

Benchmarking Hash Functions on the
MSP430
ECE 493Final Report

Team Members:
Elio Andia
Fletcher Ta
Margaux McGivern

Faculty Advisor: Dr. Jens-Peter Kaps

Date: May 2, 2011

2

Table of Contents

I. Executive Summary ... 3

II. Introduction ... 4

A. Identification of Need .. 4

B. Problem Statement ... 4

C. Approach .. 5

III. Technical ... 8

A. The eXternal Benchmarking eXtension (XBX) ... 8

B. XBD Circuit Diagram .. 11

IV. Experimentation and Testing ... 12

V. Administrative Detail .. 13

A. Progress Summary Table ... 14

B. Fund Spent ... 15

C. Man Hours ... 16

VI. Conclusion and Education ... 18

VII. Bibliography .. 19

Additional References:
Appendix A – Design Proposal ………………………………………………………...……… 21
Appendix B – Design Document ……………………………………………………..………... 32

3

I. Executive Summary

The objective of this project is to add the Texas Instruments MSP430FG4618

microcontroller to the eXternal Benchmarking eXtension (XBX), a system that builds upon

SUPERCOP (System for Unified Performance Evaluation Related to Cryptographic Operations

and Primitives) to evaluate cryptographic algorithms on embedded devices. Specifically, XBX

extends the eBASH (ECRYPT Benchmarking of All Submitted Hash Functions) portion of

SUPERCOP. As a part of this project, the eXternal Benchmarking Harness (XBH) must be

acquired, modified, and programmed correctly in order to function. The XBH will serve as an

interface between the eXternal Benchmarking Software (XBS) and the eXternal Benchmarking

Device (XBD). In this case, the XBD is the MSP430FG4618. The XBS will compile the hash

functions, which in turn will be downloaded onto the MSP430 via the XBH. The harness will

report the execution time and stack usage of the hash function on the device to the software. The

data collected by the XBS will be in a form compatible with SUPERCOP’s data analysis scripts1.

A successful implementation will result in the ability to produce these database entries for the

execution of any hash function on the MSP430.

1 Wenzel-Benner and Gräf assert that they should be compatible. See pg. 300 of [4].

4

II. Introduction

A. Identification of Need

The National Institute of Standards is holding a competition for the next hash function,

called “SHA-3”, which was proposed in response to the recent advances in cryptanalysis and

papers published showing weaknesses in the current standard, SHA-1 [1]. To measure the

performance of the software implementation of a cryptographic algorithm, the Virtual

Application and Implementation Research Lab (VAMPIRE) created a toolkit called SUPERCOP

(System for Unified Performance Evaluation Related to Cryptographic Operations and

Primitives) that evaluates the algorithm based on a set of timing and size criteria [2]. Additional

tools for benchmarking hash functions were developed, forming the eBASH (ECRPYT

Benchmarking of All Submitted Hash Functions) portion of SUPERCOP [3].

B. Problem Statement

SUPERCOP is restricted to platforms that support the POSIX standard; this eliminates

mobiles phones, PDAs, and Smart Cards, devices that are often target platforms for

cryptographic algorithms [4]. The eXternal Benchmarking eXtension (XBX) developed by

Christian Wenzel-Benner and Jens Gräf supports the SUPERCOP eBASH system for

microcontrollers, using a combination of software and hardware components. The device target

for the eXternal Benchmarking Software (XBS) is called the eXternal Benchmarking Device

(XBD) and is replaceable in the XBX system. The XBS is able to run the SUPERCOP

framework to benchmark an algorithm based on a given implementation, compiler, and options

on the XBD [4]. The XBD for this project will be changed to a MSP430FG4618 microcontroller,

expanding the family of microcontrollers supported by the XBX.

5

C. Approach

Wenzel-Benner and Gräf designed the XBX setup with a XBD target that can be

interchangeable by changing the cross compiler on the XBS and supplying low level functions

that are supported by the generic bootloader interface. The remaining components, the XBH and

XBS, are set up following Wenzel-Benner and Gräf’s design.

Figure 1 - Graphical representation of the standard and interchangeable components of the XBX [5].

Figure 1 illustrates the changes required when setting up the XBX with a new device. It also

illustrates the operations of between the XBX components. XBS combines the application code

of hash function to be benchmarked with the application framework, the communication services

necessary for the XBD to communicate with the XBH. Application binaries are downloaded onto

the XBD through the XBH, where they are executed and timed. The hardware abstraction layer,

HAL, provides the functions necessary to benchmark the XBD:

• I2C drivers for commands and data to be exchanged between the XBH and XBD.

• UART drivers for debugging output using the RS232 on the XBD.

• Routines for sending start and end execution signals from the device to the harness.

6

• Timing calibration to obtain the number of device cycles per harness cycles.

• Paint and count stack functions to obtain the stack usage measurement in bytes.

The necessary work required to add the MSP430 to the XBX system consists of both

hardware and software. Initially the hardware was supposed to be simple, as currently

implemented devices only had a six pin connections between the harness and the device itself

[5]. Unlike previous implementations, the MSP430 runs at 3 V, whereas the harness runs at 5 V.

The device datasheet for the MSP430 requires that the supply voltage not exceed 4.1 V. The I2C

bus was also limited by the maximum supply voltage, prompting the need for a voltage interface

between the harness and the device. The software followed the template of HAL functions, as

enumerated above.

Figure 2 - XBX setup with the MSP430

As a part of adding the MSP430 to the XBX system, the existing setup must also be built.The

XBH is built using an AVR-NET-IO board, a break-outboard for the DB-25 connector, and the

ATmega644 microcontroller to replace the standard ATmega32 that ships with the AVR-NET-

IO. The XBS requires a PC running Linux as well as an Ethernet port to connect (either straight-

through or crossover).The contributions of each team member as followed are: the I2C

7

communication were handled by Elio, the bootloader and applications were rewritten by

Fletcher, and the integrations and set up coordination were handled by Margaux. A more detailed

explanation on the descriptions of XBX components and task distributions can be referenced in

the design document. Further instructions on how to benchmark are given from the XBX

website.

III. Technical

A. The eXternal Benchmarking eXtension (XBX)

The overall operation of the XBX system is summarized

for system operation are: algopack(s), compiler(s), compiler settings, platform settings (page size

in bytes, communication mode, and clock frequency), and the hardware abstraction laye

selected platform. The XBS has three main commands that can be run by the users: import,

compile, and execute. Import will copy the algopack hash functions to a folder cal

which contains the hash functions to be executed on the XBD.

compiler options provided in the platform directory and compiles each hash function in the

algobase with the application framework and stores these binaries in a platform specific

directory. The execute command first reads the

address argument for validity before initiating a TCP connection with the XBH. After the port

number is set and the XBH revision number is received, the XBH issues a command to get the

The eXternal Benchmarking eXtension (XBX)

Figure 3 - Overview diagram from [5].

ation of the XBX system is summarized in Figure 3

for system operation are: algopack(s), compiler(s), compiler settings, platform settings (page size

in bytes, communication mode, and clock frequency), and the hardware abstraction laye

selected platform. The XBS has three main commands that can be run by the users: import,

compile, and execute. Import will copy the algopack hash functions to a folder cal

hash functions to be executed on the XBD. The compile command reads the

compiler options provided in the platform directory and compiles each hash function in the

algobase with the application framework and stores these binaries in a platform specific

directory. The execute command first reads the platform settings and then checks the XBH IP

address argument for validity before initiating a TCP connection with the XBH. After the port

number is set and the XBH revision number is received, the XBH issues a command to get the

