
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
 

 
 
  
 
 

 

 

ECE-493 Final Paper 

Differential Power Analysis 
Testbed 

 

Differential power analysis is a type of side channel attack used to compromise a 
cryptographically secure system by obtaining the secret key the device uses to 
encrypt data. This method is proven effective on many different algorithms, 
including the advanced encryption standard, AES one of the most secure 
encryptions commonly available.  Of the numerous different platforms capable of 
running such cryptographical algorithms, one of the most notable types is the field 
programmable gate array, or FPGA.  FPGAs are used widely in industry as they 
allow one to inexpensively create different circuits.  Currently, in order to conduct 
differential power analysis on an FPGA based system, a singular unit can be used 
which requires a user to take numerous measurements with a digital oscilloscope.  
This method is tedious, repetitive and inefficient. An existing automated solution 
exists but it is limited in its ability to test different chips as well as requiring the 
user to purchase a new board with each chip. The purpose of this project is to build 
a generic automated controller circuit to conduct these tests based upon a set of 
user defined parameters.  The control software will be run on a computer which 
will have a graphical interface with which the user can control the FPGA system. 

May 2nd, 2011 
Patrick Adams 
Lindsay Walton Dr. Kaps 
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1 Introduction 
 
With increasingly sensitive information being stored electronically, more focus has been placed 
on keeping data secure.  To that end, encryption algorithms have become increasingly complex, 
rendering attacks difficult or, in some cases impossible.  However less has been done to improve 
the platforms on which these algorithms are implemented.  Common platforms such as Field 
Programmable Gate Arrays (FPGAs) have been found to be susceptible to power analysis 
attacks. 
Differential power analysis (DPA) attacks are particularly effective against FPGA based 
cryptographic implementations.  By examining the power consumption of a device implementing 
an encryption system, the attacker is able to use this side-channel attack to “look inside” the 
device without having to physically examine the hardware.  This ability provides the attacker 
with newer, more subtle exploits that often enable him or her to comprise seemingly 
impenetrable cryptographic systems.  This poses the cryptographic community with the 
challenge of developing implementations less susceptible to DPA attacks. 
In order to harden FPGAs against DPA attacks, one must first have a manner by which to test a 
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chip's susceptibility to the attack.  The best platform currently available for such testing is the 
Side-channel Attack Standard Evaluation Board (SASEBO). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As shown above, the SASEBO features two FPGAs, one to act as a “controller” (highlighted in 
blue) which will drive the attack, and one to act as the “victim” (shown in yellow).  This setup 
makes an excellent platform for testing side-channel attacks, except in the case of DPA.   
In any DPA attack the physical characteristics of the victim plays a large role in effectiveness of 
the attack.  As such, it is necessary for the developer to be able to run an attack on numerous 
different victim FPGAs, a feature that is not possible with SASEBO's victim-on-board setup.  
These, along with other issues to be discussed later, preclude SASEBO from being used as a 
viable testbed.  Thus it is apparent that a new testing platform is needed in order to aid 
development of cryptographic implementations that resist DPA attacks.  To that end, it is our 
intent to expand upon the SASEBO design, and develop a new testbed capable of evaluating an 
FPGA's vulnerability to DPA attacks. 
 

The SASEBO-G 
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2 Statement of Need 

2a Basic Attack 

For this project, we are to build an attack board that conducts differential power analysis (DPA) 
with the goal of attacking an FPGA running the Advanced Encryption Standard (AES-128) with 
a key size of 128 bits.  The method as described by William Hnath and Jordan Pettengill in their 
paper: Differential Power Analysis: Side Channel Attacks in Cryptography focuses on obtaining 
the cipher key used in the encryption process by using statistical analysis and correlation on 
power traces recorded while the victim board conducts the encryption.  The attack that we will 
be implementing will focus on the final step of the AES encryption algorithm which makes the 
computation for the attack significantly simpler as a longer component of AES is not 
implemented in the final phase.  In AES, data is operated on one byte array1 of 16 bytes at a time 
with a key array of equal size.  The key that is used is generated by AES is based on the key 
schedule and each round of encryption includes part of the original key.  Recording the final 
round for each subsequent encryption allows an attacker to get one byte of this key at a time 
instead of attacking the whole key at once.  Once power consumption of the cryptographic chip 
is recorded by obtaining several thousand2 traces, statistical correlation can be performed on the 
data.  Using previous power measurements taken on operations with known keys, an attacker is 
able to make an accurate guess as to what the key is. 
 

2b Problem Statement 

While this method of attack is generally effective, it has several notable flaws.  The first issue of 
this approach is that currently available attack platforms require manual operation.  A user must 
manually obtain more than 10,000 power traces to obtain only 8 bits of the encryption key.  For 
AES-128, this means the user must obtain a minimum of 4,096 separate power traces in order to 
obtain a full key.  Hnath and Pettengill have been shown that an average of 10,000 traces is 
necessary to produce an accurate key.  The user's task is further complicated by limitations of the 
digital oscilloscope used to obtain these power traces.  Generally, the oscilloscope is incapable of 
storing the needed 4096 traces for a key.  This forces the user to periodically dump the memory 
of the oscilloscope to the PC during the attack.  Due to the extreme number of operations 
required to definitively obtain a key via this method, it is apparent that automation is necessary.  
Development of an automated testbed would allow one to attack a desired device quickly and 
efficiently. 
 

