/G EORG
Volgenau School

UNIVERSITY Of Engineering

Open Source High-Speed Oscilloscope
(OSHO)

Final Project Report

Team Members:
Timothy Bullock, Afnan Ali, Evan Hoffman, Umair Aslam, Zaeem Gauher

Faculty Advisor:
Jens-Peter Kaps

ECE493-001

Date of Submission: May 4™, 2019

George Mason University
4400 University Dr, Fairfax VA 22030

1. Executive Summary

Oscilloscopes are one of the most useful devices in engineering applications
where time-varying electrical signals need to be measured, analyzed, and recorded.
Some of these applications require the use of high performance oscilloscopes due to
the high frequencies of the signals that need to be measured. However, many students,
hobbyists, and small engineering firms cannot afford these high performance devices
due to their costs. Therefore, we have proposed a low-cost, open-source, and high
performance alternative to the commercially available devices. This Open-Source High
Speed Oscilloscope (OSHO) provides a 500Mhz bandwidth along with a 1 GSPS
sampling rate at the fraction of the relatively low cost of $587. The following report
details this proposed solution through its entire development process.

The solution can be categorized by three main aspects including the analog
front-end circuit for measuring and digitizing the signal, the FPGA datapath for
processing and routing the digitized data, and the software design for creating a user-
interface and plotting. The approach and requirements used in the derivation of this
modular design are discussed in detail. Furthermore, not only the high-level design but
also the detailed circuit schematics, VHDL datapath, and software implementation are
presented through this report. The testing methodology is introduced and the results are
discussed for each of the three project aspects including the discussion of any
deviations due to the pandemic situation at the time of this report. This project has been
developed under the supervision and guidance of Dr. Jens-Peter Kaps.

Figure 1: OSHO PCB CAD Model

2. Table of Contents

1. Executive Summary 1
2. Table of Contents 2
3. Problem and Solution Approach 10
3.1 Problem Statement 10
3.2 Proposed Design Solution 10
3.3 Project Mission Requirements 12
3.4 System Operational Requirements 12
3.4.1 Input/Output Requirements 13
3.4.2 External Interface Requirements 13
3.4.3 Functional Requirements 13
3.4.4 Technology and System-Wide Requirements 13
3.5 Alternative Design Approaches 14
3.5.1 One vs Multiple ADCs 14
3.5.2 Using a MPSoC Development Board vs. a Single Board Solution 14
3.5.3 A Web-Based GUI vs. Physical Controls and On-Device Display 15
3.6 Team Member Contributions 15
3.6.1 Afnan Ali 15
3.6.2 Umair Aslam 15
3.6.3 Timothy Bullock 15
3.6.4 Zaeem Gauher 16
3.6.5 Evan Hoffman 16
4. High Level Design 16
4.1 Level Zero Functional Decomposition 17
4.2 Level One Functional Decomposition 17
4.3 Level Two Functional Decomposition 18
4.3.1 Analog Input Preconditioning Stage 18
4.3.2 Analog to Digital Conversion Stage 24
4.3.3 ADC Sampling Clock Generation Stage 24
4.3.4 Data Deserialization Stage (FPGA Datapath) 24
4.3.5 Data Processing and Hosting Stage (Server and Back-End Software)
24
4.3.6 Graphical User Interface (GUI) Stage 22
4.4 Overall System Architecture 23
4.5 Physical Architecture 24
5. Technical Design 25
5.1 Analog Front End 26
5.1.1 Discussion of Design 64

5.1.2

OSHO Board Schematics

5.1.2.1 Power Circuitry 1
5.1.2.2 Power Circuitry 2

5.1.2.3

Power Circuitry 3

5.1.2.3 Analog Front End

5.1.2.4 Channel A Input Stage

5.1.2.5 Analog Offset Generation

5.1.2.5 Channel B Input Stage

5.1.2.6 Low Noise and Variable Amplifiers
5.1.2.7 Low Pass Filters

5.1.2.8 Analog-Digital-Converter (ADC)
5.1.2.9 Sampling Clock Generation
5.1.2.10 Digital Connectors

5.2 PCB
5.2.1
5.2.2
5.2.3
524
5.2.5
5.2.6
5.2.7

Design

High Level Layout Approach

Controlled Impedance Design

Noise Control and Analog/Digital Separation

Differential Pairs and Length Matching

Heat Dissipation

Ultra 96 Design Constraints and Physical Layout Limitations
Select PCB Layers

5.2.7.1 Top Silk Screen View
5.2.7.2 Top Copper Layer
5.2.7.3 Top Inner Copper Layer (Ground Plane)
5.2.7.4 Bottom Inner Copper Layer (Power Planes)
5.2.7.5 Bottom Copper Layer
5.2.7.6 Bottom Silk Screen View (Flipped)

5.3 FPGA Datapath Design

53.1
5.3.2
5.3.3
534
5.3.5

Datapath Overview

The Deserializer IP

Bit Clock Alignment
Frame Clock Alignment
FPGA LVDS Data Inputs

5.3.6 Processor
5.4 Software Design

54.1
5.4.2
543
5.4.6

Software Overview
Software Models
Waveforms Live Design
Backup GUI

6. Implementation, Experimentation, and Success Evaluation

3

64
64
64
37
64
64
64
64
64
64
64
64
64
66
73
73
68
70
73
73
73
76
76
76
76
76
76
76
79
77
79
79
80
80
81
86
86
86
86

88

6.1 Current Implementation Status
6.1.1 Analog Front End Implementation
6.1.2 PCB Layout Implementation
6.1.3 FPGA Datapath Implementation
6.1.4 Software Implementation
6.2 Design Changes Since ECE492 Design Document
6.2.1 Analog Front End Circuitry
6.2.2 Backup GUI
6.2.3 COVID-19 Project Related Scalebacks
6.3 Experimentation and Testing Plans
6.3.1 High Level Acceptance Testing
6.3.1.1 Waveform Comparison With Commercial Oscilloscope
6.3.1.2 Measured Frequency Sweep
6.3.1.3 External Clock Input Verification
6.3.2 Unit Integration Testing
6.3.2.1 Analog Front End Testing
6.3.2.1.1 Power Architecture
6.3.2.1.2 Input Coupling and Offset
6.3.2.1.3 Attenuators
6.3.2.1.4 Low Noise Amplifier (LNA)
6.3.2.1.5 Variable Gain Amplifier (VGA)
6.3.2.1.6 Phase-Locked Loop (PLL)
6.3.2.2 VHDL Firmware Testing
6.3.2.3 Server and GUI Testing
6.4 Experimentation Validation and Testing Results
6.4.1 FPGA Firmware Test Results
6.4.2 Data Visualization and GUI Test Results
6.5 Solution Operational Requirements Analysis
6.5.1 Input/Output Requirements
6.5.2 External Interface Requirements
6.5.3 Functional Requirements
6.5.4 Technology and System-Wide Requirements
6.6 Project Success Evaluation
6.6.1 Analog Front End and PCB
6.6.2 FPGA Datapath and Firmware
6.6.3 Software and GUI
6.6.4 Overall Project

7. Administrative Project Aspects
7.1 Project Continuation and Future
7.2 Project Challenges

88
89
89
89
89
89
93
93
93
94
94
95
95
95
96
98
96
96
96
96
97
97
98
98
103
98
101
103
103
103
104
104
105
106
106
106
106

108
112
109

7.2.1 Project Scope and Complexity
7.2.2 Design Change Delays
7.2.3 Problems with Existing Project Materials
7.3 Non-Planned Activities
7.3.1 Major Analog Front End Changes at Beginning of ECE493
7.3.2 Development of the New Custom AXI Deserializer IP Core
7.3.3 Switch from Waveforms Live to Backup GUI
7.3.4 Response of Project to COVID-19 Pandemic
7.4 OSHO PCB BOM and Solution Cost Breakdown
7.6 Funds Spend
7.7 Man-Hours Devoted to Project

Lessons Learned
8.1 Additional Knowledge and Skills Acquired
8.2 Team Experience
8.2.1 Teamwork and Team Environment
8.2.2 Project Management and Scheduling

References
9.1 Overall Project References
9.2 Analog Front End References & Datasheets
9.3 PCB References
9.4 FPGA References
9.5 Software References

10. Appendix A: Project Proposal (ECE 492)

1. Executive Summary

2.

Problem Statement

2.1 Motivation and ldentification of Need
2.2 Market Review

Approach

3.1 Problem Analysis

3.1.1 Problems to be Addressed

3.1.2 High Commercial Cost

3.1.3 Bandwidth and Sampling Speed
3.1.4 Special Features and Ease of Use

3.2 Our Preferred Approach

3.2.1 A Modular Solution

3.2.2 The Analog Front-End
3.2.3 The Processing Subsystem
3.2.4 The Web-Based GUI

3.2.5 Benefits of this Approach

109
109
109
110
110
110
110
110
110
111
112

113
113
114
114
114

115
115
115
116
117
117

119
121

122
122
123

126
126
126
127
127
127
127
127
128
128
129
129

7.

3.3 Alternative Approaches

3.3.1
3.3.2
3.3.3
3.34

Overview

One vs. Multiple ADCs

Using a MPSoC Development Board vs. a Single Board Solution
A Web-Based GUI vs. Physical Controls and On-Device Display

3.4 Introduction to Background Knowledge

34.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7

Overview

Oscilloscope Specifications

High-Speed Analog Front End

High-Speed PCB Design

FPGA Programmable Logic

Web Server

Web Client & Graphical User Interface(GUI)

3.5 Requirements Specification

3.5.1
3.5.2

Mission Requirements:
Operational Requirements:

System Design
4.1 System Functional Decomposition

41.1
4.2.2
424

Level Zero
Level One
Level Two

4.2 System Architecture

42.1
4.2.2

Physical Architecture
Overall System Architecture

Preliminary Experimentation and Testing Plan
5.1 Overview
5.2 Internal Systems Testing

521
5.2.2
5.2.3
524
525

Attenuator

Low-Noise Amplifier (LNA)
Variable Gain Amplifier (VGA)
Phase-locked loop

Firmware testing

5.3 High Level System Testing

53.1
53.2
53.3
534

External Trigger System
Input variation
Frequency Sweep
Sampling rate

Preliminary Project Plan
6.1 Overview
6.2 Allocation of Responsibilities

Potential Problems

130
130
130
130
131
131
131
131
132
133
133
134
134
134
134
134

136
136
136
137
138
142
142
142

143
143
144
144
144
144
144
144
145
145
145
145
145

146
146
147

148

7.1 Required Skills Training
7.2 Risk Analysis

8. Citations and References

11. Appendix B: Design Document (ECE492)

1. Problem Statement

2. System Requirement Specifications
2.1 Mission Requirements:
2.2 Operational Requirements:

221
2.2.2
223
224

Input/Output Requirements

External Interface Requirements

Functional Requirements

Technology and System-Wide Requirements

3. System Decomposition & Architecture
3.1 Level Zero Decomposition
3.2 Level One Decomposition
3.3 Level Two Decomposition

3.3.1
3.3.2
3.3.3
3.34
3.35
3.3.6

Analog Input Signal Preconditioning Stage/Function
Analog to Digital Conversion Stage/Function

ADC Sampling Clock Generation Stage/Function
Data Buffering and Routing Stage/Function

Data Processing and Hosting System

User Interface

3.4 Overall System Architecture
3.5 Physical Architecture

4. Background Knowledge Used in Design
4.1 Analog Front-End

41.1
4.1.2
41.3
414
415
4.1.6

Attenuator Design:

Low-Noise Amplifier (LNA):
Variable Gain Amplifier (VGA):
Anti-Aliasing LPF:

Phase-locked loop(PLL):

Analog to Digital Converter(ADC):

4.2 FPGA Datapath and Firmware

42.1
4.2.2
4.2.3

Zynq Architecture
Advanced eXtensible Interface (AXI)
FPGA Datapath

4.3 Server and GUI

43.1
4.3.2

Server and Back-End Software
GUI

5. Detailed Design

148
148

149
152
156

156
156
156
156
156
157
157

157
158
158
159
159
160
161
162
163
164
165
166

167
167
168
169
170
171
171
172
173
173
174
175
176
176
176

178

6.

7.

5.1 Analog Front-End Schematics 179
5.1.1 Power Circuitry 1 179
5.1.2 Power Circuitry 2 180
5.1.3 Power Circuitry 3 181
5.1.4 Power Circuitry 4 182
5.1.5 Input Attenuation Stage for Analog Inputs (note: page cropped for visibility)

183
5.1.6 Amplification and Filtering Stage for Analog Input 1 (note: page cropped for
visibility) 185
5.1.7 Amplification and Filtering Stage for Analog Input 2 (note: page cropped for
visibility) 188
5.1.8 ADC Schematics 190
5.1.9 PLL Schematics 191
5.1.10 Ultra 96 SoC Connectors 192

5.2 Analog Front-End Component Selection 193
5.2.1 Switching Circuit Elements 193
5.2.2 Phase Locked Loop 194
5.2.3 Variable Gain Amplifier 194
5.2.4 Low Noise Amplifier 195
5.2.5 Analog to Digital Converter 195

5.3 FPGA Datapath Design 197
5.3.1 Bit Clock Alignment 197
5.3.2 Frame Clock Alignment 199
5.3.3 Post-Deserialization 199

5.4 Software Design and Models 200

Prototyping & Early Testing Progress Report 205

6.1 Analog Front-End HACD Board Testing 205
6.1.1 10:1 Attenuator Path Simulation 205
6.1.2 20:1 Attenuator Path Simulation 206
6.1.3 LPF simulation (500MHz cutoff frequency) 207
6.1.4 LPF simulation (250 MHz cutoff frequency) 208

6.2 VHDL Firmware Testing Progress 208
6.2.1 Vivado Project and Xilinx Zedboard Testing 208
6.2.2 Jupyter Notebook Prototyping Progress 209

6.3 Software Development & Waveforms Live Cloning 210

Testing Plan for ECE493 211

7.1 Analog Front-End Testing 211
7.1.1 Attenuator 212
7.1.2 Low-Noise Amplifier (LNA) 212
7.1.3 Variable Gain Amplifier (VGA) 212
7.1.4 Phase-locked loop 212

7.2 VHDL Firmware Testing 212
7.2.1 Pynq Linux Port Testing 212

7.2.2 Firmware Testing
7.2.3 Jupyter Notebook Testing

7.3 Server Testing & GUI Testing

7.4 High-Level Overall System Testing
7.4.1 Input variation
7.4.2 Frequency Sweep
7.4.3 External Trigger System
7.4.4 External Clock Input

8. Task Allocations for Remainder of Project
8.1 Analog Front-End
8.2 PCB Design
8.3 FPGA & Firmware Development
8.4 Server Back-End & GUI Web Client Development

9. Schedule for Remainder of Project

10. References

12. Appendix C: OSHO PCB Bill of Materials

212
213
213
214
214
214
214
214

214
214
215
215
215

217
218

220

3. Problem and Solution Approach

3.1 Problem Statement

Digital oscilloscopes are indispensable tools for many engineering and scientific
industries. Digital oscilloscopes “enable the user to debug, visualize and measure
various signals,” which is especially crucial in lab settings where circuit testing and
signal measurements are performed. However, in many applications such as RF
design, high frequency signals can not be measured with standard low-cost
oscilloscopes. This is especially a problem for students, hobbyists, and small
engineering firms where funds are very limited. This not only a hindrance to the
progress of their work, but also a detriment to education and innovation overall.
Currently, oscilloscopes capable of high frequency analysis typically cost upwards of
$6,000. Even with these high costs, these oscilloscopes often lack various features and
usability aspects such as lack of external clock synchronization and a user friendly data
download process. Although there are a few low cost options available on the market,
their performance is extremely limited. Therefore, our project’s motivation is to create a
low-cost, open-source, and high-speed oscilloscope solution that will be able to
overcome these performance and financial limitations.

3.2 Proposed Design Solution

Our proposed solution is to create a system with three main components, an
analog front end (in the form of a high speed custom PCB), a processing system (in the
form of a MultiProcessor System on Chip (MPSoC) development board, and a user
interface (in the form of of a web-based GUI). This solution Figure 2 below shows how
this solution would interact with users, external inputs, and with itself in the form of the
three main components of the system.

10

Displayed Waveform Data and

Users Ntus Information

User Control and Configuration Web-Based Captured Waveform Data and
Commands System Status Information
GUI ‘\
User Control and Configuration Processi ng Digitized Waveform Data
Commands System

| \. Analog Analoglnputs
DC Power ‘

Control Signals Front-End
| t
Figure 2: Proposed System Model

The analog front-end subsystem will primarily consist of the analog circuitry to
precondition the incoming analog signals so that they may be optimally digitized by the
ADC. The tasks that will be performed by the conditioning circuitry will include:
attenuation, anti-aliasing filtration, variable gain amplification, coupling selection (AC or
DC), DC offset selection, circuit overvoltage protection, and ADC clock
generation/synchronization. Configurable aspects of this system such as DC offset will
be configured through SPI commands from the processing subsystem. Once the analog
inputs are conditioned properly, they will then be digitized by the ADC and sent to the
processing subsystem. This front-end circuitry will be routed on a custom high-speed
PCB that will be designed by our team. This board will be able to interface with the
processing system through high and low speed mezzanine connectors.

The processing subsystem will consist of a MPSoC development board which
includes programmable logic in the form of an FPGA as well as an ARM-based
processor. The specific development board that will be used for this application will be
the Avnet Ultra96-V2 which uses a Xilinx Zyng UltraScale+ MPSoC ZU3EG A484, has
2GB of LPDDR4 memory, and provides essential integrated peripherals such as
USB3.0, an SD card slot, WiFi, and Mini DisplayPort. The programmable logic portion of
this board will be used in conjunction with custom intellectual property (IP) blocks that
will buffer the incoming raw digital data from the ADC and transform it to a standardized
data packet format. These packets will then be sent to the system’s main memory
where processing can be conducted through an ARM processor that hosts a linux-
based web server. The end user will be able to view and download waveform data and
system status information as well as send configuration commands through this
webserver.

The final foundational aspect of our preferred approach is a web-based GUI
subsystem that will act as a client to the web server running on the Ultra96 board. This
subsystem will act as the primary interface between the user and the overall system.

11

This subsystem will allow the user to enter system configuration commands (such as
toggling between AC/DC coupling, configuring waveform triggers, etc) and
download/display captured waveform data. This custom user interface should be
responsive, intuitive, and effectively display captured waveform data. This aspect of the
project will likely be programmed in Angular, and implemented incrementally, providing
basic features at first, but adding more advanced features as time permits.

Providing a modular design proves to be the optimal solution to the problem
because it will minimize cost while providing excellent analog capture performance.
Additionally this approach will also provide a good basis for further open-source
development.

This modular solution optimizes low-cost for multiple reasons. Much of the
hardware cost will be absorbed by the fact that an external computer will be utilized for
user interface. Furthermore, the front-end circuitry will be designed with cost-effective
parts. For instance, the chosen ADC for this project is the HMCAD1511, which offers
excellent performance for its price. Additionally, the effective price of the system is
reduced if a compatible FPGA development board is already owned by the end user.

As stated earlier, this approach ensures that the system will be an excellent
platform for future open source development. It will consist of open source software as
well an open source development board, allowing the end users to customize it to their
needs. The fact that the analog front-end is separate from the development board
means that the front-end board could be used with other compatible MPSoC
development boards (with minimal firmware porting). Additionally, the GUI for this
system can also be customized and improved by users in an open source fashion.

3.3 Project Mission Requirements

Below is an outline of the project mission requirements for our project that were
outlined at the beginning of the project. They served as an outline for what will define
success in executing the project.

e The project shall design an oscilloscope that is an open source, low-cost
alternative to commercially available oscilloscopes, and a high performance,
feature rich alternative to existing open-source oscilloscopes.

e The project shall design a custom high-speed PCB that will easily interface with
an Ultra96-Vv2 development board, as well as develop the supporting firmware
and graphical user interface for the device.

3.4 System Operational Requirements

Below is an outline of the proposed system operational requirements for our
solution that were outlined at the beginning of the project. They served as an outline for
what will define a complete and functional system.

12

3.4.1

3.4.2

Input/Output Requirements

The device shall have at least two analog input channels, one external clock
input, and one external trigger input.

The system will receive control and configuration commands as well as be able
to responsively display captured data through a web client with an intuitive and
responsive GUI.

External Interface Requirements

The device will provide support for 1x and 10x passive probe inputs (50Q and
1MQ).

Bayonet Neill-Concelman (BNC) connectors shall be used for the analog inputs,
external clock input, and external trigger inputs.

The system shall interface with a network capable computer through USB3.0 or
WiFi.

The system shall receive power from an external 5V DC power supply.

Functional Requirements

The analog-to-digital converter (ADC) shall sample one input channel at 1 GSPS
or two channels at 500 MSPS.

The device will be able to measure analog inputs with a maximum input voltage
of +10V.

The input analog circuitry shall achieve a 500 MHz bandwidth.

The ADC shall be able to be configured to sample using either the FPGA clock or
an external clock input (between 30 MHz and 1 GHz).

The ADC output sample resolution shall be no less than 8 bits.

The system’s data capture shall have the ability to be triggered using both
configurable edge triggers as well as a configurable external trigger input.

Technology and System-Wide Requirements

The front-end device shall use a single 1GSPS ADC chip.

The ADC data shall be processed and hosted on an onboard Linux web server
using a Xilinx Zyng UltraScale+ multiprocessor systems-on-chip (MPSoC)
aboard the Ultra96 Board.

The analog front-end custom PCB should interface with the Ultra96 Board for
data processing.

Target FPGA development board shall have device driver firmware for interfacing
with the ADC, and routing and storing ADC sample data in a memory device.
Front-end programmable devices will be controlled using the Serial Peripheral
Interface (SPI) or other serial protocol.

The custom high-speed PCB and Ultra96 devices will interface with each other
via the Ultra96’s high-speed and low speed mezzanine connectors.

The device should be low-cost ($600 or less).

13

3.5 Alternative Design Approaches

There are many possible solutions to the problem of providing a low-cost, high-
speed, and feature-rich oscilloscope. Although the approach discussed above is the one
that was determined to provide the best compromise between cost, performance, and
features, it was still important to consider some alternative approaches at the beginning
of this project. This ensured that our preferred approach was the optimal solution and as
well as had backup approaches in case problems arose with our preferred approach.
Alternative approaches that were considered are: using multiple ADCs, incorporating
the MPSoC onto the same board as the analog front-end, and incorporating a display
and physical controls as part of the device hardware.

3.5.1 One vs Multiple ADCs

In the development of our solution, having two analog input channels was listed
as a key requirement as this provides a much more useful device. However, the issue
with this is that there is no low-cost ADC that supports two channels at 1GSPS each.
According to our preliminary research, the Analog Devices HMCAD1511 ($64) is the
only low-cost ADC that supports 1GSPS [17]. This device can support multiple
channels, but does not provide 1GSPS for each channel. Instead, the sampling rate is
reduced immensely as more channels are utilized. This raised the question of whether
multiple ADCs should be used to provide support for multiple analog inputs. It was
concluded that due to cost limitations, this was not feasible. Due to this, we chose to
utilize only one HMCAD1511 ADC, but offer a mode where the user can configure the
analog front-end to handle two inputs at a lower sampling speed of 500MSPS.
Additionally, data bandwidth issues were also cited as a reason to use lower sampling
speeds with multiple input channels. However, if this proves to be overly complex and
unexpectedly expensive, using separate ADCs for each channel may be reconsidered.

3.5.2 Using a MPSoC Development Board vs. a Single Board Solution

As the hardware for the Utra-96-V2 development board is open source, it was
guestioned whether or not this hardware should be incorporated into the front-end
custom PCB to provide a more portable, single board solution. However, this was
rejected in favor of using a development board that interfaces with the analog front-end
through mezzanine connectors. This is because of two primary reasons. The first being
that this provides unnecessary complexity to the hardware development and adds to the
cost of production. Secondly, providing a single board solution would be a drawback to
our target market of academics and hobbyists as they might only require the front-end
device without our firmware for their specific application. Furthermore, they might prefer
the multi-board solution so that the Utra-96 V2 remains reusable for different
applications.

14

3.5.3 A Web-Based GUI vs. Physical Controls and On-Device Display

The last major alternative approach that was debated was the use of a graphical
user interface vs physical controls and an incorporated display such as those in
traditional bench oscilloscopes. It was decided that the web-based GUI solution should
be favored over physical controls and on-device display. This was not only chosen
because it minimizes the cost of the device, but also because it allows us to continually
add more advanced controls to the device though software updates. Additionally, most
users of this device would likely own a network capable computer which has a nicer
display than any low-cost physical display we could include in our device. Furthermore,
if a network connected device is used as the interface for this oscilloscope, it would
ease the process for downloading captured data for external processing. However, the
physical controls/display approach may prove a useful alternative for specific device
controls for which a software approach may be too inconvenient.

3.6 Team Member Contributions

In order to successfully implement our chosen solution, each project team
member was assigned specific responsibilities related to the project at the start of this
project. Each of these assignments were devised so that they would align with the team
member’s abilities, interests, and experience. A summary of each member's roles and
contributions is outlined below.

3.6.1 Afnan Ali

- Project Lead for GUI
- Waveforms Live GUI development, debugging, testing
- SimplePlotter development, debugging and testing

3.6.2 Umair Aslam

- Project lead for FPGA Logic Design
- HACD firmware and Jupyter Notebook code debugging
- HACD firmware testing and revision
- OSHO Deserializer IP core development

3.6.3 Timothy Bullock

- Project Manager, responsible for major administrative aspects of project
- Project lead for printed circuit board layout and design

- Revisions to analog front end circuitry
Selection of analog front end components and BOM generation
Layout and routing of high speed PCB
Responsible for component and PCB acquisition

15

3.6.4 Zaeem Gauher

- Project lead for Front-end Analog Circuit Design
- HACD board testing and revision
- Initial schematic design for analog front end circuit
- PCB assembly of OSHO PCB

3.6.5 Evan Hoffman

- Project lead for Server development
- Create server GUI workflow
- Assist ultra96 server discovery

16

4. High Level Design

4.1 Level Zero Functional Decomposition

In order to provide a detailed overview of the system architecture for our solution,
it is best to start with a functional decomposition of the system so that the system’s
functions can be related in a hierarchical manner. This decomposition will provide a top
level overview of the system, then work downward to identify each of the main
processes of the system, then continue downwards to identify the sub functions of each
of these processes. The level zero decomposition provides a top level overview of the
overall solution; it shows the overall system inputs and outputs. For our system, this is
shown below in figure 3. It shows that the overall system will take in two analog inputs,
an external clock input, an external trigger output, user commands, and DC power. The
system then outputs status information and digitized waveform data.

User Control and Configuration

Commands
Analog Input Channel 1 Open Source High-Speed Oscilloscope
e Samples Analog Signals at up to 1 GSPS
Analog Input Channel 2 e Sends output data and status information to user System Status Information
computer —

e Receives user control & configuration Commands

External Clock Input from user computer Digitized Waveform Data

b
e Triggers output waveform with external trigger input

External Trigger Input ¢ Optionally synchronizes ADC clock with external

clock input

DC Power
Figure 3: Level Zero Functional Decomposition of System

4.2 Level One Functional Decomposition

After the system is understood at the highest input/output level (level zero), the
next step of functional decomposition is to identify the top level processes of the
system. For our system this would include the analog front end power architecture,
analog signal preconditioning, analog to digital conversion, ADC clock generation, data
deserialization, data processing and hosting, and finally, display and interface
processing. This is summarized in the level one diagram shown below (Figure 4). Once
each of these main processes is identified at this level, they can then be further
decomposed and discussed at the level two decomposition level. It is worth noting that
from now on, the background color of each functional diagram will have a green, red, or
blue background corresponding to which of the three main components each function is

17

located on. As shown below the green background will correspond to the analog front
end PCB, red to the Ultra96 development board, and blue to the user’s networked
computer. Additionally, red arrows will correspond to the flow of power, green arrows, to
the external inputs to the system, yellow arrows, to the flow of control via the serial
peripheral interface (SPI), blue arrows will represent outputs to the system, and finally,
gray arrows will reprepresent other internal data and control signals.

DC Power from . I |
External P Power Arch. fontrols via SPY | |
DC Power ower
. Power Rails |
—————>| Architecture | SPI Controls - |
| User Control and Configuration
Sampllng Commands |
Clock FPGA Clock | |
External Clock Input Generation l |
Differential | sampling cleck AXI Packets to | |
. Analog Processor Mem. i . System Status Information
Analog Input Channel 1. | Precondition nouts | Analog- Rawapc | | Data Data Processing Graphical _ﬂl_‘v
Anal R Data Deserialization and Hosting ! |
nalog Inputs Digital Network Interface | |jsar
Analog Input Channel 2 C : (ngmm?ble (Processor and Digitized Waveform Data
onversion FPGA Logic) Software) Interface —t—’
FPGA Control | |
Controls via SPI Controls via SPI |
DC Power from DC Power from DC Power |
Power Arch.
External Trigger Input Rowegiicy l |
—— e
Analog Front End PCB Ultra96 Development Board Networked Computer

Figure 4: Level One Functional Decomposition of System

4.3 Level Two Functional Decomposition

Once the functionality of the system is understood at the level one demoposition
level, the next step to providing a detailed overview to the system design is to take each
of these top level processes and decompose them into their subprocesses. This is done
for each of the top level processes shown in the level one functional architecture block
diagram above (Figure 05). From each of these level two decompositions, we can then
easily explain in great detail the hardware circuits, FPGA IPs, and software components
that make up our solution’s design; this will be done in section 5, Technical Design.

4.3.1 Analog Input Preconditioning Stage

The purpose of the analog input signal preconditioning stage/function is to take in
the analog inputs and modify them so they can be most optimally digitized by the ADC.
The functions that occur in this main process are: overvoltage protection, coupling
selection, input impedance control, and offset generation, variable attenuation and
amplification, and finally passing through a low pass anti-aliasing filter. The input signals
are first passed though overvoltage protection to protect the remainder of the circuitry.
These single ended signals are then modified by selecting DC or AC coupling, then put
through a circuit to modify the input impedance of the analog inputs (creating either a
50Q or 1MQ input impedance as seen by the external circuitry). Next, the analog are
attenuated so that the signals can fit within the full-scale range (FSR) of the ADC, and

18

depending on the effective DC component of the measured signals, the desired offset is
added to the signal. Next, the signals are converted to a differential signal and are
variably amplified so their amplitude more accurately fits the FSR of the ADC. Finally,
the signals are sent through a low pass filter to reduce high frequency noise and limit
the signals to the Shannon-Nyquist frequency dictated by the ADC maximum sampling
rate. Configurable aspects of this system such as DC offset will be configured through
SPI commands from the processing subsystem. This stage is located on the custom
high-speed PCB that our team has designed.

Controls via SPI (Coupling)

NP DCP
Analog Preconditioning stage ower

Single Sided Single Sided
Analog Input Channel 1 Analog Signals Analog Signals
BNC Overvoltage DC/AC
Analog Input Channel 2 Connectors Protection Coupling
) Coupled Analog Signals
Coupled Analog Signals
Controls via SPI (Offset Controls via SPI (Input
Amount) Signal Offset Signal Impedance Impedance)
DC Power == | GeNeration Attenuation Control
‘—I_ DC Power
t Controls via SPI
(Attenuation)
|
Low Noise - . N -
. . P:
Amplification, Variable Gain assive Filtered Differential Analog
Differential Amplificati Chebyshev Low Signals to ADC
Conversion mplincation Pass Filters
Differential Analog Amplified Differential
Signals Analog Signals
DC Power DC Power

Controls via SPI (Variable Gain)

Figure 5: Level Two Decomposition: Analog Input Preconditioning Stage

4.3.2 Analog to Digital Conversion Stage

After the signals have been preconditioned, they are then sent to the analog to digital
conversion stage/function. This stage is the simplest stage as it only consists of one
main function and component, the high sampling speed ADC. This stage takes the
preconditioned analog signals and outputs digital LVDS signals representing the
digitized sample data. This digitized data is sent to the data deserialization stage in the
programmable logic portion of the Ultra96 development board. This stage is also
located on the custom high-speed PCB that has been designed by our team.

19

ADC Sampling Clock from PLL

Analog to Digital Conversion

Stage

Filtered Differential Analog Signals
from Input Circuit (Channel 1)

Filtered Differential Analog Signals
from Input Circuit (Channel 2)

1GSPS ADC

Digital Sampled Data to FPGA

DC Power Controls via SPI

Figure 6: Level Two Decomposition: Analog to Digital Conversion Stage

4.3.3 ADC Sampling Clock Generation Stage

Another major function of the overall system is to generate the clock signal for
the ADC to sample with. In this stage/function, either the FPGA clock, the external clock
input, or a crystal oscillator reference are toggled between as an input into the phase
locked loop (PLL) which matches or multiplies the frequency of the input signal to
generate a low jitter clock signal for the ADC. This is the third stage/function that is
located on the team’s analog front end custom PCB.

External Clock Signal Input

Clock Signal from FPGA

DC Power

Controls via SPI (Clock Selection)

Sampling Clock Gener-
ation Stage

Crystal Clock Reference

Clock Selection Circuit
(Multiplexer between clock
sources)

Phase Locked Loop Clock
Generator and litter Cleaner

Sampling Clock to ADC
[—————

I

DC Power

Figure 7: Level Two Decomposition: ADC Sampling Clock Generation Stage

4.3.4 Power Architecture Stage

20

The final stage that is located on the analog front end PCB is the power
architecture stage. The purpose of this stage is to power the various components on the
analog front end. In this stage/function DC power is provided from an external DC
power supply. This power is then checked for overvoltage to protect the following
circuitry, filtered to reduce common mode current and noise, and then
regulated/converted in order create all of the required voltages for the remainder of the
analog front end (such as 5V for the relays and input buffers, 3.3V for the PLL circuitry,
etc.).

|
Common- Voltage
External DC Power| Overvoltage Mode and -~ Conversion fe——p .
“1 Protection . Noise and Voltage Rails (5V,
. . 3.3V, 1.9V, etc.)
Filtering Regulation

Figure 8: Level Two Decomposition: Power Architecture Stage

4.3.4 Data Deserialization Stage (FPGA Datapath)

The next stage/function of the system is the Data Deserialization Stage. The
purpose of this stage is to receive data from the ADC, deserialize the data, and create
64-bit AXI packets which can then be loaded into main memory via direct memory
access (DMA). This stage will also process the external trigger input in order to
generate necessary control signals and stop the flow of digitized waveform data into
memory. This stage will be implemented using the programmable logic (PL) portion of a
MPSoC development board. More Specifically, this stage will be implemented on the
Xilinx Zynq Ultrascale+ MPSoC ZUEG A484 that is on the Ultra96 V2 board and using
custom and Xilinx provided Intellectual Property (IP) cores connected using the
Advanced eXtensible Interface (AXI). The figure below shows the data deserialization
stage (to the left) as well as the data hosting and processing stage to the right in order
to show how the deserialized data gets sent to processor memory.

FPGA Portion of MPSoC/Ultra96 (Data Deserialization) Processor Portion of MPSoC/Ultra96 (Data Hosting and Processing)
[e] r—————————————j
| i AXi4 DM, ine IP | | |
Raw ADC Output Deserializer AXI4 Stream FIFO DMA Engine | Data from DMA
| - Custom IP core Buffer IP Engine
Raw Digital Sampled Data from ADC A1 AXIS | e Other Peripherals |
|, }
(LVDS Data Signals, Frame, and I { I LPDDR4 Memory (UART, SPI, Bluetooth, |
Data Clock) | | | DP, SD Card, 12C, etc.) |
I AXI LITE |
| [el AXI | |
| AXI4 Interconnect IP | | I
¥
AXI |
External Trigger Signal input | Trigger pr?;ecs::rr;g - Custom SPIIP > | | 64 Bit Arm Processor Je— o
. | _I_. Running Linux and Web Wi-FI |
| Status/Control to Server l«—{ uUsB30 |
and from PL via AXI
| Interface |

L

SPI Controls to
Analog Front End Xilinx Provided IP Cores

21

l DC Power . DC Power Network Interface to

User Computer and GUI

—]

Figure 9: Level Two Decomposition: Data Buffering and Routing Stage

4.3.5 Data Processing and Hosting Stage (Server and Back-End Software)

After the output data from the adc is stored in main memory, the next thing that
must happen to it is that it must be processed and hosted on a web server running on
the ARM processor portion of the MPSoC. This ARM processor will be running a server
which will host the web server that communicates with the user interface which will be
implemented as a web client on a remote computer. This processor will also be running
additional software in order to generate the commands to control the various
components on the custom analog front-end via SPI, perform basic processing on the
waveform data such as downsampling and converting the data into the desired protocol
for the webserver, and finally to communicate with and control the PL portion of the chip
via the AXI interface. This stage is shown on the right portion of the diagram below.

FPGA Portion of MPSoC/Ultrag6 (Data Deserialization) Processor Portion of MPSoC/Ultra96 (Data Hosting and Processing)

|DalafrDmDMA |

. Engine
Raw Digital Sampled Data from ADC I Raw ADC Output Deserializer | AXIS AXi4 Stream FIFO. |AXIS |0) oyas Engine IP ‘_I_g']—‘_‘ Other Peripherals |
(LVDS Data Signals, Frame, and - Custom IP core Buffer IP | LPDDR4 Memory (UART, SPI, Bluetooth, |
Data Clock) | DP, SD Card, 12C, etc.) |

|—=] AXI4 Interconnect IP | 64 Bit Arm Processor

AXI LITE
I Ll AXI I —

L]

AXI

External Trigger Signal Input

Running Linux and Web
Server

Trigger Processing - Custom SPIIP |

Status/Control to
IP core

I and from PL via AXI
Interface

DC Power Network Interface to
User Computer and GUI

DCPower 5pj Controls to

Analog Front End

Figure 10: Level Two Decomposition: Data Processing and Hosting Stage

4.3.6 Graphical User Interface (GUI) Stage

The final stage/function that is required for our system is the user interface so
that the user can control the system and view the digitized waveform data. This stage
will consist of a webclient that will be running in a web browser running on the user’'s
network capable computer. This web client will communicate with the server running on
the Ultra96 in order to pass control and configuration information to the system and
output waveform and status information.

22

Weh-Based Graphical User Interface
System Aboard User Computer

-
=

Network Interface to Processing
System (via USB or WiFi)

v

Web Client Back-End

I User Control and Configuration

Angular Based Graphical
User Interface

ICnmmands
1

Status Information

I Waveform Data

l
|
I y

s e

DC Power

Figure 111: Level Two Decomposition: Graphical User Interface (GUI) Stage

4.4 Overall System Architecture

In Figure 12 below is a diagram of the main system components integrated into
the overall system architecture. It can clearly be seen that the system will be divided
into the three main subsystems: the analog front-end, the processing subsystem, and
the web-based GUI. This diagram serves as the model in which data, power, and

control flow throughout the system.