8

3. The required inputs

for system operation are: algopack(s), compiler(s), compiler settings, platform settings (page size

in bytes, communication mode, and clock frequency), and the hardware abstraction layer for the

selected platform. The XBS has three main commands that can be run by the users: import,

compile, and execute. Import will copy the algopack hash functions to a folder called algobase,

The compile command reads the

compiler options provided in the platform directory and compiles each hash function in the

algobase with the application framework and stores these binaries in a platform specific

platform settings and then checks the XBH IP

address argument for validity before initiating a TCP connection with the XBH. After the port

number is set and the XBH revision number is received, the XBH issues a command to get the

9

bootloader status, beginning the first steps towards running the imported hash functions on the

XBD. The execute script creates the result directories, performs timing error measurements,

calculates the checksums for all the hash functions in the algobase, and issues commands to the

XBH to upload the binary and reports the results. A short benchmark is run for each

implementation of the hash functions with associated compiler and options. A stack usage

measurement is performed at this time. Starting from the short benchmark, a ‘best binary’ is

found and a detailed benchmark is then performed. This is where the XBD performs the hash for

messages of different lengths2.

 The next step of benchmarking the hash functions is to pass the application binaries from

the PC to the XBH by uploading them through TCP, and then striping the binaries from the TCP

packets to send them to the device using I2C. Hash functions are then executed on the XBD after

receiving the appropriate commands from the harness. Results and timing signals are then sent to

the XBH for timing measurements. Timing measurements on the XBH are calculated using the

timestamps taken when the XBD sends start and end execution signals. The XBH returns the

timing data and hash results to the PC for data aggregation.

The results from the compile and execution scripts are evaluated by using tools provided

by the XBX top level directory. The errors, build stats, and binary information can be viewed in

table format after the compilation. The execution script produces information about the

checksum tests, quick benchmarks, detailed measurements, drift measurements (timing error

calculation), and stack measurements. The implementations speeds of a cipher can be viewed in

graph form provided the user has installed gnuplot3.

2 A summary of the execution command is included in [4]. The level of detail provided was found by an
examination of the execute file included in the XBX software, available on the XBX website [5].
3 A command line based plotting software.

10

The functions the XBS uses to perform benchmark execution include:

‘do_many_drift_measurements’, ‘get_timings’, ‘calculate_measured_cycles’, ‘checksum’, and

‘benchmark’. Each function sends a command to the XBH through a TCP connection and does

not directly call the functions used by the XBD to perform timing measurements.

 The XBH handles the protocol conversions and timing measurement. The functions

within the XBH initialize and set up the connections of the PC and XBH as well as the XBH and

XBD. Timing on the XBH is handled by interrupts on the input capture pins. The function

‘port_time_stamp_request’ calculates the time elapsed during execution. The remaining

functions to be implemented are from the HAL, including ‘busy_loop_with_timing’,

‘load_string’, ‘switch_application’, ‘switch_bootloader’, ‘read_page and program_page’,

‘paint_stack and count_stack’. The support functions from the HAL will execute the commands

from the XBH and provide debugging output.

Figure 4 - Final XBX setup

11

B. XBD Circuit Diagram

The MSP430 requires an interface to act between itself and the XBH because the XBH is

a 5 V device while the MSP430 is a 3 V device. Using the simplified schematic from the design

document, a new interface board was designed to account for differing supply voltages.

Figure 5 - Schematic for voltage level interface board between MSP430 XBD and ATmega644 XBH.

The power and ground from the MSP430 are connected to header pins soldered into the

breadboard area (the MSP430FG4618 is mounted on an experimenter’s board which provides

various peripherals, such as a limited breadboard area and an RS232 port). The timing pin is

connected to port 2 pin 1, which is Timer B0. The reset pin is connected to JTAG port 1, pin 11,

as there is no connection on the breakout headers available.4 The I2C pins are connected to port 3

pins 1 and 2 for SDA and SCL, respectively. The circuit shown in the design document without

the voltage interface was based on a schematic drawn by Christian Wenzel-Benner for the group

to implement the 16 MHz ATmega644 XBD.

4There is a pull-up resistor connected internally on the MSP430 FG4618.

12

IV. Experimentation and Testing

The testing and experimental procedures for software were conducted by testing the rewritten

bootloader functions in C for the MSP430. The previous XBX system used an ATmega1281

which called functions from its own library. Rewritten bootloader functions for the MSP430

were simulated and debugged on the microcontroller with the IAR embedded Workbench.

Simulations in IAR were performed for the following MSP430 HAL functions: stack, flash, and

communication. The data from these tests did not undergo any processing, but were used to

verify functionality. The MSP430 was connected to the PC via the debugger, not the XBH. An

IAR workspace with simulated inputs produced outputs that are then compared to the expected

results. For the stack functions, the test verified that the RAM is filled with stack canaries and

that the correct number of stack canaries are counted and returned. For the flash functions,

patterned data was written to the flash and then verified through the debugger and read back into

an array. The communication drivers under test were I2C and UART. The I2C driver was tested

using the MSP430 experimenter’s board, where the second chip, the F2013, was used as the

master device. An echo communication took place, where the MSP430FG4618 sent a byte and

the F2013 acknowledged the byte by returning it. The UART driver used a similar testing, where

the characters received from the PC was sent back. The purpose of these tests was to catch any

bugs before integrating the MSP430 with the XBH.

Testing and experimental procedures for the hardware were conducted by individually testing

the operation of each electronic component before soldering and assembling. Once the XBH was

assembled, setting up a connection between the XBH and XBS and XBD was conducted. Packets

from the XBS to the XBH were successfully sent and received, confirmed by running the execute

command from the XBS prompt. To test the XBX system, one of the SPHLIB hash functions

13

was compiled to run on the ATmega644 XBD. The execute command failed, retuning an I2C

non-acknowledgement. It was discovered that the I2C driver on the XBH was masking out the

least significant bit of the slave addresses, resulting in a constant zero address being sent to the

device.

The MSP430 was connected to the XBH for testing. The first execute command failed,

returning the same error as the ATmega644 XBD. This was expected, so the SDA and SCL pins

of the both the MSP430 and the XBH were connected to a logic analyzer. The waveforms were

as expected on the XBH side, but the waveform at the SDA and SCL pins of the MSP430

revealed a problem in the voltage interface board. This was fixed by removing a connection

between the 3.3V output on the I2C bus and the input voltage pin on the MSP430. The

waveforms matched on both the XBH and XBD after this update. The MSP430 was still not

responding to the request being sent from the XBH. It was after this test that the masking of the

least significant bit of the slave address was discovered by looking closely at the I2C bytes being

sent on the oscilloscope. After changing the slave address to 2 on the XBH (effectively shifting

the slave address left by one, making the least significant bit the read/write bit), the MSP430

began to respond to the XBH request, but only sent zeros back.

V. Administrative Detail

The tasks for this project were divided into software and hardware components. The software

is the hardware abstraction layer, which must interface with the existing XBX system to support

running the MSP430 as an XBD. The hardware portion of this project was divided between the

existing implementation (XBH) using the test platform (ATmega644), and then the MSP430 as

14

the XBD and its associated voltage level shifter interface. The Progress summary table is shown

below in Figure 6.