In order to efficiently develop such a testbed, the use of open source tools has been chosen to 
expedite development time.  Several aspects of the setup, as will be discussed later, would 
require communication between different elements.  While proprietary drivers such as Digilent's 
Adept program are available, most are only compatible with a Windows operating system, and 
can be limited in functionality.  Open source drivers, while often intended for use with Linux 
operating systems, could potentially be modified in order to remove any platform dependence.  

                                                 
1
 4x4 array 

2
 On average, more than 10,000 traces are needed to accurately get the key  
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This would not only allow the testbed to operate with numerous operating systems, it would also 
allow one to  efficiently design a testbed by allowing one to optimize the drivers to work with 
their equipment, while reducing overall costs. 
 

With these considerations in mind, it is apparent that a platform independent, automated testbed 
would enable more efficient DPA attacks on all encryption algorithms, if they are susceptible to 
DPA. Our initial focus will be on the AES encryption algorithm.  This increased efficiency will 
lead to a better understanding of vulnerabilities in the implementation of a given algorithm which 
will help produce more secure implementation techniques for cryptographic modules in the 
future. 

3 Approach and Requirements 
 

3a Oscilloscope Control 

Many thousands of measurements are required to successfully conduct a differential power 
analysis attack.  Current oscilloscope memory limitations require a human operator to download 
the data once the memory is full and then restart the attack with a new set of data points.  An 
ideal system would be able to pause while the data is uploaded to a data file on the computer.  A 
requirement for our system is that the controller board be able to pause the cryptological 
processing unit while the data from the oscilloscope is saved on the computer.  Additionally, 
most DPA attacks focus on a particular step in the encryption process, in our case, the 
substitution round of the final phase.  As such, one does not require power measurements for the 
entire operation of the encryption system, just traces for the operations of interest.  These areas 
of interest are not necessarily periodic and only occur for small periods of time.  To increase 
efficiency, our system will have to detect when such an area of interest is occurring, at which 
point it would enable the oscilloscope’s recording mechanism.  To control the oscilloscope, the 
control FPGA board we are designing must then have an interface connected to the oscilloscope 
which allows for more precise measurement and removal of erroneous data. 
 

3b FPGA/PC Interface 

Today’s standard for peripheral communication is the Universal Serial Bus standard or USB.  
This connection has a variety of uses, for an FPGA data transmission and the ability to program 
the FPGA as well as the system FLASH are the primary uses.  A derived requirement is that the 
control FPGA board must have a USB interface, which will support programming as well as 
supporting data transmission.    While USB is universal, the driver software to program and 
communicate with the FPGA board is not.  Many systems today use open source software which 
may not have an official supported interface driver.  In order to be applicable to as many current 
researchers as possible our system must support the USB interface through Linux as well as 
Windows in addition to other open source development tools.   
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3c Control FPGA/Victim FPGA Interface 

As part of being able to perform a DPA attack, our system must interface with many different 
cryptologic boards and must have a bridge which has hirose connections as well as optional pin 
out connections to allow for the optional cases that the victim board does not have a hirose 
connection to interface with our controller board.  Our specific test system will interface with a 
Spartan 3E Starter Kit as the victim board.  
 

3d Control Program (Software)  

In order to automate the attack, a software program will be needed on a PC, which will interface 
with the FPGA boards.  For greatest user flexibility a GUI software program would be preferred.  
To simplify the development process, our design incorporates a modified version of the 
SASEBO control software. 
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4 Design 
 

4a Black Box 
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Our first step in designing the basic setup was to determine what components we will use.  We 
decided to use the Nexys2 board as the controller because open source, Linux compatible drivers 
already exist, which will help us satisfy the requirement that the system be able to work with a 
Linux PC.  The Spartan 3e Starter Board was selected for the victim due to its availability in the 
cryptography lab, thereby reducing overall cost. 
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4b White Box 
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Our second preliminary design focused on identifying necessary interfaces between devices at 
run time.  A USB interface will need to be setup to pass data to the controller FPGA.  The 
controller and victim will communicate via their respective Hirose FX-2 connectors.  The trigger 
signal will be determined by the PC’s control software.  The oscilloscope will send data to the 
PC via a USB connection.  The PC control software will interface with preexisting post-analysis 
scripts in Matlab.  The control software is based on an existing control module that was designed 
for SASEBO.  
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4c Unit Designs 

 

 
 