23

Analog Front End PCB

- = > >
Analog Input Channels Overvoltage Differential Low Noise Variable Gain Low Pass
Protection || Attenuators 5] Amplifiers j| Amplifiers |5 Filters
5V DC Overvoltage Protection » Voltage Rails ADC
> Voltage Converters/ (5V, 3.3V, etc.) Sampling ™ ADC
Regulators Clock PLL
External Clock Input Clock Raw Digital
Generation Output From
External Trigger Input Circuitry ADC
SPI Commands FPGA Clock
Ultra96-V2
Development Board 4
Programable Logic Portion of MPSoC
Programable System (FPGA)
Portion of MPSoC
(64 Bit ARM Processor) EETEPTETEPIERELECEEE .
12vDC :Rawlnput 33 gy i
> [RLERTRITRITI TN ; Deserializer = 2 o crip =
: : 2GB SN & S ;
: Web Server LPDDR4 Lemerenmaas Fresrmrmeas grersnimae
: - L - il Trigger 1i oma I
............... = seip s I Enginelp :
: P i :
1 I I R R G lemeaaaa ;
. Other
usB3.0 Wi-Fi Peripherals
Network
Interface
Web-Based Graphical User Interface on
User’s Network Capable Computer

Figure 12: Overall System Architecture

4.5 Physical Architecture

An alternative representation of the system architecture is the physical
architecture. The physical architecture consists of a hierarchical diagram that shows the
main configuration items that make up the system. This includes major hardware and
software components. This serves as a hierarchical overview of the major physical
resources that will be required in our solution.

24

Open Source High-
Speed Oscilloscope

[

High Speed Analog
Front-End

Analog Input &
Filtering Circuitry

ADC & ADC Clock

Circuitry

Supporting and
Power Circuitry

BNC Connectors

Differential Attenuator

Low Noise Amplifier

Digitally-Controlled
Variable Gain Amplifier

Chebyshev Low Pass
Filter

ADC Clock Signal Phase
Lock Loop

ADC Clock Select
Multiplexer

Analog-Digital Converter

High Speed Mezzanine
Connector

Low Speed Mezzanine
Connector

Voltage Regulators

Overvoltage Protection
Circuitry

Ultra96 Development

__| High Speed Mezzanine

User Interface

Board Connector
Low Speed Mezzanine |
Rel t Connector
elevan || User Network
Hardware Ultrag%-v2 2yng Capable Computer
UltraScale+ ZU3EG |
- USB3.0 Ports
Web Client Based
GUI
—| WiFi Interface Chip
Flrmware/ T | FPGA IP Cores
Software
— Linux OS
— Web Server

Figure 13: System Physical Architecture Architecture

5. Technical Design

25

5.1
5.1.1

Analog Front End
Discussion of Design

5.1.1.1 Power Architecture

The overall purpose of the power architecture of the analog front-end
circuit is to essentially produce all the supply voltages required by various circuit
elements used in the design. However, this process is a little more involved than
it sounds. The input to the power circuitry is a 5V external power supply that can
be received in two different ways. Through the use of a switch, the user can
choose between a 5V external supply (through a barrel jack connector) or a 5V
supply from the Ultra96-V2 board itself. It should be noted that the power
supplied from Ultra96-V2 is only viable for a max current consumption of 3A. This
5V input is then filtered to remove any voltage spikes that might harm circuit
elements using a common mode filter. High frequency noise is also removed
throughout the overall circuit using ferrite beads. To further protect circuit
elements, overvoltage protection is provided at the initial power supply input
using an overvoltage protection controller. Lastly, various voltage regulators are
used to produce any intermediate voltages and supply voltages for all chips in
the circuit.

5.1.1.2 Analog Preconditioning Circuitry

It is extremely important to “condition” the input signals before they are
digitized using the ADC. This not only protects the ADC from damage but also
ensures that the signal does not contain unacceptable noise. There are various
other aspects of signal conditioning that are discussed hereafter. The two analog
input channels have a BNC connector interface and include gas discharge tubes
at each input to protect against fast rising transients that could damage other
chips. High speed relays are used to select between AC and DC coupling
depending on if the DC component needs to be removed from signal. Another
high speed relay is required for each signal to select between a 50 ohm and 1
Mohm impedance path. The 1 Mohm path is selected when a probe is being
used to measure the signal. To increase the input signal range, a 20:1 pi
attenuator is used to attenuate the signal. There is also a 1:1 path for each
channel that can be selected for smaller signals using yet another high speed
relay. The analog circuitry also contains a signal offset generation capability
through the use of a digital potentiometer which is configured through Serial
Peripheral Interface(SPI). Although many oscilloscopes use an analog
potentiometer to control the offset, our design allows the user to control offset
from the GUI itself. The signal preconditioning stage uses two amplifiers in each
channel to amplify the signal such that their amplitude fits well within the full
scale range of the ADC. This is done through the use of a low noise amplifier
(LNA) and a variable gain amplifier (VGA). The LNA ensures that the signal is
amplified without the noise being amplified along with it. The VGA (controlled via

26

SPI) fine tunes the gain/attenuation of the LNA output before it is sent to the
ADC. Finally, the signals are sent through a 7th order Chebyshev low pass
filter(LPF) to reduce high frequency noise and limit the signals to the Shannon-
Nyquist frequency dictated by the ADC maximum sampling rate. The cutoff for
the LPF in one channel mode is 500MHz as that is the bandwidth of the ADC.
However, in two channel mode, the bandwidth is essentially split in half so two
250Mhz LPFs are utilized.

5.1.1.3 Sampling Clock Generation Circuitry

Another major function of the front-end circuit is to generate the clock
signal for the ADC. With this circuitry, either the FPGA clock, the external clock,
or the crystal oscillator is multiplexed as an input into the phase locked loop
(PLL) which matches or multiplies the frequency of the input signal to generate a
low jitter clock signal for the ADC. The PLL is configured through SPI by the
software aspect of this project.

5.1.1.4 ADC Circuitry

After the signals have been preconditioned, they are then sent to the
analog to digital converter. The ADC chip takes the preconditioned analog
signals and outputs digital LVDS signals representing the digitized sample data.
This data is sent to the data and buffering and routing stage on the FPGA board.
The trace lengths of the digital LVDS outputs need to be matched on the PCB in
high frequency applications for timing purposes.

5.1.1.5 Other Analog Front End Circuitry

There are a few other front-end analog circuitry elements that are worth
noting. One of these elements is the bidirectional voltage level translator used to
convert the 1.8V logic signals from the Ultra96-V2 to 3.3V logic levels for the
various chips in the circuit and vice versa. These logic signals are mainly the
Serial Peripheral Interface (SPI) signals used to configure elements such as the
VGA, PLL, ADC, potentiometer, etc. There are also various LEDs used in the
front-end circuit to indicate between AC vs. DC coupling, impedance, paths, etc.
This not only improves user-experience but also makes debugging easier. Two
important digital connectors used in the circuit are the high speed and low speed
mezzanine connectors. Both of these connectors are used as an interface
between the front-end PCB and the Ultra96-V2 board. The low speed connector
is used as an interface for all control and SPI signals whereas the high speed
connector is used to route the ADC data to the FPGA.

27

5.1.2 OSHO Board Schematics

28

ol

]
c1/T 0l | T-(r'7's) PEOY W3 PRI

0T A%y | ST-10-020Z :3#0 | J3W3150 3715

100y JpeWaYIS ‘AL

425'PEIIN OHSO (3lld
/ #338us

4aaniINn fs1arjun uosey abioan
wea] ubisag Jojuas QHSD 0Z0C
adoosoyasg paadsybiy assnos uadp

SunssuiSugjo | Arts
Jooyas neuad|op N
ID¥03AD

~

033dSHOIH 30d4N0S N30 |

a
42500y
24% -3834S
3
y95°500333U807 1eRBIg a1 a5 pu3 uosy Boreuy ey
B (9]
N
sioy2auua) |eybig jaays puj yuot4 bojeuy 3a3ayg
YIS UOIEISUES Y3010 Y35 A3IN2410 13m0
A

ualjelauan 201y 32ays £131N211) 13mog 33345

3d0J3S0TIIS

Figure 14: Schematic Cover Page

30

5.1.2.1 Power Circuitry 1

31

k]

I T

£1/Z Pl i

T-{7'1°5) peany

073 pedly

0T Aol |

GT-T0-0Z07 31Bd |

IBEHIERS

Agnasgy Jamod @)L

Yas5°fu3inaan 1amng 13714
JM3N2410 d3mag/ 3asys

Ris1aajun uosey abioag
wea| ubjsaq 181uss OHSO 0202
adaosayasg paadsybiy aainog uadg

e 198qpas]
N9 G
ﬂ m:ﬁu.ck m:HP ATze
& QuH_I 013 7y
Elras ELVE) -
(AFZE/1E5 61+ 1459270 = 1N0A 6 o 5| 9N E 55w
e
mE L=k F: 1
ven pe | TModPEL e ¢ B
cdlo a1 _|~Em> R
49S0AG— GLAS GZTAT— 914 ASOh+ e 4E'G6
59] NIf N3 T £
40T
g 4900225551 o
zn
LR
) - 1HELTETI-151T)
OAS— "GLAL GIAT— 32345 Ta ang
52 kRl £3
JoRE3pul Jamog I] 1 1 I %
NITAGT
OAG BAT €AT 1234S
sJo1e)1nba3 1318¢ JoJ abeljop 31PIpawlalu
sJljeWayosg sioyejnbay abejjop 18] . 195 } HOA 3ielp U]
AN
N
PaN
° ° 43314 poy Uowwo)
T z
uopaaedd abeyomtang [M7
= = 4A8000%CSdL - 10123UU0) 3287 jadieg
ans e 335 H —_— V1T 8 & T
[- % < BLAER:LE] :««NS\E
= - S T "
anot Jnen = Tdr T01L-1de ﬂ@% 090LKHIY
) = -
ATNLOSESSBTHTE
ol R - Ve > uopdwnsuoa samod
“““ T - T A OBVEIT] 12303 41 96 Woss 4amod — xep v
e «L\ : oL 8SDTESRTNSY - BETOSHTTOTOT
NITAGH Tdl To 13
1ndul Ayddng 1amog JRUJI31IXT AG
g i [Z T

32

Figure 15: Power Architecture Schematics (Page 1 of 3)

33

5.1.2.2 Power Circuitry 2

34

5 T I T z T
o1/ ol | T-(4'7°G) PEoly y'0°3 pe
0'T 3 | ST-T0-0Z0Z 3380 | 1333150 BEiS
AQ'S Pu® ‘A6°T ‘AL°E NIl
YI5DAS GAT EAE (314
JOAG BAT TAE/AI3N211) 13mog/ 33345
Aj|s1aAjupy uosey abioag ans 4
wea) ublsag Joluag OHSD 020% AT0E
adadsanasp paadsybiy 22inog uadg [a%:)
an9g AN anNg an9
: L : Lot
ol ot apolo oL v 2e ANT0 AnOT == dnoT
cMu4 mMU% JMU% mmu4 JUZ W UZ{A NMU% ﬁmu4 DMU%
““““ Lno NI t aaar
r.:nuummww% QUNLTZT2SRTHIG ans w 44 N3 W ATNLTIZTIS8THWIE
ren vz 143 g—lang N EER 5
hS+ 4YQQT00LYESdL NITAG+
. sn .
/ ' .
(suayng indu| ‘uoielauag 1asiin ‘shejay JO4) AQ'G
3
anNg ane
. = avd3
ASTT g Vdd .
ang ang fal o Ny g
== a4 mm\mzL ne
: TYLITSS & =
4noT l:,oLlémmLESvoLlé 5T o .
mmulﬁ Rulﬁ nmulﬁ mmulﬁ qmulﬁ 4 NI—7 ﬁmﬁmel ﬁ%% lmmel M
“““ no NI I It
E.oamw% TTHLOAT S THAS a’mgo NI om_H OTNLTZTISBTWIE
54 $ASOTOZBYLSdL 8
an ASOH+
(sabenop buiselg pue Hay 104) A6'T :
aN9 an9
. =154 i.ﬁuw .
ASTT g avd3 .
any aND oy MOMH NS WMQ
s 84 mm\w_z\lj o
B TYLITSS & 3
4not %H.OLIENNLES.OLIXE.M] .
m«u% m«u# hﬁUA wﬁUA mﬁUA S he A m:fﬂﬁm% mMMW% mmmw
“““ 1no NI
:Elmm% OTHL09E958TH1E ﬁ’MSD NI o@ﬁ OTHLITZTISETHIE
=4 $ASOTOZ6YLSdL 84
&n ASGH+ i

(30B4I31U| |dS pUB Wa)sAs bu

40010/71d 104) AC'C

35

Figure 16: Power Architecture Schematics (Page 2 of 3)

36

5.1.2.3

Power Circuitry 3

37

g b3 I

T z T
S/ Pl | T-{5'1°5) PRIY ¥'0'3 PEDIY
O'F %3y | ST-T0-0Z07 24| Jape1sq ezls
AQ'G= PUR ASL'E ASZ'T- el e ang
. UIS'OAG— GLAL STAT— (314
SONG— GLAE SZAT—/A1IN311D 13mad/ 133ys e
Tysiaajun uosuy abioay e %%oﬁmow%w o 120 .
wea] ublsaq JelUss OHSH 0707 = BEL XE;
adadsay)asg pasdsybi|y sdinag uadp 10T g Jzz H
‘ oes EEE o
anNg
s ozow Asoh X_H_E N S 43 M
. T 40T it ANTE e NTZ yag UL anez 4nze inze
mmu4 mou4 hnu4 nnu4 %97 4 KD - Hou4 740 4
Ms NIA
“““ B zT H
Emmk% QTNLTZIOSBIWIE rard éoﬂlrtoﬁlﬁ toﬁlﬂl OTNLITZTSSBTHIE
<Bll YT 8dl cTa4 b1 TEd 083 683 z184d
ﬁmu N3
. o . . 1T < - - NICAG+
(wyg Bap T 404) AD'G-
3
. s . . . LLE}
, ¢ eamuw
AST'T S avd3
ans ans 11d 107 N mmwa
214 ang
. T ra :E mm\\w:m\lj S
El) :S ui.oLlémlesS.cl_linm LS9 .
48D 952 mmu% JmUA mmu% 9TH N L ljmﬁmle ummwk lmmwl_l I 8
xeW W1 e nzmm ﬁ’thm H o ATNITZTOSRTAE
. VoL aTnLeszosaTng T 7
Y b HASATOTAEVLSHL ordd
MSLET n ASOH+
‘ q
(+sA dwy 104) AGL'C
ane, RIS amMs
A08T m
Ty 2e 10
’] RO oe
10TT T Sz T [
T 432 7 ang
ang 873 ano
ss0e ¢ 1<uu|lﬁ
nta anotT T anzz anzz 7Ln0A INZ'T b AN 2T, e AN ZE
=T 9 T B0 ST T @Ddl 20 T T ST o T
WBISaL | o eeeeg) H H g " L o e,
; QFNLTZTISETAE HNZ'Z 4n0T 4ng7 4not QTNLTZTOSBTHIE
Xel YT 9dL 594 £ 683 i) 180 oed
H H v
A&z T— TTidd 13 AGOh+
HH¥A0TLEDSdL
SA ndwy 104) AGZ'T
g [} < Fd T

Figure 17: Power Architecture Schematics (Page 3 of 3)

39

5.1.2.3 Analog Front End

40

[i 3 T
£1/5 Pl T-(7"T'S) PEdY Q'3 pEOIY
[ELH ST-T0-020Z ‘3180 | w3215
pu3 juos4 Bojeuy :apyi
y3s'pug junig bojewuy
/Ppu3 juoiq Bojeuy/ aays
RI812A1UN UOSRN abioan
wea] ufi|sag 101Uag DHSO 0ZOC
adoasolyasg paadsybiy aaunos uadg
ya5InduTgHD 31l
ndugHd
ndul gHO eays
IS 447 13 25 YO PURTYNT (31l 4513540 1314
TYIATHDOA ZYONWIQA 1ndurgn
TYOATHDOA TEOAWI0A o =
125407 gHD 1240 gHD
—paudwy dHa
+palduygHD
. - 33SHOVHO G (Q312sHOYHS
nduy yH —paundwy wH)
+paydwy Tyl +papdwyTyH) MduITyHD

513114 55Bd MO] 38945

SYSh PUB SYNT -Jaslus

U611e18Ua9 135110 19345

yasnduTwHD (314

indumyHD

indul vHD 12ays

41

Figure 18: Analog Front End Schematics Hierarchical Page

42

5.1.2.4 Channel A Input Stage

43

5 3 I

ndu| ¥ jsuueyd

anNa

zr

$1/9 el | T-(5'T'5) PE3Y W03 PEDNY " sund
07 Aag | ST-10-0207 ‘aeq | 4ane1sn 225 40 bR o os B
u:&:‘ ¥ 1ouuey) e ASToINT Iuw/
Y25:3nduTYHD 81l SR N .
-) - 1481TETI-LE1T L48LTTI-LSLT- 148LTETI—ISLT LYALTEES- L5
/indul wHO/pu3 1uod4 Bojeuy/ m3ays FaR1] 110 0tg 64
Kyis1aajun uosey abioan
wea] ubisaq 10]uas OHSO 0702 606 506 606 505
adodsopasg peadsybiy 2ounag uadg T bed
B S+ S+
awo ang
AG—
) Ely %} HES S
T T T
1 3E0T W
a5 —g
124ng pasds UBIH WUO BEWT vH
. ey —
ans 188
o
1A8¥016S9Yd0 TNV
s i zey kﬂmmoaﬁ iz Wed 102
NI m_‘%_ W1'e WE\NI;G\{ NI WT ¥H3
a o |
A AT VA3 T - S—
wyp o5 = P - ed T°T ON-—Y
g
w Sy 3 1
o dow T = 703 ol =
an9 TOTVI00GYE0 T2k
anz =N jw.‘\w.j\ kiat
2 [0 o 4 9TLIZEHAHN o
Ll & g [& N9 N9 re— 20 As+ S A ZNILLY VAI
ASOINTYH) 6 o7 4=L-MSHTHNT
‘ RS ENILIV¥HI 0T WM m, 7 NTo anot ner 1a
ASTTNILLY ¥HD % 57 [7%) £00
IHELTETD MMW A M : N L%m& EO:LMDCN##(Q ELO‘W@EZ A_H <IU
s _‘m - ElE 4
T N 00 Eogey T ot
14817610~ 5 a8 U
ToT BTOBBT;
m@mfmmuiguﬁ
i ho+
aMn
o+ n du TYHD T Zv4 310430 sypbuaT a3e1] szl tERaN (N0ART,
Bdl
o4 , & TN O o
ang LTd azy g | (MG ZHWOSZ 40 ZHWOOS — Aiewiid)
IS IO 0D w tro5—g 55—
= g g ano
7 IO 05 ¥HY ON-—d AT e JN—g
[e 06HS
& NG5 wHD JN-7 Sund JN-Y Ti09
Z g . . yied. bundnay ag
@Oy W05 = < A
W TT OV : w\ﬁlt o 2 , o
- " NFREWHI ON-v ied Bundnoy gy 0NV
] T
) — g [g M
I L o) 1103 aLlF =113 03 El
Smio%«mmmgmg TOZYT0D5YS0TECA TOTYTODSYG0TECA
2t WY
. 1< 7 = B
- REHTHNT - o 1~ ASTOIHTVAD o < RGN0 VHI
Ag+ p 4=L=MBHTHNT 4=L-MBHTHNT
za

Wed UORENUARY WYQ 05 WHD | 10AU0Y aduepeadw ndul yHI

Uo

1ENU213y pue "joJiuod souepeadw| ‘Hu

jonuoy bundnoy yHo

1dnoy ‘indu| y jsuuey)

44

Figure 19: Analog Input for Channel A Schematics

45

5.1.2.5 Analog Offset Generation

46

[3 [3 z T
ET/L Pl i T-{5"T°5) PEI ¥ 0'3 pPEDIN
O°'T A3y 7 ST-T0-0c02 =eg 7 4332050 2zls
uojeuauay JasyQ ndup Bojeuy :a)1
435133540 (214
JUBIBIBUSY 13510, PU] Juol4 Bojeuy/ 333ys
Rysiaajun uosey abioag
wea] ubjsag 10lUss OHSO 0Z0Z
adasso)asg peadsybiy sainag wadp
aN9
anp 2L anto hS=
mmu\ﬁ SUH
an9 SdON—JWASEIHWT
Ladll o
063
I
1esH0 dHD NI—5—
=
T
i) aNg
a3
e u
ok
kS
B Flys 4170
mmulm mmuH
] ano
her tiw_ltg
ano 482 T o820
A ASTT— ans
Fl iNT'0 ho—
E 82 } AW +0TO-58,92T50
e £In
= an
ana 0N ~HBESIH T e hal Mz
an =] H@ 1100 3¢ it
fase] L C 105 fr< EEITTT iojersuea] jana] abeyop
]
_ N il NI |7 AosyTIog 5 &9 £ =—557710d]
14540 vYHD NI i s &l 74 |7—(150W 1dS]
i T = g AGTSOW 15 | L 7
>7| O o ma 3 71 78 T —(01ds]
< = 1 G337 VAT [
=
oy aNo e 2810 %zu. 0N 17
- lon BTT'4QC0OTLIAN
B3 angT N7 T
S
s 4T 4nT'0 783 82
- 6L == 8.3
= AG+
1013U03 12540 30 e
3 T T

47

Figure 20: Analog Input Offset Generation Schematics

48

5.1.2.5 Channel B Input Stage

49

i [

T—{5"T°5) PRI ¥'0°3 PeIIN

ST-T0-020Z *@9eq | Janaisn azg

ndu) g 1auvey) a1

yasyndujgH 24
Andul gHO/pu3 juaid Boreuy,/ asys

- LHEITATI-LS1T

wyg Bal T
ASTSIHTEHD

N

1H81TBTI—IS1T

Bundnoy oy

Bundney g
anNg

WYo 05
anNg
ASTTANOZ EHZ

R

1HA1TATI—1S1T LHEITATDI—1S1T

ced zza Ted 0zd
Ky|siaajup uosey abioag
wea| uBjsag Joluag OHSO 0702 606 606 6706 606
adoosay)asg paadsyBiy 204nag uadg 694 L84
& SINT A &
ane ane
RS~
H%ﬁ.o 44T S
4507 WT
IESE]
Japng peads yBiH wyg WY @HD
aNg
1gualssovdo |7 IN=T
Fadl _ wed 1:07 z
s . ‘ ~ [HO5=Y NIHT 8HI
0 4 |
INOHT §HT | - .
s] B T O
wyp o5 = ynoy 6767 < 4N ” T8d T ON -7
ane™ - : w ~y 3 [
» YOW T =ud e =l —
aNg M
TOZHT00SYE0TETA
ane S _\|W“H \W‘|,_m Ear]
g @ 4 OTLIZGHOGH N
REOIWTGHD m s 5o m e e T &1a T N
A5 ZNILY 8AT 07 Mm w” 7T e InoT . ns+ léwwﬁmaqﬂzﬁ
FETINILLV 8HT 1T | T 562 62
ang el) yied uanenuapy wyg—ebap T gHD
1AQLTELD—LS1T A <l
; ﬂS _U, 5 1= 4
TT gLl 50654 Y o
=— " & ol
60695
T Ty e+
sinf™
no+ in du TaH i vy 210420 syybua] 33es| azZiwulY 3pap N0AET,
ZTdl
ON-d , = IO WT |3 = =
ang ummmm M,mmﬂ g OoN-—4d ON—d | (M8 zHWOGZ — Auepuodas)
— =c - ndul g j1auueyd
— T3-9 1IN0 05 8ms : =t i
L - g g aND
FIM0 05 8A) o8 AT el N4
uzm\<|4 g ¢ | £63 =T DEHS
ey Ti0E & NF0G 8H3 JN—7 JN—¥ 109
| ¢] .
—— |H0J-v Nrosans 3 < yied Bupdnoy og <
i 7 v o [EiEad
e T ON 7 S N B Ll |
M NTHT 83 Of-v e Bundnay gy 0N ¥
+_m,wou L g M 8 M T
- * ESICE] BE 1163 Bl =193
HON«HO%%AMmDﬁMN> TOZYTONSYSOTEZA TOZYTA0EYSOTEIA
o7y Bat
~
4—L—MEHTHNT 5+ ™~ o 1~ A5TdN0Y §HI
et 570 4= 1= MBHTHNT I-L-MBHTHNT
710 £T0

Yied uolzenu=ily Wyg Q5 dHD

UOIIRNUA}ly pPUB "JoJiuod) aduepeadul] ‘HBu

JoJyuon asuepeaduw| 3ndu| gHO

1oiuay Bundnon gHo

1dnoy ‘andu] g jsuuey)

50

Figure 21: Analog Input for Channel B Schematics

51

5.1.2.6 Low Noise and Variable Amplifiers

52

[S 3 [¢ z T
<16 opl | T-{h'T'G) PRI ¥'a'3 PEDIY
07 3 | 5T-T0-020Z 2380 | Jap2]sn @z
SYNT puB SydA ‘aliL
Y3Is'¥OA PUBTYNT 314 B
/Sy9A PUB syNT/Pu3 juoig Bojeuy/ paays
a Kysiaajun uosey abioag g
wea] ubjsag Joluas OHSO 0202 QN9 QN9
sdodsoyasg paadsybiy a0unog uadg
LSHHITORSHKT i) 0Tz
o
- it TOTY GOTY
JV 1Bndwy asjoy Mo 664
= . a 0
TOND +84 606
WIogiEa) R Jayydwy uieg ajgeues 7 5 o 264 L6d
|| -—peunduygnyg—=atal 5T Wino WO0A |7—JZ¥0AWO0R @ ST T2 AN —NI— <Wasy0aHd | |
2t z64 o
+padwygHD 4ino WNI 77 —1no NI g
ans §Tdl O ang 2Ow boe 9711254 09HW
w6 guo —g—] FAND Nl 7 +1no -84 T gno] v
4NT0°0 gl omm st LT eE o e £e neeet
TeTn 0e1o 40700 00CT ram e 53 rgpEIzvon 684 7T sh Tosh T
6213 82T 490027 i 700 e ndumaHa
. ezt T AT 125 =T 1ds ana T 7 +sA T+SA 7
nsLEF
+SAT T e ad 1)
3 g g z 3
ane s anrao noce 5 9TL1Z5709HM
—5hC fTA%] Cran] AST'T = 86830 apo uowwog L -
3 AGZ'T— ams ang, AST'F 9za AGLC
AnTo'0 oozz An10°0 0022 E . Ho133301 4 3Bey|0nian
€713 7210 ra] 021 o7 LTSAZ Jrnien 1007z 100 ARsieid SREeMIat0
LZHHITORIHHT ¥z 8173
34 an9 /88
nSLEF ASTT—
. ASLE+
. 4
ﬁwwmmu. q
M jp Saiw i VOA R YN T)sIelduly o JaUUey DR
. ASLE+
o o
o i) 01z
- it fet=t] By
g JV A3yndwy IsioN Mo gy o . g
zon TaNo +84 606
Juod3sa) 00y saynduy uieg mgepes i i 64 zad TEY
—paydwyyHD J—ildl o7 AL WI0A F—aT¥onTWoon O 57 rakailb] NI <1135H07YHD
Lid 9id
+pauNd Wy YHI Spryogysar T dino HNI = ram il +NI g
ana E&m any 20k 506
BLy gug | FOMD I 5 T HLnn -84 7 Sl o ' 9TLIE5h08kM :
700 0zZ by wLT 7id AT T 5za ASLE+
R o11h 41100 0027 =7 CAND 52 <50 199k 52 50 T-5h
H ZT13 =111 490022 o wduryy ||
ezt = ~SAT M5 5 1ds o7 ¢ +sh THShT 60T
ASLE+
o - g +sAT o e © 82T
4nte’o 9TLIZGHATHM
T Eim il 80E3 8in ang (LR bea AL+
4700 gozz 4100 0022 6
907 ==5012 50T ==E073 TrLtse AG7T = 3BEYI04 3pAW UOWLIEY 40077 0D uoIz01g 3BeyoNIENg
LZWAITOHOHHT . ST T ano
LI ang
¥ ASLE+ ASTT- i
e ASLE+
4700 00zz T
882) .
az
oY
ASL'E+
YOA S YNT)Siandwy v jauueyD
nsLCE
g 2 C I T I T

53

Figure 22: Low Noise Amplifiers and Variable Gain Amplifiers Schematics

54

5.1.2.7 Low Pass Filters

55

g [g T
1-(r15) peal
GT—-T0—0Z0Z :31EQ 7 v 18715
S04 Ssed Mo BN e
4as'4d7 *Slld
/si3yl4 ssed moT/pu3 3uody bojeuy, aays
Ayis1aAjun uosey abloan ELlare —
wea) ubjsag Joluas OHSO 0Z0T IR CVOA HOOA
sdossoypasg pasdsybiy aminos uadg WOA)
ano
ATTC0
972
TRy
- HUt% HUZS Hukh
zz21 Tz 0zl

¥i2alv9revdo AN
Ten

{—9H2D

664
ZTTy
4070

TR
11T 4007 F
TTTH 1973 0973
o - ans anNo

LGTD 4
4doT Jdzz

9573 dl

Jdze F

5573 dl

Jdzz IP 4dot IP

851D 8610
anNe ANy
4dzz 4dot

#5123 lﬁ [3=1 %) lﬁ

J—-payndwy gHo

1TTT HUH Y
OTTd 6T1

(ZVHD

{(TVHI

Huzg Hur

BT1 [asl

sseg-mo | adk| aayskqayd 13pio 43z ZHW 05T

<J+papdwy gHO

ane
Jauveyy jeng 1aueys a1buis
. o ano
nTo
e TYOM ZUD> [LaE RETRIE) Ifu
_@v L9ELTETI- IS0 LHALTETD-L51]
ane 160 g0
oo Hut Huzg . Hugy hmo_wm ooe
ERTD a1 ST HTT
G+
=4057 H (T R ECaETRER)
ol I S A
ASLET antd 1D 9410 SHTD
c ane ane ana - ame
_|_mm,¢ T "TVHD) [ON-° 4dot 1dzz Jdzz AdatT ON-—d
/ Big=) s Z9TD THTD —
sora yit e T T T T b+ Pal 1AWy YHD
ANT00 0TY +J0SZWHI" +057 ¥HI
iy | g Hu Huzs . Huwy] J
oN-€ £T1 43 T oN-8
I 13 sseg—mo7 | adh] aaysfgay) Japie z e
=7 Aid s5eg-mo7 | 3dRL a3ysIGaYD J3PIS YL THI 05T =7 |
- - —
oA PAU LY YD
N Huet Hugz - Huzz |
e ON—7 om 61 a1
—4005vH BEERLE
7oty [g 99z t:lﬁ uudlal u&mlﬁ [
EN RRIEN] 65T el 1810 9T £l
T0ZYIO0SYSOTEZA ane ans ana Cane TOZYTO0SYSOTETA
0Ty J0r's 4411 2471 2075 o7 ane
245 WETD a5 &} ZE1
B) H - - - . K o
4= L-METTHNT ot 1005 H Huzz Hugz - wzz posHy J-L—MBNTINT 2
624 a o o 820 eonane Anw LN ETNERIIS)
4211 sseg-moT | adhL aaysdqayd Japie WL ZHW 00§ e

56

Figure 23: Low Pass Filters Schematics

57

5.1.2.8 Analog-Digital-Converter (ADC)

58

[S k3 [[z T
C1/TT Pl | T-(7'T5) PRI a3 PEDIY
O'F | ST-10-020Z -2320_ | Jap2]sn 8zis
Japaauo) jeybig Gojeuy :aniL
43530y (314
/3av/ 33345
a Kysiarjun uosey abioan
wea] CO.,mma 40lUas QHSO 007
adodsopasp paadsybiy aounog uadg
sioypeden ssedig
anm
LLTD ﬂ 9LTY =T
he T+
ana
ant MO0 ane
3 SR T WEW ~ W3NS S|IW O —/+ S1j8g [ERUIIAIG
“““ a3ei) Jad Wy 05) 40 WYD OOT 5B Aoy
s | ()
ATNSZ0TIABENE - snding wgz
AGTTH o184 z 13101 JnoAET,
ans 7| ¥dd g 9END [z gEND) |
gz W 8540 (77 §240)
77 89d0 YEND (7 VEND)
4T nTo'o gz BoNo ¥EdO [z YEda)
£LTD B 57| 15540 W34 7 NY14
L M3YS S OF —/+ JBd 1eNUuaialg or | F0gAd d134 gy EENBE
(evesy Jod wyp 05) "WIQ WYd 00T € N0y) T £55AY WA g7 MY12T3,
= 1d wouy 1eubls 43010 133dAT ZHIT neet = 200N 49101 77 EEARIN
“““““““““““ o SN Anakel, £ 0040 8IN0 (57 82Ny
[N D0vy—+ * Fe] N2 82d0 £ 8zday sipysede) ssedfg
[EERERT T 4412 9ENO ZNd) ano
“““““““““““ son [oon gp| FO0AY 5240 ey vZda)
[7o N 8TNO [>T gTND
7e dl 8Td0 |~ 8Tda) | g 700 40T
115500 58 um,u:cgww:m,wwﬂmﬂumuwm £0] SSAY YING 5 ¥ING L2a%] [LTA]
o A e noteg, A6 75 ENI VIO v1d0
5 £di 55M0 (g A
TSSAY aang AGTTH
5 T
FVHD = Nl 09 504 00v] ano
ano —WH3 751 24l N13538 ——(NI3538 DdV)
e it 4125 {137 145]
it 1100 NI #1505 ——(ISOW1d5 41700 407
Tdl NS 5000V 6910 == 9970 =T
L970 == 9970 <= T
e - T nstsienm
s OPNSZOT9BTATE e MBI+
M 7784
HITTSTAYOWH
Ma3yS S\W OF —/+
(32211 134 WyQ 05) WO WUO OOT e Anoy £an
— QU7 UD|SSIWSURI] }|
~ lleg \epuaiagig se ajnoy
—sindu] 1eUBIS ZHWDOS
:aj0N jnode,
v
g i3 < z T

59

Figure 24: ADC Schematics

60

5.1.2.9 Sampling Clock Generation

61

[5 i [I H T

c1/ztpl | T-{b'T°5) PRIY W03 PeDIY

07 #ay | ST-T0-0207 5120 | 1o913150 2215

uopRIaUIY ¥20)) BNNL

yIstuoljedauas y301) =914
/U0J3RJ3U3S Y2010/ $3aays

Kjje1aaun uosey abioan o9 ans
wea] uBlssq Joluas OHSO 00T
adodsoyasg paadsyb|y aaunog uadg

ATNSZOTONBTWIE OTNSZO0TOH8THIE

0284 6784

AEEF AT+
QN3 . ano [alibo] .

T
E.Q,ole:ﬁ,oL{lm:ﬁ,ol_clm:ﬁ.ob:ﬁ.ob:ﬁ.o b:a.o b:ﬁ.ohm:OﬁLcl AT 4noT 4nT'Q nta 4n0T
8613 4hmﬂu Iﬁwmﬂu Iﬁmmﬁu Jl¢m.ﬁu Jlmmﬁu 4Nm«u AHmﬁu 4om«u Iﬁ 6873 Iﬁwmﬂu Jl £81D 4mmﬂu 4mmﬂu 4

INoo3A T NDNY22A Td - =T NIP2OATTTd - 0 Tt
ATNSZOTOABTHIE ATNSZ0T2A8THIE
aT84 LT84

ASTCH AECH AEE+

sdayld ey afeyop pue sioyaedes bujdnoaag

MARG STIW OF — /4 Slled 1RIIUAIE
(23223 138 WYD 0S) ‘WD WA OOT St a3nod 10100 14S
- 20V % 120815 001 1D3dAT ZHOT Emd————7 1115
i3y ynake = -
ToN ke, o T—g—|L10 94 B L s CAFAE] MaYS S O — /4 ey JRRUIALN
- 77—{e0n = ISON1dS fasen3 Jad Wug 0G) wg WU ODTSE a0y
gz |NOM v {OsIWTds) — 9D SH/WDd4 0 Jeub
1IN0 DA T1d 67 LNO" 254 1 N0 234 11d —
R 5 |vLN0183L i HWAT5 4397}
q07 (135438114 o135 43¢ =T HdM1y 4347 |
: a9 0T oaoATd g |10 J9A 8T _InoookTid I
*—ge—{300K 1531 o o
ano 03D e |00 A i 97 ¢
LN Se—{02A"20A LNOXNY 20N T ng~33rTid
JERETIE0 1A T o2 48T g {024 aNo INAS sf—g——————— (N5 11d] 40'T
. ano (EEIREE] e A200T11d LNOXNY—g— 6114
ge—{rdv3 53y NMOO YIN0d 77 IGEmAE]
. & il
TR TE 6 |19 R I ST a T T
800005TAS gy |94 Nen—5y ana
A L N3 T L3 den—g—x
T T - E f
= TR T gy |19 2290 N0 03I IR T .
T {NIXNY N ot e
““““““““““ A sEeTE RN 394 dhi—g— S £e0
Txd%u& t TOFENIIAT oY TR S5 G +43471dd N N5 —andup Yooy B3 gug.
[EIRREET] — 43y 14d Tdy2 93 _
““““““““““ i_%uzﬁug +1347335 m I omroowmsind e f
MAS SNIW OF —/+ JIEd |ERUAIEH FEEm Rl —4347235— 0 —T
(3081 43d WG OF) “LId WYY 00T SO sinay ane ans mm avd3 I35 NN %_ﬂ_.o ana o r
~ 'U8) SH/YDdA Wl 1RuBlS §301) ZTISS Flla T
01 Jnokel, eto 870
294506293000
. o wZn T uDpEUIWIE] 1XF 40 CJu) asq m_ﬂﬁ_wmmn.mﬁ_mzi noecH
BTTY

AT+

(A&T) 13721 123da1 o3 pardnog gy - sindu] sQuAT pue
'SONT 123dAT “aremaurs speddng

— (papu3 TBujS WYO 0G) 1ERUIHT WYD 00T

= indu 42017 teuia3

62

Figure 25: Sampling Clock Generation Schematics

63

5.1.2.10 Digital Connectors

64

[5 1 [3 Z T
CT/CT “PI 7 T-{r'T'5) PeI ¥a'3 pPEOIY
0'F W43y | ST-10-020Z ‘2380 | J9y215n aZls
s1030auu0) 19161q ANl
yas°si0pa8uL0y BB fa)l
/sd0333uuen 1831010/ @3ys
K}siaajup uosey abiosg e
wea) ublsag Joluag gHSO 070%
adassa)asg paadsybiy 224n0g uadp
13538 D0V} 5Hd Wd 7
04 00|57 7Td N9 [4nTD Ao
[ERGIRNEES Eadtl 300 g FELD 08T
e N
o7
Ny 0d 11d|77 0%
. AEC 18U AZ'T A1UO S| 9EIIN N0 WHO| 7| 64 AEE
4o UL 9T 4UEQ J0J 000K ACC O} AG'T WAL 0} R PR TE] B
6223 ™= 9z fueg QH JEEIHN FEISURIL 0} papaan Ty LA
5 |
{s¥tiod o7 018 01 T —gAT S5 7104 THALIV vHO | 9
S ZvoA 58 6% TT—EATET7T5h SEEREIRERTIN] = =P
7 TT 8AT 5T 2V9A E
S TvoAl 88 BY BT —ERTSs—TiSR ang, TdN0T BHO—=—| d #341 EERIEE]
[D8I0IdY X oy [S oS L T {owren e #59 oo (530140
7] & 8AT Dur OidD ¥ 5T
53009 a8 9% 5'6% ZNILLY BHIlw— 2d 05 0SIC1dS
T [E GAT ST O0S e T o7
CERE] 37 8 SV gAT ST T THALLY 8HO}—>— Td 5 %
53 907] 51 78 Y RS0 125 G2 1ds]
AT1dS oz <8 ¥ g @AT W ds 4—4ZTIS0HTYEX
,,moz 1dS T2 <8 & I BAT TSOW TS ezn
OSIAId5 : 18 W T 0eT e
¢ SAT OSIW 1dS
B3 Vi3 17 (01d9 OH 1d ybnoua aaey 1usaop @mEjD 33u1g)
. T ' ' ' ' Japuedx)
BTT MA0TOZLAN P 3 0149 145
szn

AS'EH ABTTGEYHLIN QNZVU DNzVu
‘A8’ 30U "GEEIIN UP AT
933 38 paiamad £ 99 PUB GG HUEH H
JOIB|SURI] JRUOIID3JIDIG 13427 21007 0/ 9007 2T LEe Ao b abemIn By 15UBIS S0
S PP P - 37dn03 03 =0y 3edes bujydnol qy
g 06 18 77 |
ang o5 | %4 R e | | (5 i397]
ES 55 |8 T EEEEra || o CEIERCEEES
N A1BHEURUIZE 310HBURLION arcals] 1573 1789
é m ELa]
WSIS¥ g6vaLN ZH o ™ o 1 o5 05 57 g% s [EIEREER))
THNA — — — Wehd 8y ah i K] d®13¥odd
S41-dLIWS—0GZ—3rS—0T851d ana ans ¥E > vopdwnsuoa 7hdd | NI T = |
BT Jamad 1030y 1 96— 7 0 68 [o b RER] | R
g Juadisal ui0g3sal wayy samad — iep v (5 9EVHIIN} g 95 15 e 5 gt s Brdd
WS amd 9evaLIn 81dl L1dL ar o L5y o I nTo
Xep YT=ART 9avHLIN ES ve oo 5 ar e [4NN £7ed
- - - - — e £5 ! ag L
S31-4INS 05235 -0T85LY SYTiuMd mmm i el ‘ T _ Mwﬁwm : cen 1ol 6| = ¢ 172D
LA P e [e L
EE LT g [$5 T
e 92 52 |z [ETRE gl =R | B .- 62 55
ans stzo || I |
e 52 2 femx EIRED A wT | & 2 e (RN
Y| T A o ey s o v — — 4 9z &2 —— — 4137
%4 T2 OAT 5000V o 112 0z 5z [T | FEra CEIEil
06HS #gz| 0 Ol BT BAT D S 9179 | e A T 5120
g7 T {1 s Mg 7T i 620
£109 5T oy [LT_8ATISON s | e NEZT w10 [| e
{5Tar T3} %o 5T ST 9AT 0SIHIdS [[4620 | T
ang L BT ST T w7 | °F Binie) or |t A FLI | re)
0-ENSLEET-T SrETET = OF TF X gy 97 5T g7 T C
ar il 6 g w1 £t [zl (vzda
T z oy o] oIE i i avza || nTo
9TLIZSHATNN .. BATSYTWIA € | = 7T T -
MEE+ 4T jars] |
wen ST ST avIA g9 | ° S5 AS ISEeevEIN Tt 5% N1 1o [| (7]
TSI Tod % |7 ETT RS UMd 96w “a | LT EER 1 g (B
z T g9 5
4 T E] I c i 4nto 6070
zea— S T
ynduy 4abbiu] JeUIBIXT f0zeso=z02s g e N
and £-986L/T5— AT L0220
ar 902D
Jo1dauuony Bunep paads—mo] 9NN 10123UU0Y Bulje p33dS—ybin gEEIIN
[[I 3 z I T

65

Figure 26: Digital Connector Schematics

5.2 PCB Design
5.2.1 High Level Layout Approach

The printed circuit board layout was conducted in order to provide best
electromagnetic, thermal, and efficient performance for the board. In order to
accomplish this, considerations were taken in impedance matching, noise control,
mixed signal design, heat dissipation, length matching, and physical constraints
following PCB design best practices. The following sections provide a brief overview of
these design principles and illustrate the final board design.