A. Progress Summary Table

Figure 6 - Progress Summary Table

15

B. Fund Spent

Description Quantity

Reciept

Date Vendor/Supplier Elio Fletcher Margaux

AVR-NET-IO (payment 1) 1 10/13/10 Pollin Electronic 62.70$

AVR-NET-IO (payment 2) 1 10/29/10 Pollin Electronic 51.68$

Print and Paper supplies $18.00

ATmega644 MCU 2 11/8/11 AVNet 11.99$

Atmel AVRISPmkII 1 1/4/11 Newark 34.00$

Heat Sink 2 1/4/11 Newark 0.83$

PCA9306DCTT 2 1/4/11 Newark 1.33$

74LVX3245MTC 2 1/4/11 Newark 1.79$

2x5 Pin IDC Ribbon Cable 2 2/25/11 MDFly 2.98$

2x5 Pin Shrouded Header - 10 Pins 2 2/25/11 MDFly 0.30$

Breakboard for PCF8575 1 2/21/11 Sparkfun 11.95$

Breakboard for Voltage translator 1 2/21/11 diydrones 12.90$

Exp IC Perfboard 1 3/19/11 Radioshack 2.99$

LM317T Voltage Regulator 1 3/19/11 Radioshack 2.49$

40 Pin IC Socket 1 3/25/11 Radioshack 0.99$

8 Pin IC Socket 2 3/25/11 Radioshack 0.48$

Exp IC Perfboard 1 3/25/11 Radioshack 2.99$

TXB0104 Voltage Shifter 1 4/4/11 RobotShop 5.06$

9VDC Power Supply 1 4/4/11 RobotShop 5.95$

Seeedstudio Barrel Jack 1 4/4/11 RobotShop 1.95$

Ceramic Resonator 1 4/4/11 RobotShop 0.95$

Total Money Spent by each member: -$ 42.85$ 191.45$

Grand Total 234.30$
Figure 7 - Funds Spent

 The total amount of money spent purchasing the components to set up the XBX adds up

to $234.30. After testing XBX on the control set up, with the original XBD ATmega644, we did

not purchase the ATmega debugger which would have cost an additional $200. Our target XBD

was the MSP430, and we had the debugger for the TI microcontroller from the lab kit purchased

in ECE 447. We decided to just test and run the XBX system with the MSP430 as the XBD.

16

C. Man Hours

Figure 8 - Labor Cost

Week
Week

Ending
Educational/

Learning

 Productive

Effort

Educational/

Learning

 Productive

Effort

Educational/

Learning

 Productive

Effort

1 3-Sep-10

2 10-Sep-10

3 17-Sep-10 1.0 3.0 3.0 3.0 2.0 3.0

4 24-Sep-10 4.0 2.0 2.0 2.0 4.0 2.0

5 1-Oct-10 2.0 5.0 1.0 5.0 1.0 5.5

6 8-Oct-10 2.0 1.0 3.0 2.0 1.0 2.0

7 15-Oct-10 2.0 1.0 2.0 2.0 3.0 4.0

8 22-Oct-10 1.0 1.0 2.0 1.0 1.0 2.0

9 29-Oct-10 1.0 2.0 2.0 1.0 6.5 2.0

10 5-Nov-10 2.0 0.0 2.0 3.0 4.0 1.0

11 12-Nov-10 2.0 5.0 2.0 3.0 3.0 4.0

12 19-Nov-10 0.0 1.0 2.0 4.0 6.0 6.0

13 26-Nov-10 1.0 1.0 1.0 2.0 2.0 1.0

14 3-Dec-10 0.0 0.0 2.0 2.0 2.0 3.0

15 10-Dec-10 0.0 0.0 1.0 2.0 1.0 2.0

16 17-Dec-10 1.0 0.0 0.0 0.0 0.0 0.0

17 24-Dec-10 2.0 1.0 0.0 0.0 0.0 0.0

18 31-Dec-10 0.0 0.0 0.0 0.0 0.0 0.0

19 7-Jan-10 1.0 0.0 0.0 0.0 2.0 1.0

20 14-Jan-10 1.0 0.0 4.0 0.0 5.0 0.0

21 21-Jan-10 2.0 0.0 2.0 0.0 1.0 0.0

22 28-Jan-10 5.0 1.0 4.0 0.0 5.0 2.0

23 4-Feb-10 0.0 2.0 2.5 3.0 2.0 10.0

24 11-Feb-10 2.0 4.0 3.8 1.0 1.0 5.0

25 18-Feb-10 4.0 1.0 3.0 1.0 1.0 3.0

26 25-Feb-10 1.0 8.0 6.0 3.0 1.0 4.0

27 4-Mar-10 0.0 2.0 1.0 2.0 1.0 3.0

28 11-Mar-10 0.0 1.0 0.0 0.0 1.0 1.0

29 18-Mar-10 4.0 0.0 2.0 10.0 0.0 0.0

30 25-Mar-10 1.0 4.0 2.0 4.0 1.0 4.0

31 1-Apr-10 4.0 2.0 0.0 4.0 1.0 5.0

32 8-Apr-10 2.0 1.0 0.0 4.0 5.0 5.0

33 15-Apr-10 0.0 1.0 1.0 4.0 1.0 4.0

34 22-Apr-10 5.0 7.0 1.0 3.0 4.0 7.0

35 29-Apr-10

36 6-May-10

37 13-May-10

Time Spent: 53.0 57.0 57.3 71.0 68.5 91.5

Total Time

Elio Fletcher Margaux

110.0 128.3 160.0
Figure 9 - Man hours devoted

17

 A large majority of the time devoted was on self-education and debugging. The JTAG

interface and application of the bootstrap loader on the MSP430 had to be researched as the

libraries of AVR library could not be used. Some of these functions had to be rewritten in

assembly using the MSP430x instruction set. The I2C-bus specification and user manual, as well

as applying the I2C Master-Slave Library had to be further researched as the topic was briefly

covered in ECE447. The set up between the XBH and XBS was not immediately obvious either.

In the code for the web server on which the XBH program is based, an interface via the serial

port is provided to change the MAC and IP addresses of the XBH. Upon programming, the MAC

address of the XBH was initialized to all F’s, rendering it unable to communicate via the

Ethernet port. A mismatch between the baud rate of the terminal and the device prevented this

from being discovered, as the default baud rate of the web server program is 9600, while the

program itself initializes the port at 115200 baud at first.

Immediately after the resolution of the IP and MAC addresses, the XBX scripts were able to

connect to the XBH but failed to connect to the ATmega644 XBD, reporting possible problems

with the I2C connections. The debugging output suggests that the problem is related to the CRC,

which was found to be related to the slave address and the read/write bit on the XBH, rather than

any I2C issue on the XBD. Most of the man hours were spend trying to find this particular bug in

both the ATmega644 XBD and the MSP430 XBD.

With the use of logic analyzer, we concluded that there was a problem with the hardware

components. The pull up resistor was increased and the voltage shifter was fixed. The problem

now resides within the I2C communication driver on the XBD, or the given communication on

the XBH. Further detail on self-education is explained in the next section.

18

VI. Conclusion and Education
The last testing period for the MSP430 involved the I2C communication between the XBD

and the XBH. The error reported through the RS232 port on the XBH was a non-

acknowledgment on the MSP430 side. As mentioned in the experimentation and testing section,

the problem was found in the XBH I2C driver. Further oscilloscope readings showed that the

correct request (bootloader status request: XBD03vir + crc), was being sent to the MSP430, but

the response form the device was incorrect; all zeroes. Preliminary research into the actions

taken by the bootloader when the status request is received suggests the problem can be isolated

to three areas: the bootloader wrapper provided by the XBX team, the load string function in the

HAL, or the condition for sending the response in the I2C communication. Further testing will

reveal which of the areas causes the sending of zeros to the XBH.