 
After designing the overall layout of the test bed, the individual FPGA’s were considered.  To 
meet our requirements, the controller will drive the victim.  The controller will send control 
signals as well as data.  Once the encryption operation is complete on the victim board, the 
controller will receive back the next byte of ciphertext.  To simplify communications we decided 
to pursue a master/slave communications protocol, in which the controller would send its system 
clock across the bridge module to drive the victim.  There is an optional clock connection on the 
bridge module which would allow a user to drive one or both boards at a desired frequency with 
an external clock.  Through examination of established methods of sending data from a computer 
to an FPGA via USB, it became apparent that an adapter module would be needed to convert the 
raw USB signals into data usable by the controller.  This adapter module sits between the USB 
chip and an asynchronous FIFO used to send data to the attack module on the control FPGA.  All 
subsequent control signals are then handled by this attack module. 
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The victim board will house the cryptographic module that is being attacked.  This module will 
be modeled after SASEBO hardware which includes synchronous FIFOs for signals over the 
Hirose connection. 
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4d USB Module 

 
 
This is a more in-depth view of our USB interface.  The Digilent communications driver was 
designed to allow the PC to directly read to, and write from a RAM on the FPGA.  SASEBO, 
however, was designed to communicate to the PC via byte streams that had to pass through 
multiple FIFO's.  In order to connect these two protocols, we reduced the RAM size down to two 
addresses: one for data sent by the PC that would be streamed to the victim, and one that would 
hold data from the victim that the PC could read.  Various synchronization signals used by the 
SASEBO FIFO's, such as write enable and read enable, had to be controlled by the USB 
interface.  To accommodate this, two synchronization controllers were connected to both the 
incoming, and outgoing FIFO's.  Our testing confirmed that this USB interface was able to send 
data through the SASEBO control module correctly, using the Digilent protocol. 
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4e Bridge Schematic 

 

The schematic on the previous page is a logical layout of our bridge module.  The two hirose 
connections on either end connect to one another as well as a generic pin out in the middle of the 
board.  This pin out is designed to be connected to by a standard 50x2 pin ribbon cable.  This pin 
out is included to interface with boards which do not feature hirose connections. 
 

4f PCB Layout 
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This is the physical layout of our bridge module.  The top trace featured in red primarily consists 
of ground connections with a few communication signals.  The design feature of having the 
ground connections flood the top layer is intended to reduce signal noise on the communication 
pins.  The communication signals featured in blue are all located on the bottom layer of the 
layout.  An external clock connection was added by our faculty supervisor’s request which 
would allow an operator to drive one or both boards off of an external clock.  Jumpers are used 
to control how this external clock is connected to the boards. 
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4f Flowchart 

 

 
The flow chart above diagrams our current protocol for the operating the attack. After all 
elements are placed in reset, data and control information is passed to the control board from the 
PC. The data is then passed to the victim, which encrypts the data according to control signals 
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received from the controller. At the appropriate time, the PC set a trigger signal, causing the 
oscilloscope to record power traces until the trigger signal falls. In the event that the 
oscilloscope's memory is exhausted, execution of the rest of the testbed is suspended while the 
power readings transfer from the oscilloscope's internal memory to a data file on the PC. When 
the full attack has completed, back-end analysis scripts are invoked to process the data. 
 

4h Software Design 

 

 
 
The overall design of the software for the PC control was to maintain SASEBO’s core 
functionality and components.  As such, only the communications port section of code needed to 
be modified.  Due to C#’s limitation on pointer handling, an interface program was written in 
C++ which was able to be called from the C# SASEBO software.  This C++ program interfaced 
directly with the Digilent USB driver API with headers which were provided in the C 
programming language. 
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5 Cost Figures 
 
 

Unit Cost Quantity Subtotal 

Hirose Connector $12.00 4 $48.00 

Nexys2 Board 
(Donated) 

$0.00 1 $0.00 

Spartan 3E Starter 
Board (Donated) 

$0.00 1 $0.00 

PCB Fabrication $50.00 1 $50.00 

Code Time (C#) $43.00 80 $3,440.00 

Schematic Design $31.00 42 $1,302.00 

Code Time (VHDL) $36.00 100 $3,600.00 

Debugging Time 
(System) 

$30.00 45 $1,350.00 

Total   $9,790.00 
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6 Results 
 
 

6a USB 

 

 
 
This is a simulation of the USB interface and it’s connection to the PC.  The w, ASTB and 
DSTB signals are used by the PC to tell the board what kind of operation to perform, and DB is 
the bidirectional bus used to transfer data.  The usb_wait signal is used by the board to 
synchronize communication with the PC.  In the case of a write request from the PC, the board 
will bring usb_wait to acknowlage the request, and will keep this signal high until the data has 
been passed to the SASEBO control module.  In the case of a read request from the PC, the 
board will delay raising the usb_wait signal until a byte from SASEBO has been loaded onto 
DB. 

6b Communications Testing 
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For prototyping and final evaluation of success, we determined that a testing circuit would be 
beneficial.  The overall design is shown above the necessary components pictured.  The test 
software communicated with a SASEBO like control unit via USB which then passed data to our 
victim.  Once on the victim, to ensure that data was in fact being processed, we inverted all of the 
bits of the data and sent it back.  The control unit then passed the information back to the test 
software via the USB device. 