5.2.2 Controlled Impedance Design

Impedance controlled design refers to designing PCB traces with specific
physical parameters such as trace width and dielectric values so that the trace has a
specific characteristic impedance. As shown below in figure 27, a trace’s characteristic
impedance refers to the effective resistance and reactance per unit length. These
values typically vary by depending on several factors including dielectric thickness,
dielectric type, trace width, trace spacing, and even whether there is a solder mask on
top of the trace. The values can be derived using electromagnetic equations, but are
typically found using calculators as they are typically well established.

o G
C omm

Equivalent circuit per unit length

R is resistance of wire/track

L is the inductance

C is the capacitance

G is the conductance of the dielectric

T GND

Figure 27: A PCB Coplanar Waveguide Trace and Equivalent Circuit

Controlled impedance design is critical when performing high speed and
precision PCB layout as when any traces are longer than 1/10th of the minimum
wavelength of the signals that the trace carries must be treated as a transmission line

66

with a characteristic impedance equal to the transmitter’s output impedance and the
receiver's input impedance. Otherwise, if there is an impedance miss-match, signal
power will be reflected back to the source transmitter causing a standing wave and a
loss in signal integrity. Typically, in RF applications, traces are designed to a common
characteristic impedance of 50 Ohms. In our PCB, high speed single-ended analog
signals are designed to this impedance, and high speed differential signals (both analog
and digital) are designed to an odd mode impedance of 100 Ohms. This was achieved
by designing the widths and spacing of traces to match these values for chosen PCB
stackup.

Originally these values were calculated using several different professional PCB
calculators, however, it was discovered that these calculators do not account for the
drop in characteristic impedance that via stitching and soldermasks create. Therefore
an electromagnetic simulator was used to determine the appropriate width of the
differential and single ended coplanar waveguides. A sample of these simulations can
be seen below and were compared against the results of physical tests done by other
electrical engineers. Using this method proved to be much more accurate in determining
the characteristic impedance of the traces than just using PCB calculator tools.

67

9 i

o o = -

o - N
\]—"’r_’_’__—-

30
02 0.25 03 035 04 045 05 055 06 0.65

Trace Width (mm)

MF'igure 28: A PCB Single and Differential Coplanar Waveguide Trace Simulations for
Selected Stackup (Single Ended - Top Left, Differential - Top Right, Simulation Result
for Single Ended - Bottom)

5.2.3 Noise Control and Analog/Digital Separation

In mixed signal, precision circuit, and high speed PCB design, many
considerations have to be taken into account in order to ensure that the circuit performs
to specification. Otherwise electromagnetic interference (EMI) and other
electromagnetic phenomena can have a great effect on the circuit performance. One
main consideration is that the ground must be as low impedance as possible to create
an accurate common ground voltage that is not affected by large return currents.This

68

typically means using a continuous ground plane. Hower, slits or separations may be
used to protect large or noisy return currents from precision circuitry or to separate
analog and digital planes in certain applications. An example of this can be seen below
in figure 29 where the precision analog circuitry is protected from the large return
current voltage drops in the ground plane using a slit.

10cm - 10cm -
POWER CONNECTIONS THIS END POWER CONNECTIONS THIS END
0.038mm
THICK
= sgouwo
PRECISION
£ ol I S,
C'IEEEIEE\' {ISOLATED
AFFECTED BY VOLTAGE DROP FROM VOLTAGE DROP
0.7mV/em IN 0.7mV/cm RIGHT \é?qlg#?s B1|.-|EP“NV6’FI'“|1N
Gp'f_o.qﬂhs'pn it GROUND REGION OF
l PLANE] PREGISION
CIRCUITRY
15A POWER 15A POWER
OUTPUT STAGE PRECISION QUTPUT STAGE
CIRCUITRY
HEAT SINK HEAT SINK

Figure 29: Example of Ground Plane Slit

Another important consideration is to ensure that return currents are taken into account.
This includes properly separating the digital and analog components of a circuit,
ensuring that traces do not go over ground reference plane discontinuities, and that
return currents (both AC and DC) do not cause a ground loop like the one shown in the
figure below. Ground loops make the circuit susceptible to noise as it acts like a large

inductor where noise within the loop can influence the circuit.

GROUND PLANE
ON BACK

ViA 2 ViA1 VIA 2 VIA 1

f i \ /
: ‘ o # \ GROUND-PLANE /
!

CURRENT PATH /

XY «

-4

AC

e
-

GROUND-PLANE CURRENT PATH
PATH IS UNDER TOP TRACE ——®

* AREA OF INDUCTOR LOOP
L-ll--ll--ll--ll--ll--ll--ll--l--l--l--llJ

f

TOP TRACE CURRENT PATH / TOP TRACE CURRENT PATH /

Figure 30: Example of Ground Loop

Another major consideration in the EMI aspect of mixed signal PCB design is proper
separation between analog and digital circuits. This includes filtering between analog

69

and digital supplies with ferrite beads, the use of proper decoupling capacitors close to
power pins, an seperation of digital and analog grounds (all though this can be avoided
if components are placed appropriately in a star-ground formation). The figure below

illustrates how a mixed signal component’s power should be decoupled, and filtered to

avoid digital noise from affecting the analog circuitry.
Va

A{;-_“ ‘ FERRITE BEAD /
{ =

VA VO
Lp Le

Rp2
| |
\[AnALOG DIGITAL ¢
—Oun |ciRcuiTs CIRCUITS| paTA 7

ouT
At——A——1

L Csraay |
Rp3 < Rp

La1 P o ‘E Lo
EAGND DGND

~#— SHORT —#
CONNECTIONS

A -—Vy
Figure 31: Analog and Digital Separation and Filtering for Mixed Signal Component

This list of EMI aspects is not meant to be a thorough overview of these
concepts, but rather provide an overview of the types of EMI aspects that were taken
into account when producing the final PCB layout. Whole textbooks can be written on
this subject!

5.2.4 Differential Pairs and Length Matching

Another equally important aspect of high speed PCB design is trace length
matching and differential pair tuning. This is because, as shown if figure ## below, any
difference in length of high speed traces can cause a delay in the signal to arrive at its
destination with respect to another signal. This can occur both within a differential pair
(intra-pair) and across different pairs and races (inter-pair/trace). Ensuring that there is
no skew is critical in the ADC output LVDS differential pairs because any deviation of
the signal can cause misreads by the FPGA reception buffers, and is also important in
the analog paths before the ADC because any artificial delay will cause each channel to
be measured at different times. Additionally, if there is skew when the analog signals
are differential, this can cause the analog signals to have errors at the receiver and be
more susceptible to noise.

70

FW AN

|+ [Daviation

Figure 32: Intra-Pair and Inter-Pair/Trace Length Skew and example of resulting signal
delay

To accommodate differences in pair lengths, differential and critical single ended traces
were routed with serpentines, and inter-pair tuning adjustment following length matching
best practices. An example of this on our board is shown below. All pairs that were
length matched were matched to a skew of less than 0.05 mm.

Figure 33: Differential Pair Length and Skew Tuning Example on ADC LVDS Outputs

5.2.5 Heat Dissipation

Another design consideration that was taken into account while performing
routing and layout was heat dissipation. Power hungry chips such as the ADC and PLL
which use a lot of power generate a lot of heat. This heat must be properly dissipated in
order for the heat not to cause damage to the components. There are several methods
of doing this but some of the methods that were employed in this design were using
thermal pads attached to ground, using thermal vias attached to ground (as shown
below in Figure 36), and using exposed thermal copper from which can be used to
radiate thermal energy or even attach an additional heat sink to if needed (also shown
below in Figure36).

71

I »

.,}

B17. &1
ci851 W

1 8 C‘1?7
11 (2’118_9

' 98T
I kzerd
' 50020
' NTETD
' MZ6TD

R A
B A e

C202 11 »
C201% ¢«
C1994 |

i
FBLON

FB20 gy =+'* =

1001 W™

Flgure 34: Thermal Vlas and Exposed Thermal Copper Pad

hww s @ s cme a® wo e

B U

oo

9630M |

5.2.6 Ultra 96 Design Constraints and Physical Layout Limitations

The last major design consideration that went into the board’s design was the
physical constraints of the board. This included location of Ultra96 connectors, location
of Ultra96 switches and tall components, physical board size, digital noise
consideration. In figure 37 below, shows the physical constraints of the ultra96,
including connector position, size and location of components may cause clearance
issues with our board. In figure 37 below, shows our board model mated with a model of

the Ultra96 board to ensure that there were no clearance issues with our layout.
[I

72

s | L | &2 B

., | | \
T

[T

Figure 35: OSHO Board - Ultra96 Development Board Mating

5.2.7 Select PCB Layers

Below is a listing of select views that illustrate the final PCB design. They provide
a clearcut representation of the design layers and board appearance. The final physical
board design was 145m (5.7in) by 75mm (2.9in), and was designed on a standard 4
layer 0.062” FR4-Stackup. The top layer consisted mostly of sensitive analog signals on
the left and noisy digital signals on the right. The upper-inner layer consisted of a
continuous ground plane. The bottom layer consisted of several power planes for each
power domain (3.3V, 5V, 1.9V, -1.25V, 3.75V, etc.). Finally, the bottom layer consists of
mostly digital signals. Most digital signals that extend into the analog portion of the PCB
are only active/noisy when not taking measurements.

5.2.7.1 Top Silk Screen View

73

Figure 36: OSHO Board - Top Silk Screen View
5.2.7.2 Top Copper Layer

Figure 37: OSHO Board - Top Copper Layer
5.2.7.3 Top Inner Copper Layer (Ground Plane)

Figure 28: OSHO Board - Top Inner Copper Layer (Ground Plane)

74

5.2.7.4 Bottom Inner Copper Layer (Power Planes)

Figure 39: OSHO Board - Bottom Inner Copper Layer (Power Planes)
5.2.7.5 Bottom Copper Layer

0 0°*0 0°*0 00 O WG W _G
] Ji.. O ool 0" 0 0 0
O 0 0. :0 O .0 O O O 0 O O O
(i) y O 0 O 0. O 0.0 O 0 0 ® 0
e 0 0 O &0""0 O O
‘. 0 0 0 0
0 0*0O 0*0 0" 0 0
i)
O . 0::0 0 .0 o e 0
() \ 0 0 O 0. O 0.0 0
P 0 0 O oo oo O
)
i)
W e
. ()
Cid .

Figure 40: OSHO Board - Bottom Copper Layer

75

5.2.7.6 Bottom Silk Screen View (Flipped)

Figure 41: OSHO Board - Bottom Silk Screen View (Flipped)
5.3 FPGA Datapath Design

5.3.1 Datapath Overview

FPGA Portion of MPSoC/Ultrag6 (Data Deserialization) Processor Portion of MPSoC/Ultrad6 (Data Hesting and Processing)
r-———————————=—=—=—=—=—— S 1
Raw ADC Output Deserializer AXI4 Stream FIFO AXI4 DMA Engine IP Data from DMA I
- Custom IP core Buffer IP Engine
Raw Digital Sampled Data from ADC A s Other Peripherals
(LVDS Data Signals, Frame, and I_I_' LPDDR4 Memory (UART, SPI, Bluetooth,
Data Clock) DP, SD Card, 12C, etc.)

I AXI LITE
I AXI w Lo

|
I
|
I
I
I 12
|
1

I
I
L

AXI4 Interconnect IP I
i | Axi
External Trigger Signal Input Trigger Processing - Custom SPIIP S | 64 Bit Arm Processor
IP core
Running Linux and Web

Status/Control to Server

and from PLvia AXI

Interface

I

|

I

I

I

I
I

I

I

|

DC Power DC Power Network Interface to
$#I Controls to User Computer and GUI

Custom IP Cores Analog Front End Xilinx Provided IP Cores

Figure 42: FPGA Datapath and the Processing System in Zynqg Architecture

As shown in figure 42, the FPGA receives low-voltage differential signals (LVDS)
from the ADC. These include the serial data bits, the frame clock and the bit clock. The
frame clock (FCIk) is a digitized and phase-shifted version of the ADC’s sample clock
while the high-speed bit clock (DCLK) is a 90° phase-shifted signal to the data. Data is
valid at both edges of the bit clock leading to a double data-rate (DDR) interface. The
low-voltage differential signals are buffered and then deserialized using the custom AXI
IP core. This data is then passed through a FIFO (first-in, first-out) buffer for clock
domain crossing from the ADC’s sampling clock frequency to the global FPGA clock
domain. The FIFO IP core uses the AXI stream protocol which does not need an
address channel and is always used to write data in one direction. Therefore, the AXI
Direct Memory Access (DMA) core is utilized for high-bandwidth direct memory access

76

between an AXI4-Stream target peripheral and the memory on the PS side. This data
stored in memory is then accessed through the processor and transmitted to a client for
plotting. Furthermore, a SPI IP core is used to send SPI signals to configure the ADC
and the AXI Interconnect IP core is used to connect all the memory mapped AXI IP
cores.

5.3.2 The Deserializer IP

p

[
Vour-—' Eit Clock
~
Bil Clock__ 1
[——rFrame Clock——l:—b
Frame Clock

Frame Clock
\ Alignment /

Figure 43: Modules within the custom ADC Deserializer IP Core

Custom ADC
Deserializer IP core

N

Bit Clock Alignment

——Aligned Bit Cloc

— Eight 8-bits Samples packed
-bits Serial Data info 2 64-bit AXT packet

Aligned Bit Clock

HMCAD1511 ADC

J2lUng San

|
E

Jaaleuasaq BB

FPGA
Mezzanine
Card

Aligned Frame

As shown in figure 43, the LVDS signals from the ADC are buffered into the
FPGA. However, since the clocks and data pass through different routing resources,
they lose their alignment that is required to correctly deserialize the data. Therefore,
both the clocks need to be realigned. This is done by asserting the “re-align” signal to
the FPGA. Once they have been aligned, the clocks are then used to deserialize the
data. After deserialization, 8 samples, each with a resolution of 8-bits, are packed into a
64-bit AXI packet. This packet is then sent to the FIFO buffer for clock domain crossing
as mentioned in the previous section.

77

FIFO
8192 x 64

5.3.3 Bit Clock Alignment

SIGNAL_PATTERN = CLOCK

IBUFDS T IBUFIO

IntBitClk
DCLK S—>>—¢—{ IDATAIN pATAOUT | MK I BCIK MonCIKOul
Clock [:
Capable /O BitClk_RefClkOut

C CE INC RST

BUFR
ISERDESE2
BitClk
D
ISERDESE2 Q1
Master-Slave Q2
SDR Q3
i Qs Bit Clock
Qs ‘
Q6 Phase Alignment
BitClk_MonClkIn CLK Q7 State
BitClk_RefClkin CLKDIV Q8 Machine
DONE |—

CLK

BitClk_MonClkOut —» BitClk_MonClkin
BitClk_RefClkOut — BitClk_RefClkin

Figure 44: Bit Clock Alignment Setup
The bit clock (DCLK) from the ADC is routed through an IDELAYEZ2 used in
variable mode to the input of a BUFIO and BUFR buffers. It also registers itself in the
ISERDESEZ2 using a delayed version of itself as a clock. This technique is used to
determine the position of the rising and falling edges of the bit clock. The Bit Clock
Phase Alignment state machine monitors the ISERDESEZ2 outputs and the deserialized
and parallel captured clock bits.
There are three possible ISERDESE?2 output cases:
e The output data is random and changes on every clock cycle
e The outputis all ‘1’s
e The outputis all ‘O’s
The output data is random when the internal bit clock and the external bit clock
are already phase-aligned and the random nature is caused by the clock jitter. In the
other two cases, the IDELAYE2 delay amount is varied so that the output from the
ISERDESE2 module becomes random and the bit clock is aligned to the original clock.
In addition, the ISERDESEZ2 module provided by Xilinx supports dual data rate-
(DDR) mode signals and can deserialize 8-bit words. The module also includes a built-
in bitslip operation that allows for the input data stream to be reordered. This operation
can be used to train the ISERDESE2 module to lock onto an expected / training pattern
output by the ADC as discussed in the next section.

78

Position when
entering the FPGA

Dota sn Frame X X X
- N A

dawandFrame X 7 X

Data signal skew
until ISERDESE2.D -

BitClk_MonClk
- 4/ _ ~ Align the rising

Clock skew though BUFIO edge to one of

BitClk_MonClk = delayed DCLK until ISERDESE2.CLK the two DCLK
edges

Figure 45: Clock Skew through the Buffers

5.3.4 Frame Clock Alighment

Frameln_p
Frameln_n = = — [15:8]
ISERDESE2 1 1 .
| B b Register
Register Multiplexer Register]
| ISERDESE2 -] — [7:0]
Register
. !
Qo o = L
% o 28 H g 3
i 5§ = g 3
T 3 2 g e ‘m
3 p=1
CLK — g @
CLKDIV
RardPattern Frame Alignment State Machine

Figure 46: Frame Clock Alignment Block Diagram

After the bit clock (DCLK) has been properly aligned, the frame clock pattern
discovery is begun. The LVDS frame clock from the ADC is a digitized version of the
sampling clock that is phase aligned with the data. As shown in figure 46, the
ISERDESEZ2 outputs are compared to a fixed value representing the expected frame
clock pattern, which is OxFO for an 8-bit ADC. If the outputs of the ISERDESE?2 do not
match the expected value, a bitslip operation is carried out on the frame and data
signals. When this output is finally equal to the programmed pattern, the bitslip
operation is stopped and the data and frame clock signals within the FPGA are
considered valid. Next, the received data is aligned because it is shifted with the frame

79

signal. Lastly, the bit clock and frame clock signals are used to capture and deserialize
the data bits.

5.3.5 FPGA LVDS Data Inputs

The data from the ADC and the clock signals are read as LVDS inputs with
internal termination in the Zynq SoC’s 1/O banks. Before being sent to the custom
deserializer IP core, the differential buffer primitives are used to support the LVDS_25
I/O standard and the internal termination of the LVDS signals.

Coupled
, , Fields

Driver E,ri';gi“ﬂ \(@L
S

Cross Section of Differential Pair

U s

Figure 47: Basic LVDS circuit operation

Low-voltage differential signaling (LVDS) is a technical standard that specifies
electrical characteristics of a differential, serial communication protocol. LVDS operates
at low power and can run at very high speeds using inexpensive twisted-pair copper
cables. Since, the current flows back to the driver in a loop, LVDS results in lower
radiated emission (EMI) and rejects common-mode noise.

5.3.6 Processor

The Xilinx Zynq processing system is used as a standalone, low-level processor
in the logic design to handle the cache, interrupts, exceptions and other features such
as external I/Os and hardware peripherals. The Zynq processing system IP
implemented in the Vivado datapath contains all the processor's configuration data such

as clocking resources and the I/O mapping.
processing_system7_0

i
DR +}—

FIXED_IO = ||}=—
|||+ s_Ax1_HPO_FIFO_CTRL LSsRiLy +"
5 M_AXI_GPO +:g:-—
il S_AXI_HPO - [
M. i 6Pa ACIR ZYNQ TTCO_WAVEO_OUT =

TTCO_WAVE1_OUT —

TTCO_WAVE2_OUT =
FCLK_CLKO P—o
FCLK_RESETO_N 0——

S_AXI_HP0O_ACLK

ZYNQ7 Processing System

Figure 48: Block diagram of the ZYNQ7 processing system implemented in Vivado

80

https://en.wikipedia.org/wiki/Differential_signaling
https://en.wikipedia.org/wiki/Serial_communication
https://en.wikipedia.org/wiki/Communication_protocol
https://en.wikipedia.org/wiki/Twisted_pair

5.4 Software Design
5.4.1 Software Overview

Waveforms live is a data visualization tool that works with digilent products like
the OpenScope and the OpenLogger. This product allows for data visualization on any
browser including phones. This progressive web application is written in a mixture of
HTML, CSS, and Typescript. It also leverages the ionic framework and the cordova
framework. lonic is a software development kit that allows for cross platform usage of
the application. Cordova is another framework that is also used for cross platform usage
but specifically for mobile users.

Waveforms live was the base for our data visualization tool. With an already
functional status that meets our design requirement of being able to perform high
frequency analysis we figured it would be a good place to start as it would save more
time than starting from scratch. Although the premise of saving time by using an already
existing product as our base was valid we neglected to account for the time that it would
take to become knowledgeable with the already existing code base. We also
underestimated the amount of time it would take us to iteratively add to waveforms live.
Not knowing what a large chunk of the source code did and how it functioned as well as
not having a person who directly worked on this project before us led to a lot of lost time
reading code/documentation and not fully understanding it. This also led to a lot of trial
and error without much resolution.

As a result of lost time, the shift to isolationism, and the end of semester time
crunch our final software for visualization was a python script that utilized matplotlib to
take data and visualize it on a plot. This script took data samples from the hardware,
translated them to representable values and then plotted them. We were also able to
develop separate scripts that allow for zooming in and zooming out of the graph as well
as showing the data values with a cursor. These separate scripts were tested in
isolation but not able to be successfully integrated into one unified script. We also were
able to modify the waveforms live GUI to have an additional button that began a
websocket connection with a web server hosted by the Ultra 96. Once the web socket
was connected we were able to transmit data back and forth. Unfortunately we were not
able to fully control the source of the data nor start plotting the data. The data being
pushed was from a counter function that incremented a data value by 1 and sent it to
the connection.

We understand that the current state of the GUI is intermediate and there are
next steps to be taken by whatever team continues this project. We think integrating the
separate scripts into 1 is the next immediate step in the development of the GUI.

5.4.2 Software Models

Our original model (figure shown below) was made with the assumption of
working with waveforms live. The goal was for us to have the GUI contained on the
Ultra96 and have the user connect to it via the computer. Once connected via ssh and

81

ethernet cable the user would go to the localhost on their web browser and that would
redirect them to the modified waveforms live instance running on the Ultra96. The user
would be able to interact with the web application to plot and modify the capture settings
for their data.

The new model for our modified visualization tool (shown below) is significantly
simpler. This is because we shifted from using waveforms live with a websocket to
running a python script that will run on the processor side of the Ultra96 which is also
being used to access the data from the PCB via direct memory access.This data is
taken from the DMA and then plotted. Buttons being clicked on the GUI result in
visualization changes..

Server
~ Response
Launch Client with Begin
Start) Server IP ’ Persistent HTTP
Server
Response
‘ Done |Launch Base GUI (no
e Wait for User Input | ¢—— waveform)
User Input Received
from GUI
Decode GUI Input
Update

GUI/Visualization

lDone

Send Encoded

Done Regquest to client
Process Server Done
Response
T— Wait for Server
— Response
Response

Figure 49: High Level GUI State Diagram Waveforms Live

82

User starts script
L. A
¥
i ™y
SimplePlotter
* retrieves data from
DA
e -
¥
i ™y 4 ™y
Display Data at .
cursor Data iz Plotied
S 2 L 2
A
' Ty
) . s Zoom in
Adjust Zoom Vanahle clicked
b A

F 3

5 Zoom ou
clicked

YES

Figure 50: High Level GUI State Diagram SimplePlotter

5.4.3 Waveforms Live Design

As stated in previous sections the team ended up having 2 different GUIs
partially implemented. The Waveforms Live GUI was designed to be built on top of the
existing GUI that Digilent made. We added a websocket server and websocket client
that were utilized to transfer data from the DMA to the GUI. We also added a specific
button to the GUI to allow the user to select the Ultra96 as the hardware being used.
We also added tooltips that provide additional information when the user hovers over
the buttons we added.

83

| 0 ® localhostza;oo

ADD A DEVICE

[} smuaTeD

Figure 51: Custom Button Added for Ultra 96 Usage

0|0 localhost:8100

ADD A DEVICE »

Figure 52: Tooltips added for Ultra96 button

84

e ——————— |
© | ® localhost:8100 B

—

ADD A DEVICE a

Figure 53: Confirmation screen for selecting Ultra 96

Device Manager - Mozilla Firefox

@ Device Manager 4

€N Y © @ localhost:8100 v O N @

= ADD A DEVICE ¥

GETTING STARTED

¥ O inspector onsole ([Debugger Ty Network
2] Q O Al HM HR F ol
Status Method Domain File e ¥ T 5] Headers

o]

plain o8 Data Time

%5 What's New

) stylekditor () Performance {} Memory [5) Storage Accessibility
X WS Other Persist Logs Disable Cache No Throtthi|

Cookies ~ Params Response Timings Stack|
GET

00:11:07.721
00:11:08.222
00:11.08 723

+
13
4
V23 N 00:11:09.224
! 00:11:09,725
4 28

001 1:10.227

0B /851 Btransferrad Finishi 7,405

15 messages 41 8total 0B sent, 418 received 12035

Figure 54: Websocket throwing out dummy data

85

5.4.6 Backup GUI

As stated in previous sections the team ended up having 2 different GUIs
partially implemented. The SimplePlotter was implemented using Matplotlib, Tkinter,
and numpy. These are standard libraries for data analysis. This GUI was created from
the ground up because not knowing about the surrounding code for Waveforms Live
that we did not write became prohibitive to us making progress on the GUI. Every
addition we made required us to read through numerous different files to track down
why the addition did not work or what proper approach we needed to use to implement
the addition.The SimplePlotter was broken into different features that were supposed to
be integrated into 1 uniform GUI. Unfortunately, because we started working on the
SimplePlotter so late in the semester we were not able to integrate all the features. We
were however able to create them in isolation and test them.

imran@imran-Lenovo-i
Plan/

imran@imran-Lenovo-i
S 1s

cursortest.py dsp.p
dsp.py dumbP
imran@imran-Lenovo-1i
$ python cursortest.
imran@imran-Lenovo-1i
S python 3 tkinterTe
python: can't open f
imran@imran-Lenovo-1i
S python3 tkinterTes

1
2
]

Figure 55: Buttons to adjust zoom level

86

=0.22, y=0.37

Figure 57: Plotting data values as they come in

87

6. Implementation, Experimentation, and Success
Evaluation

6.1 Current Implementation Status
6.1.1 Analog Front End Implementation

Currently, the analog front-end schematics have been finalized. Although there
were many changes discussed with our faculty supervisor, all of those changes have
been implemented. The only aspect of this design that is left is testing the OSHO board
and finding any errors in the circuit design. Only after these errors are found, a second
version of the schematics can be created.

6.1.2 PCB Layout Implementation

As soon as the analog front end schematics were finalized, work on the PCB
layout began with first finalizing the selection of passive components, generating an
initial bill of material for the project, and acquiring the component footprints required for
the layout. Next, the layout of components was generated such that design
considerations of EMI performance, proper grounding, manufacturability, and physical
constraints were met. Most of this work was done over winter break. However, major
changes to the analog front schematics end were made in the second half of this
project, so much of this work had to be redone. Additionally, a second board layout was
done in order to reduce the board from approximately 29 square inches to just under 17
square inches. These two setbacks delayed this project aspect significantly but the final
layout was routed successfully with the design considerations listed above being met
and the routing of differential and sensitive signals done properly. As of the time of this
report, the analog front end PCB has been commercially printed and is being
incrementally soldered and tested. Due to the unfortunate circumstances of COVID-19,
the commercial printing and shipping of the PCB also experienced delays. However,
team members have expressed interest in continuing with this aspect of the project after
ECEA493. Through the result of testing this first revision of the PCB, if any major design
flaws or design changes for better EMI performance are required, these changes will be
made after the completion of ECE493.

6.1.3 FPGA Datapath Implementation

Even though initial progress of the firmware development was slow because of a
big gap in the background knowledge required to be able to understand all the
resources and the VHDL code, the firmware development’s pace picked up in the
second half of the project. A lot of progress was made and the firmware can now
properly process, deserialize and plot digitized data from the ADC at up to 720 MHz
sampling frequency. To thoroughly verify the functionality of the firmware, the digital
logic design was first simulated in Xilinx Vivado. Next, the bitstream generated from the
design was used to program the Xilinx Zyng-7000 Zedboard SoC, and tested using the

88

ADC Evaluation board. The output data was verified using internal logic analyzers
(ILAs) within Vivado at sampling speeds of upto 100 MHz. To test the firmware at higher
sampling speeds (100 MHz - 720 MHz), python code was written to access the ADC
data in memory using an overlay and then plot it using matplotlib. This code was
executed using the Jupyter Notebook server on the Zedboard.

6.1.4 Software Implementation

The software was originally supposed to be built on top of the Digilent
Waveforms Live product. We began by reading the code base to become more familiar
with what is happening at a high level.We also tried to learn javascript, HTML, and CSS
to be more familiar with the typescript, HTML, and CSS being used. Once we had some
level of understanding of the languages being used we added a button in the HTML and
added functions that it activates on click in the Typescript. The project structure that
Digilent used was not typical so finding code pieces and understanding it was difficult
and delayed. Once we found someone who could help us understand the code and
approach it we began to make more progress. The usage of the lonic library however
meant that there were a lot of reference files that were supposed to make the project
easier to build. Having all these additional files made it difficult for us to locate
dictionaries and objects that we needed to add to in order to allow the GUI to register
our custom functions and buttons.

For our SimplePlotter we read up on the Matplotlib library and found sample code
to create a plot. Then we looked at sample code to animate a plot so that we could have
constant plotting instead of static plotting. With these sample codes we made
modifications so that we could do so in 1 process. We then modified the code so that
the plot would always plot left to right instead of just scrolling to the right. This allows for
a more natural feel and prevented the visualization from moving when we had the same
shape plotted on top of itself. Once we got the basic plotting feature we created
separate files for the zoom feature and the data tracing feature. Tkinter requires
python3 so to integrate we will need to upgrade our plotter and cursor follower to use
python3. The separate files were created and tested until we got the basic functionality
out of them and then we began trying to integrate them all into 1 file by giving each its
own process that would run concurrently. Unfortunately we were not able to have the
concurrent processes working. We think the error might have been synchronization of
the plotting process not lining up with the input from the zoomin process. Additionally
the control logic for some process requires a while loop to keep running whereas the
library function being used in the process is not supposed to be looped.

6.2 Design Changes Since ECE492 Design Document
6.2.1 Analog Front End Circuitry

The analog front-end schematics were changed multiple times after the ECE 492
design presentation and report. These changes were in accordance with the guidelines
given by our faculty supervisor. Some of these changes took place due to concerns for

89

cost whereas others were required for the correct operation of the circuit. The amount of
relays used in our design was reduced by changing the design so that the cost and
power consumption would decrease. Another major change is the fact that an
impedance path for LIMohm was added to comply with the probe connection. Few other
components such as gas discharge tubes were added for protection against voltage
spikes. LEDs were also added to indicate between AC or DC coupling, attenuation,
channel mode, power, and the two impedance paths. A GPIO expander chip was added
since the Ultra96-V2 Programmable Logic did not have enough pins to be used for SPI
interface with all the required chips. Lastly, a voltage level translator was also added to
convert the 1.8V logic from theUItra96-V2 to 3.3V logic which the chips in the circuit
operate with. These Design Changes can be seen below:

1 T z T - 3 T % T 5 1
Channel A Input and Impeadance Cantrol
+5V
CHA Input Impeadance Control
A = T Lo A
L 0.LuF == 10uF
1 ez 45 1NLLEEW—T—F . .
@’ 2H7002K L
™~ D S
57 RLAL
SHD Q- 14636337 *
Cojl+ M Lojl= Rin = 1 MOhm +
T LI i i Ed
- o POR19 142M 2 20
ui 1 133TELI-0 T P NONINVERTINGINPLT s 5.5 Raut = 50 Ohm L]
[channel & Input Sl AeCem - : OUTPUT 1 . :
(Rrimary — 500MHz or 250MHz BW) Lezm | T2 4 {INVERTINGINFUT
o A—=NC - 1.921
| utn
GHD B-HC GHD GND a2 DPAGETI DRENT
5 Cond 50 Ohm Path 10:1 Prescaler for lteg Path
& ‘ T e e ©{ CHA 1Meg Ohm High Speed Buffer
B-ND
B| T B
Lo Lo
0.1uF 10uF
-5v
3 SND
C-CHA Input
il CHE Input Impeadance Cantral 51 m
i Channel B Input and Impeadance Cantrol
. Lo Lo
b3 D.1uF 10uF
1 @" 1HE168K-T-F
PRy il =
' ET ' ’ ' ' ’ Tooshm o oonm
7 RLAZ
GHD 9-1462038-7 '
C| <
Cojl+ e Coll— Rin = 1 MOhm +
T LT B t @
- enn i oRos Lam 5 na
1-1337503 -0 T i G NONINVERTINGIN PUT 154 Ropt = 50 O
1 A-Co 1 Hahm Path outpuT—2 |
— o) G IR
N ACNC Ll RTINGINPUT
|
4 GHD B-NC GND GHD i PAEE0IBRAVT H
Channel 8 Input 50 Ohm Path
(Secandary - 250MHz BW) B—Coml
8 CHB 1Meg Ohm High Speed Buffer
| B-lO
T
Lo Lo
- 0.1uF 10uF
5w Cpen Source Highspeed Oscilloscope
2020 OSHD Senior Design Team
o CCHB Input Ghe Ghb George Masan Unlversity o
- . Sheet: /Analog Front End/Analog Inputs/
File: Analog Inputs.sch
Title: Analog Inpuls
Size: USletter | Date: 2020-01-15 [Rev: 1.0
. KiCad E.DA. kicad (5.1.4)—1 [4z B/1k
1 T z I L3 T 5 T

90

D4
CHA Caupling Cantral (AC/DC) ey 50
. [l
Bt
RBLAS
9-1462036-7
A
67 Ik Coll+
4"—-'1:5'11
AC Patn
—f=fem [CHA+_Offset
CHA Inpull DC Path A-NC |
+EY
1 T lce L
. cas A ~—f=fom
Y DE Offset Cantral S e .
u12 30 . . q I
NVT20030P,118 348 e e 1o
1
T 499
g AC Path
& TR7 70
N 7 Tesl’aiwlIO.luF
o
Voltage Level Translator 44 ONF .
kT
CHB Coupling Contral (AC/BC)
kr ” v
4 LN 48— T—F g
5126785010+
RLAG
M 9-1462038-7
il ,D‘
A-NOD
AC Path 5 |
B 'l £
e CHB+_Of
A CHEB_InputC DC Path A-NC |
+57
f
T L g [SCHB - OF
1|
=
= i e 77
0 2 TestPoint .
i i €78 I
= 0.1uF GO
o uts I
LMHBSSGME —HD PR oD
! Open Source Highspeed Oscilloscope
ICH L(ua 2020 OSHO Senier Design Team
D -5v e L George Mason
Sheet: /Analog Front End/Coupling and Offset/
oo Filei Caupling and Offset.sch
Title: Analog Coupling/Offset
Size: USLetter | Date: 2020-01-15 [Rew: 1.0
KiCad E.D.A. kicad (5.1.5)-1 { Id: 7/14
T z I 3) I 5

91

1

.
247
R43

1:1 Path

T = 3 T £ 5
Channel A Pi Attenuatars
A
1:1 Path
R38
2u7
Dé o7 0% 8|
‘5" NS 148W-7-F e LNGL4BW -7 -F Ly it Pt e 1N4L5BW—T —F +5¢
I » ~
TR TN B~ I
RLAS RLAE RLAT RLAB
9-1462038-T7 9-1462038-7 9-1462038-7 9-1662038-7
il = Cojl+ A= ojl- [Cojl+ e Cojl+
s L] T il] 1 il T
A-NO %9
[7 "7 I TestPoint —
chas_orrserc—A=gom— — et ath —F= CHi_Attenuated
e 553
—-N TP10
S — — TestPoint
p—B=Can = 8- Con| = —— B-Comyrcya—_attenuated
| B-NO | |
s RAG i
499
oo

Qpen Source Highspeed Oscilloscope
2020 OSHO Senior Design Team
George Mason University

Sheet: /Analog Front End/CHA Attenuatars,
File: CHA Attenuatars.sch

Title: Channel A Att it

Size: USLetter | Date: 2020-01-15

KiCad E.D.A. kicad (5.1.4)-1

I 1]

92

. 5 T T I
Channel A Input, Coupling, Impeadance Control, and Attenuation
CHA Coupling Contro CHA Input Impeadance Control {CHA 50 Qhm Attenuation Path

. ANGAA8Y -7 —F . LHALABW-T N Nb14BW—T
 hacoupL s I +5v) A aMEG SV =) CHAATTENL GV e

e 1 o T | e

AC Coupling Path

13375430 N e S—
1 A-Con - 4— Lo o .
o s — . S0
,f. E DC Coupling Path E 5 CHA-0.IH
o3 e l |a—h |A-NE cHasom
. .T/ 5 3 3 H

1B-c CHA 5D OUT 3

S £ CHA50.DUT B, —
B-NO CHA {M OUT & ' |

Channel & Input
{Primary — SD0MHz or 250MHz BW

*Layout Note: Minimize Trace Lengths before RLAZ

Ll CHA 1 Mega—-0Ohm Attenuation Path

<o [L1 cHAATIERL SV

N F 0.1uF 8 | g 10 CHA ATTENZ 5V
5 e / ! p oo e cHamEG sy
CHAATTENZ_ GV b - S enry T
CHA_ATTENZ -2 R Lo g j -
7']’ g Rin = 1 MOhm oD
A-NO 111 Path T 2.9 Rout = 50 Ohm
T | CHAAM_OUT
1 =% | CHAH
CHAIM N A-Com 1 i 7 o

2 20:1 Path R3h It R3S

. o C e CHA 1Meq Ohm High Speed Buffer

7 Mo .

M L e B s L o L
5 T C.AuF T b
CHA CDUPLSY 4 CHA_IMEG SV ¢\
38 R3g ; w n Source Highspeed Oscilloscope
508 0.9 40,6 509 0 OSHO Senior Design Team
e Mason
A R A= EE— Sheet: /Analog Front End/CHA Input/
- o W ; 5 . S File: CHA_Input.sch
o] 3
CHACOUPLSY CHA_AMEG 5V Title: Channel A Input
DC Coupling AC Caupling 50 Chm 1 Meg. Dhm | Size: USLetter Date: 2020-01-15 Rev: 1.0
KiCad E.D.A. kicad (5.1.4)—1 1d: 6/13

T I 3 I

Figure 58. Analog Front End Changes to input impedance control, attenuation and
offset (Before - Top 3 Sheets, and After - Last Sheet)

6.2.2 Backup GUI

Originally we thought we would be able to add to the Waveforms Live product.
However, because the surrounding code of the Waveforms Live GUI was too time
consuming and difficult to navigate/understand effectively we created the SimplePlotter
as a backup GUI that we would be able to use so that the hardware team was not stuck
waiting for us. This backup GUI was made with the mindset of being a much simple
viable product that could achieve the basic task of plotting in a less elegant but equally
effective way.