The team’s education primarily consisted of the communication protocols required to

implement the project, mainly because a majority of the debugging was done in this area. In

addition to I2C and UART, the issue of programming the upper portion of the flash was resolved

by using 20-bit pointers. Unfortunately, the mspgcc compiler does not support these extended

pointers easily, and IAR does not provide very sophisticated methods of handling them either, so

the MSP430x instruction set was used to access 20-bit registers while read and programming

flash.

A summary of the XBX system is that it was created to benchmark hash function.

Researchers would benefit most from this project as the MSP430 is a new device that is now

added to the XBX system. There would be no cost or profit, as the system is open source. If any

new updates are done, it would most likely just involve updating the software on the XBS. The

only time to add new hardware onto the design, is if the structure of XBX changes. Disposal of

19

any components of XBX should be handled similarly to the disposing of any other electronic

devices.

VII. Bibliography

[1] (2010, June) National Institute of Standards and Technology. [Online].
http://www.nist.gov/itl/csd/ct/hash_competition.cfm

[2] (2011, May) SUPERCOP. [Online]. http://bench.cr.yp.to/supercop.html

[3] (2011, May) eBASH: ECRYPT Benchmarking of All Submitted Hashes. [Online].
http://bench.cr.yp.to/ebash.html

[4] Christian Wenzel-Benner and Jens Gräf, "XBX: eXternal Benchmarking eXtension for the
SUPERCOP Crypto Benchmarking Framework," in Cryptographic Hardware and Embedded
Systems, CHES 2010, Stefan Mangard and François-Xavier Standaert, Eds.: Springer Berlin /
Heidelberg, 2010, vol. 6225/2010, pp. 294-305.

[5] Christian Wenzel-Benner and Jens Gräf. (2010, November) XBX: eXternal Benchmarking
eXtension. [Online]. https://xbx.das-labor.org/trac/wiki/HowItWorks

[6] Christian Wenzel-Benner and Jens Gräf. (2009, October) The Conferences - XBX: eXtenal
Benchmarking eXtension. [Online]. http://www.hyperelliptic.org/SPEED/slides09/wenzel-
XBX-benchmarking.pdf

20

Appendix A

Design Proposal

21

BENCHMARKING HASH
FUNCTIONS ON THE MSP430

The objective of the Benchmarking Hash Functions on the MSP430 project is to add

the MSP430 microcontroller from TI to the eXternal Benchmarking eXtension (XBX), a

system that builds on SUPERCOP (System for Unified Performance Evaluation Related to

Cryptographic Operations and Primitives) performance evaluation suite for cryptographic

algorithms. Specifically, XBX extends eBASH (ECRYPT Benchmarking of All Submitted

Hash Functions). As a part of the project the eXternal Benchmarking Harness (XBH) must be

acquired, modified, and programmed in order to function correctly. The XBH will serve as

the interface between the eXternal Benchmarking Software (XBS) and the eXternal

Benchmarking Device (XBD), in this case the MSP430. The XBS will be able to run the

imported hash functions on the MSP430 via the XBH and take timing and power

measurements while the MSP430 executes the hash functions. The output of the XBS will be

in a form compatible with the database entry output given by the SUPERCOP program for

October 15, 2010 Team Members:
Elio Andia
Fletcher Ta
Margaux McGivern J.P. Kaps

ECE-492 DESIGN DOCUMENT

22

Executive Summary

The objective of the Benchmarking Hash Functions on the MSP430 project is to add the

MSP430 microcontroller from TI to the eXternal Benchmarking eXtension (XBX), a system that

builds on SUPERCOP (System for Unified Performance Evaluation Related to Cryptographic

Operations and Primitives) performance evaluation suite for cryptographic algorithms.

Specifically, XBX extends eBASH (ECRYPT Benchmarking of All Submitted Hash Functions).

As a part of the project the eXternal Benchmarking Harness (XBH) must be acquired, modified,

and programmed in order to function correctly. The XBH will serve as the interface between the

eXternal Benchmarking Software (XBS) and the eXternal Benchmarking Device (XBD), in this

case the MSP430. The XBS will be able to run the imported hash functions on the MSP430 via

the XBH and take timing and power measurements while the MSP430 executes the hash

functions. The output of the XBS will be in a form compatible with the database entry output

given by the SUPERCOP program for CPUs in personal computers. A successful

implementation will result in the ability to produce these database entries for the execution of

any hash function on the MSP430.

Problem Statement

The National Institute of Standards is holding a competition for the next hash function, called

“SHA-3”, which was proposed in response to the recent advances in cryptanalysis and papers

23

published against the approved standard, SHA-1 [1]. To measure the performance of a

cryptographic algorithm the Virtual Application and Implementation Research Lab (VAMPIRE)

created a toolkit called SUPERCOP (System for Unified Performance Evaluation Related to

Cryptographic Operations and Primitives) that evaluates the algorithm based on a set of timing

and size criteria. Additional tools for benchmarking hash functions were developed, forming the

eBASH (ECRPYT Benchmarking of All Submitted Hash Functions) portion of SUPERCOP.

The only problem with SUPERCOP is that it restricts its use to platforms that support the POSIX

standard, which eliminates mobiles phones, PDAs, and Smart Cards, devices that are often target

platforms for cryptographic algorithms [2]. The eXternal Benchmarking eXtension (XBX)

developed by Christian Wenzel-Benner and Jens Gräf supports the SUPERCOP eBASH system

for microcontrollers, using a combination of software and hardware components. The device

target for the eXternal Benchmarking Software (XBS) is called the eXternal Benchmarking

Device (XBD) and is replaceable in the XBX system. The XBS is able to run the SUPERCOP

framework to benchmark an algorithm based on a given implementation, compiler, and options

on the XBD.

The XBD for this project is the MSP430. The motivation for this selection is based on the current

microcontroller used in ECE 447 and ECE 511, which provides background knowledge to

successfully implement the hardware abstraction layer (HAL) and drivers for the XBD.

Furthermore, the MSP430 is not a part of the existing XBX implementations. Given the XBX

system’s capability with the SUPERCOP framework, its future applications are not limited to

hash functions; stream ciphers, Diffie-Hellman (DH) functions, and public-key encryption and

signatures are all possible extensions (SUPERCOP, 2010).

24

Approach

The purpose of the eXternal Benchmarking eXtension (XBX) system is to extend SUPERCOP’s

benchmarking capabilities to small devices. The goal of this project is to add the MSP430 to the

current XBX implementation.

Wenzel-Benner and Gräf designed the XBX in three parts: one software part and two hardware

parts. The software portion of the system is called eXternal Benchmarking Software (XBS) and

is responsible for the compilation of the hash functions and overhead code (called the application

framework) necessary to successfully benchmark an algorithm on the target device. The

hardware setup consists of the eXternal Benchmarking Harness (XBH) and the eXternal

Benchmarking Device (XBD). The XBH handles the communication between the XBS and XBD

as well as the timing measurements of the executed hash functions.

The XBS performs in a similar fashion to the SUPERCOP scripts it was modeled after, with the

exception that it requires a user to specify which platform the software will be benchmarking.

XBS first combines the application code of the hash function to be benchmarked with the

application framework, the communication services necessary for the XBD to communicate with

the XBH. A size check on this binary is performed and a communication session between the

XBS, XBH, and XBD is made in order to download the binaries. After download the XBD

executes the code and the results are sent back to the XBH and then to the XBS running on the

PC. The most important part of the XBS for this project is the hardware abstraction layer, HAL.