6c SASEBO Integration 

The final goal of our project was to have our solution be capable of running a victim FPGA 
through a series of encryptions which would allow us to run a DPA attack.  As much of the code 
for the hardware and software was already implemented by SASEBO, we just had to integrate 
our new or redesigned components with theirs and ensure functionality.  What we found was that 
while we could send information through the SASEBO waveform software, we would not get 
any information back.  In order to debug this, we wrote an additional piece of software in which 
we controlled the information being sent.  This software also did not get any data back from the 
AES core on our victim board.  After using a logic analyzer to trace the signals, we found that 
the data was in fact getting passed by our control module to the victim, however once the victim 
received it no operation was done.  We unfortunately ran out of time to find the error; however, 
we believe that it may be involved with the way that their AES core is initialized, or that the 
synchronous FIFO on the victim board was not coded properly, it appeared that data would 
inconsistently appear on the victim.  We found this error by putting one byte of data on the LEDs 
on the victim board.  Should improvements be made to our design, they must first overcome the 
communication problems with the SASEBO AES core or replace it with a different 
cryptographic module. 

7 Maintainability Maintenance and Retirement 
 

7a Potential Use 

As mentioned before this platform is intended for anyone who wishes to test any cryptographic 
implementation’s susceptibility to a DPA attack.  When completed, our test bed will first be used 
by Dr. Kaps of the ECE department to aid him and the Cryptographic Engineering Research 
Group (CERG) with their research on DPA attacks.  Our final product could potentially be 
turned into a commercial product but with limited distribution to academia and government.  
Since our goal is to make a system that can attack any hardware, one would only need the code 
we create in order to set up one’s own test bed using their hardware implementations for both the 
control and victim. 
 

7b Design Alternatives 

Alternatives for our current design that could impact costs are definitely the various 
implementations of the bridge connector.  There are several low cost implementations or wires 
that could be used including making our own printed circuit board.  All of these implementations 
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have a significantly different cost as well as man hour requirement.  Currently our project uses 
only ROHS certified components and is designed to be as environmentally friendly as possible.  
It is very difficult for our project to find anything that is not pre-designed to have minimal 
environmental impact and thus any changes we make will likely have little to no impact on the 
environment. 
 
An alternative would be to use a control board other than the Nexys2.  This board was chosen for 
our project because of its low cost as well as Linux compatibility.  The control FPGA on this 
board is significantly more powerful than required so a cheaper board could be used if the 
appropriate external connections were present.  An additional benefit of the Nexys2 is the 
presence of the hirose connector for interfacing with other Digilent boards such as our chosen 
victim for testing, the Spartan 3E starter kit.  

7c Maintenance Considerations 

Maintainability for our project is designed to be low and is expected to be able to be used for a 
longer period of time without updates.  Should a designer want to update or add a new module to 
our project, our choice of an FPGA based solution means that the designer just needs the original 
source code and they can compile their module into our design.  As the design is an automated 
testing solution that can be changed based upon inputs from a computer for each test little 
updating is foreseen.   

7d End of Life Considerations 

Should one of the boards in this platform reach the end of its lifetime, it can easily be replaced by 
configuring a new FPGA board with our platform code.  In the case that the bridge module 
should need replacing, we intend to include the PCB layout for the module in our final 
documentation, so that one may recreate this connector easily.  Various companies offer PCB 
recycling services that would allow for more environmentally friendly disposal of retired 
components.  
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Appendix A: Proposal 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
 

 
 
  
 

 

 

ECE-492 Proposal 

Differential Power Analysis 
Testbed 

Differential power analysis is a method of side channel attack which allows anyone capable of  

monitoring a cryptological system to use a set of known data points to obtain the secret key used to 

encrypt data on that specific device.  Differential Power Analysis is proven effective on many different 

algorithms, including AES-128.  There are many different systems capable of running such cryptological 

algorithms, one notable type being the field programmable gate array, or FPGA.  FPGAs are used widely 

in the academic community as research tools as they allow one to inexpensively prototype many different 

circuits on one chip.  Currently in order to conduct differential power analysis on an FPGA based system, a 

singular unit is used, requiring a user to take numerous measurements using an oscilloscope.  This 

method is tedious and requires a user to repeat many times in order  to ascertain the cryptological key 

with any certainty.  The purpose of this project is to build an automated controller circuit to conduct 

these numerous tests based upon a set of user defined parameters.  The control system will be run on 

a computer which will have a command line interface with which to control the FPGA system. 