6.2.3 COVID-19 Project Related Scalebacks

Unfortunately, due to the circumstances of the coronavirus pandemic, many
aspects had to be scaled in order to meet the additional constraints associated with the
pandemic including limited production resources, meeting and working remotely, and
delays in acquiring components. These changes mainly involved simplifying the project
so that major project aspects would still be demonstrated but a complete integration and
special features would be delayed. As such, due to the pandemic (as well as other

93

technical delays), the testing plans for our system, GUI plans, and scale back in the
progress of the programmable logic portion of the project all had to be altered to
achieve demonstrable results. In terms of the FPGA firmware, the overall design, once
tested successfully on the Zedboard SoC, was supposed to be migrated to the Ultra96-
V2 Xilinx Zyng UltraScale+ MPSoC. However, we decided to focus on improving the
performance and the maximum clocking speed of the deserializer IP core first as this
was a riskier aspect of the project that needed to be worked out first. Additionally, the
trigger IP Core was also willingly delayed in favor of developing a new deserializer IP
that could utilize dynamic calibration and operate at higher frequencies. Also, the trigger
IP was seen as a more full scale integration feature so was put on hold till the end. As
for the GUI, the plans for the Waveform’s Live integration was swapped in favor of the
backup simple GUI as mentioned above. Finally, the testing plan was revised so that we
could demonstrate the more complex aspects of the project though unit testing, thereby
proving the concept of this solution with managing the setbacks and delays of the
project. With all of these changes, we think we made the best of an unfortunate
situation, compensated the best we could for our technical delays, and provided a good
scaled down proof of concept for the system.

6.3 Experimentation and Testing Plans
6.3.1 High Level Acceptance Testing

Due to the technical delays within the project and COVID-19 setbacks
surrounding the project, we were not able to reach full integration with the proposed
system solution. However, we thought it was still prudent to outline our initial plans for
high level acceptance testing as it is what will define the system tests for the
continuation of the project and outline a benchmark for what a successful complete
implementation will perform. Below is an outline of the full integration testing plans we
had outlined at the beginning of ECE493.

6.3.1.1 Waveform Comparison With Commercial Oscilloscope

The ability of the OSHO system to measure and record waveform data will be
verified and the accuracy will be compared against a commercial oscilloscope. The
overall device will be tested by applying a waveform to either of the analog inputs.
These input waveforms will be varied between DC signals, sine waves, square waves,
and triangular waves. Additionally, for each of the waveforms listed above, the input
voltage levels will be changed from 0 Vep to 20 Vep in steps of five volts to confirm that
the input voltage requirement is met. Furthermore, the signal input will be varied to the
following frequencies: 100Hz, 100KHz, 1MHz, and 200 MHz.

First, the GUI will be first visually tested to ensure the system can accurately
display these waveforms on the GUI. Screenshots of the GUI will be taken to record and
demonstrate this functionality. Then during ten of these waveforms tests, the
oscilloscope accuracy will be compared with a high-speed commercially available

94

oscilloscope. This will be done by measuring the same waveform with both the OSHO
system and an 8-bit commercial 1GSPS oscilloscope. The waveform data from both be
saved and converted to a .csv format for processing. Using Excel, each of the two
waveform records will be aligned, and plotted on a superimposed graph showing the
waveforms over time. The average difference between each waveform over time will
also be calculated. This test will be deemed a success if the average error for each
signal comparison is less than 5%.

6.3.1.2 Measured Frequency Sweep

In this test the bandwidth and frequency response of the OSHO system will be
demonstrated in both single and dual channel modes. A function generator will be used
to provide a 5Vep sine wave to the device. A frequency sweep from OHz to 550MHz will
be conducted in steps of 10MHz and the absence of aliasing shall be verified for the
bandwidth of our device (500MHz). The Amplitude of the measured signal shall be
recorded at each frequency and the results shall be presented in a graph showing
measured amplitude vs. frequency. This will be repeated in dual channel mode where
the frequency sweep will be conducted from OHz to 300MHz, as the device bandwidth is
halved for dual channel mode (250. For this test to be deemed a success, the measured
amplitude of the waveform shall not vary by more than £3% of the ideal value of 5Vep
for 95% of the device's bandwidth (since the bandwidth is measured at the point of -
3dB).

6.3.1.3 External Clock Input Verification

This test verifies and demonstrates the system’s external clock input and the
system’s ability to synchronize ADC sampling with the external clock input. The external
clock signal will be generated with a frequency synthesizer and will be used to test the
function of the device at five different frequencies: 50MHz, 100MHz, 200MHz, 500MHz,
and 1GHz. A very high-speed commercial oscilloscope (>5GSPS) will be used to
measure the external clock signal and the ADC clock signal (measured at test points on
board). The PLL synchronize operation will be applied to align the phase of the two
clocks. The commercial oscilloscope data will be downloaded and the waveforms will be
superimposed on the same graph to show the differences between the two clocks. This
processing will be done in excel. This will be completed three times for each frequency
and the average difference in both frequency and phase of the two clock signals will be
recorded. This test will be a success if, for each test, the phase and frequency of each
clock signal does not differ by more than 2%.

95

6.3.2 Unit Integration Testing
6.3.2.1 Analog Front End Testing

6.3.2.1.1 Power Architecture

The power circuitry on the OSHO PCB will be tested initially to ensure that all
other chips in the circuit receive the correct supply voltage. This testing includes
measuring the voltage at each test point (outputs of voltage regulators) and comparing
them with the expected value. The measurements will be carried out through the use of
a multimeter and then recorded in table format.

6.3.2.1.2 Input Coupling and Offset

This test will verify the coupling and offset functionality of the front-end circuit.
Particularly, an arduino will be used to configure the digital potentiometer through SPI
commands. For each potentiometer setting, the offset on the output waveform will be
measured and recorded in table format. To test the AC-DC coupling capacity, the
arduino will again be used to configure the high speed relay through SPI commands.
Both the AC coupled and DC coupled waveforms will be recorded through an
oscilloscope. The input and output waveforms will be captured and presented.

6.3.2.1.3 Attenuators

This test will verify the level of attenuation obtained from each of the three
different attenuation paths in the front-end circuitry. For unit testing of the attenuators,
an arduino microcontroller will be utilized to provide the SPI commands through the pin
headers on the PCB. These SPI commands will configure the high-speed relays to
choose each of the three attenuation paths one by one. For each attenuation path, the
input and output waveform will be captured through the use of an oscilloscope.
Furthermore, the peak to peak voltage values of the input and output waveforms will be
recorded in table format. The attenuation factor will then be calculated for each of these
paths and also recorded in the table. The waveforms used for testing will be generated
through the use of a function generator and will range from 100Hz-500MHz in
frequency. Furthermore, a DC voltage of +5V will also be tested for each of the three
paths to ensure proper operation for DC and AC signals.

6.3.2.1.4 Low Noise Amplifier (LNA)

This test will verify the correct operation of the low noise amplifier. Input signals
with a varying range of frequencies and amplitudes will be provided to the LNA and the
relationship between input/output voltage (gain) will be recorded. A function generator
and oscilloscope will be used to generate the test waveforms and measure the output
respectively. Furthermore, the frequency response relationship will be plotted by
increasing the input signal frequency from 100Hz to 500MHz incrementally. A graph
with a logarithmic scale will be created displaying the gain (in dB) versus the input

96

frequency (Hz). This will allow a clear understanding of the voltage levels or frequency
cut-offs where the output signal starts to saturate.

6.3.2.1.5 Variable Gain Amplifier (VGA)

In this test, the operation of the VGA will be verified by comparing input and
output signals from the chip. For unit testing, an arduino will be used to configure the
VGA to 5 unique gain settings. A function generator will be utilized to provide input
signals with voltages ranging up to the max input rating of the VGA. The gain of the
VGA will be recorded in a table format and verified for each different setting configured
through SPI. A commercial oscilloscope will be used to record the input and output
waveforms.

6.3.2.1.6 Phase-Locked Loop (PLL)

This particular test will verify the clock multiplier functionality of the phase-locked
loop. An external differential clock will be provided to the reference input of the PLL. An
arduino will be used to configure the PLL through SPI commands. The output frequency
of the PLL clock signal will be measured through a commercial oscilloscope and
recorded in table format. Five different reference frequencies will be tested.

6.3.2.2 VHDL Firmware Testing

Once the VHDL code had been debugged, it was simulated with some random
serial data being sent to the firmware using the testbench. Next, the ADC was
configured to send a test ramp signal which is the output of an 8-bit counter (0x00 to
0xFF). The ADC was sampled at incremental sampling frequencies and the output data
of the deserializer IP core was viewed using Xilinx’s internal logic analyzers (ILAs). To
test analog input data, the Analog Discovery 2 kit was used to send various input
signals to the ADC. Again, the output deserialized data viewed using the ILAs was
compared to the known input data.

However, after making much progress over the winter break and being able to
deserialize data at sampling frequencies of up to 150 MHz, no more headway was
made towards the beginning of Spring 2020 and there was no improvement in the
maximum sampling frequency. Since the Deserializer IP core uses static calibration
(determines the delay required to get the frame pattern and then delays the data by the
same amount), it was decided to try and make a new Deserializer IP core that would
utilize dynamic calibration and could potentially achieve a higher sampling speed. This
new OSHO IP core has been completed and though in theory it is better for
deserialization as compared to the upgraded HACD deserializer IP core, it still needs
some debugging. However, due to timing constraints created especially due to COVID-
19, the debugging of this new OSHO Deserializer IP core as a viable solution was
halted and testing of the HACD IP core was resumed.

97

After further modifications and optimizations to the HACD IP core, including
modifying the operation of the DMA core so that it does not timeout, the firmware’s
operating frequency increased to 720 MHz.

7 o
SEceLUTS Sce Registers ¥ one LUTasloge LUTasMemory LUTFipFpPars BlockRMMTHe BonddIOB BondedIOPADs IDELAYCTRL IBUFD

Mame S0 o5 T 330 A s inas g " P & 1409
32 53200 174 53200) (140] 200 130 1) S(182)

6.3.2.3 Server and GUI Testing

For the Waveforms Live GUI we tested the websocket with sample data. We
were able to get the sample data from the websocket to the GUI but were not able to
control where it went. As a result the GUI would print the dummy data in the networking
tab of the developers console but not display it anywhere else. We tried to modify the
function that handled the sample data on the GUI side but were not knowledgeable
enough in Typescript and progressive web app design to be effective in this approach.
We asked an expert who works frequently with Typescript and progressive web apps
but they were not able to understand the design approach that the original Waveforms
Live team used as it was not standard. This made it difficult for our expert to help us.
Once we hit this point of not knowing what to do or how to be impactful we tried to play
with the code with little success. In order to continue being effective in our usage of time
we made the SimplePlotter.

For the SimplePlotter GUI we broke the functionality down into different features
that were created in separate files with the ultimate goal of integrating them into 1 file all
together. Unfortunately we began the process of working on the SimplePlotter too late in
the semester and were able to create separate features in separate files but not
integrate them into 1 product.

6.4 Experimentation Validation and Testing Results
6.4.1 FPGA Firmware Test Results

First the firmware was simulated in Xilinx Vivado. As seen in the following figure,
upon asserting the re-align input the state machine looks for and locks onto the
expected frame pattern (OxFO).

98

. DELAYE2IDELAYE2 PINEDELAY (200

After Asserting Re-align Input Signal

el €020£0£0£020¢

Figure 60: Deserializer IP Simulation Results

After verifying the clock alignment circuitry, the Zedboard SoC was programmed
with the generated bitstream and tested with the ADC Evaluation test board. A PLL
frequency synthesizer was used to provide the high-speed sampling clock to the ADC.
Using python code and the Jupyter Notebook server, SPI commands were sent to
configure the HMCAD1511 ADC to send a test ramp signal. As shown in the following
figure, the deserializer IP core is successfully able to deserialize the digitized samples
and provide a waveform that is identical to the input ramp signal.
Waveform - hw_ila_3
Q4+ = r » BB QAN K £ fe of o

ILA Status: Idle

Name

¥ \user_probe_1[7.0)

Figure 61: Vivado ILA Waveform

Since sampling frequencies of over 100 MHz exceed the ILA’s Nyquist
frequency, python code was written and run on the processor’s Jupyter Notebook
server. The code read data from the memory and plotted it using matplotlib. The
following picture shows the result of reading the data (stored as 64-bit packets) from
memory.

99

In [101]: print([hex(i) for i in listcapture])

['ex5fsfsfSfSf5fSfof', 'ox6060606060606060', '0x6161616161616161", '0x6262626262626262', '0x6363636363636363", 'Ox64646464646
46464, 'OXx6565656565656565', 'OX6666666666666666', '0X6767676767676767", ' ty 2 969", 'Ox6a6a
6abababababa', 'Ox6b6b6beb6b6bebeb’, 'Ox6c6cHCcHCHCOHCHCOC’, 'Ox6d6d6d6d6dededed’, 'Ox6e6e6ebebetetete’, 'Oxefefefefefefefef”,
'9x7070707070707070" , '0x7171717171717171", '©x7272727272727272", '©x7373737373737373', 'Ox7474747474747474', '©x757575757575
7575', '©x7676767676767676', '©x7777777777777777', '©x7878787878787878', '©x7979797979797979', '©x7a7ava7aza7a7a7a', '0x7b7b7
b7b7b7b7b7b", '@©x7c7c7c7c7c7¢7c7¢c’, '@x7d7d7d7d7d7d7d7d', ‘©x7e7e7e7e7eze7e7e’, 'ox7f7f7f7f7f7f7f7f', 'ox3080808080808080°,

'9x8181818181818181", '©x8282828282828282", 'Ox8383838383838383', 'OxB8484848484848484', '0x858585 s

8686', 'Ox8787878787878787', ' 2 & *, 'Ox8a8a8a8a8a8as8asa’, '0x8b8b8b8b8bsbsb8b', '©x8c8c8
c8c8c8c8c8c”, ' dsdsdsdsd ded*, ' 8 ', 'oxsfsfsfsfefsfafsf’, 'ox9090909090909099', '0x9191919191919191°,

'9x9292929292929292", '0x9393939393939393", '0x9494949494949494", '0x9595959595959595', '©x9696969696969696", 'Ox979797979797
97975 ', 'ex ', '©x9a9%a9a9a%9af9a%9a9a’, 'ex9bobobobobobobob’, '@x9¢9c9c9c9c9c9cIc’, '0x9d9d9
dododadedod”, '0x9e9eg9ege9egedede’, ‘Ox9fofofofofofofof’, 'Oxanavavavaatalad', 'Oxalalalalalalalal’, '©xa2a2a2a2alalaza2’,

'0xa3a3a3a3a3a3a3a3d’, 'Oxadadadadadadadas’, '0xaSa5asSa5as5a5asSas’, 'Oxababababababababé', 'Oxa7aza’a’a’a’a’al’, 'Oxa8a8a8a8asas
a8a8', 'Oxa%9af9af9ag9a9af9af9a9’, 'Oxaaaaaaaaaaaaaaaa’, 'oOxabababababababab', '@©xacacacacacacacac', 'oOxadadadadadadadad’, 'oxaeaea
eaeaeaeaeae', 'oxafafafafafafafaf’, 'oxbebebebebobobebe’, '0xblbilbibibibibibl', 'exb2b2b2b2b2b2b2b2', '@xb3b3b3b3b3b3b3b3’,

‘@xbabababababababa’, '@xb5bsb5bsbsbsbsbs', '@xb6bebebebebebebe’, '@xb7b7b7b7b7b7b7b7', ‘@xb8b8bsbsbsbsbsbs', '@xbobobabobobo
bob9', ‘exbabababababababa', ‘@xbbbbbbbbbbbbbbbb‘, 'exbcbcbcbcbebebebe’, ‘oxbdbdbdbdbdbdbdbd’, ‘@xbebebebebebebebe’, ‘exbfbfb
fbfbfbfbfbf', '0xc@cOcOCcOcOcOcacO’, 'Oxclclclclclclclicl’, "@xc2c2c2c2c2c2c2c2”, "©xc3c3c3c3c3c3c3c3’, '@xcacdcdcacdcacacs’,

'@XC5C5C5¢5¢5¢5¢5¢5", "OXC6CHCHCHCHCHCOC6", "OXCTCTCTCTCTC7¢c7¢7", "OxCc8c8c8c8c8c8C8C8", '@XxC9cICIcICcIcIcIc9’, "@xcacacacacaca
caca'. 'axchchehehcheheheh! . ‘axecccccccccecccee' . axcdededededededed! - 'axcececocecoacecoce’ . 'axcfcfofefefefefef' . 'axdadad

Figure 62: Digitized Data In Zyng PS Memory

The following pictures show the data plotted using matplotlib in Jupyter Notebook
server. The plotted signals match the analog input signals that were sampled by the
ADC verifying the successful operation of the firmware.

250 1

200 1

150 -

100 1

0 50 100 150 200 250 300 350 400

Figure 63 Ramp Signal Sampled at 550 MHz

180 1

160 1

140 1

120 +

100 -

T

0 S0 100 150 200 250 300 350 400
Figure 64: 1 MHz Triangular Input Signal from Analog Discovery 2 Sampled at
550 MHz

100

150 \W i

160
140
120

100

V ol .

0 SO 100 150 200 250 300 350 400

Figure 65: 500 kHz Square Wave Input from Analog Discovery 2 Sampled at 720
MHz

6.4.2 Data Visualization and GUI Test Results

Our Waveforms Live implementation of the GUI was not able to plot any data but
we were able to send data back and forth with a websocket.

Device Manager - Mozilla Firefox

@ Device Manager b +

€= n © @ localhost:81¢ - O 0 N @

= ADD A DEVICE ¥

GETTING STARTED

® O inspector 1 Network (D performance { Memory [5) Storage
q o} o il S INEY. . F ges Media WS Other Persist Logs | Disable Cache No Throtth

Status Method Domain File e e € vl Headers Message Cookies Params Response Timings Stack|

{} style Editor

Console [Debugger

T Accessibility g What's New (]

Time

00:11:07.721
00:11:08.222
00:11.08 723

00:11:09,725
DeT110.227

v

i

4

¥ 23 00:11:09.224
i I

4

5

25 QBI_SB!ansr«r:w Finish. 740 & DOMCorLentioaded, 6,99 4 25 messages | 41 8total 08sent, 418 recelved 12035

Figure 66: Data being passed through the websocket

101

The SimplePlotter was able to plot data but not with all the features in 1 product.
We had success plotting data in Linux and Windows environments but when we took
the same code to the jupyter notebook environment of the Zed board that the hardware
team was using we were only able to plot one data point at a time. This means that we
would have to rerun the script 50 times to plot 50 pieces of data. Although that was not
how we intended the GUI to work we do not think that will affect the overall product as
the final product is going to run on the Ultra96 which runs Linux.

i

Figure 67: Successful plotting on a Windows and Linux environment

Figure 68: Single datapoint plotting on Jupyter Notebook

102

6.5 Solution Operational Requirements Analysis

Below is an analysis of whether our implemented solution meets all of the
operational requirements as outlined in the beginning of the project.

6.5.1 Input/Output Requirements

Requirement: The device shall have at least two analog input channels, one
external clock input, and one external trigger input.

Analysis: The system has two analog input channels, one differential clock input
and one external trigger input, although the trigger input functionality has yet to be
implemented in firmware and software. This feature can be added at a later date with
further VHDL and software development. Therefore, this aspect of the project can be
seen as successful.

Requirement: The system will receive control and configuration commands as
well as be able to responsively display captured data through a web client with an
intuitive and responsive GUI.

Analysis: The system currently only has a basic backup GUI so this requirement
is only marginally implemented.

6.5.2 External Interface Requirements

Requirement: The device will provide support for 1x and 10x passive probe inputs (50Q
and 1MQ).

Analysis: The system supports both 50Q and 1MQ probes with both 1x and 10x
attenuation amounts. Therefore this requirement was successfully implemented.

Requirement: Bayonet Neill-Concelman (BNC) connectors shall be used for the analog
inputs and external trigger inputs.

Analysis: The analog front end PCB has BNC connectors for each of these inputs,
therefore this requirement was successfully implemented.

Requirement: The system shall interface with a network capable computer through
USB3.0 or WiFi.

Analysis: The Ultra96-V2 implements network connection through both WiFi and
USB3.0 (acting as a network adapter), therefore this requirement has been met.

Requirement: The system shall receive power from an external 5V DC power supply.

Analysis: The Analog Front End is powered by an external 5V DC power supply,
therefore this requirement is successfully met.

103

6.5.3 Functional Requirements

Requirement: The analog-to-digital converter (ADC) shall sample one input channel at 1
GSPS or two channels at 500 MSPS.

Analysis: The analog-to-digital converter (ADC) samples one input channel at 1 GSPS
or two channels at 500 MSPS. This requirement was successfully implemented.

Requirement: The device will be able to measure analog inputs with a maximum input
voltage of £10V.

Analysis: The analog front end is designed for an input of £50V using 1MQ input mode
and £10V using 50Q input mode. Therefore this requirement has been met and
exceeded.

Requirement: The input analog circuitry shall achieve a 500 MHz bandwidth.

Analysis: Channel A has a Bandwidth of 500 MHz in single channel mode and both
channels have a bandwidth of 250Mhz in dual channel mode. Therefore, this
requirement was successfully met.

Requirement: The ADC shall be able to be configured to sample using either the FPGA
clock or an external clock input (between 30 MHz and 1 GHz).

Analysis: The analog front end has a differential SMA external clock input as well as an
auxiliary crystal oscillator sampling clock reference, therefore this requirement
was met and exceeded.

Requirement: The ADC output sample resolution shall be no less than 8 bits.
Analysis: The ADC resolution is 8 bits; this requirement was successfully met by our
design.

Requirement: The system’s data capture shall have the ability to be triggered using both
configurable edge triggers as well as a configurable external trigger input.

Analysis: Trigger implementation is not currently implemented in software but is
implemented in hardware, and therefore this requirement is not currently met.
However this can be implemented in the future.

6.5.4 Technology and System-Wide Requirements

Requirement: The front-end device shall use a single 1GSPS ADC chip.
Analysis: The front-end board uses a single HMCAD1511TR which is a 1GSPS ADC,;
this requirement was successfully met.

Requirement: The ADC data shall be processed and hosted on an onboard Linux web
server using a Xilinx Zynq UltraScale+ multiprocessor systems-on-chip (MPSoC)
aboard the Ultra96 Board.

104

Analysis: The waveform data can currently be accessed via the Ultra96 development
board but is limited in terms of full implementation, therefore this requirement is
implemented marginally unsuccessfully.

Requirement: The analog front-end custom PCB should interface with the Ultra96 Board
for data processing.

Analysis: The analog front-end custom PCB successfully mates with the Ulta96
Development Board, and thus this

Requirement: Target FPGA development board shall have device driver firmware for
interfacing with the ADC, and routing and storing ADC sample data in a memory
device.

Analysis: The FPGA firmware has had firmware developed and tested at ~750 MHz on
the Zedboard/Easyboard setup. Therefore this requirement is mostly successful.

Requirement: Front-end programmable devices will be controlled using the Serial
Peripheral Interface (SPI) or other serial protocol.

Analysis: Front-end programmable components are controlled using the Serial
Peripheral Interface (SPI) and this requirement has been successfully met.

Requirement: The custom high-speed PCB and Ultra96 devices will interface with each
other via the Ultra96’s high-speed and low speed mezzanine connectors.

Analysis: The OSHO PCB uses both the Ultra96’s low speed and high speed
connectors, and therefore this requirement has been successfully met.

Requirement: The device should be low-cost ($600 or less).
Analysis: The device costs $587 including the cost of a Ultra96-V2 development board
and therefore this requirement has been met.

6.6 Project Success Evaluation
6.6.1 Analog Front End and PCB

Overall, the analog front end design and PCB layout aspects of this project were
very successful. The analog front-end schematics were finalized at the beginning of the
Spring 2020 semester and the PCB layout has been completed to the exact
specifications required by the project. The only aspect of analog front-end circuit that
has not been completed is the soldering and testing of the board. Although this is an
integral part of the project, it could not be completed due to COVID-19 lockdowns. Due
to this restriction, we have declared that this aspect of the project is successful as
allowed by the current situation.

105

6.6.2 FPGA Datapath and Firmware

Tremendous progress was made in terms of the operation of the firmware. The
maximum operating frequency was increased from 50 MHz at the end of ECE 492 to
720 MHz as of now. The deserializer IP core is able to correctly deserialize data and the
datapath then stores it in memory. The test results discussed in 6.4.1 verify the
firmware’s success. Despite the overall progress, however, the firmware was not able to
reach its required frequency of operation of 1 GHz. The reason is that since the LVDS
data is coming serially over 8 LVDS channels, the sampling frequency is reduced from 1
GHz to 125 MHz. And since the PL layer of the SoC is being clocked at 100 MHz, it
cannot handle this frequency. However, the firmware was able to operate at up to 720
MHz which is very close to the maximum possible ADC sampling frequency of 800
MHz. One possible solution is to change the FCLK_CLKO (PL clock) frequency and
rebuild the FPGA's first stage boot loader. The same design should then be able to
handle a 1 GHz input.

6.6.3 Software and GUI

As a whole we think that the GUI achieved the base task of plotting data but did
not achieve all the separate features we initially intended on providing. The original goal
was to have a plotting tool that integrates into Waveforms Live so that we could
leverage all Oscilloscope functionality that Waveforms Live has in addition to adding
functionality like triggers and AXI/SPI control. We invested a lot of time in trying to
understand Waveforms Live and being able to control it because we knew that if the
investment paid off we would end up with a higher quality product for visualizing the
data. The knowledge gap was too much for the GUI team to overcome so all the time
they spent on Waveforms live was essentially unfruitful. This forced the GUI team to
create another plotter from the ground up so they could have full control over it and
more easily integrate it together. This also allows the GUI team to not be empty handed
in their deliverables. There was at least something they could show for the work they
put in. We understand that the current implementation of the GUI is not in the best
condition it could be but it does achieve the base goal of plotting. We think the next step
for the GUI is integrating the different features into 1 base product and taking a 2nd look
at waveforms live from someone who has a stronger Typescript/progressive web app
background.

6.6.4 Overall Project

From the start, this project was a very challenging task given the project timeline
and our previous experience. However, we have achieved a tremendous amount of
progress on the project as a whole. Each part mentioned above was completed to the
full extent possible. Although the original measure of success for this project was full
integration and testing, this could not be completed due to the pandemic. Progress on
some of these aspects is still scheduled to continue but at this point, the overall project
is still considered a successful proof of concept given the COVID-19 situation and

106

technical setbacks we encountered. The project was a successful learning experience
and interesting senior design project.

107

7. Administrative Project Aspects
7.1 Project Continuation and Future

As far as the analog front-end design is considered, the soldering and testing of
the OSHO board will continue and any errors that are found will be fixed in the next
version of the schematics and PCB layout. However, this testing cannot be completed
without full access to a lab.

In case of the firmware, the next step would be to increase the FPGA's global
clock speed so that it can handle and process input data of higher frequencies (> 720
MHz). Testing and debugging the new OSHO IP core will also allow for more accurate
data since it only deserializes and outputs valid data when the clocks are properly
aligned.

For the GUI we know the next steps of the project require integration of the 3
different SimplePlotter features. The other option for continuation on the GUI side is to
re-approach with Waveforms Live by reading the code with an expert. This will allow
better understanding of the underlying code so that the team can be knowledgeable
enough to effectively add to it. The team needs to add a function that is run when the
confirmation button is pressed to use the Ultra96. That function should start the
websocket client that is already written and once the connection is made it should open
the plotting tool of Waveforms Live. The team should also make another websocket
server and client that handles the sending of SPI commands. This server should start
when the Ultra 96 boots up (just like the data websocket server). The client should be
launched once the plotting tool is launched. An AXI websocket client and server should
also be created for doing the same communication but for the AXI commands.

Luckily, Team Members have expressed interest in continuing the project, and
the open source nature of our project allows us to continue this project past the scope of
ECE492 and ECE493. This project has real marketable and engineering value, and thus
should be continued in the future. A Github page for the project has been setup
(https://git.gmu.edu/tbulloc2/osho/-/tree/master/ OSHO%20Hardware) for all project
resources and will create a great site for contributors to add to the project in the future.

The future of our project in terms of our product retirement, maintenance, and
disposal, our solution provided minimal impact as the only hardware solution that we
provide that cannot be reused (like the Ultra96-V?2) is the analog front end PCB, and
software aspects can be updated in an open source fashion. At the end of the lifecycle
of the PCB the board will need to be properly disposed of. PCBs are not biodegradable
so they need to be recycled in the proper way through websites such as
https://www.webuyics.com/scrap-pcb.htm. The parts can be desoldered if the user
wishes to hold onto them. Because the GUI and FPGA Firmware is code it does not
have a lifecycle defined by when it stops working but rather when the newest update

108

https://git.gmu.edu/tbulloc2/osho/-/tree/master/OSHO%20Hardware
https://www.webuyics.com/scrap-pcb.htm

needs to be pushed. With this in mind the GUI will have a relatively short lifecycle as we
know that there are improvements that still need to be made. Once the GUI is updated
the appropriate course of action is to download the new update from where it is being
stored and begin to use that version.

7.2 Project Challenges
7.2.1 Project Scope and Complexity

Although the analog front-end circuit design and VHDL code development were
concepts that the team was familiar with, the amount of detail required in the designs of
these was beyond the knowledge gained in undergraduate courses. Concepts such as
noise filtering, impedance and trace matching, clock alignment, developing AXI IP
cores, and others required extensive research.

The GUI design team was challenged with adding functionality to an already
existing complex product that had to fully integrate into the already existing code. This
was difficult as the team had no prior experience working with Typescript, HTML, CSS
or the lonic framework. To have the first Typescript project someone works on to be a
fully functional oscilloscope that adds functionality to an already existing, complex,
uncommented code base was more difficult than anticipated.

7.2.2 Design Change Delays

The design changes discussed in section 6.2 essentially required that the PCB
layout needed to be redone which cost at least a couple weeks of delay in progress. On
the software side, changing from the Waveforms Live GUI to the SimplePlotter resulted
in us essentially losing all the time we spent on Waveforms Live and made it so a
completely integrated GUI could no longer be achieved in the time remaining in the
semester.

7.2.3 Problems with Existing Project Materials

Working on top of the existing Waveforms Live code base sounded like a great
way to save time but ended up costing us more time than it saved. The code base was
uncommented and not following the standard progressive web app design framework so
we had to spend a lot of time digging around the different pieces of code to understand
what was going on. The existing code base was also not commented which meant that
the GUI team had to read the code, make an educated guess as to what was going on,
try to make a change based on that educated guess and then, if it did not work, read
through the error codes and different forums to figure out what was going wrong. This
often meant that making 1 change took 3-4 iterations of code. As a result we spent a lot
of time trying to achieve tasks that on the surface looked simple.

Furthermore, the python notebooks and deserializer IP Cores were unorganized
and uncommented. To understand their work, meetings with old HACD team members
were conducted.

109

7.3 Non-Planned Activities
7.3.1 Major Analog Front End Changes at Beginning of ECE493

Some of the major analog front-end design changes include the reduction of
attenuation paths from three for each input channel to just two. Furthermore, 1 Mohm
impedance path was added to the circuit so that probes could be used with the
oscilloscope. Even more overvoltage and transient protection was added to the analog
input channels. Due to these changes and some others, the PCB layout had to be
restarted, thus, delaying the manufacturing process. The schematics that were
designed before these changes took place are also presented in section 6.2.1.

7.3.2 Development of the New Custom AXI Deserializer IP Core

The HACD deserializer IP core utilizes static calibration to align the bit and frame
clocks. At the required speed, the frame clock operates at 1 GHz. This gives a sampling
window of 1 ns in an ideal case. Due to clock jitter, PCB trace length and clock
skew/uncertainty, however, this window is further reduced and is too small to capture
data with static calibration. Therefore, a new Deserializer IP core was made that would
utilize dynamic calibration and could potentially achieve a higher sampling speed. This
new OSHO IP core has been completed and was in the process of being debugged
when the task was put on hold due to timing constraints introduced due to the
unexpected new situation.

7.3.3 Switch from Waveforms Live to Backup GUI

As a result of having GUI progress stagnate the GUI team decided to start
working on the SimplePlotter. We did not expect to have to create a whole new GUI but
because the deadline for the project was fast approaching and progress on the GUI had
stagnated we needed to make sure we had some way to plot data by the project
delivery date. As such they made the SimplePlotter and stopped working on the
Waveforms Live GUI.

7.3.4 Response of Project to COVID-19 Pandemic

Due to the COVID-19 Pandemic we experienced many delays in shipping for
parts we ordered for the PCB. We also were no longer able to go to the ECE labs where
we could have done PCB work with the proper tools. Additionally we could no longer
meet in person with others to collaborate or seek help from experts. This forced us to
find ways to collaborate digitally which are less effective and also makes it difficult to
explain ideas fully at times.

7.4 OSHO PCB BOM and Solution Cost Breakdown

A complete listing of the OSHO PCB bill of materials can be found in Appendix
C. The total cost of components per board at the ordered quantities (enough of each

110

component for three boards) is approximately $272, but will reduce if producing the
solution in larger quantities. This corresponds to 46.3% of the total cost of our solution
total of $587. The other costs in our solution include the Ultra96-V2 Development board
($249 or 42.4%) and the OSHO PCB itself ($66 or 11.2%). This summarized in the table
and figure below.

Analog Front End Parts: $272
Analog Front End PCB: $66
Ultra96 Development Board: $249
Total: $587

Solution Cost Percentage

Ultra96 Developement
42.4%

Analog Front End Parts:
46.3%

Analog Front End PCB:
11.2%

Figure 69: Cost Breakdown of Solution

7.6 Funds Spend

The total funds spent on the project can be broken down into the funds spent by
Dr. Kaps and the funds spent by the team. The team spent a total of $260, and the total
spent by Dr. Kaps total $2291. A further breakdown of these funds can be found below:

® Funds Spent by Dr. Kaps:
O $1018 - Analog Front End Parts with enough for 3 boards and Spare
O $516 - ADC Evaluation Board
O $459 - Zedboard for Testing

111

O $298- Two Ultra96 Development Boards

® Funds Spent by Team:
O $225 - Three PCB Boards Professionally Printed
O $35 - Frequency Synthesizer for Testing

7.7 Man-Hours Devoted to Project

The Table below summarized the total man hours that were devoted to the project over
the course of two semesters. It is broken down into each main technical project aspect.

Project Area Total (# hours) Approximate hours per
week (Total/36 weeks)

Analog Front-End 340 9

Design

PCB Design 376 10

Firmware Development | 370 10

Server and GUI 304 8

Development

TOTAL 1390

112

8. Lessons Learned
8.1 Additional Knowledge and Skills Acquired

Time allotment for component selection:

Once the overall high level circuit design is complete, one can feel a state of
ease and think that the process is almost complete. However, this approach is
completely incorrect. We learned that choosing the right components for every stage of
the circuit is a very lengthy process. The price, performance, and availability of each
chip/element needs to be analyzed. Not only this, the availability can change on a
weekly basis so it is important to stay updated.

Importance of finalizing schematics before PCB design:

Tim had to do several iterations of PCB layout on KiCad due to the fact that the
schematics were changed multiple times after meeting with our faculty supervisor. We
should have met with him more often to ensure that the schematics were final before
beginning PCB layout.

Reading Datasheets and Hardware User Guides:

Reading datasheets and hardware guides is a skill that is under-appreciated.
There are many datasheets and guides that are incomplete/unclear and many that are
extremely lengthy and detailed. Reading these documents and extracting the
information we needed was a task that we were not prepared for before. However, after
this experience, we have improved our ability to quickly find the information we need.
Other skills learned:

There are many other knowledge aspects/skills that we gained from this project
including but that limited to: power architecture design, attenuator design, phase-locked
loops, ferrite beads, chebyshev low pass filter design, and the signal conditioning
process in general

The team also learned that it is very important to not overestimate your skills and
abilities in some task that you have never done before, especially complex firmware
design. Therefore, time taken for research and building up on background knowledge
must also be taken into account when planning goals and the timeline for the project.