The HAL will provide the necessary drivers to allow I2C communication between the XBH and

XBD, which is the channel through which the XBS commands are given to the XBD. The

25

locations of program memory, constant data storage, and the methods of manipulating the data

there are hidden from the XBS by the HAL.

To accomplish the goal of the project, a hardware setup for the XBX system is required to

connect the MSP430 while it runs the hash functions to take measurements of the time and

power consumptions. In order to do this, an intermediary interface for the XBS and the XBD is

required. The eXternal Benchmarking Harness (XBH) performs this function. The commands

from the XBS are sent via TCP to the XBH and then via I2C or UART to the XBD using the

XBH protocol. The firmware for the XBH is a modified version of an embedded web server

program by Ulrich Radig and is provided by the XBX system developers. In order to add the

MSP430 to the platforms benchmarked (and possibly add similar microcontrollers in future

projects) it is necessary to create the communication drivers that will allow the MSP430 to

communicate via I2C or UART with the XBH as well as firmware that will execute the XBS

binaries and provide debugging output. These combined functions serve as the hardware

abstraction layer (HAL) for the XBS. The hardware connections to the XBH must also be

mapped to the MSP430. The data connection signal (UART or I2C) is established between the

XBH and XBD by the bootloader, which also handles signals that come from the control I/O

lines for hard reset and timing measurements.

Our XBH design will be similar to the original XBX design, setting up an Atmel ATmega644

running at 20 MHZ opposed to the 16 MHZ chip used by Wenzel-Brenner and Gräf, an

ENC28J60 Ethernet controller, and a MAX232 TTL/RS232 voltage level shifter on the AVR-

NET-IO board.

The XBS for this project is required to run on a Linux machine. On recommendation, Kubuntu

10.04 was chosen as the development environment to add the MSP430 to the XBX platforms. In

order to run the hash functions on the MSP430, some assembly

chosen algorithms provided in C. The assembly versions for the MSP430 will be provided to the

team. The specific platform version that will be used in the project is the MSP430FG4618 in

order to reduce monetary and time cost

Chip Microcomputers), which all team members are taking.

Preliminary Design

Black Box

order to run the hash functions on the MSP430, some assembly conversion is required for the

chosen algorithms provided in C. The assembly versions for the MSP430 will be provided to the

team. The specific platform version that will be used in the project is the MSP430FG4618 in

order to reduce monetary and time costs as this is the device currently used in ECE 447 (Single

Chip Microcomputers), which all team members are taking.

26

conversion is required for the

chosen algorithms provided in C. The assembly versions for the MSP430 will be provided to the

team. The specific platform version that will be used in the project is the MSP430FG4618 in

s as this is the device currently used in ECE 447 (Single-

27

White Box

The XBH setup is comprised of an Atmel ATmega644 microcontroller, a Microchip ENC28J60

Ethernet controller and a MAX232 TTL/RS232 voltage level shifter. The XBD is the device on

which the actual benchmarking takes place; the MSP430. The basic set up will be a PC that runs

XBS and the XBH acting as a fixed interface to the XBD.

The XBH will be connected to the PC running the XBS via its Ethernet port. This will provide an

interface with any computer that supports the SUPERCOP framework regardless of its operating

system. An RS232 port is available for low level configuration and debugging output during

development [2]. The communication between the XBD and the XBH will be handled through a

data connection and control I/O lines. As previously stated, the data connection will be

implemented using either I2C or UART. The digital I/O lines will be used for control purposes,

such as resetting the device and timing measurement.

 The control I/O lines are connected to the reset pin on the XBD. This allows the XBH to

issue a hardware reset on the XBD, either due to a timeout or because of a command received

28

from the PC. In the event that the XBD crashes, e.g. due to stack overflow, the XBH will be able

to recover communication to the XBD in a situation where the data connection would fail [2].

Timing measurement is another reason for dedicated control I/O lines. An output pin on the XBD

is connected to the XBH timer event capture pin. The times when a function begins executing

and when it stops executing are captured in the XBH and the amount of time in clock cycles can

be calculated.

In order to perform such functions as I2C communication, USART for debugging, sending

signals, stack measurement, switching between the application program and the bootloader, and

others, the hardware abstraction layer (HAL) must be written. This allows the XBS to create

binaries with functions that are suited to the particular platform being benchmarked. The HAL

also provides a timing calibration service, which accounts for the time difference between clock

cycles on the XBH and XBD. This allows for accurate timing measurements to be computed on

the XBH using the timestamps from the XBD.

 Achieving a successful implementation of the hardware abstraction layer and development of

hardware specific drivers for the microcontroller will enable the MSP430 to run the hash

function as the XBD.

Preliminary Experimentation Plan

• Set up and test XBX and XBH with a preexisting platform, Atmega644, to make sure that

the XBH works correctly.

• Compile the XBX for the Atmega644 platform.

• Run hash functions on the Atmega644 which acts as a prototype XBD.

• Compare results file with already acquired results available online.

• Write the firmware for MSP430 (bootloader).

29

• Write the drivers for MSP430 (HAL).

• Test drivers outside of XBS to see if they work with the MSP430

• Compile with XBS.

• Use the SPY debugger to test data communication

• Test the firmware on the MSP430 by means of a debugger

• Test the drivers via the XBH

• Run various hash functions multiple times and compare the result tables.

• Preliminary List and Brief Description of Tasks and Allocation of Responsibilities

Hardware

• eXternal Benchmarking Harness Margaux McGivern

o AVR-NET-IO

o Heat sink

o D-sub connector

• Benchmarking Platform Test Microcontrollers Margaux McGivern

o Atmega644

• MSP430FG4618 Elio Andia, Fletcher Ta, Margaux McGivern

o MSP430FG4618 Data pin connections (XBD): Elio Andia, Fletcher Ta

Software

• eXternal Benchmarking Software Margaux McGivern

o Test platforms: Atmega644

• MSP430 Communication Drivers Elio Andia

o I2C/SPI

• MSP430 Firmware Fletcher Ta

30

Milestones and Tasks

Date Milestone/Task

5-Nov-10 Existing XBX system running

12-Nov-10 Design Review Presentation

19-Nov-10

MSP430 electrically connected to the XBX system

HAL and firmware (bootloader) ready to test

Draft Design Document

25-Nov-10 HAL and firmware (bootloader) working

3-Dec-10 Design Document

14-Jan-11 One hash function running on the MSP430 via the XBX

4-Feb-11

Project Title Form

Project Description/Abstract

Test Plan and WBS

25-Feb-11 Progress Report #1

1-Apr-11
In-Progress Presentation and Review

Progress Report #2

15-Apr-11 Draft Final Report

29-Apr-11

Oral Presentation

Final Report

Document Tracking Form

6-May-11 Project Poster

31

References

[1] (2010, June) National Institute of Standards and Technology. [Online].

http://www.nist.gov/itl/csd/ct/hash_competition.cfm

[2] Christian Wenzel-Benner and Jens Gräf, "XBX: eXternal Benchmarking eXtension for the

SUPERCOP Crypto Benchmarking Framework," in Cryptographic Hardware and Embedded

Systems, CHES 2010, Stefan Mangard and François-Xavier Standaert, Eds.: Springer Berlin /

Heidelberg, 2010, vol. 6225/2010, pp. 294-305.