October 15th, 2010 
Patrick Adams 
Lindsay Walton Dr. Kaps 
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Introduction 
 
Differential Power Analysis (DPA) is a type of side channel attack, an attack that gains 

information based upon the physical implementation of the cryptological system.  DPA is a 

method of attack that measures power consumption and can be successfully conducted on 

various symmetric cryptological systems as a method of being able to illicitly procure the 

encryption key.  A symmetric cryptological device means one in which the key used for 

encryption and decryption is identical.  DPA attacks are successful against many different 

encryption algorithms including RSA, DPA
3
, and AES-128

4
.  This project focuses on AES-128 DPA 

attacks on FPGA based systems which require a lot of human operator time as there is a set of 

specific power points of interest after which the oscilloscope memory is full and the test must 

be restarted.  The board that is currently used for this type of research is the side-channel 

attack and evaluation board (SASAEBO).  This board integrates two FPGA modules, one 

controller FPGA and one crypto FPGA which allows for an operator to set operational 

parameters and then allow the control module to conduct the attack.   

 

Statement of Need 

Basic Attack 

For this project, we are focusing on using DPA to attack an FPGA running AES-128, using the 

method described by  William Hnath and Jordan Pettengill in their paper: “Differential Power 

Analysis: Side Channel Attacks in Cryptography.”  This method focuses on obtaining the cipher 

key used in the final step of the AES encryption process.  Focusing on this final step is 

advantageous because the Mixed Columns step is omitted, which makes the the attack 

computationally faster.  After sending a 16 bit message to the test chip, the resulting 128 bit 

ciphertext is broken into individual bytes.  Since AES encrypts each byte individually, one can 

analyze a given byte of the ciphertext to obtain the corresponding byte in the encryption key.  

For a given byte, one attempts to decrypt each byte using an arbitrary, “guessed,” value for the 

key.  This attempted decryption must then be repeated 256 times, each with a unique key 

guess, in order to obtain power readings for all possible values of the key.  Each of these 256 

traces are then compared against the actual AES power trace for the same byte to determine 

which of the key guesses is actually correct. 

 
Problem Statement 

While the afore mentioned method is generally effective, it has several notable flaws.  The first 

issue of this approach is that the attack must be manually operated.  A user must manually run 

256 decryption attempts to obtain only 8 bits of the encryption key.  For AES-128, this means 

the user must obtain a minimum of 4,096 separate power traces in order to obtain a full key.  

                                                 
3
 (Mangard, Oswald, & Popp, 2007) 

4
 (Velegalti & Yalla, DPA Attacks on FPGA Implementation of AES, 2010) 
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Hnath and Pettengill have been shown that an average of 10,000 traces are necessary to 

produce an accurate key.  The user's task is further complicated by limitations of the digital 

oscilloscope used to obtain these power traces.  Generally, the oscilloscope is incapable of 

storing the needed 4096 traces for a key.  This forces the user to periodically dump the memory 

of the oscilloscope to the PC during the attack.  Due to the extreme number of operations 

required to definitively obtain a key via this method, it is apparent that automation is 

necessary.  Development of an automated testbed would allow one to attack a desired device 

quickly and efficiently. 

 

In order to efficiently develop such a testbed, one would require the use of open source tools.  

Several aspects of the setup, as will be discussed later, would require communication between 

different elements.  While proprietary drivers such as Digilent's Adept program are available, 

most are only compatible with a Windows operating system, and can be limited in functionality.  

Open source drivers, while often intended for use with Linux operating systems, could 

potentially be modified in order to remove any platform dependence.  This would not only 

allow the testbed to operate with numerous operating systems, it would also allow one to  

efficiently design a testbed by allowing one to optimize the drivers to work with their 

equipment, while reducing overall costs. 

 

With these considerations in mind, it is apparent that a platform independent, automated 

testbed would enable more efficient DPA attacks on the AES encryption algorithm.  This 

increased efficiency will lead to a better understanding of vulnerabilities in the algorithm which 

will help produce stronger encryption algorithms in the future. 

Approach and Requirements 
 
Oscilloscope Control 

Many thousands of measurements are required to successfully conduct a differential power 

analysis attack.  Current oscilloscope memory limitations require a human operator to 

download the data once the memory is full and then restart the attack with a new set of data 

points.  An ideal system would be able to pause while the data is saved off to a file on the 

computer.  A requirement for our system is that the controller board would be able to pause 

the cryptological processing unit while the data from the oscilloscope is saved on the computer.  

The method of which a DPA attack is conducted requires taking measurements of specific areas 

of interest.  These areas of interest are not a periodic occurrence and only occur for small 

periods of time.  Our system will have to detect when such an area of interest is occurring, at 

which point it would enable the oscilloscope’s recording mechanism.  To control the 

oscilloscope, the control FPGA board we are designing must then have an interface connected 

to the oscilloscope which allows for more precise measurement and removal of erroneous data. 

 

FPGA/PC Interface 
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Today’s standard for peripheral communication is the Universal Serial Bus standard or USB.  

This connection has a variety of uses, for an FPGA data transmission and the ability to program 

the FPGA as well as the system FLASH are the primary uses.  A derived requirement is that the 

control FPGA board must have a USB interface, which will support programming as well as 

supporting data transmission.    While USB is universal, the driver software to program and 

communicate with the FPGA board is not.  Many systems today use open source software 

which may not have an official supported interface driver.  In order to be applicable to as many 

current researchers as possible our system must support the USB interface through Linux as 

well as Windows in addition to other open source development tools.   