Also, although time can be saved by continuing a project, one must make sure
they don't spend the saved time learning how to continue the work. It is sometimes best
to aim for achieving a slightly less complex application so that you can actually achieve
the goal. In addition, this year we tried to achieve a very complex GUI using tools that
we have never worked with and as a whole felt very confused during the process. We
had less than efficient/productive use of our time because we frequently had to look up
different forums for how to do basic things. We were able to improve our typescript,
HTML, CSS, python, and hardware/software codesign skills as a result working on the
GUI of this project.

113

8.2 Team Experience
8.2.1 Teamwork and Team Environment

Through this project, everyone in the team learned valuable lessons about
teamwork and the team environment. Since this was one of the longest team efforts for
most of us, there were many situations that were a first time experience for us. Some of
these lessons learned are highlighted below:

Shared vs. Individual responsibility:

Although shared responsibility seems more moral at first because everyone
takes the blame for not completing a task, it is a sure way towards failure. If a task is
assigned to the whole group, individuals think that someone else will complete it. Even if
the task doesn’t get completed, no individual feels any responsibility for the failure. Due
to this, it is very important to break tasks down into manageable sections and assign
them to individuals. Although the individuals can still ask the group for assistance, they
are still responsible so there is extra motivation to complete that task.

Online communication can be better than physical meetings sometimes:

Even though we stayed on-topic in most weekly meetings, we realized that it was
harder to get tasks accomplished while everyone is sitting in the same room. We
learned that physical meetings should only be reserved for administrative tasks and all
research and design should be accomplished in small pairs or individually. Any
guestions or concerns about specific topics were easily answered through email/text.

It is very important to frequently check in on teammates:

We learned that sometimes, it is hard for people to ask for help if they are stuck
on a certain task. Due to this, it is important to frequently check in throughout the week
and gauge not only their progress but mental state as well. This way, everyone stays
engaged in the project and issues can be resolved quicker.

8.2.2 Project Management and Scheduling

Importance of scheduling meeting a week in advance:

It is very important to schedule and reserve a space for the next meeting during
the current meeting. There were multiple times where we couldn’t find a desirable
location for a meeting because we did not reserve a place in advance.

Importance of sticking to Schedule:

It is very important to stick the deadlines as described in the Gantt chart. If one
deadline is ignored. It has a snowball effect of delaying every other aspect of the
project. It is also an easy way to be demotivated. Additionally we should have built in
days for flexibility so if one aspect fell behind then we could catch up on certain days.

114

9.2

References
Overall Project References

[1]

(2]
3]

[4]

[5]

A. Wozneak, R. Nagpal, and R. Meruvia, “ECE - 492 Design Document.” 10-Dec-
2018.

96Boards. (2019). Ultra96. [online] Available at:
https://www.96boards.org/product/ultra96/ [Accessed 4 Oct. 2019].

“Ultra96-V2 Development Board | Zedboard.” [Online]. Available:
http://zedboard.org/product/ultra96-v2-development-board. [Accessed: 05-Dec-
2019].

Tl, “60-Ohm 2-GHz Oscilloscope Front-end Reference Design TIDA-00826.,”
TIDA-00826 50-Ohm 2-GHz Oscilloscope Front-end Reference Design | Tl.com,
Dec-2015. [Online]. Available: http://www.ti.com/tool/TIDA-00826. [Accessed: 05-
Dec-2020].

‘“HMCAD1511 Datasheet and Product Info | Analog Devices.” [Online]. Available:

https://www.analog.com/en/products/hmcad1511.html. [Accessed: 12-Oct-2019].

Analog Front End References & Datasheets

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[13]

Texas Instruments, “LMH5401 8-GHz, Low-Noise, Low-Power, Fully-Differential
Amplifier” LMH5401 datasheet.

Texas Instruments, “LMH6401 DC to 4.5 GHz, Fully-Differential, Digital Variable-
Gain Amplifier” LMH6401 datasheet.

Texas Instruments, “CDCE62005 Four Output Clock Generator/Jitter Cleaner
With Integrated Dual VCOs” CDCEG62005 datasheet.

“‘HMCAD1511 Datasheet and Product Info | Analog Devices.” [Online]. Available:
https://www.analog.com/en/products/hmcad1511.html. [Accessed: 12-Oct-2019].
Texas Instruments, “TPS2400 Overvoltage Protection Controller” TPS2400
datasheet.

Texas Instruments, “TPS54327 3-A Output Single Synchronous Step-Down
Switcher With Integrated FET” TPS54327 datasheet.

Texas Instruments, “TPS7A92 2-A, High-Accuracy, Low-Noise LDO Voltage
Regulator” TPS7A92 datasheet.

Texas Instruments, “TPS7A7001 Very Low Input, Very Low Dropout, 2-Amp
Regulator With Enable” TPS7A7001 datasheet.

Texas Instruments, “TPS7A7001 Very Low Input, Very Low Dropout, 2-Amp
Regulator With Enable” TPS7A7001 datasheet.

Texas Instruments, “TPS63710 Low Noise Synchronous Inverting Buck
Converter” TPS63710 datasheet.

115

9.3

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

Texas Instruments, “TPS7A91 1-A, High-Accuracy, Low-Noise LDO Voltage
Regulator” TPS7A91 datasheet.

Texas Instruments, “CD74ACT251 8-Input Multiplexer, Three-State”
CD74ACT251 datasheet.

Texas Instruments, “OPAG659 Wideband, Unity-Gain Stable, JFET-Input
Operational Amplifier” OPA659 datasheet.

NXP Semiconductor, “NVT2003/04/06 Bidirectional voltage-level translator for
open-drain and push-pull applications” NVT2003/04/06 datasheet.

Texas Instruments, “LMH6559 High-Speed, Closed-Loop Buffer” LMH6559
datasheet.

Maxim Integrated, “DS1267B Dual Digital Potentiometer ” DS1267B datasheet.
Texas Instruments, “OPAx376 Low-Noise, Low Quiescent Current, Precision
Operational Amplifier e-trim Series ” OPAx376 datasheet.

NXP Semiconductor, “NVT2008; NVT2010 Bidirectional voltage-level translator
for open-drain and push-pull applications.” NVT2008 datasheet.

Max Linear, “XRA1405 16-BIT SPI GPIO EXPANDER WITH INTEGRATED
LEVEL SHIFTERS " XRA1405 datasheet.

PCB References

[23]

[24]

[25]

[26]

[27]

[28]

[29]

“A Practical Guide to High-Speed Printed-Circuit-Board Layout.” [Online].
Available: https://www.analog.com/en/analog-dialogue/articles/high-speed-
printed-circuit-board-layout.html. [Accessed: 7-Jan-2020].

“High Speed PCB Layout Techniques.” [Online]. Available:
http://iwww.ti.com/lit/ml/slyp173/slypl73.pdf?ts=1588656387992. [Accessed: 7-
Jan-2020].

“SUCCESSFUL PCB GROUNDING WITH MIXED-SIGNAL CHIPS.” [Online].
Available: https://www.maximintegrated.com/en/design/technical-
documents/tutorials/5/5450.html. [Accessed: 7-Jan-2020].

“Grounding in mixed-signal systems demystified, Part 1.” [Online]. Available:
http://lwww.ti.com/lit/an/slyt499/slyt499.pdf?ts=1588656599380. [Accessed: 7-
Jan-2020].

“Grounding in mixed-signal systems demystified, Part 2.” [Online]. Available:
http://lwww.ti.com/lit/an/slyt512/slyt512.pdf?ts=1588656638497. [Accessed: 7-
Jan-2020].

“PCB Design Guidelines For Reduced EML.” [Online]. Available:
http://www.ti.com/lit/an/szza009/szza009.pdf?ts=1588656672557. [Accessed: 7-
Jan-2020].

“Grounding and Decoupling: Learn Basics Now and Save Yourself Much Grief
Later! Part 1: Grounding.” [Online]. Available:
http://www.ti.com/lit/an/szza009/szza009.pdf?ts=1588656672557. [Accessed: 7-
Jan-2020].

116

9.4

9.5

[30]

[31]

KiCad Org, “KiCad Documentation,” KiCad Docs. [Online]. Available:
https://docs.kicad-pcb.org/. [Accessed: 05-Feb-2020].

Yapo,, Ted “Towards a Multi-GHz Open-Source Sampling Oscilloscope,”
Hackaday. [Online].
Available:https://cdn.hackaday.io/files/1672927157420928/ted-yapo-supercon-
2019.pdf. [Accessed: 05-Feb-2020].

FPGA References

[32]

[33]

[34]

[39]

[36]

[37]

“Intro to AXI Protocol: Understanding the AXI interface.” [Online]. Available:
https://community.arm.com/developer/ip-products/system/b/soc-design-
blog/posts/introduction-to-axi-protocol-understanding-the-axi-interface.
[Accessed: 06-Dec-2019].

“AX14 Overview.” [Online]. Available:
http://www.mrc.uidaho.edu/mrc/people/jfflEO_440/Handouts/AMBA
Protocols/Xilinx Docs/XTECH_B_AXI4_Technical_Seminar.pdf. [Accessed: 05-
Dec-2019].

“7 Series FPGAs SelectlO Resources,” Xilinx, 08-May-2018. [Online]. Available:
https://www.xilinx.com/support/documentation/user_guides/ug471_7Series_Sele
ctlO.pdf. [Accessed: 05-Dec-2019].

M. Defossez, “Serial LVDS High-Speed ADC Interface,” Xilinx, 20-Nov-2012.
[Online]. Available:
https://www.xilinx.com/support/documentation/application_notes/xapp524-serial-
Ivds-adc-interface.pdf. [Accessed: 05-Dec-2019].

M. Defossez, N. Sawyer, “LVDS Source Synchronous DDR Deserialization (up to

1,600 Mb/s),” Xilinx, 22-Jul-2016. [Online]. Available:
https://www.Xilinx.com/support/documentation/application_notes/xapp1017-lvds-
ddr-deserial.pdf. [Accessed: 05-Dec-2019].

Open.uct.ac.za. 2015. [online] Available at:
<https://open.uct.ac.za/bitstream/handle/11427/20046/thesis_ebe_ 2015 kemp_d
ayne_hilton.pdf?sequence=1&isAllowed=y> [Accessed 5 February 2020].

Software References

https://matplotlib.org/3.2.1/api/index.html
https://matplotlib.org/3.2.1/api/animation_api.htmi
https://github.com/Digilent/waveforms-live
https://www.codecademy.com/learn/paths/web-development
https://matplotlib.org/3.1.1/gallery/misc/cursor_demo_sgskip.html
https://docs.python.org/3/library/tk.html
https://pythonbasics.org/tkinter-button/

117

https://matplotlib.org/3.2.1/api/index.html
https://matplotlib.org/3.2.1/api/animation_api.html
https://github.com/Digilent/waveforms-live
https://www.codecademy.com/learn/paths/web-development
https://matplotlib.org/3.1.1/gallery/misc/cursor_demo_sgskip.html
https://docs.python.org/3/library/tk.html
https://pythonbasics.org/tkinter-button/

e https://stackoverflow.com/questions/2408560/python-nonblocking-console-input

118

https://stackoverflow.com/questions/2408560/python-nonblocking-console-input

10. Appendix A: Project Proposal (ECE 492)

/

Volgenau School
of Engineering

Open Source High-Speed Oscilloscope
(OSHO)

Project Proposal

Team Members:
Timothy Bullock, Afnan Ali, Evan Hoffman, Umair Aslam, Zaeem Gauher

Faculty Advisor:
Jens-Peter Kaps

ECE492-001

Date of Submission: October 11th, 2019

George Mason University
4400 University Dr, Fairfax VA 22030

1. Executive Summary 121
2. Problem Statement 122
2.1 Motivation and Identification of Need 122

119

2.2 Market Review

Approach
3.1 Problem Analysis
3.1.1 Problems to be Addressed
3.1.2 High Commercial Cost
3.1.3 Bandwidth and Sampling Speed
3.1.4 Special Features and Ease of Use
3.2 Our Preferred Approach
3.2.1 A Modular Solution
3.2.2 The Analog Front-End
3.2.3 The Processing System
3.2.4 The Web-Based GUI
3.2.5 Benefits of this Approach
3.3 Alternative Approaches
3.3.1 Overview
3.3.2 One vs. Multiple ADCs
3.3.3 Using a MPSoC Development Board vs. a Single Board Solution
3.3.4 A Web-Based GUI vs. Physical Controls and On-Device Display
3.4 Introduction to Background Knowledge
3.4.1 Overview
3.4.2 Oscilloscope Specifications
3.4.3 High-Speed Analog Front End
3.4.4 High-Speed PCB Design
3.4.5 FPGA Programmable Logic
3.4.6 Web Server
3.4.7 Web Client & Graphical User Interface(GUI)
3.5 Requirements Specification
3.5.1 Mission Requirements:
3.5.2 Operational Requirements:

System Design

4.1 System Functional Decomposition
4.1.1 Level Zero
4.2.2 Level One
4.2.4 Level Two

4.2 System Architecture
4.2.1 Physical Architecture
4.2.2 Overall System Architecture

Preliminary Experimentation and Testing Plan
5.1 Overview

120

123

126
126
126
127
127
127
127
127
128
128
129
129
130
130
130
130
131
131
131
131
132
133
133
134
134
134
134
134

136
136
136
137
138
142
142
142

143
143

5.2 Internal Systems Testing

5.21
5.2.2
5.2.3
524
5.2.5

Attenuator

Low-Noise Amplifier (LNA)
Variable Gain Amplifier (VGA)
Phase-locked loop

Firmware testing

5.3 High Level System Testing

53.1
5.3.2
5.3.3
5.3.4

External Trigger System
Input variation
Frequency Sweep
Sampling rate

6. Preliminary Project Plan
6.1 Overview
6.2 Allocation of Responsibilities

7. Potential Problems
7.1 Required Skills Training
7.2 Risk Analysis

8. Citations and References

1. Executive Summary

144
144
144
144
144
144
145
145
145
145
145

146
146
147

148
148
148

149

High-speed oscilloscopes are very useful for many applications where electrical

signals need to be measured. These tools can be used to measure, analyze, and

display the waveforms of high frequency and low power analog signals with impressive

precision. However, the downside of existing high frequency, commercially available
oscilloscopes is that they are extremely expensive. Today, typical commercially

available high-end oscilloscopes that have a bandwidth of 500-800 MHz cost upwards

121

of $6000. Furthermore, these devices can be quite difficult to use, and are surprisingly
limited in certain aspects. For instance, downloading the captured data off of these
devices for external processing in Matlab or Python is quite slow, and their built-in
analog-to-digital-converter (ADC) cannot be synchronized to an external clock. Lower
cost alternatives, such as entry-level commercial oscilloscopes or open source
oscilloscopes, typically only offer bandwidths of up to 100 MHz before their prices
significantly increase into the range of their more expensive counterparts.

To overcome this, our senior design group will be designing an open source
high-speed oscilloscope that will provide a low-cost alternative to commercially available
oscilloscopes, while also provide a higher-performance and feature rich alternative to
the existing open-source solutions. This solution will be targeted towards academic and
hobbyist communities, where funding is often a limitation, but high-sampling speed and
bandwidth are needed [1]. Our solution will feature high-bandwidth, a high sample-rate
ADC, a responsive and intuitive web-based graphical user interface (GUI), an ADC that
can be synchronized to an external clock input, and an external trigger input.

This system will have three main components: A multiprocessor system on chip
(MPSoC) development board which includes an FPGA and ARM-based processor, a
high-speed analog front end with a custom PCB, and a web client GUI. The high-speed
analog front end will provide the interface between the analog signal being analyzed
and the FPGA, converting the signal into digital captured data. The MPSoC will buffer,
route, and process the captured data, then host it on a web server for easy display and
access by the web client. Lastly, the web client will provide the user with an intuitive and
responsive graphical user interface to control the system and view the captured
waveforms. Each of these components will be designed around the use of an 8-bit, one
giga-samples-per-second (GSPS) ADC.

We plan to keep the overall cost of the product under $600, which is significantly
less than the $6000 cost of other oscilloscopes at this performance level. The name we
have chosen for this device is Open Source High-Speed Oscilloscope, or OSHO for
short. Dr. Jens-Peter Kaps will be providing guidance on this project as he has
experience guiding teams designing high-speed capture devices such as the GMU
Logic Analyzer and the previous attempt at this project [2].

2. Problem Statement

2.1 Motivation and Identification of Need
Digital oscilloscopes are extremely useful tools for many engineering applications
where electrical signals need to be measured and analyzed. Digital oscilloscopes
“‘enable the user to debug, visualize and measure various signals,” and are an essential
part of any engineering lab or project [3]. Yet, in many applications such as RF design,
the signals that are being analyzed are too high frequency to be measured with
standard low-cost oscilloscopes. In these applications, high performance oscilloscopes

122

with sufficient bandwidth and sampling-speeds are needed. The problem with this is that
oscilloscopes with bandwidths greater than 500 MHz are extremely expensive. Even
moderate performance oscilloscopes with bandwidths greater than 200 MHz can cost
several hundreds to thousands of dollars. On top of this, even at these high prices,
many of the commercially available devices can be limited in certain usability aspects
and features. For example, downloading the captured data from these devices for
external processing can be quite slow, and their built-in ADC cannot be synchronized to
an external clock signal. Therefore, to overcome these limitations, it is our project’s
motivation to create a low-cost, open source, and high-speed alternative to existing
oscilloscopes.

2.2 Market Review
As our project is bridging the gap between high-speed digital oscilloscopes and

limited open source oscilloscopes, it is advantageous to first analyze these markets. As
previously stated, typical commercially available oscilloscopes that have a bandwidth of
500-800 MHz cost upwards of $6000, can be quite difficult to use, and surprisingly
limited in functionality [2]. The following table shows a sample of the cheapest
commercially available oscilloscopes with a bandwidth above 500 MHz. Clearly, the
price point of these devices is an obstacle to overcome in settings where funding is
limited.

Table 1: Cheapest Oscilloscopes with a Bandwidth of 500MHz

Model Device Picture Bandwidth | Sampling | # of Sampling Price
(MHz) Rate Analog Resolution | ($)
(GSPS) Channels | (Bits/Sam.)

123

Rigol
DS4052
[4]

.

@osesEEne
%\‘smunnn
™ o
“L—',wf‘g
OEeiC
" il &
%
Q
Qe s

500

12

5,999

Tektronix
MDO3052

[5]

500

2.5

9,570

PicoTech
PicoScope
6000 Series

[6]

500

6,595

Keysight
DS0OX3052
A

[7]

500

9,439

It should be noted however, that nearly all of the offerings at this bandwidth
contain higher sampling speeds than we plan to offer. If you filter oscilloscopes by
sampling speed, there are cheaper devices, but their bandwidth is typically limited to
just 100 to 200 MHz. A sample of mainstream 1 GSPS oscilloscopes with the highest

available bandwidth is shown in Table 2 below.

Table 2: Current 1 GSPS Oscilloscopes with Highest Bandwidths

Model

Device Picture

Bandwidth
(MH2z)

Sampling
Rate
(GSPS)

of
Analog
Channels

Sampling
Resolution
(Bits/Sam.)

Price

®)

124

Rigol 100 1 4 12 699
DS1104Z-S
Plus

(8]

Tektronix 200 1 2 8 2,520
DP02022B T

[=¥

PicoTech 100 1 2 8 679
PicoScope
2000
Series

[10]

PicoTech
PicoScope
5000
Series

[11]

200 1 2 8to 16 1,945
(depending
on mode)

The other market that needs to be analyzed is the market for open source
oscilloscope hardware. Typically, the hardware from open-source oscilloscope projects
have an average price point between $150 and $300, making it a much more affordable
option. However, when even considering the fastest of these devices, their speeds
come nowhere close to the specifications that our device will be designed to offer. A
sample of these devices is shown below in Table 3. Our closest competitor would be
Scopefun, which provides a bandwidth of 1200 MHz and a top sampling speed of
500MSPS.

Table 2: Current Open Source Alternative Oscilloscopes

Model Device Picture Bandwidth | Sampling | # of Sampling Price
(MHz) Rate Analog Resolution | ($)
(MSPS) Channels | (Bits/Sam.)

125

ScopeFun 100 500 2 10 650
[12] (Single

Channel)

250 (Dual

Channel)
BitScope 10 (100 40 2 8orl2 245
[13] i (depending

on mode)

Digilent 2 6.25 2 12 149
OpenSCope
MZ
[14]
OpenADC 40 105 1 10 137*
[15]

*Plus the cost of an FPGA Development Board

3. Approach

3.1 Problem Analysis

3.1.1 Problems to be Addressed

In order to provide a successful solution to the problems described above,
the designed system will have to overcome three main problems: The device
hardware should be low-cost, the device should be high-performance with a high
bandwidth and sampling speed, and the device should have features that other
low-cost oscilloscopes do not conventionally have.

126

3.1.2 High Commercial Cost

The primary thing that needs to be overcome by our solution is the high
cost of existing high speed oscilloscopes. As shown in Section 2.3, typical
commercial digital oscilloscopes are extremely expensive, and open source
oscilloscopes are functionally limited. Clearly, if our device can achieve a 500
MHz bandwidth with 1 GSPS at a final design price of under $600 (including the
cost of an Ultra96 development board), our device would be a market leader. It
would provide the same high bandwidth as extremely expensive oscilloscopes at
a lower cost while being the fastest open source oscilloscope platform. This price
will put our solution at an excellent price point given its significantly higher
specifications. In order to accomplish this, we will be very selective with our
design and component choices.

3.1.3 Bandwidth and Sampling Speed

The next thing that needs to be analyzed is the performance aspect of our
solution. As shown above in section 2.3, there are low-cost alternatives that offer
moderate performance, but nothing close to the speed required for many high-
frequency applications. At a bandwidth of 500 MHz with a sampling rate of 1
GSPS, our solution will provide a good compromise between price and speed.
At this speed, the system will be “powerful” enough to measure signals from
high-speed applications such as RF signal analysis in the VHF to UHF range, or
EM side-channel analysis. If we were to increase the sampling speed beyond
this, it would substantially increase the cost of the device due to the unavailability
of cheap ADCs with a higher sampling speed.

3.1.4 Special Features and Ease of Use

Finally, the last hurdle that should be overcome by our solution is the lack
of particular features in low-cost and even some high-cost oscilloscopes. This
includes three main things: the inability to synchronize the sampling clock to an
external clock, the lack of a quick and easy transfer of sample data to an external
computer for processing, and finally the lack of an external trigger input. All of
these problems will be addressed in our solution as they do not add too much to
the final price of the system, and they will make this device an extremely
powerful tool.

3.2 Our Preferred Approach

3.2.1 A Modular Solution

To successfully overcome the cost, speed, and feature limitations
associated with existing commercial and public-domain oscilloscopes, our team
will be providing a modular solution that minimizes the cost of the various system
components while still providing the features discussed earlier. Our preferred

127

approach to tackling this is to split the overall system into three modular
subsystems: A web-based GUI subsystem, a processing subsystem, and an
analog front-end subsystem. This is summarized in the External System Diagram
below (Figure 1).

Displayed Waveform Data and

Users N’cus Information

rol and Configuration Web-Based Captured Waveform Data and

Commands System Status Information
GUI N
User Control and Configuration Processing Digitized Wavefor
Commands System

\\‘, Analog |

Control Signals Front-End
L : - f
Figure 1. External System Diagram

DC Power

3.2.2 The Analog Front-End

The analog front-end subsystem will primarily consist of the analog
circuitry to precondition the incoming analog signals so that they may be
optimally digitized by the ADC. The tasks that will be performed by the
conditioning circuitry will include: attenuation, anti-aliasing filtration, variable gain
amplification, coupling selection (AC or DC), DC offset selection, circuit
overvoltage protection, and ADC clock generation/synchronization. Configurable
aspects of this system such as DC offset will be configured through SPI
commands from the processing subsystem. Once the analog inputs are
conditioned properly, they will then be digitized by the ADC and sent to the
processing subsystem. This front-end circuitry will be routed on a custom high-
speed PCB that will be designed by our team. This board will be able to interface
with the processing system through high and low speed mezzanine connectors.

3.2.3 The Processing Subsystem

The processing subsystem will consist of a MPSoC development board
which includes programmable logic in the form of an FPGA as well as an ARM-
based processor. The specific development board that will be used for this
application will be the Avnet Ultra96-V2 which uses a Xilinx Zynq UltraScale+
MPSoC ZU3EG A484, has 2GB of LPDDR4 memory, and provides essential
integrated peripherals such as USB3.0, an SD card slot, WiFi, and Mini
DisplayPort [16]. The programmable logic portion of this board will be used in

128

conjunction with custom intellectual property (IP) blocks that will buffer the
incoming raw digital data from the ADC and transform it to a standardized data
packet format. These packets will then be sent to the system’s main memory
where processing can be conducted through an ARM processor that hosts a
linux-based web server. The end user will be able to view and download
waveform data and system status information as well as send configuration
commands through this webserver.

3.2.4 The Web-Based GUI

The final foundational aspect of our preferred approach is a web-based
GUI subsystem that will act as a client to the web server running on the Ultra96
board. This subsystem will act as the primary interface between the user and the
overall system. This subsystem will allow the user to enter system configuration
commands (such as toggling between AC/DC coupling, configuring waveform
triggers, etc) and download/display captured waveform data. This custom user
interface should be responsive, intuitive, and effectively display captured
waveform data. This aspect of the project will likely be programmed in Angular,
and implemented incrementally, providing basic features at first, but adding more
advanced features as time permits.

3.2.5 Benefits of this Approach

Providing a modular design proves to be the optimal solution to the
problem because it will minimize cost while providing excellent analog capture
performance. Additionally this approach will also provide a good basis for further
open-source development.

This modular solution optimizes low-cost for multiple reasons. Much of the
hardware cost will be absorbed by the fact that an external computer will be
utilized for user interface. Furthermore, the front-end circuitry will be designed
with cost-effective parts. For instance, the chosen ADC for this project is the
HMCAD1511, which offers excellent performance for its price [17]. Additionally,
the effective price of the system is reduced if a compatible FPGA development
board is already owned by the end user.

As stated earlier, this approach ensures that the system will be an
excellent platform for future open source development. It will consist of open
source software as well an open source development board, allowing the end
users to customize it to their needs. The fact that the analog front-end is separate
from the development board means that the front-end board could be used with
other compatible MPSoC development boards (with minimal firmware porting).
Additionally, the GUI for this system can also be customized and improved by
users in an open source fashion.

129

3.3 Alternative Approaches

3.3.1 Overview

There are many possible solutions to the problem of providing a low-cost,
high-speed, and feature-rich oscilloscope. Although the approach discussed
above is the one that was determined to provide the best compromise between
cost, performance, and features, it is still important to consider some alternative
approaches. This ensures that our preferred approach is the optimal solution and
provides us with backup approaches in case problems arise with our preferred
approach. Alternative approaches that were considered are: using multiple
ADCs, incorporating the MPSoC onto the same board as the analog front-end,
and incorporating a display and physical controls as part of the device hardware.

3.3.2 Onevs. Multiple ADCs

In the development of our solution, having two analog input channels was
listed as a key requirement as this provides a much more useful device.
However, the issue with this is that there is no low-cost ADC that supports two
channels at 1GSPS each. According to our preliminary research, the Analog
Devices HMCAD1511 ($64) is the only low-cost ADC that supports 1GSPS [17].
This device can support multiple channels, but does not provide 1GSPS for each
channel. Instead, the sampling rate is reduced immensely as more channels are
utilized. This raised the question of whether multiple ADCs should be used to
provide support for multiple analog inputs. It was concluded that due to cost
limitations, this was not feasible. Due to this, we chose to utilize only one
HMCAD1511 ADC, but offer a mode where the user can configure the analog
front-end to handle two inputs at a lower sampling speed of 500MSPS.
Additionally, data bandwidth issues were also cited as a reason to use lower
sampling speeds with multiple input channels. However, if this proves to be
overly complex and unexpectedly expensive, using separate ADCs for each
channel may be reconsidered.

3.3.3 Using a MPSoC Development Board vs. a Single Board Solution

As the hardware for the Utra-96-V2 development board is open source, it
was questioned whether or not this hardware should be incorporated into the
front-end custom PCB to provide a more portable, single board solution.
However, this was rejected in favor of using a development board that interfaces
with the analog front-end through mezzanine connectors. This is because of two
primary reasons. The first being that this provides unnecessary complexity to the
hardware development and adds to the cost of production. Secondly, providing a
single board solution would be a drawback to our target market of academics and
hobbyists as they might only require the front-end device without our firmware for

130

their specific application. Furthermore, they might prefer the multi-board solution
so that the Utra-96 V2 remains reusable for different applications.

3.3.4 A Web-Based GUI vs. Physical Controls and On-Device Display

The last major alternative approach that was debated was the use of a
graphical user interface vs physical controls and incorporated display such as
those in traditional bench oscilloscopes. It was decided that the web-based GUI
solution should be favored over physical controls and on-device display. This
was not only chosen because it minimizes the cost of the device, but also
because it allows us to continually add more advanced controls to the device
though software updates. Additionally, most users of this device would likely own
a network capable computer which has a nicer display than any low-cost physical
display we could include in our device. Furthermore, if a network connected
device is used as the interface for this oscilloscope, it would ease the process for
downloading captured data for external processing. However, the physical
controls/display approach may prove a useful alternative for specific device
controls for which a software approach may be too inconvenient.

3.4 Introduction to Background Knowledge

3.4.1 Overview

In order to further justify the technical choices of our system, and
effectively describe the system architecture and design, it is beneficial to first
provide an overview of the background knowledge required to understand the
various aspects of our solution. A brief overview of each aspect of our solution is
provided below.

3.4.2 Oscilloscope Specifications

Although most oscilloscopes are used for a similar general purpose, their
specifications greatly limit the applications in which they can be utilized. Some of
these important specifications are explained in further detail below:

Bandwidth:
The bandwidth of an oscilloscope dictates the maximum frequency range
that can be accurately measured by the device. High-speed, serial
communication, and other complex signal applications require bandwidths
of 500MHz or greater for accurate measurement.

Rise Time:
The rise time specification is very important for digital circuit applications.
Rise time is defined as the time it takes for a signal to rise from 10% to
90% of its final value. This time can also be related to the bandwidth in the
following manner: Rise Time = 0.35 + Bandwidth [18]. An oscilloscope

131

should have a fast enough rise time to capture rapid transitions in signals
such as square waves and pulses in an accurate manner.

Sample Rate:

The sample rate of an oscilloscope (measured in samples/second) defines
how often the device samples the signal. According to the Nyquist-
Shannon Sampling Theorem, the sampling rate needs to be twice as fast
as the highest frequency component of a signal in order to avoid aliasing.
Thus, if a sampling rate of 1GSPS is used, the maximum input frequency
should be limited to 500MHz.

Channel Resolution:

3.4.3

The resolution of the oscilloscope defines the granularity of the signal. If
the ADC in the oscilloscope has an 8-bit resolution, this translates to 28 =
256 digitized levels that each analog sample will be translated to [18]. An
ADC with a resolution of 8 bits is sufficient for a low-cost oscilloscope
application.

High-Speed Analog Front End
The front end signal measurement chain consists of many different analog

subcomponents. Together, these elements transform the input signal into digital
data that the back-end firmware can then process. These subcomponents are
listed below:

Attenuator:

The attenutor’s primary function is to reduce voltage, dissipate power, and
improve impedance matching between devices such as amplifiers.
Attenuators can be configured to adjust the amount of attenuation
manually. The utilization of an attenuator is crucial in the front-end as it
provides sufficient input amplitude adjustment to prevent saturation for
large signal swings.

Low-Noise Amplifier (LNA):

Low noise amplifiers are used to amplify very low-power signals without
negatively affecting the signal-to-noise ratio. By using a LNA close to the
input source, the effects of noise in the following stages of the front-end
stage can be greatly reduced. To ensure the maximum transfer of power
from source to amplifier, the source impedance should match the input
impedance of the LNA. This can be achieved through the attenuator
mentioned earlier.

Variable Gain Amplifier (VGA):

A VGA is used to amplify input signals based on the gain parameter. The
advantage of using a VGA is that the gain can easily be controlled through
an interface such as SPI to ensure that the output fits within the full-scale

132

input range of the ADC. This prevents clipping of the digital output
waveform.

Anti-Aliasing LPF:
An anti-aliasing low pass filter’s function is to remove unwanted high
frequency components from the input signal. This filter is crucial to ensure
that the input to the ADC has a maximum frequency of half the sampling
rate. This prevents aliasing as dictated by the Nyquist-Shannon Theorem.

Phase-locked loop(PLL):
A phase-locked loop is a voltage driven oscillator that receives a reference
signal and outputs a signal with either a matched or multiplied frequency
compared to the reference. The PLL also acts similar to a bandpass filter
to remove high frequency jitter as well as low frequency VCO jitter from
the clock signal [19]. The PLL will allow for the use of the FPGA clock in
order to provide the clock input to the ADC. Similarly, it can also be
utilized to sync the ADC clock with an external clock when that option is
selected.

Analog to Digital Converter(ADC):
The ADC is one of the most crucial features of the oscilloscope as it
determines the sampling rate, resolution, as well as bandwidth. The ADC
receives analog signals from the signal conditioning stage which includes
attenuation, amplification, and filtration. The analog signal is then sampled
and digitized before being transferred to the back-end firmware for
transferring the data into memory.

3.4.4 High-Speed PCB Design

When electrical components operate at high frequencies, the circuit
performance becomes heavily dependent on the layout of the PCB. Certain
aspects of PCB design such as trace lengths, thermal information, and
component location are of increased importance for high frequency applications.
Furthermore, power-supply bypassing needs to be implemented in order to
minimize noise. This is achieved through the use of capacitors attached across
the op-amp power supply and ground. Other aspects in high frequency
applications which could cause major problems are parasitic capacitances of
components, non-continuous ground plane configuration, long parallel traces,
among other indirect effects. These will have to be taken into account when the
PCB for the analog front end was designed.

3.45 FPGA Programmable Logic

The programmable logic on the FPGA refers to an array of interconnected
digital subcircuits that can be configured for specific applications. This allows for
a high level of flexibility. For the purpose of this project, the programmable logic
will be configured to buffer the raw serialized ADC output data and store it into

133

the MPSoC’s main memory. With this specific chip, the Advanced eXtensible
Interface (AXI) will then be utilized to serve as an interface between the
programmable logic and the ARM processor portion of the MPSoC.

3.4.6 Web Server

The Ultra96 board allows multiple ways to be connected to a network
capable computer. Either the board can be connected to through WiFi or when
plugged into a computer via USB, the Ultra96 is recognized as a network card.
These network connections will easily allow a web server to be hosted on the
Ultra96. A Web server is a program that uses established networking protocols to
host files and data, as well as process and service client requests from
networked computers. The Ultra96 comes with a pre-built Jupyter Notebook web
server on board that can be configured using Python 3. However, if this web
server is not able to meet our needs for the GUI, then we will use a different,
more advanced web server such as Apache. For our system, a web server will
host the data from the ADC and accept requests to configure the system.

3.4.7 Web Client & Graphical User Interface(GUI)

A web client is any sort of interface that allows you to communicate to a
web server through a network connection. Having a web client with a GUI
together allows for quick and simple communication between the user and the
ultra96 without having to interface with the command line. A key component of
this project is for the system to be very user-friendly and responsive. The web
client and GUI created for this project will be made using Angular 2 for its
responsiveness and compatibility with preexisting waveform simulators. Angular
should allow the user to interact with the waveform through the GUI in realtime
and watch it update with minimal delay.

3.5 Requirements Specification

3.5.1 Mission Requirements:

e The project shall design an oscilloscope that is an open source, low-cost
alternative to commercially available oscilloscopes, and a performance,
feature rich alternative to existing open-source oscilloscopes.

e The project shall design a custom high-speed PCB that will easily
interface with an Ultra96-V2 development board, as well as develop the
supporting firmware and graphical user interface for the device.

3.5.2 Operational Requirements:

e |nput/Output Requirements
- The device shall have at least two analog input channels, one external
clock input, and one external trigger input.

134

https://whatis.techtarget.com/definition/server

- The system will receive control and configuration commands as well as
be able to responsively display captured data through a web client with
an intuitive and responsive GUI.

External Interface Requirements

- The device will provide support for 1x and 10x passive probe inputs
(50Q).

- Bayonet Neill-Concelman (BNC) connectors shall be used for the
analog inputs, external clock input, and external trigger inputs.

- The system shall interface with a network capable computer through
USB3.0 or WiFi.

- The system shall receive power from an external 12V DC power

supply.

Functional Requirements

- The analog-to-digital converter (ADC) shall sample one input channel
at 1 GSPS or two channels at 500 MSPS.

- The device will be able to measure analog inputs with a maximum
input voltage of +10V.

- The input analog circuitry shall achieve a 500 MHz bandwidth.

- The ADC shall be able to be configured to sample using either the
FPGA clock or an external clock input (between 30 MHz and 1 GHz).

- The ADC output sample resolution shall be no less than 8 bits.

- The system’s data capture shall have the ability to be triggered using
both configurable edge triggers as well as a configurable external
trigger input.

Technology and System-Wide Requirements

- The front-end device shall use a single 1GSPS ADC chip.

- The ADC data shall be processed and hosted on an onboard Linux
web server using a Xilinx Zyng UltraScale+ multiprocessor systems-
on-chip (MPSoC) aboard the Ultra96 Board.

- The analog front-end custom PCB should interface with the Ultra96
Board for data processing.

- Target FPGA development board shall have device driver firmware for
interfacing with the ADC, and routing and storing ADC sample data in
a memory device.

- Front-end programmable devices will be controlled using the Serial
Peripheral Interface (SPI) or other serial protocol.

- The custom high-speed PCB and Ultra96 devices will interface with
each other via the Ultra96’s high-speed and low speed mezzanine
connectors.

- The device should be low-cost ($600 or less).

135

4. System Design

4.1 System Functional Decomposition

4.1.1 Level Zero

In order to effectively design the system architecture of a system, it is best
to start with a functional decomposition of a system so that the system functions
can be related in a hierarchical manner. When functionally decomposing a
system, it is best to start at a high level, and work downwards. Level zero
provides a top level overview of the overall solution. It shows the overall system
inputs and outputs. For our device, this is shown below in figure 2. It shows that
the overall system will take in two analog inputs, an external clock input, an
external trigger output, user commands, and DC power input. The system
outputs status information and digitized waveform data.

136

User Control and Configuration
Commands

alog Input Channel 1 Open Source High-Speed Oscilloscope

¢ Samples Analog Signals at up to 1 GSPS

ilog Input Channel 2 ¢ Sends output data and status information to user System Status Informatic
computer "

e Receives user control & configuration Commands

arnal Clock Input from user computer Digitized Waveform Datz

——p-
s Triggers output waveform with external trigger input

arnal Trigger Input e Optionally synchronizes ADC clock with external

clock input

DC Power
Figure 2. Level Zero Functional Architecture Block Diagram

4.2.2 Level One

After the system is understood at the highest input/output level (level
zero), the next step of functional decomposition is to identify the top level
functions of the system. For our system this would include analog signal
preconditioning, analog to digital conversion, ADC clock selection/generation,
raw data buffering and routing, processing and data hosting, and finally, display
and interface processing. This is summarized in the level one diagram shown
below (Figure 3).