[3] (2010, Oct.) SUPERCOP. [Online]. http://bench.cr.yp.to/supercop.html

32

Appendix B

Design Document

33

Benchmarking Hash Functions on the
MSP430
ECE 492 Design Document

Team Members:
Elio Andia
Fletcher Ta
Margaux McGivern

Faculty Advisor: Dr. Jens-Peter Kaps

Date: 12/03/2010

34

Table of Contents

I. Introduction ... 35

A. Identification of Need .. 44

B. Problem Statement ... 44

II. Requirements Specification ... 38

III. System Architecture .. 40

IV. Detail Design ... 42

C. XBD Circuit Diagram .. 43

V. Prototyping Progress Report .. 45

VI. Testing Plan ... 47

VII. List and Description of Tasks .. 48

D. Fall 2010 Task Allocation .. 48

E. Spring 2011 Task Allocation ... 49

VIII. Schedule and Milestones.. 50

F. Fall 2010 Administrative Schedule .. 50

G. Spring 2011 Administrative Schedule.. 50

IX. Gantt Charts ... 51

H. Fall 2010 ... 51

I. Spring 2011 .. 51

X. References ... 52

35

I. Introduction

A. Identification of Need

The National Institute of Standards is holding a competition for the next hash function,

called “SHA-3”, which was proposed in response to the recent advances in cryptanalysis and

papers published showing weaknesses in the current standard, SHA-1 [1]. To measure the

performance of the software implementation of a cryptographic algorithm, the Virtual

Application and Implementation Research Lab (VAMPIRE) created a toolkit called SUPERCOP

(System for Unified Performance Evaluation Related to Cryptographic Operations and

Primitives) that evaluates the algorithm based on a set of timing and size criteria. Additional

tools for benchmarking hash functions were developed, forming the eBASH (ECRPYT

Benchmarking of All Submitted Hash Functions) portion of SUPERCOP.

B. Problem Statement
A problem with SUPERCOP is that it restricts its use to platforms that support the

POSIX standard, which eliminates mobiles phones, PDAs, and Smart Cards; devices that are

often target platforms for cryptographic algorithms [2]. The eXternal Benchmarking eXtension

(XBX) developed by Christian Wenzel-Benner and Jens Gräf supports the SUPERCOP eBASH

system for microcontrollers, using a combination of software and hardware components. The

device target for the eXternal Benchmarking Software (XBS) is called the eXternal

Benchmarking Device (XBD) and is replaceable in the XBX system. The XBS is able to run the

SUPERCOP framework to benchmark an algorithm based on a given implementation, compiler,

and options on the XBD.

Wenzel-Benner and Gräf designed the XBX in three parts: one software and two

hardware parts. The software portion of the system is called eXternal Benchmarking Software

(XBS) and is responsible for the compilation of the hash functions and an overhead code (called

36

the application framework) necessary to successfully benchmark an algorithm on the target

device. The hardware setup consists of the eXternal Benchmarking Harness (XBH) and the

eXternal Benchmarking Device (XBD). The XBH handles the communication between the XBS

and XBD as well as the timing measurements of the executed hash functions.

The XBS performs in a similar fashion to the SUPERCOP scripts it was modeled after,

with the exception that it requires a user to specify which platform the software will be

benchmarking. XBS combines the application code of the hash function to be benchmarked with

the application framework, the communication services necessary for the XBD to communicate

with the XBH. A size check on this binary is performed to ensure that it does not exceed the

XBD’s storage and a command is sent to the XBD, through the XBH, in order to download the

binaries. After download, the XBD executes the code and the results are sent back to the XBH

and then to the XBS running on the PC. The most important part of the XBS for this project is

the hardware abstraction layer, HAL. The HAL provides the necessary drivers to allow I2C

communication between the XBH and XBD, which is the channel through which the XBS

commands are given to the XBD. The locations of program memory, constant data storage, and

the methods of manipulating the data are hidden from the XBS by the HAL.

The XBD for this project is the MSP430. The motivation for this selection is based on the

current microcontroller used in ECE 447 and ECE 511, which provides background knowledge

to successfully implement the hardware abstraction layer (HAL) and drivers for the XBD.

Furthermore, the MSP430 is not a part of the existing XBX implementations. The current XBD

devices include some of Atmel’s AVR ATmega processors, Texas Instruments’ Luminary

Micro, and a few Linux compatible routers.

37

Atmel TI Linux Routers
ATmega1284p LM3S811 NSLU2 (Linksys)
ATmega1281 FRITZ!box Fon WLAN 7170 (AVM)
ATmega644 Artilla M-501

 Table 1 The XBX currently supported platforms.

These platforms are grouped according to their hardware abstraction layer and compiler

compatibility. The devices in Table 1 (shown by manufacture/device type) fall under the

following categories: AVR based (Atmel processors), ARM based (LM3S811), and embedded

Linux devices (LM3S811, NSLU2, Artilla M-501). The addition of the MSP430 will provide a

template for TI’s line of MSP430 microcontrollers, which have a unique RISC instruction set.

TI’s Luminary Micro microcontrollers use a modified Thumb instruction set and an ARM GCC

or ARM C compiler, whereas the MSP430 will use its own version of the GNU cross compiler to

compile the hardware abstraction layer and the application framework.

Given the XBX system’s capability with the SUPERCOP framework, its future

applications are not limited to hash functions; stream ciphers, Diffie-Hellman (DH) functions,

and public-key encryption and signatures are all possible extensions (SUPERCOP, 2010).

38

II. Requirements Specification

To accomplish the goal of the project, a hardware setup for the XBX system is required

to connect the MSP430 while it runs the hash functions to take measurements of the time to

compute. In order to do this, an intermediary interface for the XBS and the XBD is required. The

eXternal Benchmarking Harness (XBH) performs this function. The commands from the XBS

are sent via TCP to the XBH and then via I2C or UART to the XBD using the XBH protocol.

This protocol uses ASCII encoded commands with ASCII encoded hex digits and the parameters

[2]. The firmware for the XBH is a modified version of an embedded web server program by

Ulrich Radig and is provided by the XBX system developers. In order to add the MSP430 to the

platforms benchmarked (and possibly add similar microcontrollers in future projects) it is

necessary to create the communication drivers that will allow the MSP430 to communicate via

I2C or UART with the XBH as well as addition support functions that will execute the XBS

commands and provide debugging output. These combined functions serve as the hardware

abstraction layer (HAL) for the XBS. The hardware connections to the XBH must also be

mapped to the MSP430. The data connection signal (UART or I2C) between the XBH and XBD

is established by the bootloader of the XBD, which also handles signals that come from the

control I/O lines for hard reset and timing measurements.

Our XBH design will be similar to the original XBX design, setting up an Atmel

ATmega644 running at 16MHz using the on board clock, an ENC28J60 Ethernet controller, and

a MAX232 TTL/RS232 voltage level shifter on the AVR-NET-IO board for debugging output.

The XBS for this project is required to run on a Linux machine. On recommendation,

Kubuntu 10.04 was chosen as the development environment to add the MSP430 to the XBX

platforms. In order to run the hash functions on the MSP430, some assembly conversion is

39

required for the chosen algorithms provided in C. The assembly versions for the MSP430 will be

provided to the team. The specific platform version that will be used in the project is the

MSP430FG4618. This will reduce monetary and time costs as this is the device currently used in

ECE 447 (Single-Chip Microcomputers), which all team members are currently enrolled in.

III. System Architecture

Figure 2 Overview diagram from [4].