 

Control FPGA/Victim FPGA Interface 

As part of being able to perform a DPA attack, our system must interface with many different 

cryptologic boards and must have a bridge which has hirose connections as well as optional pin 

out connections to allow for the optional cases that the victim board does not have a hirose 

connection to interface with our controller board.  Our specific test system will interface with a 

Spartan 3E Starter Kit as the victim board.  

 

Command Line Program 

In addition to supporting the controller board on Linux, a control program must be supplied 

that works on all operating systems.  This program must read configuration data about the test 

from a file, and if no file is provided, conduct the attack based on a specified set of default 

values.  The program must also be able to automatically download the data from the 

oscilloscope while pausing the operation of the measurement circuit.    
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Preliminary Design 
 
Black Box 

 

 
 

 Our first step in designing the basic setup was to determine what components we will 

use.  We decided to use the Nexys2 board as the controller because open source, Linux 

compatible drivers already exist, which will help us satisfy the requirement that the system be 

able to work with a Linux PC.  The Spartan 3e Starter Board was selected for the victim due to 

its availability in the cryptography lab, thereby reducing overall cost. 
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 Our second preliminary design focused on identifying necessary interfaces between 

devices at run time.  A USB interface will need to be setup to pass data to the controller FPGA.  

The controller and victim will communicate via their respective Hirose FX-2 connectors.  The 

trigger signal sent to the oscilloscope via a pin in one of the controller board's serial interface 

ports.  The oscilloscope will send data to the PC via a USB connection.  The PC software will 

interface with preexisting attack scripts.  For ease of use, we have elected to use a 

configuration file that will dictate how the attack will be run. 
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Flowchart 

 

 
 
 
 

The flow chart above diagrams our current protocol for the operating the testbed. After all 

elements are placed in reset, data and control information is passed to the controller from the 

PC. The data is passed to the victim, which encrypts the data according to control signals 

received from the controller. At the appropriate time, the controller set the trigger signal, 

causing the oscilloscope to record power traces until the trigger signal falls. In the event that 

the oscilloscope's memory is exhausted, execution of the rest of the testbed is suspended while 

the power readings transfer from the oscilloscope's internal memory to a data file on the PC. 

When the full attack has completed, back-end analysis scripts are invoked to process the data. 
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Appendix B Design Document 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
  
 

 

 

ECE-492 Design Review 

Differential Power Analysis 
Testbed 

 

Differential power analysis is a type of side channel attack used to compromise a cryptographically 

secure system by obtaining the secret key the device uses to encrypt data. This method is proven effective 

on many different algorithms, including AES-128.  Of the numerous different platforms capable of 

running such cryptographical algorithms, one of the most notable types is the field programmable gate 

array, or FPGA.  FPGAs are used widely in industry as they allow one to inexpensively create different 

circuits  Currently, in order to conduct differential power analysis on an FPGA based system, a singular 

unit is used which requires a user to take numerous measurements with a digital oscilloscope.  This 

method is tedious, repetitive and inefficient. The purpose of this project is to build an automated 

controller circuit to conduct these numerous tests based upon a set of user defined parameters.  The 

control system will be run on a computer which will have a command line interface with which to control 

the FPGA system. 

December 3rd, 2010 
Patrick Adams 
Lindsay Walton Dr. Kaps 



 
29 

Introduction 
 
With increasingly sensitive information being stored electronically, more focus has been placed 
on keeping data secure.  To that end, encryption algorithms have become increasingly complex, 
rendering attacks difficult or, in some cases impossible.  However less has been done to improve 
the platforms on which these algorithms are implemented.  Common platforms such as Field 
Programmable Gate Arrays (FPGAs) have been found to be susceptible to power analysis 
attacks. 
Differential power analysis (DPA) attacks are particularly effective against FPGA based 
cryptographic implementations.  By examining the power consumption of a device implementing 
an encryption system, the attacker is able to use this side-channel attack to “look inside” the 
device without having to physically examine the hardware.  This ability provides the attacker 
with newer, more subtle exploits that often enable him or her to comprise seemingly 
impenetrable cryptographic systems.  This poses the cryptographic community with the 
challenge of developing implementations less susceptible to DPA attacks. 
In order to harden FPGAs against DPA attacks, one must first have a manner by which to test a 
chip's susceptibility to the attack.  The best platform currently available for such testing is the 
Side-channel Attack Standard Evaluation Board (SASEBO). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 As shown above, the SASEBO features two FPGAs, one to act as a “controller” 

The SASEBO-G 
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(highlighted in blue) which will drive the attack, and one to act as the “victim” (shown in 
yellow).  This setup makes an excellent platform for testing side-channel attacks, except in the 
case of DPA.   
In any DPA attack the physical characteristics of the victim plays a large role in effectiveness of 
the attack.  As such, it is necessary for the developer to be able to run an attack on numerous 
different victim FPGAs, a feature that is not possible with SASEBO's victim-on-board setup.  
These, along with other issues to be discussed later, preclude SASEBO from being used as a 
viable testbed.  Thus it is apparent that a new testing platform is needed in order to aid 
development of cryptographic implementations that resist DPA attacks.  To that end, it is our 
intent to expand upon the SASEBO design, and develop a new testbed capable of evaluating an 
FPGA's vulnerability to DPA attacks. 
 