137

User Control and Configuration

Commands

Controls via SPI

Analog Input Channel 1 | Precondition Inputs: Filtered Differential
Attenuate/amplify and
filter analog input
channels

Analog Inputs

Analog Input Channel 2

Select ADC Clock:
Select clock input to
External Clock Input drive the ADC (External
or FPGA)

sampling Clock

ADC Conversion:
Convert Analog Input
to Digital Bits

Raw Digitized
Waveform Data

Data Buffering and
Routing: Buffer, Store,
and Route Raw Digitized
Data using FPGA, Process
External Trigger

Digitized Waveform

External Trigger Input Data, FPGA Control

FPGA Clock

Data Processing and

Hosting: Process Wave- |y o b packets

User Interfaca: System Status Information

Display Waveform Da
ta, Accept User Input

Digitized Waveform Data
—

DC Power

Figure 3. Level One Functional Architecture Block Diagram

424 Level Two

Once the functionality of the system is understood at the functions’ level
(level one), the next step to defining the system design is to take each of these
top level functions and decompose them into their subprocesses. This is done for
each of the top level functions shown in the level one functional architecture
diagram above (Figure 3). It is worth noting that throughout the completion of the
detailed system design that these level two subprocess blocks are subject to
slight alterations.

138

Controls via SPI (Coupling/

| i . i Offset Configuration)
Analog Input Filtering/Attenuation/ 5C Power
Amplification Circuit
Single Sided Single Sided Coupled/Offset Analog
Analog Input Channel 1 Analog Signals Analog Signals gnals
DC/AC >)] Controls via SPI
BNC Overvolt.age Coupling/ D|f'ferent.'|a| (Attenuation Amount)
Analog Input Channel 2 Connectors Protection Offset Attenuation
> =) A== DC Power
Attenuated Differential
Analog Signals
Amplified Differential
b Analog Signals
Low Noise Variable Gain ChebP:SsS::VeLOW F\-\tered Differential Analog
Amplification Amplification Pass Filters Signals to ADC
DC Power DC Power

Controls via SPI (Variable Gain)

Figure 4. Level Two Functional Architecture Block Diagram -

Analog Signal Input Preconditioning
ADC Sampling Clock from PLL

Analog to Digital Conversion

tered Differential Analog Signals

ym Input Circuit (Channel 1)

tered Differential Analog Signals
ym Input Circuit (Channel 2)

1GSPS ADC

Digital Sampled Data to Bufferir
Routing System

e
>

DC Power

Controls via SPI

Figure 5. Level Two Functional Architecture Block Diagram -
Analog Digital Conversion

139

DC Power

Controls via SPI (Clock Selection)

Clock Generation/
Synchronization Circuit

v
External Clock Signal Input
Clock Signal from FPGA Clock Selection Circuit (Multiplexer
| between
A
S ling Clock to ADC
Phase Locked Loop Clock Generator ampling tlock to
. EEEEEEE—
and Jitter Cleaner

DC Power

Figure 6. Level Two Functional Architecture Block Diagram -
ADC Clock Generation

Raw Data Buffering and Routing System; Plus External Tigger Processing

. === Data to LPDDR4
Raw Digital Sampled Data from ADC Raw ADC Output Deserializer Fast FIFO Packet Buffer

> DMA Engine IP
- Custom IP core P

Status/Control to and from
PS portion of MPSoC

External Trigger Signal Input Trigger Processing - Custom

IP core

AXI Interface IP

I

DC Power

Figure 7. Level Two Functional Architecture Block Diagram -
Raw Data Buffering and Routing

140

Data Processing and Hosting System

from DMA Engine > LPDDR4 Memory SPI Controller SPI Controls

l Other
Peripherals

64 Bit Arm Processor
Running Linux and Web
Server «

DC Power

X
v

Wi-Fi

v

us/Control to and from

Y

UsSB 3.0

Xl Interface

Network Interface to
User Computer and GUI

Figure 8. Level Two Functional Architecture Block Diagram -
Processing and Data Hosting

Web-Based Graphical User Interface
System Aboard User Computer

-
-

rork Interface to Processing
ystem (via USB or WiFi)

Web Client Back-End

A J

y User Control and Configuratic

Commands

Angular Based Graphical
User Interface

|

DC Power

Figure 9. Level Two Functional Architecture Block Diagram -
User Interface

Status Information

Waveform Data
—

141

4.2 System Architecture

4.2.1 Physical Architecture

The physical architecture consists of a hierarchical diagram that shows the
main configuration items that make up the system. This includes major hardware
and software components. With the exception of the Ultra96 development board,
all of these components are currently generic as a specific bill of materials has
not yet been determined. This serves as a hierarchical overview of the major
physical resources that will be required to implement our solution.

Open Source High-
Speed Oscilloscope

High Speed Analog Ultra96 Development - - User Interface
ERnEn Board __| High Speed Mezzanine
BNC Connectors Connector
.| Low Speed Mezzanine |
Differential Attenuator Connector
Analog Input & | Relevant || User Network
Filtering Circuitry Hardware Ultras V2 2yna Capable Computer
Low Noise Amplifier | UltraScale+ ZUZEG |
Digitally-Controlled - USB3.0 Ports i
Variable Gain Amplifier Web Client Based
GUI
Chebyshev Low Pass —1 WiFi Interface Chip
Filter
ADC le;:‘lz(ks;_fal Phase | | Firmware/ R (B Tores
or Software
ADC & ADC Clock ADC Clock Select .
7 i Multiplexer istees 2%
Circuitry P
Analog-Digital Converter Web Server

High Speed Mezzanine

Connector
Supporting and
Power Circuitry Low Speed Mezzanine
Connector

Voltage Regulators

Overvoltage Protection
Circuitry

Figure 10. Physical Architecture

4.2.2 Overall System Architecture

In Figure 11 below is a diagram of the main system components
integrated into the overall system architecture. It can clearly be seen that the

142

system will be divided into the three main subsystems that were outlined in our
approach section: the analog front-end, the processing subsystem, and the web-
based GUI. This diagram will serve as the model in which we plan to implement
the flow of data, power, and control throughout the system

Analog Front End PCB

——— -] - =y |—p]
Analog Input Channels Overvoltage Differential Low Noise Variable Gain Low Pass
»] Protection |l Attenuators fo Amplifiers || Amplifiers |5 Filters
A y
l—
12V DC Overvoltage Protection, , Voltage Rails ADCClock ||
_— Voltage Converters/ » (5V, 3.3V, etc) Signal PLL ADC
Regulators
External Clock Input ADC Clock Raw Digital
Selection Qutput From
External Trigger Input Multiplexer ADC
L
SPI Commands
FPGA Cloc
Ultra96-Vv2
Development Board 1
SPI Controller . .
Programable Logic Portion
Programable System of MPSoC (FPGA)
Portion of MPSoC «
(64 Bit ARM Processor) Lermereneens tarenaneniy
12V DC E Raw Input E E HIFO H
- PLLLITITII I . Dese‘fllfllzef D1 opufferp !
2GB L RN
+ Web Server ; LPDDR4 PP TR TERTTT I
: : ! Trigger i1 oma
--------------- IP : : EngineIP E
! I T | e i PR H
L Other
UsB 3.0 Wi-Fi Peripherals
Network
Interface
Web-Based Graphical User Interface on
User’s Network Capable Computer

Figure 11. Overall System Architecture

5. Preliminary Experimentation and Testing Plan

5.1 Overview

In order to thoroughly verify the functionality of this device, testing will need to be
conducted through two different approaches. The first approach is to perform testing
at a white box level by examining the internal systems of the front-end board as well
as the back-end firmware. This includes the analog circuitry on the board, the tracing

143

and layout of the board itself, and the IP cores used in the FPGA firmware. Much of
this testing will be completed through the

The second approach is to perform testing at a black box level where the only
signals being analyzed are the high level inputs and outputs of the system. The
detailed list of testing plans for both approaches is presented below.

5.2 Internal Systems Testing
5.2.1 Attenuator

To verify the successful operation of the attenuator, a function generator
will be used to provide AC inputs ranging from 100Hz-500MHz. The output
voltage will be examined and the negative gain will be recorded at each
frequency. Furthermore, a DC input voltage will be provided to the attenuator and
the drop in voltage will be recorded again. This experiment will confirm the
functionality of the attenuator for a wide range of input frequencies.

5.2.2 Low-Noise Amplifier (LNA)

Similar to the attenuator test, input signals with a varying range of
frequencies and amplitudes will be provided to the LNA and the relationship
between input/output voltage as well as the frequency response relationship will
be plotted. This will allow a clear understanding of the voltage levels or frequency
cut-offs where the output signal starts to saturate.

5.2.3 Variable Gain Amplifier (VGA)

The gain of the variable gain amplifier will be modified using SPI protocol
and input signals of various frequencies will be provided through a function
generator. The gain of the VGA will be verified through a commercial
oscilloscope for frequencies up to 500MHz.

5.2.4 Phase-locked loop

An external clock shall be provided to the PLL and the clock multiplier will
be adjusted through SPI. The output frequency of the PLL will be measured and
verified.

5.2.5 Firmware testing

The HMCAD1511 ADC module will be used in conjunction with a function
generator to provide a digitized waveform to the Zynq Zedboard SoC. This
experiment will verify the success of the firmware in being able to display the
waveform to a user on a computer. For preliminary tests, the Jupyter notebook
web application will be utilized to view the waveforms. Other than the overall
functionality of the firmware, testbenches will also be created in order to verify

144

each IP core. For the final design, an Ultra 96 board will be used instead of a
Zynq Zedboard for running the back-end firmware.

5.3 High Level System Testing

5.3.1 External Trigger System

The external trigger system will be used to test if repetitive waveforms can
be displayed in a steady manner for analyzation purposes. This will consist of
applying an input signal to the analog input of the oscilloscope and verifying that
the oscilloscope pauses data capture when an external trigger event occurs. This
will be verified using a high-speed commercial oscilloscope by recording both the
trigger event and the input signal.

5.3.2 Input variation

The overall device will be tested using both 1 and 2 analog inputs. The
waveforms of these inputs will be varied between DC signal, sine waves, square
waves, triangular waves, and more. The ability of the device to accurately display
these waveforms on the GUI will be verified. The input voltage levels will be
changed from 0 Vep to 20 Vep to confirm that the input voltage requirement is
met.

5.3.3 Frequency Sweep

A function generator will be used to provide a periodic input signal to the
device. A frequency sweep from OHz to 500MHz will be conducted and the
absence of aliasing shall be verified.

5.3.4 Sampling rate

The external clock will be used to test the function of the device at
different clock frequencies.

145

6.

Preliminary Project Plan

6.1 Overview

The tasks we will be completing for ECE 492 will be divided into a hardware
team and a software team. The hardware team will be focusing on testing and
validation of the first version of the front-end analog circuitry. This includes cross-
verifying the KiCad and Eagle schematics and ensuring the component models and
values match. Furthermore, signal measurements will be taken directly from the
board to ensure that the node voltages are equal to the specified values. After
testing, certain electronic circuit components will be modified and a second version
of the PCB will be created in KiCAD and sent out for printing. Besides this, the back-
end firmware will also be modified so that the external trigger and clock
functionalities can be added. For preliminary tests, the Zedboard will be utilized to
verify the firmware, but then this will be ported to the Ultra96 development board.

The main task that the software team will be focused on will be the design
and implementation of the web interface that will be used to display the waveforms
that are collected by the hardware. A main component of this will be setting up a
web server on the Ultra96 to function according to what we need for the interface to
run properly. This will consist of configuring either the Jupyter notebook web server
that is already on the board using Python 3 or creating another web server if
necessary. We will also need to modify the open source Waveforms Live application

146

to be able to display and perform regular oscilloscope functions on the waveforms it
receives.

In ECE 493, the main task for the hardware team will be to perform testing on
the second version of the front-end PCB to ensure it functions correctly. The testing
plan in section 5 will be followed to ensure each component as well as the entire
system performs as designed. The main task for the software team will be to ensure
that communication between the FPGA and the backend software runs smoothly
and efficiently, creating near seamless interaction between the initial analog
hardware and the graphical user interface.

6.2 Allocation of Responsibilities
The following is how the hardware and software teams will be divided, as well
as a breakdown of the leads for each aspect of the project:

Hardware:
e Zaeem Gauher - Analog front-end circuitry validation and customization
e Timothy Bullock — Custom circuit and PCB design for analog front-end
e Umair Aslam — VHDL programming for the back-end firmware on the
Ultra96
Software:
e Afnan Ali — Front end GUI design based on Waveforms Live Application
e Evan Hoffman — Backend software development for the web server/web
client.

The project manager has the added responsibility of ensuring the timely
completion of tasks assigned to each team member, and coordination with the
faculty supervisor. Furthermore, the team members are responsible for completing
their assigned tasks and deliverables by the agreed upon due date. Overall, each
member of the team has a vital role to play in the success of this senior design
project.

147

7.

Potential Problems

7.1 Required Skills Training

There are multiple areas of knowledge as well as certain skills that will need
to be learned to ensure successful completion of this project. Specifically, the
following areas are of particular importance:

e Specifics of PCB design for high frequency analog applications
e Specific MPSoC interfaces and standards (AXI interfaces, BRAM, DMA Engine)
e GUI design using Angular

7.2 Risk Analysis

There are multiple risks associated with the development of this project.
These risks are briefly discussed below:

e Digital signals have a finite speed at which they propagate through the PCB
traces. If the trace lengths are mismatched, the measurements could potentially
be highly inaccurate due to propagation delay. This is a high priority risk because
a slight difference in trace lengths will reduce the effectiveness of the ADC.
Furthermore, this issue is also very difficult to debug.

e PCB design errors are usually common which is why boards go through several
revisions before being finalized. However, for this project, any errors will exceed
the budget and time frame by an inadequate amount which is why this is a high
priority risk. To reduce the chance of this happening, the PCB layout will be
verified multiple times in KiCad before it is approved for printing.

e Electric component damage is also another probable risk associated with the
testing of the front-end device. Since each integrated chip is being soldered by
hand, the chances of burning out the chip due to incorrect pin connections or due
to heat from soldering are quite high. Since this could increase the budget of the

148

project dramatically, extreme caution should be observed while handling the
integrated chip components (especially the ADC).

e Many times, the ADC does not achieve the full resolution as specified in the data
sheet. Due to noise, the ADC has a resolution related to the effective number of
bits (ENOB). This would decrease the accuracy in the vertical scale of
measurement. This risk is not given a high priority due to the fact that even a
slightly lower resolution is still acceptable for application in which this device will
be used.

8. Citations and References

[1] R. Beneder, M. Lechner and P. Schmitt, "Development of a low-cost,
open-source measurement equipment for undergraduate courses dedicated to
embedded systems,” IEEE EUROCON 2017 -17th International Conference on
Smart Technologies, Ohrid, 2017, pp. 187-192.

[2] A.Wozneak, R. Nagpal, and R. Meruvia, “ECE - 492 Design Document.”
10-Dec-2018.

[3] V. Niculescu and A. I. Lita, “Open source oscilloscope for hobby users,” in
2015 14th RoEduNet International Conference - Networking in Education and
Research (RoEduNet NER), 2015, pp. 203-207.

[4] “4000 Mixed Signal Oscilloscopes | RIGOL.” [Online]. Available:
https://www.rigolna.com/products/digital-oscilloscopes/4000/. [Accessed: 12-Oct-
2019].

[5] “Mixed Domain Oscilloscopes - MDO3000 Series Datasheet | Tektronix.”
[Online]. Available: https://www.tek.com/datasheet/mixed-domain-oscilloscopes.
[Accessed: 12-Oct-2019].

[6] “PC Oscilloscope, Data Logger & RF Products | Pico Technology.”
[Online]. Available: https://www.picotech.com/. [Accessed: 12-Oct-2019].

[7] “‘DSOX3052A Oscilloscope: 500 MHz, 2 Channels | Keysight (formerly
Agilent’s Electronic Measurement).” [Online]. Available:
https://www.keysight.com/en/pdx-x201849-pn-DSOX3052A/oscilloscope-500-
mhz-2-channels?cc=US&Ic=eng. [Accessed: 12-Oct-2019].

149

[17]

[8] “1000Z Mixed Signal Oscilloscopes | RIGOL.” [Online]. Available:
https://www.rigolna.com/products/digital-oscilloscopes/1000z/. [Accessed: 12-
Oct-2019].

[9] “Untitled.” [Online]. Available:
https://www.tequipment.net/TektronixDPO2022B.html. [Accessed: 12-Oct-2019].

[10] “PC Oscilloscope, Data Logger & RF Products | Pico Technology.”
[Online]. Available: https://www.picotech.com/. [Accessed: 12-Oct-2019].

[11] “PC Oscilloscope, Data Logger & RF Products | Pico Technology.”
[Online]. Available: https://www.picotech.com/. [Accessed: 12-Oct-2019].

[12] “ScopeFun - Open Source Oscilloscope.” [Online]. Available:
https://www.scopefun.com/. [Accessed: 12-Oct-2019].

[13] “BitScope Mini Model 10 | World’s Smallest Mixed Signal PC Based USB
Oscilloscope!” [Online]. Available: https://www.bitscope.com/product/BS10/.
[Accessed: 12-Oct-2019].

[14] “OpenScope MZ: Open-source All-in-one Instrumentation,” Digilent.
[Online]. Available: https://store.digilentinc.com/openscope-mz-open-source-all-
in-one-instrumentation/. [Accessed: 12-Oct-2019].

[15] “OpenADC - NewAE Technology Inc.” [Online]. Available:
http://store.newae.com/openadc/. [Accessed: 12-Oct-2019].

[16] 96Boards. (2019). Ultra96. [online] Available at:
https://www.96boards.org/product/ultra96/ [Accessed 4 Oct. 2019].

‘HMCAD1511 Datasheet and Product Info | Analog Devices.” [Online]. Available:

https://www.analog.com/en/products/hmcad1511.html. [Accessed: 12-Oct-2019].

[18] “12 THINGS TO CONSIDER WHEN CHOOSING AN OSCILLOSCOPE.”
Tektronix, 2010.

150

[19] S.R. Al-Araji, K. A. Mezher and Q. Nasir, "First-Order Digital Phase Lock
Loop with Continuous Locking," 2013 Fifth International Conference on
Computational Intelligence, Communication Systems and Networks, Madrid,
2013, pp. 414-417.

151

11. Appendix B: Desigh Document (ECE492)

/

Volgenau School
of Engineering

Open Source High-Speed Oscilloscope
(OSHO)

Design Document

Team Members:
Timothy Bullock, Afnan Ali, Evan Hoffman, Umair Aslam, Zaeem Gauher

Faculty Advisor:
Jens-Peter Kaps

ECE492-001

Date of Submission: December 6", 2019

George Mason University
4400 University Dr, Fairfax VA 22030

1. Problem Statement

2. System Requirement Specifications

152

122

126

2.1 Mission Requirements:
2.2 Operational Requirements:

221
2.2.2
2.2.3
224

Input/Output Requirements

External Interface Requirements

Functional Requirements

Technology and System-Wide Requirements

3. System Decomposition & Architecture
3.1 Level Zero Decomposition
3.2 Level One Decomposition
3.3 Level Two Decomposition

3.3.1
3.3.2
3.3.3
3.34
3.3.5
3.3.6

Analog Input Signal Preconditioning Stage/Function
Analog to Digital Conversion Stage/Function

ADC Sampling Clock Generation Stage/Function
Data Buffering and Routing Stage/Function

Data Processing and Hosting System

User Interface

3.4 Overall System Architecture
3.5 Physical Architecture

4. Background Knowledge Used in Design
4.1 Analog Front-End

41.1
4.1.2
41.3
414
415
4.1.6

Attenuator Design:

Low-Noise Amplifier (LNA):
Variable Gain Amplifier (VGA):
Anti-Aliasing LPF:

Phase-locked loop(PLL):

Analog to Digital Converter(ADC):

4.2 FPGA Datapath and Firmware

42.1
4.2.2
4.2.3

Zynq Architecture
Advanced eXtensible Interface (AXI)
FPGA Datapath

4.3 Server and GUI

43.1
4.3.2

Server and Back-End Software
GUI

5. Detailed Design
5.1 Analog Front-End Schematics

511
51.2
5.1.3
514
5.1.5

Power Circuitry 1
Power Circuitry 2
Power Circuitry 3
Power Circuitry 4

134
134
156
156
157
157

136
158
158
159
159
160
161
162
163
164
165
166

167
167
168
169
170
171
171
172
173
173
174
175
176
176
176

178
179
179
180
181
182

Input Attenuation Stage for Analog Inputs (note: page cropped for visibility)

153

183

5.1.6 Amplification and Filtering Stage for Analog Input 1 (note: page cropped for

visibility)

185

5.1.7 Amplification and Filtering Stage for Analog Input 2 (note: page cropped for

visibility)

5.1.8 ADC Schematics

5.1.9 PLL Schematics

5.1.10 Ultra 96 SoC Connectors
5.2 Analog Front-End Component Selection

5.2.1 Switching Circuit Elements

5.2.2 Phase Locked Loop

5.2.3 Variable Gain Amplifier

5.2.4 Low Noise Amplifier

5.2.5 Analog to Digital Converter
5.3 FPGA Datapath Design

5.3.1 Bit Clock Alignment

5.3.2 Frame Clock Alignment

5.3.3 Post-Deserialization
5.4 Software Design and Models

6. Prototyping & Early Testing Progress Report

6.1 Analog Front-End HACD Board Testing
6.1.1 10:1 Attenuator Path Simulation
6.1.2 20:1 Attenuator Path Simulation
6.1.3 LPF simulation (500MHz cutoff frequency)
6.1.4 LPF simulation (250 MHz cutoff frequency)

6.2 VHDL Firmware Testing Progress
6.2.1 Vivado Project and Xilinx Zedboard Testing
6.2.2 Jupyter Notebook Prototyping Progress

6.3 Software Development & Waveforms Live Cloning

7. Testing Plan for ECE493

7.1 Analog Front-End Testing
7.1.1 Attenuator
7.1.2 Low-Noise Amplifier (LNA)
7.1.3 Variable Gain Amplifier (VGA)
7.1.4 Phase-locked loop

7.2 VHDL Firmware Testing
7.2.1 Pynq Linux Port Testing
7.2.2 Firmware Testing
7.2.3 Jupyter Notebook Testing

7.3 Server Testing & GUI Testing

7.4 High-Level Overall System Testing
7.4.1 Input variation
7.4.2 Frequency Sweep

154

188
190
191
192
193
193
194
194
195
195
197
197
199
199
200

205
205
205
206
207
208
208
208
209
210

211
211
144
144
144
144
212
212
212
213
213
214
145
145

7.4.3 External Trigger System
7.4.4 External Clock Input

8. Task Allocations for Remainder of Project
8.1 Analog Front-End
8.2 PCB Design
8.3 FPGA & Firmware Development
8.4 Server Back-End & GUI Web Client Development

9. Schedule for Remainder of Project

10. References

155

214
145

214
214
215
215
215

217
218

1. Problem Statement

Digital oscilloscopes are extremely useful tools for many engineering applications
where electrical signals need to be measured and analyzed. Digital oscilloscopes
“‘enable the user to debug, visualize and measure various signals,” and are an essential
part of any engineering lab or project [3]. Yet, in many applications such as RF design,
the signals that are being analyzed are too high frequency to be measured with
standard low-cost oscilloscopes. In these applications, high performance oscilloscopes
with sufficient bandwidth and sampling-speeds are needed. The problem with this is that
oscilloscopes with bandwidths greater than 500 MHz are extremely expensive. Even
moderate performance oscilloscopes with bandwidths greater than 200 MHz can cost
several hundreds to thousands of dollars. On top of this, even at these high prices,
many of the commercially available devices can be limited in certain usability aspects
and features. For example, downloading the captured data from these devices for
external processing can be quite slow, and their built-in ADC cannot be synchronized to
an external clock signal. Therefore, to overcome these limitations, it is our project’s
motivation to create a low-cost, open source, and high-speed alternative to existing
oscilloscopes.

2. System Requirement Specifications

2.1 Mission Requirements:

e The project shall design an oscilloscope that is an open source, low-cost
alternative to commercially available oscilloscopes, and a performance, feature
rich alternative to existing open-source oscilloscopes.

e The project shall design a custom high-speed PCB that will easily interface with
an Ultra96-Vv2 development board, as well as develop the supporting firmware
and graphical user interface for the device.

2.2 Operational Requirements:
2.2.1 Input/Output Requirements

- The device shall have at least two analog input channels, one external clock
input, and one external trigger input.

- The system will receive control and configuration commands as well as be able
to responsively display captured data through a web client with an intuitive and
responsive GUI.

2.2.2 External Interface Requirements

- The device will provide support for 1x and 10x passive probe inputs (50Q).
- Bayonet Neill-Concelman (BNC) connectors shall be used for the analog inputs,
external clock input, and external trigger inputs.

156

3.

The system shall interface with a network capable computer through USB3.0 or
WiFi.
The system shall receive power from an external 12V DC power supply.

Functional Requirements

The analog-to-digital converter (ADC) shall sample one input channel at 1 GSPS
or two channels at 500 MSPS.

The device will be able to measure analog inputs with a maximum input voltage
of £10V.

The input analog circuitry shall achieve a 500 MHz bandwidth.

The ADC shall be able to be configured to sample using either the FPGA clock or
an external clock input (between 30 MHz and 1 GHz).

The ADC output sample resolution shall be no less than 8 bits.

The system’s data capture shall have the ability to be triggered using both
configurable edge triggers as well as a configurable external trigger input.

Technology and System-Wide Requirements

The front-end device shall use a single 1GSPS ADC chip.

The ADC data shall be processed and hosted on an onboard Linux web server
using a Xilinx Zynq UltraScale+ multiprocessor systems-on-chip (MPSoC)
aboard the Ultra96 Board.

The analog front-end custom PCB should interface with the Ultra96 Board for
data processing.

Target FPGA development board shall have device driver firmware for interfacing
with the ADC, and routing and storing ADC sample data in a memory device.
Front-end programmable devices will be controlled using the Serial Peripheral
Interface (SPI) or other serial protocol.

The custom high-speed PCB and Ultra96 devices will interface with each other
via the Ultra96’s high-speed and low speed mezzanine connectors.

The device should be low-cost ($600 or less).

System Decomposition & Architecture

157

3.1 Level Zero Decomposition

In order to provide a detailed overview of the system architecture for our solution,
it is best to start with a functional decomposition of the system so that the system’s
functions can be related in a hierarchical manner. This decomposition will provide a top
level overview of the system, then work downward to identify each of the main
processes of the system, then continue downwards to identify the sub functions of each
of these processes. The level zero decomposition provides a top level overview of the
overall solution; it shows the overall system inputs and outputs. For our system, this is
shown below in figure 1. It shows that the overall system will take in two analog inputs,
an external clock input, an external trigger output, user commands, and DC power. The
system then outputs status information and digitized waveform data.

User Control and Configuration

Commands
Analog Input Channel 1 Open Source High-Speed Oscilloscope
e Samples Analog Signals at up to 1 GSPS
Analog Input Channel 2 « Sends output data and status information to user System Status Information
computer "

e Receives user control & configuration Commands

External Clock Input from user computer Digitized Waveform Data

EEEEE———
e Triggers output waveform with external trigger input

External Trigger Input « Optionally synchronizes ADC clock with external

clock input

DC Power
Figure 1. Level Zero Functional Architecture Block Diagram

3.2 Level One Decomposition

After the system is understood at the highest input/output level (level zero), the
next step of functional decomposition is to identify the top level processes of the
system. For our system this would include analog signal preconditioning, analog to
digital conversion, ADC clock selection/generation, raw data buffering and routing,
processing and data hosting, and finally, display and interface processing. This is
summarized in the level one diagram shown below (Figure 2). Once each of these main
processes is identified at this level, they can then be further decomposed and discussed
at the level two decomposition level.

158

External Clock Input

Analog Input Channel 1

Analog Input Channel 2

External Trigger Input

DC Power Controls via SPI

User Contral and Configuration

Select ADC Clock: Commands
Select clock input to

drive the ADC (External
or FPGA) FPGA Clock SPI Controls

Digital Sample

1 Sampling Clock

Differential Data
Analog Inputs | ADC Conversion: Raw ADC Data Buffering and Data Processing and User Interface: System Status Information

Attenuatefamplify and Convert Analog Input
filter analog input to Digital Bits
channels Data

Precondition Inputs:

Display Waveform Da-

Routing: 8uffer, Store, Hosting: Process Wave-
ar igi to
ato ta, Accept User Input

Data Network Interface

Digitized Waveform Data
————

PL Control

DC Power Controls via SPI DC Power Controls via SPI DC Power

Figure 2. Level One Functional Architecture Block Diagram

3.3 Level Two Decomposition

Once the functionality of the system is understood at the level one demoposition
level, the next step to providing a detailed overview to the system design is to take each
of these top level processes and decompose them into their subprocesses. This is done
for each of the top level processes shown in the level one functional architecture block
diagram above (Figure 2). It is worth noting that throughout the completion of the
detailed system design that these level two subprocess blocks are subject to slight
alterations.

3.3.1 Analog Input Signal Preconditioning Stage/Function

The purpose of the analog input signal preconditioning stage/function is to take in
the analog inputs and modify them so they can be most optimally digitized by the ADC.
The functions that occur in this main process are: overvoltage protection, coupling and
offset selection, variable attenuation and amplification, and finally passing through a low
pass anti-aliasing filter. The input signals are first passed though overvoltage protection
to protect the remainder of the circuitry. Then the signals are then modified by selecting
DC or AC coupling, and the desired offset is added to the signal. Next, the signals are
converted to a differential signal and are attenuated so that the signals can fit within the

159

full-scale range (FSR) of the ADC. Next, the signals are variably amplified so their
amplitude more accurately fits the FSR of the ADC. Finally, the signals are sent through
a low pass filter to reduce high frequency noise and limit the signals to the Shannon-
Nyquist frequency dictated by the ADC maximum sampling rate. Configurable aspects
of this system such as DC offset will be configured through SPI commands from the
processing subsystem.This front-end circuitry will be routed on a custom high-speed
PCB that will be designed by our team.

Controls via SPI (Coupling/
Offset Configuration)

Analog Input Filtering/Attenuation/ D¢ Power

Amplification Circuit

Single Sided Single Sided Coupled/Offset Analog
Analog Input Channel 1 Analog Signals Analog Signals Signals
DC/AC) . Controls via SPI
BNC Overvolt_age Coupling/ Dufferent_-nal (Attenuation Amount)
Analog Input Channel 2 Connectors Protection Offset Attenuation
A== DC Power
Attenuated Differential
Analog Signals
Amplified Differential
v y Analog Signals
Low Noise Variable Gain che;?;ig\,e_ow F\lltered Differential Analog
Amplification Amplification pass Filters Signals to ADC

DC Power DC Power
Controls via SPI (Variable Gain)
Figure 3. Level Two Functional Architecture Block Diagram -
Analog Input Signal Preconditioning

3.3.2 Analog to Digital Conversion Stage/Function

After the signals have been preconditioned, they are then sent to the analog to
digital conversion stage/function. This stage is the simplest stage as it only consists of
one main function and component, the high sampling speed ADC. This stage takes the
preconditioned analog signals and outputs a digital LVDS signals representing the
digitized sample data. This data is sent to the data and buffering and routing stage.
This stage will also be located on the custom high-speed PCB that will be designed by
our team.

160

ADC Sampling Clock from PLL

Analog to Digital Conversion

Filtered Differential Analog Signals
from Input Circuit (Channel 1)

v

.) . . Digital Sampled Data to Buffering/
Filtered Differential Analog Signals Routing System

from Input Circuit (Channel 2) 1GSPS ADC -

DC Power Controls via SPI

Figure 4. Level Two Functional Architecture Block Diagram -
Analog Digital Conversion

3.3.3 ADC Sampling Clock Generation Stage/Function

Another major function of the overall system is to generate the clock signal for
the ADC. In this stage/function, either the FPGA clock or the external clock is toggled
between as an input into the phase locked loop (PLL) which matches or multiplies the
frequency of the input signal to generate a low jitter clock signal for the ADC. This is the
third stage/function that will be located on the custom PCB.

161

External Clock Signal Input

Clock Generation/
Synchronization Circuit

DC Power

Controls via SPI (Clock Selection)

Clock Signal from FPGA

Figure 5. Level Two Functional Architecture Block Diagram -

Clock Selection Circuit
(Multiplexer between clock
sources)

Phase Locked Loop Clock
Generator and litter Cleaner

T

DC Power

ADC Sampling Clock Generation

3.3.4 Data Buffering and Routing Stage/Function

The next stage/function of the system is the Data Buffering and Routing Stage.
The purpose of this stage is to receive data from the ADC, deserialize the data, and
create 64-bit AXI packets which can then be loaded into main memory via direct
memory access (DMA). This stage will also process the external trigger input in order to
generate necessary control signals and stop the flow of digitized waveform data into
memory. This stage will be implemented using the programmable logic (PL) portion of a
MPSoC development board. More Specifically, this stage will be implemented on the
Xilinx Zynq Ultrascale+ MPSoC ZUEG A484 that is on the Ultra96 V2 board and using

162

custom and Xilinx provided Intellectual Property (IP) cores connected using the
Advanced eXtensible Interface (AXI).

Raw Data Buffering and Routing System; Plus External Tigger Processing

|=—7— Data to LPDDR4
Raw Digital Sampled Data from ADC Raw ADC Output Deserializer | AXIS AXi4 Stream FIFO |AXS |\ o Engine P
(LVDS Data Signals, Frame, and - Custom IP core Buffer IP
Data Clock)
t $axi uTe
AXI
Status/Control to and from
External Trigger Signal Input Trigger Processing - Custom AXI4 Interconnect IP PS portion of MPSoC
—
IP core AXI AXI

I

Figure 6. Level Two Functional Architecture Block Diagram -
Data Buffering and Routing

3.3.5 Data Processing and Hosting System

After the output data from the adc is stored in main memory, the next thing that must
happen to it is that it must be processed and hosted on a web server running on the ARM
processor portion of the MPSoC. This ARM processor will be running a server which will host
the web server that communicates with the user interface which will be implemented as
a web client on a remote computer. This processor will also be running additional
software in order to generate the commands to control the various components on the
custom analog front-end via SPI, perform basic processing on the waveform data such
as downsampling and converting the data into the desired protocol for the webserver,
and finally to communicate with and control the PL portion of the chip via the AXI
interface.

163

Data Processing and Hosting System

Data from DMA Engine

SPI Control
LPDDR4 Memory SPI Controller ontrots

l Other
Peripherals

64 Bit Arm Processor <

4
Y

; — »| Running Linux and Web Wi-Fi
Status/Control to and from
“* USB3.0
PL AXI Interface Server
DC Power Network Interface to

User Computer and GUI

Figure 7. Level Two Functional Architecture Block Diagram -
Processing and Data Hosting

3.3.6 User Interface

The final stage/function that is required for our system is the user interface so that the
user can control the system and view the digitized waveform data. This stage will consist of a
webclient that will be running in a web browser running on the user’s network capable computer.
This web client will communicate with the server running on the Ultra96 in order to pass control
and configuration information to the system and output waveform and status information.

164

Web-Based Graphical User Interface
System Aboard User Computer

-
w

Netwark Interface to Processing
System (via USB or WiFi)

A 4

Web Client Back-End

y User Control and Configuration

Commands

Angular Based Graphical)
Status Information
User Interface ——
Waveform Data
—
DC Power

Figure 8. Level Two Functional Architecture Block Diagram -
User Interface

3.4 Overall System Architecture

In Figure 9 below is a diagram of the main system components integrated into
the overall system architecture. It can clearly be seen that the system will be divided
into the three main subsystems: the analog front-end, the processing subsystem, and
the web-based GUI. This diagram will serve as the model in which we plan to implement
the flow of data, power, and control throughout the system.

165

Analog Front End PCB

—_—] > > -
Analog Input Channels Overvoltage Differential Low Noise Variable Gain Low Pass
—_—] Protection j| Attenuators fa Amplifiers jp| Amplifiers L] Filters
A y
—
12V DC Overvoltage Protection, » Voltage Rails ADCClock L)
— Voltage Converters/ (5V, 3.3V, etc.) Signal PLL ADC
Regulators
External Clock Input ADC Clock Raw Digital
Selection Output From
External Trigger Input Multiplexer ADC
r
SPI Commands
FPGA Cloc
Ultra96-V2
A
Development Board]

SPI Controller

Programable Logic Portion

Programable System of MPSoC (FPGA)
Portion of MPSoC <
(64 Bit ARM Processor) Lessrsssnane pmmessenases
12v DC i Rawlnput 13 pg
-------------- » = Deserializer = »
_— : ' : P = = Buffer IP
2GB .

: Web Server ; LPDDR4 [.

i Trigger & i DMA :
» & EnginelP =
IP - H

Other

USB 3.0 Wi-Fi Peripherals

Network

Interface

Web-Based Graphical User Interface on
User’s Network Capable Computer

Figure 9. Overall System Architecture
3.5 Physical Architecture

The physical architecture consists of a hierarchical diagram that shows the main
configuration items that make up the system. This includes major hardware and
software components. This serves as a hierarchical overview of the major physical
resources that will be required to implement our solution.

166

Open Source High-
Speed Oscilloscope

[

High Speed Analog
Front-End

Analog Input &
Filtering Circuitry

ADC & ADC Clock

Circuitry

Supporting and
Power Circuitry

BNC Connectors

Differential Attenuator

Low Noise Amplifier

Digitally-Controlled
Variable Gain Amplifier

Chebyshev Low Pass
Filter

ADC Clock Signal Phase
Lock Loop

ADC Clock Select
Multiplexer

Analog-Digital Converter

High Speed Mezzanine
Connector

Low Speed Mezzanine
Connector

Voltage Regulators

Overvoltage Protection
Circuitry

Ultra96 Development

__| High Speed Mezzanine

User Interface

Board Connector
| | Low Speed Mezzanine |
Rel t Connector
] elevan User Network
Hardware Ultra%6-v2 Zyng Capable Computer
UltraScale+ ZU3EG |
USB3.0 Ports)
Web Client Based
GUI
WiFi Interface Chip
L Flrmware/ FPGA IP Cores
Software
Linux OS
Web Server

Figure 10. Physical Architecture

Background Knowledge Used in Design

4.1 Analog Front-End

In order to understand the function of the overall analog front end circuit, it is important
to understand the theory used in deriving our solution. The analog front end circuitry consists
multiple subcomponents that comprise the overall signal measurement chain. These
components include an attenuator, low noise amplifier (LNA), a variable gain amplifier (VGA),
and an anti aliasing low pass filter (LPF). Furthermore, the analog to digital conversion system

167

consists of a phase locked loop and an 8-bit ADC. The background knowledge as well as the
mathematical theory utilized to select and justify these components is described in further detalil
below.

4.1.1 Attenuator Design:

The attenutor’s primary function is to reduce voltage, dissipate power, and improve
impedance matching between devices such as amplifiers. Attenuators can be configured
to adjust the amount of attenuation manually. The utilization of an attenuator is crucial in
the front-end as it provides sufficient input amplitude adjustment to prevent saturation for
large signal swings. Although there are multiple possible configurations of an attenuator,
the Pi attenuator is best suited for applications where impedance matching is important.
A circuit diagram of the differential Pi attenuator along with the calculations to design the
resistance values are presented below. For the purpose of the OSHO project, two
attenuator paths are required; a 10 to 1 as well as a 20 to 1 path are used to ensure that
the input voltage specifications are upheld.

