95.3k RC0603FR-0795K3L 1 3 $0.10 $0.018 $0.006 $0.01

R4 22.1k RC0603FR-1022K1L 1 3 $0.10 $0.018 $0.006 $0.01

> R5, R16 3.57k CR0603-FX-3571ELF 2 6 $0.10 $0.010 $0.006 $0.01

> R6, R17 1.15k RC0603FR-071K15L 2 6 $0.10 $0.018 $0.006 $0.01

223

R8 15.8k RC0603FR-0715K8L 1 3 $0.10 $0.018 $0.006 $0.01

R9 11.5k RE0603FRE0711K5L 1 3 $0.10 $0.018 $0.006 $0.01

 R1

1

274k RC0603FR-07274KL 1 3 $0.10 $0.018 $0.006 $0.01

 R1

2

30.1k RC0603FR-0730K1L 1 3 $0.10 $0.018 $0.006 $0.01

 R1

4

110k RC0603FR-07110KL 1 3 $0.10 $0.018 $0.006 $0.01

 R1

5

180k RC0603FR-07180KL 1 3 $0.10 $0.018 $0.006 $0.01

 R2

0

130k RC0603FR-07130KL 1 3 $0.10 $0.018 $0.006 $0.01

 R2

1

24k CR0603-FX-2402ELF 1 3 $0.10 $0.011 $0.006 $0.01

R22, R50 49.9 HRG3216P-49R9-D-T1 2 6 0.96 0.745 0.584 $1.49

> R24, R52 499 RC0603FR-07499RL 2 6 $0.10 $0.018 $0.006 $0.01

> R25, R46,

R48, R53, R81,

R82, R97, R98,

R108, R113

0 RC0603JR-070RL 10 30 $0.10 $0.015 $0.005 $0.05

> R23, R27,

R51, R55

5.36 RC0603FR-075R36L 4 12 $0.15 $0.035 $0.011 $0.04

> R26, R30,

R47, R49, R54,

R58, R116,

R117, R132

49.9 RC0603FR-0749R9L 9 27 $0.10 $0.018 $0.006 $0.05

> R32, R60 1M 35401M0JT 2 6 $0.98 $0.837 $0.590 $1.67

> R33, R36,

R61, R64

1M RC0603FR-071ML 4 12 $0.10 $0.018 $0.006 $0.02

> R34, R62 9.1M RC0603FR-079M1L 2 6 $0.10 $0.018 $0.006 $0.01

> R35, R63 887k RC0603FR-07887KL 2 6 $0.10 $0.018 $0.006 $0.01

> R31, R37,

R59, R65

105k AC0603FR-07105KL 4 12 $0.10 $0.022 $0.008 $0.03

> R42, R121 200k RC0603FR-10200KL 2 6 $0.10 $0.018 $0.006 $0.01

> R43-R45,

R122-R131

348 RC0603FR-07348RL 13 39 $0.10 $0.018 $0.006 $0.08

> R70, R71,

R86, R87

2k RC0603FR-072KL 4 12 $0.10 $0.018 $0.006 $0.02

> R74, R77,

R90, R93, R118

0 RC0402JR-130RL 5 15 $0.10 $0.010 $0.004 $0.02

> R73, R76,

R89, R92

15 RC0402FR-1315RL 4 12 $0.10 $0.012 $0.004 $0.02

> R78, R80,

R94, R96

40.2 RC0402FR-0740R2L 4 12 $0.10 $0.012 $0.004 $0.02

> R72, R83,

R88, R99

174 RK73H1ETTP1740F 4 12 $0.10 $0.025 $0.010 $0.04

> R84, R85,

R100, R101

210 RC0603FR-07210RL 4 12 $0.10 $0.018 $0.006 $0.02

224

> R103, R104,

R110, R111

1.21k CR0603-FX-1211ELF 4 12 $0.10 $0.017 $0.006 $0.02

> R102, R105,

R109, R112

4.99 RK73H1JTTD4R99F 4 12 $0.10 $0.021 $0.008 $0.03

> R114, R115 49.9 RC0402FR-0749R9L 2 6 $0.10 $0.012 $0.004 $0.01

> R119, R120 1.0k RC0603FR-071KL 2 6 $0.10 $0.018 $0.006 $0.01

> RLA1-RLA10 V23105A5001A201 V23105A5001A201 10 30 $2.62 $2.450 $1.960 $24.50

S1 L101011MS02Q L101011MS02Q 1 3 $2.03 $1.970 $1.630 $2.03

> S2, S3 PTS810-SJK-250-SMTR-LFS PTS810SJK250SMTRLFS 2 6 $0.17 $0.165 $0.165 $0.33

> TP17, TP18 TestPoint 5-146850-1 2 6 $0.10 $0.046 $0.046 $0.09

U1 TPS2400DBVR TPS2400DBVR 1 3 $2.07 $1.760 $1.410 $2.07

U2 TPS54327DDAR TPS54327DDAR 1 3 $1.48 $1.250 $0.904 $1.48

> U3, U4 TPS7A9201DSKR TPS7A9201DSKR 2 6 $2.06 $1.750 $1.400 $4.12

U5 TPS7A7001DDAR TPS7A7001DDAR 1 3 $1.81 $1.540 $1.110 $1.81

> U6, U8 TPS63710DRRR TPS63710DRRR 2 6 $2.49 $2.110 $1.690 $4.98

U7 TPS7A9101DSKR TPS7A9101DSKR 1 3 $1.76 $1.500 $1.200 $1.76

> U9, U15 CD74AC251M96 CD74AC251M96 2 6 $0.89 $0.740 $0.478 $1.78

> U10, U16 OPA659IDBVT OPA659IDBVT 2 6 $7.11 $6.430 $5.220 $14.22

 U1

1

NVT2003DP,118 NVT2003DP,118 1 3 $0.87 $0.721 $0.465 $0.87

> U12, U14 LMH6559MF-NOPB LMH6559MF/NOPB 2 6 $2.73 $2.380 $1.960 $5.46

 U1

3

DS1267BS-010+ DS1267BS-010+T/R 1 3 $5.39 $4.870 $3.870 $5.39

> U17, U19 LMH6401IRMZT LMH6401IRMZT 2 6 $19.52 $18.010 $17.200 $39.04

> U18, U20 LMH5401IRMST LMH5401IRMST 2 6 $14.98 $13.780 $11.390 $29.96

> U21, U22 OPA376AIDCKR OPA376AIDCKR 2 6 $1.69 $1.430 $1.030 $3.38

 U2

3

HMCAD1511TR HMCAD1511TR 1 3 $64.76 $63.740 $61.520 $64.76

 U2

4

CDCE62005RGZR CDCE62005RGZR 1 3 $9.98 $9.030 $7.490 $9.98

 U2

5

NVT2010PW,118 NVT2010PW,118 1 3 $0.97 $0.820 $0.630 $0.97

 U2

6

XRA1405IL24-F XRA1405IL24-F 1 3 $1.93 $1.560 $1.250 $1.93

 XT

AL1

FY2500068 FY2500068 1 3 $0.73 $0.614 $0.513 $0.73

Total Per Board: $272.49