Statement of Need 

Basic Attack 

For this project, we are to build an attack board that conducts differential power analysis (DPA) 
with the goal of attacking an FPGA running the Advanced Encryption Standard (AES-128) with 
a key size of 128 bits.  The method as described by William Hnath and Jordan Pettengill in their 
paper: Differential Power Analysis: Side Channel Attacks in Cryptography, focuses on obtaining 
the cipher key used in the encryption process by using statistical analysis and correlation on 
power traces recorded while the victim board conducts the encryption.  The attack that we will 
be implementing will focus on the final step of the AES encryption algorithm which makes the 
computation for the attack significantly simpler as a longer component of AES is not 
implemented in the final phase.  In AES, data is operated on one byte array5 of 16 bytes at a time 
with a key array of equal size.  The key that is used is generated by AES is based on the key 
schedule and each round of encryption includes part of the original key.  Recording the final 
round for each subsequent encryption allows an attacker to get one byte of this key at a time 
instead of attacking the whole key at once.  Once power consumption of the cryptographic chip 
is recorded by obtaining several thousand6 traces, statistical correlation can be performed on the 
data.  Using previous power measurements taken on operations with known keys, an attacker is 
able to make an accurate guess as to what the key is. 
 

Problem Statement 

While this method of attack is generally effective, it has several notable flaws.  The first issue of 
this approach is that currently available attack platforms require manual operation.  A user must 
manually obtain more than 10,000 power traces to obtain only 8 bits of the encryption key.  For 
AES-128, this means the user must obtain a minimum of 4,096 separate power traces in order to 
obtain a full key.  Hnath and Pettengill have been shown that an average of 10,000 traces is 

                                                 
5
 4x4 array 

6
 On average, more than 10,000 traces are needed to accurately get the key  
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necessary to produce an accurate key.  The user's task is further complicated by limitations of the 
digital oscilloscope used to obtain these power traces.  Generally, the oscilloscope is incapable of 
storing the needed 4096 traces for a key.  This forces the user to periodically dump the memory 
of the oscilloscope to the PC during the attack.  Due to the extreme number of operations 
required to definitively obtain a key via this method, it is apparent that automation is necessary.  
Development of an automated testbed would allow one to attack a desired device quickly and 
efficiently. 
 

In order to efficiently develop such a testbed, the use of open source tools has been chosen to 
expedite development time.  Several aspects of the setup, as will be discussed later, would 
require communication between different elements.  While proprietary drivers such as Digilent's 
Adept program are available, most are only compatible with a Windows operating system, and 
can be limited in functionality.  Open source drivers, while often intended for use with Linux 
operating systems, could potentially be modified in order to remove any platform dependence.  
This would not only allow the testbed to operate with numerous operating systems, it would also 
allow one to  efficiently design a testbed by allowing one to optimize the drivers to work with 
their equipment, while reducing overall costs. 
 

With these considerations in mind, it is apparent that a platform independent, automated testbed 
would enable more efficient DPA attacks on all encryption algorithms, if they are susceptible to 
DPA. Our initial focus will be on the AES encryption algorithm.  This increased efficiency will 
lead to a better understanding of vulnerabilities in the implementation of a given algorithm which 
will help produce more secure implementation techniques for cryptographic modules in the 
future. 

Approach and Requirements 
 

Oscilloscope Control 

Many thousands of measurements are required to successfully conduct a differential power 
analysis attack.  Current oscilloscope memory limitations require a human operator to download 
the data once the memory is full and then restart the attack with a new set of data points.  An 
ideal system would be able to pause while the data is uploaded to a data file on the computer.  A 
requirement for our system is that the controller board be able to pause the cryptological 
processing unit while the data from the oscilloscope is saved on the computer.  Additionally, 
most DPA attacks focus on a particular step in the encryption process, in our case, the 
substitution round of the final phase.  As such, one does not require power measurements for the 
entire operation of the encryption system, just traces for the operations of interest.  These areas 
of interest are not necessarily periodic and only occur for small periods of time.  To increase 
efficiency, our system will have to detect when such an area of interest is occurring, at which 
point it would enable the oscilloscope’s recording mechanism.  To control the oscilloscope, the 
control FPGA board we are designing must then have an interface connected to the oscilloscope 
which allows for more precise measurement and removal of erroneous data. 
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FPGA/PC Interface 

Today’s standard for peripheral communication is the Universal Serial Bus standard or USB.  
This connection has a variety of uses, for an FPGA data transmission and the ability to program 
the FPGA as well as the system FLASH are the primary uses.  A derived requirement is that the 
control FPGA board must have a USB interface, which will support programming as well as 
supporting data transmission.    While USB is universal, the driver software to program and 
communicate with the FPGA board is not.  Many systems today use open source software which 
may not have an official supported interface driver.  In order to be applicable to as many current 
researchers as possible our system must support the USB interface through Linux as well as 
Windows in addition to other open source development tools.   
 