Differential Pi configuration attenuator circuit:

Rs

. L
Rp Rp
Rp Hp[

AN

Rs

Relevant Equations used to design attenuator:

1+ A4,
RP:ZO*]_—AT
o PRy 1-4g
s Zo+R, Ar

Zoy = 50Q (Source and Load Impedance)

4
Ar: Attenuation (V)

168

Resistance value calculations for 10:1 attenuation path:
10:1 Path

1+ (79)
1- (79

R, = 500

R,=61.110

1
o _ 506111 1-Gp)
= *
* 50+61.11 R
10

R, = 247.49 ()

Resistance value calculations for 20:1 attenuation path:
20:1 Path

1+ (59)
1 - (5o

R, =55.26 Q

R, = 500

1
p _ 50%5526 1-(3p)
= *
* 50+ 55.26)
20

R, = 498.75Q

4.1.2 Low-Noise Amplifier (LNA):

Low noise amplifiers are used to amplify very low-power signals without negatively
affecting the signal-to-noise ratio. By using a LNA close to the input source, the effects
of noise in the following stages of the front-end stage can be greatly reduced. To ensure
the maximum transfer of power from source to amplifier, the source impedance should
match the input impedance of the LNA. This can be achieved through the attenuator
mentioned earlier. The circuit for the low noise amplifier used in the OSHO front-end
design is based off the reference design provided by Texas Instruments for the
LMH5410 LNA. The specified voltage gain of 4V/V in the Tl design is adequate for this
application due to the fact that the VGA can be used to further fine tune the gain
settings.

169

50-Q2 Input Match Gain of 4 V/V from Ry,
Single-Ended Source to Differential Output

LMH5401
Rr=357Q ' 2“5“9“

Re=1270Q Diff gal
50-Q2 ifferentia
Source | FG, =2260 IN- 100 ouT+ 400 Load =200 ©
O T 1l - +—/V\ VW2

C1=0.1pF INS (_)UT_AMP 40 0 _ 100 0
) + W%
Rc,z = 66.5 Q 100 OUT
C2=0.1uF -
Re=127Q
| 250
= ANN—
CM PD

Figure 11. LMH5401 Circuit

The calculation process for picking the resistance values in this reference design is laid
out in brief details below:

1) The resistance values for Rr is selected based on the choice of the user.
There is great flexibility in choosing the Rr resistor since it is an external
resistor.

2) Once Rer is chosen, the following equations are utilized to calculate the
resistance values for Re1 and Rez. The value for Rs used in these
equations is equal to 50 ohms which is the source impedance.

4.1.3 Variable Gain Amplifier (VGA):

A VGA is used to amplify input signals based on the gain parameter. The advantage of
using a VGA is that the gain can easily be controlled through an interface such as SPI to
ensure that the output fits within the full-scale input range of the ADC. This prevents
clipping of the digital output waveform. The LMH6401 VGA used in the OSHO design
has a set of internal registers which can be read to or written from using a 4 pin SPI
configuration. To enable transfer of data, an active low chip select pin is utilized. Serial
data is loaded into/out of register every 16th clock cycle due to the fact that word length
is 16 bits. The first 8 bits specify the address of the register and the next 8 bits are either

170

4.1.4

4.1.5

the data being loaded or read from the register. The SPI timing diagrams for read and

write cycles for this VGA are presented below.
SPI Write Bus Cycle

s] [L
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16

sol | [A6 | A5 | A4 [A3 | A2 | A1 [A0 [D7 [D6 | D5 |D4 [D3 | D2 | D1 | Do |

SDO —

SPI Read Bus Cycle

s | L
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16

sbi | [A6 [As [A4]As [A2]A1]A0]

SDO i D7 | D6 | D5 [D4 | D3 | D2 | D1 | DO |}

Figure 12. SPI Timing Diagram

Anti-Aliasing LPF:

An anti-aliasing low pass filter’s function is to remove unwanted high frequency

components from the input signal. This filter is crucial to ensure that the input to the ADC
has a maximum frequency of half the sampling rate. This prevents aliasing as dictated
by the Nyquist-Shannon Theorem. A Chebyshev LPF filter is used for in our design due
to the fact that it provides the sharpest cut-off frequency by allowing a small ripple in the
frequency response. For the purpose of this project, the values for the elements in the
Chebyshev LPF were calculated using MATLAB software. The circuit designs as well as
simulations for the the two chebyshev filters used in this project are presented later.

Phase-locked loop(PLL):

A phase-locked loop is a voltage driven oscillator that receives a reference signal and

outputs a signal with either a matched or multiplied frequency compared to the

reference. The PLL also acts similar to a bandpass filter to remove high frequency jitter
as well as low frequency VCO jitter from the clock signal [19]. The PLL will allow for the
use of the FPGA clock in order to provide the clock input to the ADC. Similarly, it can

also be utilized to sync the ADC clock with an external clock when that option is
selected. A functional block diagram of the PLL used for out front-end circuit is
presented below:

171

EXT_LFP
EXT_LFN X
= . Output X uop
REF IN Ref_er.ence _\ Divider 0 X UON
- E—d Divider
XTAL/ 5 [] 1
AUX_IN
| [Output = uP
|_ Tput @ Divider 1 - U1IN
Divider L
PFD/ [| ~_
m 1 —| Prescaler [
Feedback CP N @
Divider
PD >
= _ | Interface [+
SPLLE R—2 ¢ EEPROM
SPI_CLK K ™ Control
SPI_MosI B—»
SPI_Miso X

4.1.6

Figure 13. CDCE62002 PLL Block Diagram

In the diagram above, the interface and control block determines the status of the PLL
when the device is powered based on the contents of the EEPROM. On the other hand,
SPI commands can also be used to directly change the output of the PLL by writing
directly to the device registers.

Analog to Digital Converter(ADC):

The ADC is one of the most crucial features of the oscilloscope as it determines the
sampling rate, resolution, as well as bandwidth. The ADC receives analog signals from
the signal conditioning stage which includes attenuation, amplification, and filtration. The
analog signal is then sampled and digitized before being transferred to the back-end
firmware for transferring the data into memory. Some of the important features of the
ADC are detailed below:
Bandwidth:
The bandwidth of an ADC dictates the maximum frequency range that can be
accurately measured by the device. High-speed, serial communication, and other
complex signal applications require bandwidths of 500MHz or greater for
accurate measurement.
Sample Rate:
The sample rate of an ADC (measured in samples/second) defines how often the
device samples the signal. According to the Nyquist-Shannon Sampling
Theorem, the sampling rate needs to be twice as fast as the highest frequency
component of a signal in order to avoid aliasing. Thus, if a sampling rate of
1GSPS is used, the maximum input frequency should be limited to 500MHz.
Channel Resolution:
The resolution of the ADC defines the granularity of the signal. If the ADC in the
oscilloscope has an 8-bit resolution, this translates to 28 = 256 digitized levels

172

that each analog sample will be translated to. An ADC with a resolution of 8 bits
is sufficient for a low-cost oscilloscope application.

The background knowledge for all important subcomponents of the OSHO front-end circuit are
presented above. However, it is also important to understand the theory behind the function of
the overall system.

4.2 FPGA Datapath and Firmware
4.2.1 Zyng Architecture

DDR3 DRAM
Controller

T I ller |8 |
AXI > Interconect .
Masters — e

SPI, CAN, SD, Ethernet, USB, UART,...

Figure 14. Zynq Architecture

A Field-Programmable Gate Array (FPGA) is the optimal choice for data
intensive processing, massively parallel algorithms or applications dealing with a large
number of inputs and outputs. In contrast, a microprocessor is better utilized for
complicated decision making. However, both functionalities are often required in parallel
for applications such as building a high-speed oscilloscope. Prior to the Zynq
architecture, however, communication between the FPGA element and the Processing
System (PS) was complex and this led to a collection of modules rather than an actual
system. The Zynq architecture solves this problem by using the Advanced eXtensible
Interface (AXI) standard for communication between the Programmable Logic (PL) layer
and the PS layer. The PL layer contains the configurable logic blocks (CLBs) to
implement any hardware functionality and can be used to extend the processing
system, while the PS layer contains the ARM processor, I/0O peripherals and integrated
memory controllers. Utilizing the AXI standard also reduces latency and increases the
overall performance of the system. Furthermore, PYNQ Linux is loaded on the
Processing System (PS). It contains the Jupyter Notebook server which the user can
use to interact with and control the system.

173

microsD
(primary boot)
UART
{3-pin header)
User LEDs (x4)
12C Switch <4 12C
T Low-speed
Expansion
> {40-pin)
(5P, 12C. UART, GPIO)

2 GB LPDDR4
(512M x32)

F Y\
v
a4—>) Processing System (PS) -+ » Min ;Eﬁp‘a‘f
1 3 Wi-Fi/
< > Bluetooth
' MPSoC «—> usB 30
T s L= | o e]
< " 4 SP1) —’l USB 2.0 Device |
&
High-speed
.] » 4—”‘} o E;::;arsicn
(60-pin) et
ISP1. I2C, MIP1, LART,
< Programmable Logic (PL) | ¢ > GRI0, tc)
&

Figure 15. Ultra96 v2 Block Diagram

As shown in figure 14, the Ultra 96 v2 board used in this project has four AXI
high-performance slave ports (HP0-HP3) and four AXI general-purpose ports (GPO-
GP1) for PS-PL interfacing. It also provides 40-pin 96Boards low-speed expansion
header and 60-pin 96Boards high-speed expansion header to interface with peripherals.
4.2.2 Advanced eXtensible Interface (AXI)

Write Address
Write Data
Master Write Response
Interface
Read Address
Read Data

Slave
Interface

Channel connections between master and slave

interfaces

Figure 16. AXI Channel Connections

174

Address

Read Address Channel —— [

Master Slave

interface interface
Read Data Channel S
—> Read Read Read Read
data data data data
Write add hann:
| =
Write Address Channel — —
- Write data channel
Write Data Channel e) ey
interface data data data data nterface
Write Response Channel —_|
Write response channel
\\> Writ

response

Figure 17. Basic AXI Signaling

The Advanced eXtensible Interface (AXI) is part of Advanced Microcontroller Bus
Architecture (AMBA) and is a point to point interconnect designed for high-performance
and high-speed microcontroller systems. The specifications of the protocol are:

e Before transmission of any control signal/address/data, both master and slave

must extend their “hand” for a handshake via ready and valid signals.

e Separate phases exist for transmission of control signal/address and data.

e Separate channels exist for transmission of control signal/address and data.

e Burst type communication allows for continuous transfer of data.
In addition, Xilinx provides a library of AXI based Intellectual Property (IP) cores which
are preconfigured logic functions. These IP cores have been validated and rigorously
tested by Xilinx and have been optimized for Xilinx FPGAs.

4.2.3 FPGA Datapath

As shown in figure 6, the FPGA receives low-voltage differential signals (LVDS)
from the ADC. These include the serial data bits, the frame clock and the bit clock. The
frame clock (FCIk) is a digitized and phase-shifted version of the ADC’s sample clock
while the high-speed bit clock (DCLK) is a 90° phase-shifted signal to the data. In
addition, these low-voltage differential signals need to be buffered and deserialized.
They also have to be converted to the AXI format to be transferred to memory. Then,
the data (AXI packet) is communicated to a first-in first-out (FIFO) buffer for clock
domain crossing (CDC) from the ADC’s sampling clock frequency to the global FPGA
clock domain. Lastly, the data is transferred to the PS memory.

175

4.3 Server and GUI
4.3.1 Server and Back-End Software

The Ultra96 board allows multiple ways to connect to a network capable
computer. Either when the board is connected to a computer through WiFi or when
plugged into a computer via USB, the Ultra96 is recognized as a network card. These
network connections easily allow for a web server to be hosted on the Ultra96. A web
server is a program that uses established networking protocols to host files and data, as
well as process and service client requests from networked computers. The Ultra96
comes with a pre-built Jupyter Notebook web server on board that can be configured
using Python 3. However, the Ultra96 also has an Apache web server installed on it as
well which is more suitable for our needs since the code for WaveformsLive currently
uses Apache Cordova.

432 GUI

By default, the Ultra96 runs PetaLinux. This is an OS often used for
implementing embedded linux operations on xilinx products. With this linux distributions
the user can connect the Ultra96 to a monitor through the mini display port and you
essentially have a mini linux computer at your disposal with 2Gb of ram. In addition to
being a small linux machine the Ultra96 is also a programmable microcontroller with
GPIO pins that can be used to interface with the outside world. It is because of these 2
features that we plan on implementing a GUI that will serve the Ultra96. This GUI will be
launched by connecting the Ultra96 to the computer and then connecting to its IP from
your computer’s browser. Once connected to your computer, the local version of a
modified waveforms live will begin execution. The GUI that is launched is a modified
version of WaveformsLive that includes the Ultra96 as an option for users to select. This
allows the user to interact with an already known interface with some additional support
for our specific project. None of the WaveformsLive GUI overall design is to be modified
but rather we plan to change the way the data is being processed so that we can ensure
the correct visualization of the Ultra96 data.

To run the GUI locally you must be on a linux environment and have the following
software packages:

e NVM 0.35.1 (Node Version Manager)
NPM 3.11.0 (Node Package Manager)
Node 6.11.0 (Node.|s)
Cordova 4.2.0 (Framework for the Application)
lonic 2.2.2 (Frontend Software Development Toolkit)

Node Version Manager is a package that lets you select which version of NPM
and Node your computer will use when building and launching the GUI. This package
can be installed using this command:

176

https://whatis.techtarget.com/definition/server
https://whatis.techtarget.com/definition/server

wget -qO- https://raw.githubusercontent.com/nvm-sh/nvm/v0.35.1/install.sh |
bash

After that you can use NVM to install different versions of the Node and NPM
with the command:

nvm install node v6.11.0
node -v

This should return “v6.11.0” which means you have correctly installed the
packages. Node is an open source, cross platform javascript runtime environment that
the machine needs to actually execute the javascript code. This runtime environment is
built on Chrome’s V8 javascript engine. Node also utilizes a lightweight event-driven,
non-blocking 1/0 model. Normally 1/0O bursts are blocking which prevent other things
from happening while the 1/0 burst is processed. To get around this most systems need
to use multiprocessing so that there can be multiple threads/processes running the I/O
bursts. Node however, allows for non blocking I/O bursts which means that requests
can be initiated and handled in parallel. This also removes the need for multiprocessing.

A simplified diagram can be seen below.
CALL STACK API STACK

0

Render Queue

T ¥

Event Queue

Figure 18. Call and API Stacks, and Render and Event Queues

The diagram above shows how if a function or chunk of code needs to be
executed it would first be put on the stack where if it did not need to reference an API it
would be immediately implemented. If a function in the call stack needed to be
referenced with an API then it would be pushed into the API stack where it could then
look up the necessary API. This allows for more functions to be put on the call stack in
parallel and executed. Once the function has been looked up with an API it is then put
into the event queue. This event queue holds the API calling function execution until the
stack is empty. Once the stack is empty the API calling functions are pushed into the

177

render queue for rendering. The render queue will also check to make sure the call
stack is still empty and if the stack is still empty the API function will be executed. This
allows for the stack to not be clogged up with functions that need to do a lot of time
consuming API references. This structure is meant to interleave API function executions
in between regular function executions so that the user is able to interact with the GUI
while something like a waveform is being drawn.

In order to run the GUI you must follow the steps below:

ssh into the Ultra96 using “ssh xilinx@192.168.3.1” in your terminal.

Change directory to the waveforms-live directory with “cd waveforms-live”

Run “npm install”

Run “ionic serve” (this command boots up a development server on the localhost,
which in this case would be the Ultra96)

Once you have run the commands above the terminal will start launching the
GUI. It takes about 30 seconds to have the GUI launched. Once launched you can go to
your local computer’s web browser and enter “192.168.3.1:8100”. This will take you to
the Ultra96 hosted GUI where you can start interfacing with the oscilloscope.

5. Detailed Design

178

5.1 Analog Front-End Schematics

5.1.1

Power Circuitry 1

I I I £ I z I T
01/2 P |
sy |
ang
ang
ano “ o
sy
ans 2
yas'AS— i3y 4 B
angn aney awo T 55

AL

yas Alddns yoA puBTYN] 3114

FBETOR JaAWY 113305

AGT PUE AT 33345

o BT

((11°gz/16°56)+1),590°0=1n0A ,— oz
ASD Y+

AAAS

O INOHE - SNBZATHHO3,
a

x4
o
4901
[S9A ¢)
—
T 1}

7

i"to

&3 NIA N3]
BV00LZEnGSdL o

én

sioyenbay 1oj abejjop ajeipawiajy)

uopaatesg abenanaAn

3

P

U

ieyaun0) 38f |aueg

WRgE]
2dlO gopzesetnsy
i

5 ¥ \|1|.|_)]
1071-1dZ- F0E-090LHIV BZOSKTTOTOT HYZOZ-rd
é I i

fjddng J1amod RUIAIXT AG

I I 1

179

ircuitry 2

Power C

5.1.2

5

or/s el | (0°0'5) Pet"¥'q'3 pPediy
way | aed | Wy fazjg
AN

YISGATPUETEAL 211
/ AE'T pue Ag'g/fiddng samod/ 12aus

NIA==1N0A

(¥N7 40 uoiioalosd yndul Joj AT — S3INpOl4) J3aparuo) abejjop

76T~
an
ana N
rn|m G .m«.u m "8
*—7—250 $5|~|I_I
qu&. N
e 03099271
n

N9

anNg
=3 %
I
FLIa 4m0T
ANT°0 ke 40T Elﬂ GI—I W
& t=] [l
((£SE/40°T) + T)ar Q¥A=LNOA
QTN Wig
a
e SdONTAv-(LET58Ed] anot v
i o ASOH+
suld a)geua snoliea PUB QY 404 AB'T
anNg
ans
N
N9
N X AN
T “ H
an N et aw

as-

Fe

S55VdAl

i
ano
. -
s == ol
T ELIN AT 4" T,
i |

] o4 &2+ E=1 &
[ST °F T °T . T °T°T
((499°5/1L°0T) +1)2rOYA=LNOA % s Ez{&m&zé Ezr_“w..&.mizs F
o AdONMOV—8WBLBEA] 1“@ o
AE+ an - AS0" 4
AT+
[p—
114 104 AZ'E
T T] i T T I T

180

Power Circuitry 3

5.1.3

T T T ;3 T T T
ot/ pl | (0°0°'s) P2 _v'a'3 pedny
ey | meg | [T
LT

yas°KIddns Yo puT YN ‘A1l
/sabeyiop sayndwy/Kiddng samog,/ Haays

. an
ﬂ anNg
. 001
= o
< |—| - iH < |._.| & |._.| A,ul._.l
E] no NI T e
Sif\wxm&_‘:m 25&&&&:5 ang zwl._.lm_,mmlﬁ
o HABATOEZLSEL B i
in

{-sn)

siayndwe 4oy ASZT-

g 1 L] I

I I Z

181

5.1.4 Power Circuitry 4

S]
o1/5 01 | 0'G) pe3y 'w'a°3 BRI
way | “aeq | EDS
R
YISAL— A1y 9
/hg=/hddns samod/ 3aaus
El
ana
aNy
ﬂ ano H
LG 1007
Py - E Y o EELL) QN2 L
: . - zown
R angy TS T 84 N3 _;__wlﬂmmll_l aaw as T3 aNo
F i a 3 3 i LE]
T P il e L7 " gLl
it andbbdedis 0w e L = S=ToE
A & Av nuJ.l nud.l ns NIA g
HABOTOEZLSAL _ ey j:m .
sz n i 8dON zmﬂomchm_j n@ - o
e
abeys bupdnoy 00/0v 104 AT
v
T I i I T I T

182

5.1.5 Input Attenuation Stage for Analog Inputs (note: page cropped for
visibility)

183

184

5.1.6 Amplification and Filtering Stage for Analog Input 1 (note: page cropped
for visibility)

185

aldl T

(LU
W
LRy

A e

dh

186

187

5.1.7 Amplification and Filtering Stage for Analog Input 2 (note: page cropped
for visibility)

188

aldl T

(LU
W
LRy

A e

dh

189

5.1.8 ADC Schematics

1

o1/8 el | (0°0°) PRt ¥'@'3 PedIN
way | aieg | Wy 13715
LTS

43530V 314

/2av/ 1aays

[E]

e 1907 b 90T
&3 & o

AETH

-

AT+

AETH

EITALTIR)
207 g1

0SSAY 15—

190

PLL Schematics

5.1.9

, w , — T I Z I
T (0'0's) peapt w@'3 e
i ed | Y 8215
RIL
YIs'uo[3RIAUAY 3I0)Y (3114
Suoneiauag 32013/ Haays
N9
anar no1 anoe ot
T °T T °T
Y2793
I £ lcaviom
T7{2evaTo3d .
o LCARRCEL] a1 1x3
NAT1X3|
u2>m_,mmk4ﬂlx

| ==

44007
&
| s
u_:‘oaa
4207 d i
LBHYZ00293200 ang
vén
g] 4 I 4 |

191

5.1.10 Ultra 96 SoC Connectors

Ultra 96 Low Speed Connector

Ultra 96 High Speed Connector

I—
] %ﬂ%ﬁdﬁ T

]

E[Me=enie=RNARRRAARATYI IR 5888

Aot RN AARARARRRRRATIYSIEREGS

| Rev:

192

5.2 Analog Front-End Component Selection

The component selection process for the major elements in the OSHO circuit consisted
of comparing multiple different commercially available components. In order to select the ideal
parts for this design, a compromise was made between the price as well as performance. The
comparison between some of the top choices is listed below for each part (components in bold
are the ones that were selected):

5.2.1 Switching Circuit Elements

ADG936 Wideband Switch 1.65Vpc— 2.75Vpc Power Supply

Insertion Loss= 0.9dB (1GHz)

Contact Form: Dual SPDT

Absorptive and Reflective Options Available
Low Power Consumption (1uW)

Cost=$3.20
Teledyne Series High Speed Relay 5 Vpc Coil Voltage
(A150-20-5) Insertion Loss=0.1dB (1GHz)

Relay Contact Form: SPDT

1-20dB attenuation available (no need for
external resistors)

Operating Power<1W

Cost= $71.74
Panasonic RE High Speed Relay 4.5 V-pc Coil Voltage
(ARE104HC90) Insertion Loss = 0.2dB (1GHz)

Relay Contact Form: SPDT
Operating Power= 200mwW

Cost= $5.96
Axicom High Speed Relay 5 Vpc Coil Voltage
(IM43CGR) Insertion Loss = -0.33dB (900MHz)

Relay Contact Form: DPDT
Operating Power=100mWwW
Cost= $2.93

193

5.2.2 Phase Locked Loop

CDCE62005 (Clock Generator/Cleaner)

5 Configurable Outputs(differential)

Output Frequency Range: 4.25MHz-
1.175GHz

SPI Interface

Up to 3 reference inputs

Phase Detector Frequency=40MHz

Dual VCO Architecture

Integrated EEPROM to store default settings
Cost=$9.98

LMKO0482(Clock Jitter Cleaner w/ dual loop
PLLS)

14 differential clock outputs

Dual Loop PLL Architecture

Maximum Output Clock Frequency 3.1GHz
SPI Interface

Up to 3 reference inputs

Phase Detector Rate=155MHz

Dual Low Noise VCOs

Cost=$19.59

CDCE62002 (Clock Generator/Cleaner)

2 differential clock outputs

Output Frequency Range: 10.94MHz-
1.175GHz

SPI Interface

2 Reference Inputs(1MHz-500MHZz)
Phase Detector Frequency=40MHz
Dual VCO Architecture

Integrated EEPROM to store default
settings

Cost=$7.82

5.2.3 Variable Gain Amplifier

Differential Variable Gain Amplifier
LMH6401IRMZR

Voltage Gain: -6dB to 26dB
Voltage Gain Step Size: 1dB

194

Differential Input Impedance :100 Q
Input Voltage Range=-5.5to 5.5V
Maximum Input Difference=2.1V
SPI Interface

Cost=$19.52

Dual Channel Variable Gain Amplifier
LMH6882SQE/NOPB

Voltage Gain: 30dB to -9dB

Input Voltage Range=-0.6 to 5.5V
Voltage Gain Step Size: 1dB
Input Impedance: 50Q or 75Q
SPI Interface

Cost=$12.65

Dual Programmable Differential Amplifier
LMH2832IRHAT

Voltage Gain: 26dB to 6dB
Input Voltage Range=-0.5 to 5V
Voltage Gain Step Size: 0.25dB
Input Impedance: 100Q

SPI Interface

Cost=$19.02

5.2.4 Low Noise Amplifier

LMH5401IRMST

Input Voltage Noise= 1.25 nV/\VHz

Slew Rate=17,500V/ns

6GHz Bandwidth with 12dB voltage gain
Quiescent Current: 55mA

Ideal for DC and AC-coupled applications
Cost=$15.32

ADL5561

Input Voltage Noise= 2.1 nV/VHz
Slew Rate=9.8V/ns

Max Voltage Gain: 15.5dB

Gain Accuracy= +0.15dB
Quiescent Current: 40mA
Cost=$9.02

ADL5569 (Dual Differential Amplifier)

Input Voltage Noise= 1.0 nV/VHz a
Slew Rate=24V/ns

Max Voltage Gain:20dB

Gain Accuracy= +£0.15dB

Quiescent Current: 86mA per Amplifier
Cost=$37.20

5.2.5 Analog to Digital Converter

ADC08D1520ClY Sample Rate

1.5 GSPS

195

B/NOPB

Bandwidth 2 GHz
Resolution 8 Bits
ENOB 7.4 bits @748Mhz
Price $ 563.00
Sample Rate 1GSPS
Bandwidth 2.0 GHz
ADCS’?I\? Oll(:))EOCIY Resolution 8 Bits
ENOB 7.4 Bits @498MHz
Price $ 388.57
Sample Rate 1GSPS
Bandwidth 700MHz
HMCAD1520 Resolution 8 Bits
ENOB N/A
Price $113.18
Sample Rate 1GSPS
Bandwidth 650 MHz
HMCAD1511 Resolution 8 Bits
ENOB 7.9 Bits
Price $64.76

196

5.3 FPGA Datapath Design

This project will leverage the preconfigured Xilinx IP cores for the majority of the
datapath. This will lead to the completion of the task in an efficient and timely manner.
As shown in the following figure, the ADC digitizes the input signal and outputs the 8-bit
sample, along with the bit-clock and the frame-clock.

LCLKp —
LCLKy -

Figure 19. Single channel - LVDS timing 8-bit output of the HMCAD1511 ADC
Furthermore, the frame clock rising edge transitions are aligned with the framing

ADC data bits (DO and D7). This alignment helps a deserializer to correctly load parallel
data after de-serialization. In addition, the bit clock is typically center-aligned and both
clock edges are used to latch serial ADC data. Therefore, the bit clock is referred to as
a double data rate (DDR) bit clock.
Within the Ultra96, when a bit is routed through a clock-capable I/O, BUFIO buffer,
and/or BUFR clock buffer, it experiences a different amount of delay than the data and
frame signals. Therefore, the phase relationship between the signals is lost. To
compensate for this, the bit clock has to be realigned to the data and frame signals.

5.3.1 Bit Clock Alignment

Xilinx provides application notes on utilizing their IP cores for various needs. One
such application note also discusses clock alignment. The complete bit clock alignment
setup within the deserializer core is shown in the following figure.

197

SIGNAL_PATTERN = CLOCK
IDELAYE2

IBUFDS — IBUFIO
DCLK > IDATAIN pATAOUT |— & —> BitClk_MonClkOut
Clock D
BitClk_RefClkOut
Capable 110 =
C CE INC RST BUFR
ISERDESE2
BitClk
D
ISERDESE2 Q1
Master-Slave Q2
SDR Q3
&-bit o Bit Clock
Q6 Phase Alignment
BitClk_MonClkIn CLK Q7 State
BitClk_RefClkin CLKDIV Q8 Machine
DONE |—
CLK

BitClk_MonClkOut —» BitClk_MonClkin
BitClk_RefClkOut —» BitClk_RefClkin

Figure 20. Bit Clock Alignment Setup

The bit clock (DCLK) from the ADC is routed through an IDELAYEZ2 core to two
buffers. It is also sent to the D input of the ISERDESEZ2. This technique allows the
determination of the position of the rising and falling edges of DCLK. The Bit Clock
Phase Alignment state machine monitors the ISERDESE?Z2 outputs and the deserialized
and parallel captured clock bits. When all captured bits are equal (i.e., all Os or all 1s),
the state machine changes the delay of the IDELAYEZ2 core to align the internal clock to
the external clock.

Position when
entering the FPGA

Data and Frame X X X
- N A

demandrame X Y7 X

Data signal skew

until ISERDESE2.D — 7 R
BitClk_MonClk / \
- - Align the rising
Clock skew though BUFIO edge to one of
BitClk_MonClk = delayed DCLK until ISERDESE2.CLK the two DCLK
edges

Figure 21. Clock Skew through the Buffers

198

5.3.2 Frame Clock Alignment

Frameln_p
Frameln_n = = — [15:8]
ISERDESE2 1 1 1
= = b Register
Register Multiplexer Register —
| ISERDESE2 = | — [7:0]
Register
»
. !
@ @2 = b
® B EE ? g g
= = o = 0 X
°P 35 = g 3
° 3 g g & o
3 =
CLK — R
CLKDIV
RgrdPattern Frame Alignment State Machine

Figure 22. Frame Clock Alignment Block Diagram

After the bit clock (DCLK) has been properly aligned, the frame clock pattern
discovery is begun. The LVDS frame clock from the ADC is a digitized version of the
sampling clock that is phase aligned with the data. As shown in figure 22, the
ISERDESEZ2’s output is compared to a fixed value representing the expected frame
clock pattern, which is “11110000” for an 8-bit ADC. If the output of the ISERDESE?2
does not match the expected value, a bitslip operation is carried out on the frame and
data signals. When this output is finally equal to the programmed pattern, the bitslip
operation is stopped and the data and frame clock signals within the FPGA are
considered valid. Next, the received data is aligned because it is shifted with the frame
signal. Lastly, the bit clock and frame clock signals are used to capture and deserialize

the data bits.

5.3.3 Post-Deserialization

After deserialization, the custom Deserializer IP core combines 8-bytes from the
8 input channels into a single AXI packet and sends it to the FIFO buffer. The FIFO
buffer is being used for clock domain crossing from the ADC’s sampling clock frequency
to the global FPGA clock domain. Furthermore, the FIFO IP core uses the AXI stream
protocol which does not need an address channel and is always used to write data in
one direction. Therefore, a Xilinx AXI Direct Memory Access (DMA) core is utilized for
high-bandwidth direct memory access between an AXI4-Stream target peripheral and
the memory on the PS side. Lastly, an external trigger core will be added to the
firmware. This will enable a simple AXI-stream source which will start storing and
forwarding the data samples to the DMA block.

199

5.4 Software Design and Models

The ultimate goal is for us to have the GUI be wireless so that the user does not need to
have the Ultra96 connected to their laptop to see the visualization. This would allow many
people to see the same visualization. Also this result would be a more aesthetic and streamlined
approach. For this ultimate goal to be achieved the Ultra96 needs to start up the server on boot
so any computer on the same WIFI can type its IP into the browser to connect to it.Once the
connection is made the user will use the GUI to generate control signals. These control signals
will be sent back to the Ultra96 and processed. Once processed the Ultra96 will send back data
to the GUI for it to be visualized. A diagram illustrating this process from the GUI and server
side is shown below.

Server
: Response
Launch Client with | Begin
Start) Server IP ’ Persistent HTTP
Server
Response
: Done |Launch Base GUI (no
o » Wait for User Input | €—— waveform)
User Input Received
from GUI
Decode GUI Input
Update

GUI/Visualization

lDone

Send Encoded

Done Request to client
Process Server -
Response
| Wait for Server
Server Response
Response

Figure 23. High Level GUI State Diagram

200

Start —> Initialize Linux OS — Programmable Logic
(Write Bitstream)

lDone
Done |Initialize Analog Front

with lonic Framework | ¢ End (Though SPI

Start Web Server

Commands)
Done
‘ialt for Client Response
Requests for | Complete| gang Complete
Waveform Data or | | Response to Client
Response Config Requests
Complete Request Config
Recieved Front End Complete
Data
| Config
Send Data (HTML, Request Generate
waveform data, etc.) €«——— De;zdiesset;ver —Requesty| ooresponding SPI
to Client q ‘ Command
Config
Generate Complete
Corresponding AX| ———
Data Routing | command

Config. Request
Figure 24. High Level Server and Backend Software State Diagram

This GUI is being designed with the Angular framework. This means that we will be
using the Angular paradigm for the GUI design and will have higher flexibility due to the usage
of a few key features.

Dependency Injection is one of these key features. Dependency injection allows for
object dependencies to be put into an object that can be imported by the main object. This
allows for objects and code to operate independent of its dependencies. The dependencies can
be changed and updated without requiring the main object or code that rely on the dependency
to need updating.

Another key feature is the use of typescript. GUIs can be made in a multitude of different
languages but the Angular framework relies on the usage of typescript. This language can be
thought of as a superset of javascript. The main difference between javascript and typescript is
that type script is “heavily typed”. This means that javascript is like python where you do not
need to declare types for values. This allows for easier code but can cause a lot of problems
while running due to unpredicted interactions between variables of different types. Typescript
requires every variable used to formally have a type. This prevents issues such as using the
string “10” instead of the integer 10 in intermediate calculations. An example between variable
declarations can be seen below.

Javascript:

201

Var voltage = getVoltage();

Typescript:
Let voltage : number = getVoltage();

The javascript does not verify the data type of the voltage we are fetching. This means
that it is possible to store a string in the variable voltage. This would result in errors on runtime
without much explanation. The typescript requires that voltage be of type number and will not let
the code run if the getVoltage function has the possibility to return anything else. This prevents
unexplained errors on runtime by raising them during compilation.

Another Angular feature that will be used is RxJS. This reactive programming library
allows for the developer to execute operations on streams of data instead of waiting for the data
to arrive and then operating on it. This will allow for a much more responsive GUI. The Angular
paradigm revolves around being modular. This means that most objects in Angular are made so
that they can have other objects inside of them. Having this nested structure of objects is very
powerful because once an object is made it can become a building block for a more complex
object. Additionally, with the dependency injection, objects are independent of their
dependencies so if an object that is a building block of a more complex object is updated there
is no need to update the more complex object as well.

With the lonic framework that Angular easily integrates with, this GUI will also be
available on mobile iOS and Android devices. Despite having a screen of a completely different
screen, the GUI will still work because Angular allows for each component to have its own
HTML and CSS file that control they display on various devices.

By breaking down the GUI into its graphical, computational, and hardware-dependent
components the GUI can be much more modular and cleanly implemented. Below is a
breakdown of some services and hardware dependent components that this GUI will rely on.
Many of these components already exist in the WaveformsLive code but need to be modified to
also provide support for the OSHO.

e Utility.service.ts:
o Determines the proper prefix for the measurement (G,M,K,m,u,n)
o Creates name for the logging device being used for the rest of the code
o Add OSHO to possible device names for logging and rest of code
e Ui-helper-service.ts:
o Determines when to disable and enable buttons on the oscilloscope
control panel
o Returns an error message when the user tries to interact with the
disabled object
e Tooltip.service.ts:
o Creates error messages by referencing a master dictionary of potential
failures.
e Toast.service.ts:
o Creates toast notifications (non clickable notification on bottom of screen)
with variable time and message to notify user for specific event
occurrences

202

Storage.service.ts:
Manages interactions with backend SQL database
Gets data from SQL
Saves data to SQL
Removes data from SQL
Removes all data from storage
Saves listener settings for components

o Loads listener settings for components
Settings.Service.ts:
Loads device firmware onto data logging device
Saves local copy of data and log files
Sets up timeouts for data logging device
Exports CSV of data
Add OSHO firmware to list of firmwares to load

o Create non AWS hosted firmware path handling
Scaling.service.ts:

o Manages Unit conversions for waveform display
Logger-plot.service.ts:

o Maintains data for time and voltage captures

o Maintains plotting data

o Manages data visualization window shrinking

o Draws waveform

o Updates divisions in for oscilloscope
Loading.service.ts:

o Displays loading messages

o Add more messages to ensure user knows what operations are being

performed

o Create more GMU oriented branding for product
Export.service.ts:

o Creates exports for png and csv
Device-data-transfer.service.ts:

o Sets trigger levels for data capture

o Selects trigger source

o Selects data capture channels
Unit-format.pipe.ts:

o Manages unit conversion and final value display

o Modify to allow for displaying of full VPP value and increased bandwidth
Device-manager-page.ts:

o Maintains the different hardwares user can select

o Add OSHO as option for collecting data from

o Add OSHO firmware reference with non AWS path handling
Device-manager.model.ts:

o Manages plotting of waveform through WiFi connections

o Implement OSHO WiFi configuration
Pages/logger:

O O O O O

o O O O

203

o Maintains all data logging hardware and their respective configurations
and displays

o Add OSHO data logging device
o Create configuration file for OSHO communication
o Create HTML file for OSHO GUI displaying
o Create SCSS file for OSHO display customization
o Create OSHO Module for all parts of the code to reference for OSHO
usage
m app et log from localstorage in settings service
im assets Add show WiFi password to wifi setup modal
il components Get NIC status only when connacting to real device
B directives Add average formatting directive
i pages Show connected message on current network in saved networks list
i pipes Improve logging chart behaviar (WIF)
i services Update version to 1.4.9
i theme Remove ionicons dependency
E) index.html Remove GTM snippet
El manifestjson Upgrate @ionic/app-scripts to use webpack
El service-worker,s Upgrate @ionic/app-scripts to use webpack

Figure 25. Hierarchy of code project broken into main components of project

204

6. Prototyping & Early Testing Progress Report

6.1 Analog Front-End HACD Board Testing

The preliminary testing of the power circuitry on the HACD PCB uncovered multiple

errors in design and implementation. Some of these errors are listed below:

e Ferrite bead resistance mismatch

e Negative voltage regulator used instead of positive regulator
Furthermore, these errors were corrected by ordering new components and soldering them onto
the board. On the other hand, some early prototyping progress has also been made on the
OSHO circuit design. The newly designed attenuator and Chebyshev LPF circuits were
simulated in PSPICE and the results are presented below.

6.1.1 10:1 Attenuator Path Simulation

Differential it Attenuator (10:1)

Voltage vs. Time

Figure 26. 10:1 Differential Pi Attenuation Simulation

205

6.1.2 20:1 Attenuator Path Simulation

Differential it Attenuator (20:1)

VOFF =0
VAMPL = 20 R3
FREQ = 1kHz Value = 55.28
AC =
R7
Value = 55.28

Voltage vs. Time

(A) Attenuation (active)

< oQpr=0<

10V

-10V-

=20

0s 1.0ms 2.0ms 3.0ms 4.0ms 5.0ms
V(V1:+) - V(R3:1)
Time

Figure 27. 20:1 Differential Pi Attenuation Simulation

206

6.1.3 LPF simulation (500MHz cutoff frequency)

New 7™ order Chebyshev Type | Low-Pass Filter (500MHz) (Zin=Zout=500Q)

m
e
L2 L3
VTV T ST
22.2n 26.0n 22.2n

VOFF =0

VAMPL = 1 C3

FREg_=11M | 507p 11 1p ; 11.1p :L 507p =0
e

-
1 by

¥, iy
O LIER)

Figure 28. 500MHz Chebyshev Low Pass Filter Simulation

207

6.1.4 LPF simulation (250 MHz cutoff frequency)
New 7™ order Chebyshev Type | Low-Pass Filter (250MHz) (Zin=Zout=500Q)

L2 L3
AR TART AT N ST
44 3n 52.0n 44 3n R1
VOFF =0
VAMPL = 1 C3
FREQ=1M 10 1p 22 3p 1 22.3p :L 10 1p =0
AC =1 =0 —, =0

20

-20
-40
-60
-80

-100
3.0MHZ 10MHzZ 30MHZ 108MHz 300MHz 1.0GHz

1.6MHZ
DB{U(R1:2))
Frequency

Figure 29. 500MHz Chebyshev Low Pass Filter Simulation

6.2 VHDL Firmware Testing Progress
6.2.1 Vivado Project and Xilinx Zedboard Testing

The VHDL firmware has been successfully debugged and implemented. The errors
discovered in the block diagram and the xdc file have also been fixed. After generating the
bitstream, the firmware was loaded onto the Zedboard to test it using the Easyboard. A 50 MHz
clock signal was provided from the Analog Discovery 2, and the HMCAD1511 was programmed
using Serial Peripheral Interface (SPI) commands to output a test ramp signal serially using
LVDS; this ramp pattern goes from 0x00 to OxFF. The deserialized data measured using Xilinx’s
Internal Logic Analyzer (ILA) is shown in the following figure.