The overall operation of the XBX system is shown in Figure 1. The required inputs for

system operation are: algopack

bytes, communication mode, and clock frequency), and the hardware abstraction layer for the

selected platform. The XBS has three main commands that can be run by the users: import,

compile, and execute. Import will copy the algopack hash functions to a folder called algobase,

which contains that hash functions to be executed on the XBD. The compile command reads the

compiler options provided in the platform directory and compiles each hash

algobase with the application framework and stores these binaries in a platform specific

directory. The execute command first reads the platform settings and then checks the XBH IP

address argument for validity before initiating a TCP conn

number is set and the XBH revision number is received, the XBH issues a command to get the

bootloader and application framework beginning the first steps towards running the imported

System Architecture

The overall operation of the XBX system is shown in Figure 1. The required inputs for

system operation are: algopack(s), compiler(s), compiler settings, platform settings (page size in

bytes, communication mode, and clock frequency), and the hardware abstraction layer for the

selected platform. The XBS has three main commands that can be run by the users: import,

e, and execute. Import will copy the algopack hash functions to a folder called algobase,

which contains that hash functions to be executed on the XBD. The compile command reads the

compiler options provided in the platform directory and compiles each hash

algobase with the application framework and stores these binaries in a platform specific

directory. The execute command first reads the platform settings and then checks the XBH IP

address argument for validity before initiating a TCP connection with the XBH. After the port

number is set and the XBH revision number is received, the XBH issues a command to get the

bootloader and application framework beginning the first steps towards running the imported

40

The overall operation of the XBX system is shown in Figure 1. The required inputs for

(s), compiler(s), compiler settings, platform settings (page size in

bytes, communication mode, and clock frequency), and the hardware abstraction layer for the

selected platform. The XBS has three main commands that can be run by the users: import,

e, and execute. Import will copy the algopack hash functions to a folder called algobase,

which contains that hash functions to be executed on the XBD. The compile command reads the

compiler options provided in the platform directory and compiles each hash function in the

algobase with the application framework and stores these binaries in a platform specific

directory. The execute command first reads the platform settings and then checks the XBH IP

ection with the XBH. After the port

number is set and the XBH revision number is received, the XBH issues a command to get the

bootloader and application framework beginning the first steps towards running the imported

41

hash functions on the XBD. The execute script creates the result directories, performs timing

error measurements, calculates the checksums for all the hash functions in the algobase,and

issues commands to the XBH to upload the binary and reports the results. A short benchmark is

run for each implementation of the hash functions with associated compiler and options. A stack

usage measurement is performed at this time. Starting from the short benchmark, a ‘best binary’

is found and a detailed benchmark is then performed. This is where the XBD performs the hash

for messages of different lengths.

 The results from the compile and execution scripts are evaluated by using tools provided

by the XBX top level directory. The errors, build stats, and binary information can be viewed in

table format after the compilation. The execution script produces information about the

checksum tests, quick benchmarks, detailed measurements, drift measurements (timing error

calculation), and stack measurements. The implementations speeds of a cipher can be viewed in

graph form provided the user has installed gnuplot.

 The next step of benchmarking the hash functions is to pass the hash functions from the

PC to the XBH by uploading them through TCP, and then converting the protocol to upload from

XBH to XBD by UART for execution. This process is done by the XBH initializing the Ethernet

port, UART, and I2C channels and setting up the TCP and UDP channels with the PC and XBD,

respectively. Hash functions are then executed on the XBD. Results and timing signals are then

returned to the XBH for timing measurements. Timing measurements on the XBH are handled

with the port time stamp request function. XBH then returns the timing data and hash results to

the PC for data aggregation.

42

IV. Detail Design

Figure 3 Level 0 Black Box Design from the Preliminary Design of the Design Proposal.

Figure 4 Level 1White Box Design from the Preliminary Design of the Design Proposal.

 The top level designs are shown in Figure 2 and Figure 3. Expected inputs of the design

are the hash functions provided and the platform settings of the XBD. The design will allow

compilation of hash functions and commands, such as writing and reading flash memory and

taking measurements on the XBD. The results will be collected and the execution time

calculated by the XBH and formatted for SUPERCOP scripts by the XBS. A summary of our

preliminary design and a description of benchmarking hash functions on the XBX were

43

explained in System Architecture. This section will restate the necessary changes for replacing

the XBD with the MSP430, explain what functions are used by the XBX, and provide a more

detailed top level view for further clarification.

Figure 5 A Redrawn Diagram of [5].

 A restatement of the necessary changes to be done is represented by Figure 4, a redrawn

diagram from Wenzel’s power point [5]. These changes will be: to replace the previously used

XBD (the Atmega644) with the MSP430, to modify the XBD bootloader, to write the hardware

abstraction layer for the XBD, and to modify the compiler and platform settings on the XBS.

The XBH will remain unchanged. As defined in the introduction, the HAL is used by the XBS

and the XBD bootloader to provide the necessary drivers for I2C communication between the

XBH and XBD.

 Compilation and execution scripts, platform configuration, and data aggregation are

handled by the XBS. The functions the XBS uses to perform benchmark execution include: ‘do

many drift measurement’, ‘get timings’, ‘calculate measured cycles’, ‘checksum’, and

‘benchmark’. Each function sends a command to the XBH through a TCP connection and does

not directly call the functions us

 The XBH handles the protocol conversions and timing measurement. The functions

within the XBH initialize and set up the connections of the PC and XBH as well as the XBH and

XBD. Timing on the XBH is handled

time stamp request’ calculates the time elapsed during execution. The remaining functions to be

implemented are from the HAL, including ‘busy loop with timing’, ‘load string’, ‘switch

application’, ‘switch bootloader’, ‘read and program page’, ‘paint and count stack’. The support

functions from the HAL will execute the commands from the XBH and provide debugging

output.

C. XBD Circuit Diagram

Figure 6 Schematic for the MSP430FG4618 XBD connections to the XBH. External circuit provided by Christian Wenzel
Benner and modified for the MSP430FG4618.

‘benchmark’. Each function sends a command to the XBH through a TCP connection and does

not directly call the functions used by the XBD to perform timing measurements.

The XBH handles the protocol conversions and timing measurement. The functions

within the XBH initialize and set up the connections of the PC and XBH as well as the XBH and

XBD. Timing on the XBH is handled by interrupts on the input capture pins. The function ‘port

time stamp request’ calculates the time elapsed during execution. The remaining functions to be

implemented are from the HAL, including ‘busy loop with timing’, ‘load string’, ‘switch

’, ‘switch bootloader’, ‘read and program page’, ‘paint and count stack’. The support

functions from the HAL will execute the commands from the XBH and provide debugging

XBD Circuit Diagram

Schematic for the MSP430FG4618 XBD connections to the XBH. External circuit provided by Christian Wenzel
Benner and modified for the MSP430FG4618.

44

‘benchmark’. Each function sends a command to the XBH through a TCP connection and does

ed by the XBD to perform timing measurements.

The XBH handles the protocol conversions and timing measurement. The functions

within the XBH initialize and set up the connections of the PC and XBH as well as the XBH and

by interrupts on the input capture pins. The function ‘port

time stamp request’ calculates the time elapsed during execution. The remaining functions to be

implemented are from the HAL, including ‘busy loop with timing’, ‘load string’, ‘switch

’, ‘switch bootloader’, ‘read and program page’, ‘paint and count stack’. The support

functions from the HAL will execute the commands from the XBH and provide debugging

Schematic for the MSP430FG4618 XBD connections to the XBH. External circuit provided by Christian Wenzel-

V. Prototyping Progress Report

The stack and flash programming code has been written for the XBD. The two

ATmega644 MCUs, the AVR

RS232 cable, and the test platform crystal and (2) 22 pF decoupling capacitors have all been

acquired. The (2) 100 nF and 10 uF capacitors and 10k and (2) 4.7k resistors used in th

power supply circuit and the I2C data and clock lines were already owned by the team.