Control FPGA/Victim FPGA Interface 

As part of being able to perform a DPA attack, our system must interface with many different 
cryptologic boards and must have a bridge which has hirose connections as well as optional pin 
out connections to allow for the optional cases that the victim board does not have a hirose 
connection to interface with our controller board.  Our specific test system will interface with a 
Spartan 3E Starter Kit as the victim board.  
 

Command Line Program 

In addition to supporting the controller board on Linux, a control program must be supplied that 
works on all operating systems.  This program must read configuration data about the test from a 
file, and if no file is provided, conduct the attack based on a specified set of default values.  The 
program must also be able to automatically download the data from the oscilloscope while 
pausing the operation of the measurement circuit.    
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Preliminary Design 
 

Black Box 

 

 
 

 Our first step in designing the basic setup was to determine what components we will use.  
We decided to use the Nexys2 board as the controller because open source, Linux compatible 
drivers already exist, which will help us satisfy the requirement that the system be able to work 
with a Linux PC.  The Spartan 3e Starter Board was selected for the victim due to its availability 
in the cryptography lab, thereby reducing overall cost. 
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 Our second preliminary design focused on identifying necessary interfaces between 
devices at run time.  A USB interface will need to be setup to pass data to the controller FPGA.  
The controller and victim will communicate via their respective Hirose FX-2 connectors.  The 
trigger signal sent to the oscilloscope via a pin in one of the controller board's serial interface 
ports.  The oscilloscope will send data to the PC via a USB connection.  The PC software will 
interface with preexisting attack scripts.  For ease of use, we have elected to use a configuration 
file that will dictate how the attack will be run. 
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Unit Designs 

 
 
 
After designing the overall layout of the test bed, the individual FPGA’s were considered.  To 
meet our requirements, the controller will need to control the oscilloscope, dictating when the 
scope will record data, and when it will send its readings to the computer.  The controller will 
also drive the victim, by sending it control data and cipher text.  To simplify communications we 
decided to pursue a master/slave communications protocol, in which the controller would send 
its system clock across the bridge module to drive the victim.  Through examination of 
established methods of sending data from a computer to an FPGA via USB, it became apparent 
that an adapter module would be needed to convert the raw USB signals into data usable by the 
controller.  All of these modules would be controlled by an overarching control module. 
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The victim FPGA will be far simpler, as it will only require a communications and control 
wrapper for the encryption module.  Both of these wrapper modules will be driven by the control 
board via the bridge device. 
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Flowchart 

 

 
 
 
 

The flow chart above diagrams our current protocol for the operating the testbed. After all 
elements are placed in reset, data and control information is passed to the controller from the PC. 
The data is passed to the victim, which encrypts the data according to control signals received 
from the controller. At the appropriate time, the controller set the trigger signal, causing the 
oscilloscope to record power traces until the trigger signal falls. In the event that the 
oscilloscope's memory is exhausted, execution of the rest of the testbed is suspended while the 
power readings transfer from the oscilloscope's internal memory to a data file on the PC. When 
the full attack has completed, back-end analysis scripts are invoked to process the data. 
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Prototyping 
 
For our differential power analysis testbed we felt that we needed a tested and robust controller 
platform as the centerpiece of our system.  To this end, we researched several different boards 
and found that Digilent’s Nexys2 board met our specifications, and offered a suitable educational 
discount price.  This board meets the requirement of the specialized 100 pin hirose connection, 
as well as having the ability to run off of an external power source, separate from the USB 
interface.  Communication with the device is supported over the USB channel which was also 
required.  The onboard FPGA chip is a Xilinx Spartan 3E with 500 gates which is identical to the 
FPGA on the victim board.   
We have also created as a prototype bridge connection using wire wraps around two male hirose 
connectors.  We only wrapped the pins that we needed, and have tested connectivity between 
them.  As part of our prototyping efforts, we created a test circuit which sent 8 bits, half of the 
end goal of 16 bits of data across the hirose connection.  This data was simply passed around on 
the victim FPGA and no change was made.  Next steps include modifying this circuit to make a 
change to the data and sending it back to the control FPGA and ensuring that the data is correct.  
Once this is verified, a simple change taking the data bus width from 8 to 16 bits can be made 
which would allow for the full testbed functionality.  Along the way we are prototyping USB 
communication with the control Nexys2 board.  We currently can send data and receive data 
from the PC.  The FIFOs have not yet been implemented so they all operate on one global clock, 
driven by the USB.  Once FIFOs are in place and the Spartan3 prototyping board is fully 
programmable, the communication wrappers will be complete. 
 

Current Simulation Results 
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Receiver 
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