208

Waveform - hw_ila_2

Q + rr R BE QG Q< W [of o

ILA Status: Idle

Name 0 30 30 100 S0 500 700 . |so

¥user_probe_1[7:0]

Figure 30. Test Ramp Signal Waveform
After verifying the deserializer IP’s and the firmware’s functionality, the Jupyter
notebook code was modified to configure the HMCAD1511 into single channel mode
with an external input. An 800 kHz square wave was generated using a waveform
generator and input to the ADC. The ILA waveform is shown in the following figure.

Waveform - hw_ila_3
Q + *rr » B E @ Q 5 = Ml +f » Q

LA Status: Idie

Figure 31. 800 kHz Square Wave Signhal Waveform
6.2.2 Jupyter Notebook Prototyping Progress

After verifying the firmware’s functionality, the Jupyter notebook was run to extract the
ADC data and plot it using the Matplotlib library. The Jupyter notebook code obtained from the
previous HACD group was out of order, without comment and very time consuming to review
and debug. Furthermore, due to inconsistent SPI communication with the Easyboard, the output
was not exactly as expected. In addition, the data from the ADC is converted from 8-bit samples
to a 64-bit AXI packet. This 64-bit packet is then read from memory and results in the waveform
plotting taking a while. The current output of the waveform (shown below) is not an ideal ramp
signal but proves that we can get the data from memory and plot it. This is a key component of
this project. It can be noted that we are currently experiencing some clipping and flatlining but
the overall shape is still represented.

We plan on taking this proof of concept further during the winter break and ECE 493 by
making the conversion from 8 bit packets to plotted values more efficient so there is less time in
between visualizations. We will also be working to understand how we can take this proof of
concept and integrate it with the GUI and server so that both the GUI code and the ADC send
data in the proper formats. Thus far, the Jupyter notebook code was used to extract and plot the
test ramp signal. However, during the winter break and ECE 493, we plan on testing more
dynamic waveforms as discussed in section 7.

209

platTraces (Baving averape(r, 2)[#:ha

210 | | | |

5 10 1% e

Figure 32. Ramp Pattern Plotted in Jupyter Notebook

6.3 Software Development & Waveforms Live Cloning

As of now, we have successfully cloned a copy of the WaveformsLive repo and were
able to run a local version of this on the Ultra96. This means that the entire WaveformsLive GUI
is currently set up on the Ultra96 and will run if the “ionic serve” command is run in the
waveforms-live directory and then you type the IP into the address bar of any web browser.

For the GUI we have been reading through the current GUI code to better understand
how to modify and add to it without removing OpenScope functionality. It is important to us that
this product be a continuation of the previous product and not a new one all together. In addition
to this we are also learning typescript so we can know the language this project is written in.

210

* - 8 X
<« c @ Not secur 192.168.3.1 T ® @ O . H

SINGLE M sTOP W

Armed

Tme/ @ @

o Trigger

FORCE

v OscChi U]

\ @ woity Q@ ELNIN] @
\
\

= 0000V +

Frequency
Amplitude
DC Offset

Figure 33. Sample waveform from locally hosted WaveformsLive on Ultra96

7. Testing Plan for ECE493
7.1 Analog Front-End Testing

To verify the proper operation of the analog front-end, several key components of the
circuit will be tested individually. After the operation of these individual components is
verified, the system will be tested at a black box level to demonstrate the proper
input/output functionality. This comprehensive testing plan is presented in section 7.4 of
this document. These components are listed below:

211

7.1.1 Attenuator

To verify the successful operation of the attenuator, a function generator will be
used to provide AC inputs ranging from 100Hz-500MHz. The output voltage will be
examined and the negative gain will be recorded at each frequency. Furthermore, a DC
input voltage will be provided to the attenuator and the drop in voltage will be recorded
again. This experiment will confirm the functionality of the attenuator for a wide range of
input frequencies.

7.1.2 Low-Noise Amplifier (LNA)

Similar to the attenuator test, input signals with a varying range of frequencies
and amplitudes will be provided to the LNA and the relationship between input/output
voltage as well as the frequency response relationship will be plotted. This will allow a
clear understanding of the voltage levels or frequency cut-offs where the output signal
starts to saturate.

7.1.3 Variable Gain Amplifier (VGA)

The gain of the variable gain amplifier will be modified using SPI protocol and
input signals of various frequencies will be provided through a function generator. The
gain of the VGA will be verified through a commercial oscilloscope for frequencies up to
500MHz.

7.1.4 Phase-locked loop

An external clock shall be provided to the PLL and the clock multiplier will be
adjusted through SPI. The output frequency of the PLL clock signal will be measured
and verified.

7.2 VHDL Firmware Testing
7.2.1 Pyng Linux Port Testing

To test the successful porting of Pynq Linux onto the Ultra96-v2 board, a simple Pynq
overlay will be created with an AXI GPIO peripheral to control the onboard switches and LEDs.
This will verify that the system can load a bit file onto the programmable layer of the FPGA, and
will validate the successful boot of linux OS. The test is based off of a similar test previously
performed on the Xilinx Zedboard.

7.2.2 Firmware Testing

Having verified the firmware’s operation at 50 MHz using the Zedboard and the Analog
Discovery 2 for the clock input, the next stage would be to make sure the firmware works
properly at the required 1 GHz speed. An external fractional-n PLL frequency synthesizer will be
used for this purpose. Next the Ultra96-v2 board will be programmed with the OSHO VHDL
firmware and then tested using the Easyboard. The firmware’s functionality will be verified using

212

the ILAs. The HMCAD1511 Easyboard will be used to sample a known signal and send data to
the Ultra96 board, which will then be checked against the expected result.

7.2.3 Jupyter Notebook Testing

The Jupyter notebook needs to be optimized to obtain data from the Ultra96 board’s
memory, process it and plot the resulting data using Matplotlib. This will be a backup for the
GUI.

7.3 Server Testing & GUI Testing

To ensure that the GUI is successful and we never ruin the GUI version on the Ultra96
we will be testing the GUI locally on our laptops and once we have a final version we will port it
to the Ultra96. The goal is to test each new feature modularly. To achieve this we will be adding
small parts to our overall GUI on the version on our laptops, verifying that works, then porting
the code to the Ultra96. The first feature to test is the removal of the “clone me” tag on the home
page when the GUI is launched. This is a quick change as it is just graphical and can be quickly
tested on our computers.

The next testing step would be to add the Ultra96 to the list of devices that can be used
and configuring the device. To test the success of this we will be launching the local
WaveformsLive from our laptop and seeing if the GUI crashes when we select the Ultra96. If
this results in a crash we plan to follow the debugging trace to understand where the break
occurs and resolve this issue. With the addition of the new device we will be running through the
tutorial and signal generation with this device to ensure a successful feature addition.

Once we know that the Ultra96 option is successfully implemented we can push to the
repository from our laptops and pull that onto the Ultra96 to verify functionality from there as
well. With that feature tested we will need to use the OpenScope to test how data transfers from
one of the known working devices. With this we will get a better understanding of the method of
data visualization and can test the OpenScope on the Ultra96 mode to understand the
difference between the devices that we need to be cognizant of. With those differences in mind
we will test the waveform visualization with a sample data file on the Ultra96 and ensure that the
sample waveform can be visualized correctly. Modifications to the waveform calculation will be
made until we can get successful visualization of the sample waveform on the Ultra96 mode.
The different sample waveforms we will be using will be solid ground, solid 5V, a
5MGhz/50MGhz/100MGhz/200MGhz,500MGhz sine/square wave with Vpp of 5V, and
5MGhz/50MGhz/100MGhz/200MGhz,500MGhz sine/square wave with Vpp of 10V. This will
give us an understanding of the performance on simple waveforms at various speeds and
voltage ranges. Once that is done we can move onto testing data from a live circuit. We will do
this by making a simple circuit with a resistor and LED to verify the DC functionality. With the
DC functionality tested we will use an RC circuit to test the AC functionality. We will go through
a 286 Lab with this device to help verify with a realistic scenario.

If at any point in time the testing seems to be hitting a wall or progress cannot be made
we plan on reaching out to our contacts that work as full time GUI developers to get their insight
into the problem.

213

7.4 High-Level Overall System Testing
7.4.1 Input variation

The overall device will be tested using both 1 and 2 analog inputs. The
waveforms of these inputs will be varied between DC signal, sine waves, square waves,
triangular waves, and more. The ability of the device to accurately display these
waveforms on the GUI will be verified. The input voltage levels will be changed from O
Vep to 20 Vee to confirm that the input voltage requirement is met. The results from this
test will be compared at a high-speed commercially available oscilloscope.

7.4.2 Frequency Sweep

A function generator will be used to provide a periodic input signal to the device.
A frequency sweep from OHz to 500MHz will be conducted and the absence of aliasing
shall be verified for the bandwidth of our device. This will repeated in dual channel
mode where the frequency sweep will be conducted from OHz to 500MHz.

7.4.3 External Trigger System

The external trigger system will be used to test if repetitive waveforms can be
displayed in a steady manner for analyzation purposes. This will consist of applying an
input signal to the analog input of the oscilloscope and verifying that the oscilloscope
pauses data capture when an external trigger event occurs. This will be verified using a
high-speed commercial oscilloscope by recording both the trigger event and the input
signal.

7.4.4 External Clock Input

The external clock signal generated with a frequency synthesizer will be used to
test the function of the device at different clock frequencies. A high-speed commercial
oscilloscope will be used to measure the external clock signal, the input signal, and the
ADC sampling clock will be measured in order to verify that the ADC sampling clock will
be synchronized with the external clock input.

8. Task Allocations for Remainder of Project

8.1 Analog Front-End

Due to the fact that the preliminary design and component selection of the OSHO analog
front-end circuit is already complete, the task allocation for the remainder of the project are
listed below. The persons responsible for the task allocation listed above are Zaeem Gauher
and Umair Aslam. They will serve as the lead and the backup respectively.

Complete power circuitry testing of the HACD front-end board

Test the overall functionality of the HACD board after the power stage is finalized
Solder power circuitry components on the OSHO board once manufactured

Test and verify the repopulated power circuitry on OSHO PCB

214

e Solder the components that comprise the signal measurement chain and execute the
testing procedure as specified in section 7.

e Test the interface between the front-end PCB and the Ultra-96 board to verify correct
transfer of signals.

e Change schematics as well as select new components if necessary to produce a final
version of the OSHO board.

8.2 PCB Design

After the analog front-end schematics are finalized this semester, the initial design of the
custom PCB for the analog front will be conducted as early as possible to allow for a possible
second revision and adequate time for testing. This will likely be conducted over winter break so
that time is not wasted while waiting for the board is commercially printed. The lead for this
aspect of the project will be Timothy Bullock and the backup for the project will be Zaeem
Gauher. The following tasks are the tasks that are expected to make up this part of the project:
Creation and acquisition of component footprints and three-dimensional models
Initial planning and layout of PCB layers and overall high level layout
Completion of preliminary component layout and trace routing
Revision of the initial design after rules checking and advice of project advisor and PCB
layout experts.

Final rules checking, inspection, and design validation
Commercial printing and in-house population of components
Potential revision of the design if design issues are found in first revision

8.3 FPGA & Firmware Development

Since the Easyboard’s onboard oscillator and PLL were non-functional, the firmware was
tested using Analog Discovery 2’s 50 MHz clock. The next step would be to verify the firmware
works at its required 1 GHz speed. For this, an external fractional-n PLL frequency synthesizer
will be used. The firmware will most probably need further optimization to be able to meet the
timing constraints at this speed. The lead for this part of the project is Umair Aslam and the
backup for this aspect of the project is Timothy Bullock. The remaining tasks for firmware
development are:

e Modifying Jupyter Notebook code to send the appropriate SPI commands to configure
the ADC to operate in single mode at its required full speed using a 1 GHz frequency
synthesizer
Testing the Zedboard at 1 GHz
Porting Pynq Linux onto the Ultra96 board
Programming the Ultra96-v2 with the OSHO firmware
Adding an external trigger processing IP core to the datapath design
Final design validation, verification and testing

8.4 Server Back-End & GUI Web Client Development

The following list is a review are the remaining tasks we need to complete in
order to completely develop the web server and GUI design using the Ultra96. The lead
for the GUI portion of the project is Afnan Ali, and the backup is Evan Hoffman.

215

Conversely, as these aspects of the project are very interdependent, the lead for the
server back-end portion of the project is Evan Hoffman and the backup is Afnan Ali.

Solve timeout issue on the Ultra96 when logged in for an SSH session

Edit configuration file for the Ultra96 so that upon startup, the web application will
immediately be launched so that the user will not have to SSH into the device in
order to get it started

Determine the protocol that WaveformsLive uses to receive data

Send test data to our cloned version of the WaveformsLive application in order to
verify that we are using the correct protocol and that this will be the correct
protocol for our firmware to use.

Make basic interface modifications to the user interface of the WaveformsLive
application running on the Ultra96

Implementation of the SPI commands on the Ultra96 and verify that these
commands are able to interact with our analog frontend. Use MSP430
Launchpad to test the SPI signals

Modification of Waveforms Live and server to incorporate these control and
configuration aspects into the GUI

Modification of Waveforms Live and server to visualize data from OSHO board

216

9. Schedule for Remainder of Project

With the task allocations outlined in section 8, we can now create a schedule for the
remainder of the project that incorporates major tasks in each aspect of the project, significant
project milestones, and project deliverables. A Gantt chart for the remainder of the project
including the last 3 weeks of ECE492, winter break, and ECE 493 is shown in the subsequent
figures.

Task Name

[mwovion_] socans | soecmo 1 _ememn | sowam_] _wwcon]__iuman |t]
WP WIS

1 Compiete project execution

3 Complete Schematic Revisions
4 Continue Testing and repopulation of HACD Board [
5 Initial PCB Layout

6 PCB Printing & Component Delivery
7 PCB population and prefiminary circult board testing
2 Analog Front End Final Testing

9 FPGA Firmware

10 Finalize Debugging of Existing Firmware
1 Modify existing firmware to fest at full speed
12 Port FPGA Datapath to Ultra 96
13 Programming Ultra 96 to read waveform data
14 Add External Trigger Processing IP fo Vivado Project
15 Testing Added Functionalities
15 FPGA and Firmware Testing
16 Webserver and GUI
17 Fix Existing Issues with Server Setup (SSH timeout)
18 Determine Waveforms Live Protocol
19 Use test data to test visualization of data
20 Make basic Inferface Changes fo wavelorms live Interiace —
21 Implementation and testing of SPI commands on Ultrags
22 of live to control options
23 Modification of WL to visualize data from OSHO board
24 Start verifying GUI conirols Waveform visualization
‘ 26 ‘ECE 492 Design Document ll F.
27 ECE 493 Project Description, Testing Plan & WBS
28 ECE 493 Progress Report 1
29 ECE 493 Progress Report 2 & Presentation
30 ECE 4093 Final Report Draft
31 ECE 493 Final Report & Presentation
32 ECE 493 Poster

33 |System Integration and Final Testing
34 Overall system integration
35 Final high level system testing

Figure 34. Gantt for the Remainder of the Project: Now - Jan 19.

20 Jan 2020 27 Jan 2020 | 3Feba020 | 10 Feb 2020 17 Feb 2020 24 Feb 2020 2 Mar 2020

TIW|T|F|S|SIM|T|W|T|F|S|SIM|T|W|T|F|S|S|M|T|W|T|F|S|S|M|T|W|T|F|S|S|M|T|W|T|F|S|S|M|T|W|T|F|S|S|M|T|W|T|F|S|S

3 Complete Schematic Revisions
4 Continue Testing and repopulation of HACD Board

5 Initial PCE Layout

6 PCB Printing & Component Delivery EEEEE EEEEE |

7 PCB population and preliminary circuit board testing EEEEE EEEEE EEEEE |
2

9

Analog Front End Final Testing
FPGA Firmware [

10 Finalize Debugging of Existing Firmware

11 Modify existing firmware to test at full speed

12 Port FPGA Datapath to Ultra 96

13 Programming Uitra 96 to read waveform data and Test

14 Add External Trigger Processing IP to Vivado Project

15 Testing Added Functionalities

15 FPGA and Firmware Testing

16 Webserver and GUI
Fix Existing lssues with Server Setup (SSH timeout)

18 Determine Waveforms Live Protocol

|

19 Use test data to test visualization of data
20 Make basic Interface Changes to waveforms live Interface
21 Implementation and testing of SPI commands on Uliradé

22 of live to control options
23 Modification of WL o visualize data from OSHO board

24 Start verifying GUI controls Waveform visualization

26 ECE 492 Design Document

27 ECE 493 Project Description, Testing Plan & WBS |] |

28 ECE 493 Progress Report 1 |] |] |]

20 ECE 493 Progress Report 2 & Presentation || |] |] Bl

30 ECE 493 Final Report Draft
31 ECE 493 Final Report & Presentation

32 ECE 493 Poster

|as\em Integration and Final Testing ‘

34 Overall system integration

35 Final hig level system testing

w
]

Figure 35. Gantt for the Remainder of the Project: Jan 20 - Mar 16.

217

[e |
fame [MITIWIT[F TS [W[T WIT[F TS [sIM T [T [F [s[s]m [[T [F[5 [S]W [W [T [F LM W [T ¥ 5[5 M W I [S[s M W [[5 5]

1 Complete project execution

Analog Front-End and PCE Design

Complete Schematic Revisions

Continue Testing and repopulation of HACD Board

Initial PCB Layout
PCB Printing

PCB population and preliminary circuit board testing
Analog Front End Final Testing

FPGA Firmware

Finalize Debugging of Existing Firmware
Modify Existing Firmware to test at full speed

Port FPGA Datapath to Uttra 95

Programming Ultra 96 to read waveform data

Add External Trigger Processing IP to Vivado Project
Testing Added Functionalties

FPGA and Firmware Testing

Fix Existing Issues with Server Setup (SSH timeout)
Determine Waveforms Live Protocol

Use test data to test visualization of data
Make basic Interface Changes to waveforms live Interface
Implementation and testing of SPI commands on Ultrag96

Iive to control options

Modification of WL to visualize data from OSHO board
Start verifying GUI controls Waveform visualization

ECE 492 Design Document

ECE 493 Project Description, Testing Pian & WBS
ECE 493 Progress Report 1

ECE 493 Progress Report 2 & Presentation

ECE 493 Final Report Draft

ECE 493 Final Report & Presentation

ECE 493 Poster

System Integration and Final Testing
Overall system integration
Final high level system testing

10.

Figure 36. Gantt for the Remainder of the Project: Mar 17 - Completion.

References

[1] A. Wozneak, R. Nagpal, and R. Meruvia, “ECE - 492 Design Document.” 10-Dec-

2018.

[2] 96Boards. (2019). Ultra96. [online] Available at:
https://www.96boards.org/product/ultra96/ [Accessed 4 Oct. 2019].
[3] ‘HMCAD1511 Datasheet and Product Info | Analog Devices.” [Online]. Available:

https://www.analog.com/en/products/hmcad1511.html. [Accessed: 12-Oct-2019].
[4] C. Sisterna, “Zynq Architecture 7-Series FPGA Architecture,” International Centre
for Theoretical Physics. [Online]. Available:
http://indico.ictp.it/event/8342/session/10/contribution/68/material/slides/0.pdf.
[Accessed: 03-Dec-2019].

[5] “Ultra96-V2 Development Board | Zedboard.” [Online]. Available:
http://zedboard.org/product/ultra96-v2-development-board. [Accessed: 05-Dec-2019].
[6] “Intro to AXI Protocol: Understanding the AXI interface.” [Online]. Available:
https://community.arm.com/developer/ip-products/system/b/soc-design-
blog/posts/introduction-to-axi-protocol-understanding-the-axi-interface. [Accessed: 06-
Dec-2019].

[71 “AXl4 Overview.” [Online]. Available:
http://www.mrc.uidaho.edu/mrc/people/jfflEO_440/Handouts/AMBA Protocols/Xilinx
Docs/XTECH_B_AXI4_Technical_Seminar.pdf. [Accessed: 05-Dec-2019].

218

[8] “7 Series FPGAs SelectlO Resources,” Xilinx, 08-May-2018. [Online]. Available:
https://www.xilinx.com/support/documentation/user_guides/ug471_7Series_SelectlO.pdf
. [Accessed: 05-Dec-2019].

[9] M. Defossez, “Serial LVDS High-Speed ADC Interface,” Xilinx, 20-Nov-2012.
[Online]. Available:
https://www.xilinx.com/support/documentation/application_notes/xapp524-serial-lvds-
adc-interface.pdf. [Accessed: 05-Dec-2019].

[10] M. Defossez, N. Sawyer, “LVDS Source Synchronous DDR Deserialization (up to
1,600 Mb/s),” Xilinx, 22-Jul-2016. [Online]. Available:
https://www.xilinx.com/support/documentation/application_notes/xapp1017-lvds-ddr-
deserial.pdf. [Accessed: 05-Dec-2019].

[11] N. Sawyer, “LVDS Source Synchronous 7:1 Serialization and Deserialization
Using Clock Multiplication,” Xilinx, 18-Jul-2018. [Online]. Available:
https://www.xilinx.com/support/documentation/application_notes/xapp585-lvds-source-
synch-serdes-clock-multiplication.pdf. [Accessed: 05-Dec-2019].

[12] Digilent, “Digilent/waveforms-live,” GitHub, 08-Oct-2019. [Online]. Available:
https://github.com/Digilent/waveforms-live. [Accessed: 07-Dec-2019].

[13] P. Patel, “What exactly is Node.js?,” freeCodeCamp.org, 25-Jun-2019. [Online].
Available: https://www.freecodecamp.org/news/what-exactly-is-node-js-ae36e97449f5/.
[Accessed: 07-Dec-2019].

[14] “React vs Angular: An In-depth Comparison,” SitePoint, 30-Jan-2019. [Online].
Available: https://www.sitepoint.com/react-vs-angular/. [Accessed: 07-Dec-2019].

[15] O. Temitope, “Dependency Injection Explained in Plain English,” Codementor.
[Online]. Available: https://www.codementor.io/olotintemitope/dependency-injection-
explained-in-plain-english-b24hippx7. [Accessed: 07-Dec-2019].

[16] Sk, “How To Install NodedS On Linux,” OSTechNix, 25-Nov-2019. [Online].
Available: https://www.ostechnix.com/install-node-js-linux/. [Accessed: 07-Dec-2019].
[17] Texas Instruments, “LMH5401 8-GHz, Low-Noise, Low-Power, Fully-Differential
Amplifier” LMH5401 datasheet.

[18] Texas Instruments, “LMH6401 DC to 4.5 GHz, Fully-Differential, Digital Variable-
Gain Amplifier’” LMH6401 datasheet.

[19] Texas Instruments, “IMO1CGR High Speed RF Relay” IMO1CGR datasheet.
[20] TE Connectivity, “High Speed Multi-Mode 8-Bit 30 MSPS to 1 GSPS A/D
Converter” HMCAD1511 datasheet.

[21] Texas Instruments, “CDCE62002 Four Output Clock Generator/Jitter Cleaner
With Integrated Dual VCOs” CDCE62002 datasheet.

[22] Texas Instruments, “LP3878-ADJ Micropower 800-mA Low-Noise "Ceramic
Stable" Adjustable Voltage Regulator for 1-V to 5-V Applications ” LP3878-ADJ
datasheet.

219

[22] Texas Instruments, “LP38513-ADJ 3A Fast-Transient Response Adjustable Low-
Dropout Linear Voltage Regulator” LP38513-ADJ 3A datasheet.

[22] Texas Instruments, “TPS54327 3-A Output Single Synchronous Step-Down
Switcher With Integrated FET ” TPS54327 datasheet.

[23] Texas Instruments, “TL7660 CMOS VOLTAGE CONVERTER” TL7660
datasheet.

[24] Texas Instruments, “LMR70503 SIMPLE SWITCHER Buck-Boost Converter For
Negative Output Voltage in ygSMD ” LMR70503 datasheet.

[25] Texas Instruments, “TPS79301 Low-Noise, High PSRR, RF, 200-mA Low-
Dropout Linear Regulators in NanoStar™ Wafer Chip Scale and SOT-23 ” TPS79301
datasheet.

[26] Texas Instruments, “TPS72301 200-mA, Low-Noise, High-PSRR, Negative
Output Low-Dropout Linear Regulators” TPS72301 datasheet.

[27] Dallas Semiconductor, “DS1267 Dual Digital Potentiometer Chip” DS1267
datasheet.

12. Appendix C: OSHO PCB Bill of Materials

Reference Value Manufacturer Part # Quantity Quantity Price Price Price Total Per

Per Per 3 Per 1 Per 10 | Per Component
Board Boards 100 (At Ordered
Price Point)

C1 47uF TAJB476MO10TNJ 1 3 $0.28 $0.280 $0.183 $0.28

> C2-C4,C12, 10uF GRM188R61A106KE69J 37 111 $0.18 $0.122 $0.062 $2.29
C13, C18, C21,
C22, C27, C30,
C31, C33, C35,
C37-C39, C46,
C50, C51, C56,
C59-C61, C68,
C73, C75, C81,
C87, C94, C96,
C182, C184,
C185, C188,
C190, C199,
C203

> C5, C6, C14, 0.1uF CCO0402KRX7R7BB104 81 243 $0.10 $0.024 $0.009 $0.73
C17, C19, C20,
C23, C26, C28,
C29, C32, C34,
C36, C45, C47,
C52, C55, C57,
C58, C67, C69,

220

C74, C76-C78,
C80, C82-C84,
C86, C88, C90,
C91, C95, C97,
C151, C164,
C181, C183,
C186, C187,
C189, C191-
C198, C200-
C202, C204-
C231

> C7,C141,
C144, C145,
C148, C153,
C156, C158,
Cil61

10pF

CC0402KRNPO9BN100

27

$0.10

$0.019

$0.009

$0.08

> C8,C9

47uF

EMK107ABJ475KA-T

$0.26

$0.121

$0.082

$0.24

> C10, C48,
C70, C72, C93,
C150, C163,
C167, C168,
C170, C173,
C175, C177-
C179

1uF

EMK107B7105KA-T

15

45

$0.12

$0.043

$0.029

$0.44

> Cl11, C15,
C24, C53, C99-
C101, C104,
C106, C108,
C109, C112,
C114, Cl16-
C118, C121,
C123, C125,
C126, C129,
C131, C140,
C149, C152,
C157, C162,
C165, C166,
C169, C171,
C172, C174,
C176

0.01uF

CC0402KRX7R9BB103

34

102

$0.10

$0.018

$0.009

$0.31

> Cl6, C25,

C40, C41, C43,
C44, C54, C62,
C63, C65, C66

22uF

GRM188R61A226ME15D

11

33

$0.34

$0.236

$0.133

$1.46

> C42, C64,
C180

2.2uF

LMK107BJ225KAHT

$0.15

$0.062

$0.042

$0.19

> C49,C71

0.22uF

TMK107B7224KA-T

$0.11

$0.037

$0.025

$0.07

> C79, C85,
C89, C92

1uF

TAJA105K016RNJ

12

$0.31

$0.216

$0.117

$0.86

> C98, C102,
C103, C105,
C107, C110,
C111, C113,
C115, C119,
C120, C122,
C124, C127,
C128, C130

2200pF

GRM155R71H222KA01D

16

48

$0.10

$0.029

$0.013

$0.21

> C132, C135,
C136, C139

5.1pF

CCO0402CRNPO9BN5R1

12

$0.10

$0.020

$0.009

$0.04

> C133, C134,
C137,C138

11pF

0402N110J500CT

12

$0.10

$0.038

$0.020

$0.08

> C142, C143
C146, C147
C154, C155
C159, C160

22pF

0402N220G500CT

24

$0.10

$0.038

$0.017

$0.14

221

> D1, D5, D6, LTST-C191TBKT LTST-C191TBKT 15 45 $0.48 $0.260 | $0.122 | $1.83

D9-D12, D16,

D17, D20-D23,

D30, D31

> D2-D4, D7, 1N4148W-7-F 1N4148W-7-F 10 30 $0.16 $0.150 | $0.053 | $0.53

D13-D15, D18,

D28, D29

> D8, D19, D24- | MMBD452LT1G MMBD452LT1G 9 27 $0.38 $0.246 | $0.106 | $0.95

D27, D32-D34

> FB1, FB3, BLM18SG260TN1D BLM18SG260TN1D 4 12 $0.13 $0.075 | $0.051 | $0.30

FB5, FB11

> FB2, FB4, BLM18SG121TN1D BLM18SG121TN1D 9 27 $0.13 $0.075 | $0.051 | $0.68

FB6-FB10,

FB12, FB13

> FB14-FB20 BLM18KG102SN1D BLM18KG102SN1D 7 21 $0.10 $0.067 | $0.036 | $0.25

> GDT1-GDT3 SH90 SH90 3 9 $1.47 $1.250 | $0.967 | $3.75

Ji PJ-202AH PJ102AH 1 3 $0.75 $0.566 | $0.495 | $0.75

> J2,J3,36 1-1337543-0 1-1337543-0 3 9 $1.45 $1.450 | $1.190 | $4.35

> 34,35 CONSMA001-G CONSMAOQ01-G 2 6 3.14 2.9 2.73 $6.28

J7 57202-G52-20LF 57202-G52-20LF 1 3 $4.95 $4.550 | $3.960 | $4.95

J8 2-5177986-2 2-5177986-2 1 3 $4.98 $4.180 | $3.980 | $4.98
JP1 | 826926-3 826926-3 1 3 $0.27 $0.235 | $0.182 | $0.27

L1 ACM7060-301-2PL-TLO1 ACM7060-301-2PL-TLO1 1 3 $2.03 $1.530 | $1.400 | $2.03

L2 3uH SRN6028-3ROY 1 3 $0.39 $0.271 | $0.246 | $0.39

> L3, L4 2.2uH LQM21PN2R2MCHD 2 6 $0.31 $0.276 | $0.189 | $0.55

> L5, L7, L8, 22nH LQW18AN22NG80D 4 12 $0.24 $0.210 | $0.140 | $0.84

L10

> L6, L9 26nH LQW15AN26NG80D 2 6 $0.26 $0.223 | $0.149 | $0.45

> 111,113,114, | 44nH LQW18AN44NG80D 8 24 $0.24 $0.210 | $0.140 | $1.68

L16, 117, L19,

120, L22

> 112,115,118, | 52nH LQW18AN52NG80D 4 12 $0.24 $0.210 | $0.140 | $0.84

L21

Q1 CSD18532Q5B CSD18532Q58 1 3 $2.37 $2.010 | $1.610 | $2.37

> Q2-Q10 2N7002K 2N7002KT7G 9 27 $0.17 $0.160 | $0.057 | $0.51

> R1,R28,R29, | 90.9 RCO0402FR-0790R9L 19 57 $0.10 $0.012 | $0.004 | $0.08

R38-R41, R56,

R57, R66-R69,

R75, R79, R91,

R95, R106, R107

> R2, R7, R10, 10k RCO0603FR-0710KL 6 18 $0.10 $0.018 | $0.006 | $0.04

R13, R18, R19

R3 95.3k RCO0603FR-0795K3L 1 3 $0.10 $0.018 | $0.006 | $0.01

R4 22.1k RC0603FR-1022K1L 1 3 $0.10 $0.018 | $0.006 | $0.01

> R5, R16 3.57k CRO603-FX-3571ELF 2 6 $0.10 $0.010 | $0.006 | $0.01

> R6, R17 1.15k RCO0603FR-071K15L 2 6 $0.10 $0.018 | $0.006 | $0.01

222

R8 15.8k RCO0603FR-0715K8L 1 3 $0.10 $0.018 | $0.006 | $0.01
R9 11.5k RE0603FRE0711K5L 1 3 $0.10 $0.018 | $0.006 | $0.01

R1 | 274k RCO0603FR-07274KL 1 3 $0.10 $0.018 | $0.006 | $0.01
1

R1 | 30.1k RCO0603FR-0730K1L 1 3 $0.10 $0.018 | $0.006 | $0.01
2

R1 | 1120k RCO0603FR-07110KL 1 3 $0.10 $0.018 | $0.006 | $0.01
4

R1 | 180k RCO0603FR-07180KL 1 3 $0.10 $0.018 | $0.006 | $0.01
5

rR2 | 130k RCO0603FR-07130KL 1 3 $0.10 $0.018 | $0.006 | $0.01
0

rR2 | 24k CRO0603-FX-2402ELF 1 3 $0.10 $0.011 | $0.006 | $0.01
1
R22, R50 49.9 HRG3216P-49R9-D-T1 2 6 0.96 0.745 0.584 $1.49
> R24, R52 499 RCO603FR-07499RL 2 6 $0.10 $0.018 | $0.006 | $0.01
> R25, R46, 0 RC0603JR-070RL 10 30 $0.10 $0.015 | $0.005 | $0.05
R48, R53, R81,
R82, R97, R98,
R108, R113
> R23, R27, 5.36 RCO603FR-075R36L 4 12 $0.15 $0.035 | $0.011 | $0.04
R51, R55
> R26, R30, 49.9 RCO603FR-0749R9L 9 27 $0.10 $0.018 | $0.006 | $0.05
R47, R49, R54,
R58, R116,
R117, R132
> R32, R60 M 35401M0JT 2 6 $0.98 $0.837 | $0.590 | $1.67
> R33, R36, 1M RCO0603FR-071ML 4 12 $0.10 $0.018 | $0.006 | $0.02
R61, R64
> R34, R62 9.1M RCO0603FR-079M1L 2 6 $0.10 $0.018 | $0.006 | $0.01
> R35, R63 887k RCO0603FR-07887KL 2 6 $0.10 $0.018 | $0.006 | $0.01
> R31, R37, 105k ACO0603FR-07105KL 4 12 $0.10 $0.022 | $0.008 | $0.03
R59, R65
> R42, R121 200k RCO0603FR-10200KL 2 6 $0.10 $0.018 | $0.006 | $0.01
> R43-R45, 348 RCO0603FR-07348RL 13 39 $0.10 $0.018 | $0.006 | $0.08
R122-R131
> R70, R71, 2k RCO0603FR-072KL 4 12 $0.10 $0.018 | $0.006 | $0.02
R86, R87
> R74, R77, 0 RC0402JR-130RL 5 15 $0.10 $0.010 | $0.004 | $0.02
R90, R93, R118
> R73, R76, 15 RC0402FR-1315RL 4 12 $0.10 $0.012 | $0.004 | $0.02
R89, R92
> R78, R8O, 40.2 RC0402FR-0740R2L 4 12 $0.10 $0.012 | $0.004 | $0.02
R94, R96
> R72, R83, 174 RK73H1ETTP1740F 4 12 $0.10 $0.025 | $0.010 | $0.04
R88, R99
> R84, R85, 210 RCO0603FR-07210RL 4 12 $0.10 $0.018 | $0.006 | $0.02
R100, R101

223

> R103,R104, | 1.21k CRO603-FX-1211ELF 4 12 $0.10 $0.017 | $0.006 | $0.02
R110, R111
> R102,R105, | 4.99 RK73H1ITTD4R99F 4 12 $0.10 $0.021 | $0.008 | $0.03
R109, R112
> R114,R115 49.9 RC0402FR-0749R9L 2 6 $0.10 $0.012 | $0.004 | $0.01
> R119, R120 1.0k RCO603FR-071KL 2 6 $0.10 $0.018 | $0.006 | $0.01
> RLA1-RLA10 V23105A5001A201 V23105A5001A201 10 30 $2.62 $2.450 $1.960 $24.50
S1 L101011MS02Q L101011MS02Q 1 3 $2.03 $1.970 $1.630 $2.03
> S2,S3 PTS810-SJK-250-SMTR-LFS PTS810SJK250SMTRLFS 2 6 $0.17 $0.165 $0.165 $0.33
> TP17, TP18 TestPoint 5-146850-1 2 6 $0.10 $0.046 $0.046 $0.09
Ul TPS2400DBVR TPS2400DBVR 1 3 $2.07 $1.760 $1.410 $2.07
U2 TPS54327DDAR TPS54327DDAR 1 3 $1.48 $1.250 | $0.904 | $1.48
> U3, U4 TPS7A9201DSKR TPS7A9201DSKR 2 6 $2.06 $1.750 | $1.400 | $4.12
us TPS7A7001DDAR TPS7A7001DDAR 1 3 $1.81 $1.540 | $1.110 | $1.81
> Us, U8 TPS63710DRRR TPS63710DRRR 2 6 $2.49 $2.110 | $1.690 | $4.98
u7 TPS7A9101DSKR TPS7A9101DSKR 1 3 $1.76 $1.500 $1.200 $1.76
> U9, U15 CD74AC251M96 CD74AC251M96 2 6 $0.89 $0.740 $0.478 $1.78
> U10, Ul16 OPAG59IDBVT OPAB59IDBVT 2 6 $7.11 $6.430 $5.220 $14.22

U1l NVT2003DP,118 NVT2003DP,118 1 3 $0.87 $0.721 $0.465 $0.87
1
> Ul2,U14 LMH6559MF-NOPB LMH6559MF/NOPB 2 6 $2.73 $2.380 $1.960 $5.46

Ul DS1267BS-010+ DS1267BS-010+T/R 1 3 $5.39 $4.870 $3.870 $5.39
3
> U17,U19 LMH6401IRMZT LMH6401IRMZT 2 6 $19.52 $18.010 $17.200 $39.04
> U18, U20 LMH5401IRMST LMH5401IRMST 2 6 $14.98 $13.780 $11.390 $29.96
> U21, U22 OPA376AIDCKR OPA376AIDCKR 2 6 $1.69 $1.430 | $1.030 | $3.38

u2 HMCAD1511TR HMCAD1511TR 1 3 $64.76 $63.740 $61.520 $64.76
3

U2 | CDCE62005RGZR CDCE62005RGZR 1 3 $9.98 $9.030 | $7.490 | $9.98
4

U2 | NvT2010PW,118 NVT2010PW,118 1 3 $0.97 $0.820 | $0.630 | $0.97
5

u2 XRA1405IL24-F XRA1405IL24-F 1 3 $1.93 $1.560 $1.250 $1.93
6

XT | FY2500068 FY2500068 1 3 $0.73 $0.614 | $0.513 | $0.73
AL1

Total Per Board: | $272.49

224