Figure 7 ATmega644 XBD circuit diagram, provided by Christian Wenzel

The power supply will remain as described below, but the inte

DC adapter and XBH as well as the voltage level shifting between the XBH and the MSP430

may change as the design approaches the end of the prototyping phase.

A +12 V supply for the XBH is provided by an AC to DC adapter from an exte

drive enclosure, which conveniently includes a switch and jumpers to easily connect power and

ground lines. The enclosure serves as a temporary heat sink, allowing the 7805 voltage regulator

on the AVR-NET-IO to maintain a temperature that is not

without the heat sink resulted in unacceptable temperature levels. The second regulator, the

LM317, for the +3 V output on the AVR

Prototyping Progress Report

The stack and flash programming code has been written for the XBD. The two

ga644 MCUs, the AVR-NET-IO, D-sub connector, RS232 to TTL converter, USB to

RS232 cable, and the test platform crystal and (2) 22 pF decoupling capacitors have all been

acquired. The (2) 100 nF and 10 uF capacitors and 10k and (2) 4.7k resistors used in th

power supply circuit and the I2C data and clock lines were already owned by the team.

ATmega644 XBD circuit diagram, provided by Christian Wenzel-Benner.

The power supply will remain as described below, but the interface between the AC to

DC adapter and XBH as well as the voltage level shifting between the XBH and the MSP430

may change as the design approaches the end of the prototyping phase.

A +12 V supply for the XBH is provided by an AC to DC adapter from an exte

drive enclosure, which conveniently includes a switch and jumpers to easily connect power and

ground lines. The enclosure serves as a temporary heat sink, allowing the 7805 voltage regulator

IO to maintain a temperature that is not uncomfortable to touch. Test runs

without the heat sink resulted in unacceptable temperature levels. The second regulator, the

LM317, for the +3 V output on the AVR-NET-IO experienced no noticeable increase in

45

The stack and flash programming code has been written for the XBD. The two

sub connector, RS232 to TTL converter, USB to

RS232 cable, and the test platform crystal and (2) 22 pF decoupling capacitors have all been

acquired. The (2) 100 nF and 10 uF capacitors and 10k and (2) 4.7k resistors used in the XBD

power supply circuit and the I2C data and clock lines were already owned by the team.

rface between the AC to

DC adapter and XBH as well as the voltage level shifting between the XBH and the MSP430

A +12 V supply for the XBH is provided by an AC to DC adapter from an external hard

drive enclosure, which conveniently includes a switch and jumpers to easily connect power and

ground lines. The enclosure serves as a temporary heat sink, allowing the 7805 voltage regulator

uncomfortable to touch. Test runs

without the heat sink resulted in unacceptable temperature levels. The second regulator, the

IO experienced no noticeable increase in

46

temperature during test operations with or without the heat sink on the 7805. The AVR-NET-IO

has various +5 V outputs and ground terminals to source to an external device; these will serve

as the power to the XBD.

The outputs from the XBH require no additional components other than the pull-up

resistors and decoupling capacitors for the ATmega644 XBD because it operates at +5 V. The

MSP430 is a 3 V device, not tolerate to +5 V inputs. This requires voltage level shifting at the

inputs. Currently two solutions are being considered: a voltage divided using resistors between

the output from the XBH and the MSP430, or a specific IC that performs the voltage level

shifting. If the latter option is chosen, the PCA9306 bidirectional I2C-bus voltage-level translator

will serve for the I2C lines, which would also remove the need for pull-up resistors on the data

and clock lines. The TXS0104E voltage-level translator or something similar would serve as a

general bidirectional interface between the XBH and XBD. Once the voltage shift is achieved,

no additional components are needed because the experimenter’s board includes decoupling

capacitors for the clock crystal and a capacitor between the input voltage and ground.

47

VI. Testing Plan

1. Set up and test XBX and XBH with a preexisting platform, the ATmega644, to make sure

that the XBH works correctly.

2. Compile the XBX for the Atmega644 platform.

3. Run hash functions on the Atmega644 which acts as a prototype XBD.

4. Compare results file with already acquired results available online.

5. Write the firmware for MSP430 (bootloader).

6. Write the drivers for MSP430 (HAL).

7. Test drivers outside of XBS to see if they work with the MSP430

8. Compile with XBS.

9. Use the USB FET debugger to test data communication

10. Test the firmware on the MSP430 by means of a debugger

11. Test the drivers via the XBH

12. Run various hash functions multiple times and compare the result tables.

13. Report Results to XBX project and SUPERCOP.

48

VII. List and Description of Tasks

D. Fall 2010 Task Allocation

The Fall 2010 task list is focused on the setup of the existing system implementation and the

software required to add the MSP430 to the XBX platforms.

Task Name Duration Start Finish
Resource
Names

BHFMSP430 (Fall 2010) 55 days Fri
10/29/10 Sat 1/14/11

 mspgcc toolchain & programming MSP430 29 days Fri
11/12/10

Wed
12/22/10 Elio

 Existing XBX system running 7 days Fri
11/26/10

Mon
12/6/10 Margaux

 HAL and bootloader ready to test 26 days Fri
10/29/10

Mon
12/6/10

 Paint & count stack 2 days Tue
11/23/10

Wed
11/24/10 Margaux

 Send execution start and stop signal 2 days Thu
11/18/10

Fri
11/19/10 Margaux

 Busy loop with timing 2 days Fri
11/12/10

Sat
11/13/10 Margaux

 Serve communication 3 days Sat
11/27/10

Tue
11/30/10 Elio

 UART driver 22 days Fri
10/29/10

Mon
11/29/10 Elio

 Debug Out 2 days Fri
11/26/10

Mon
11/29/10 Elio

 I2C Driver 22 days Fri
10/29/10

Mon
11/29/10 Elio

 Switch to application/bootloader 2 days Fri
12/3/10

Mon
12/6/10 Fletcher

 MSP430FG4618 memory map & mspgcc stack
organization 6 days Fri

11/12/10
Fri
11/19/10 Fletcher

 Load string from constant data area 2 day Sat
11/27/10

Sun
11/28/10 Fletcher

 readPage & programPage 5 days Fri
11/19/10

Wed
11/24/10 Fletcher

 Expected results 13 days Fri
12/3/10

Tue
12/21/10 Margaux

 HAL and bootloader working 12 days Mon
12/6/10

Wed
12/22/10

 One hash function running on the MSP430 via the
XBX 6 days Fri 1/7/11 Fri 1/14/11 Margaux

49

E. Spring 2011 Task Allocation

The Spring 2011 task list moves forward from the hardware implementation and revises the
code written last semester. The goal is to produce expected results similar to the test XBD
(ATmega644) and integrate the remaining sphlib hash functions into the MSP430 algopack.

Task Name Duration Start Finish
Resource
Names

BHFMSP430 (Spring 2011) 35 days Fri 1/7/11 Fri 2/25/11

 Project Assessment & Task Assignment 0 days Fri 1/7/11 Fri 1/7/11

 Prepare Results Table for Hash Function 11 days Fri 1/7/11 Fri 1/21/11 Fletcher

 Code Revision & Commenting 11 days Fri 1/7/11 Fri 1/21/11 Margaux
 Compiler options 11 days Fri 1/7/11 Fri 1/21/11 Elio

 Next available set of hash functions 12 days Sat 1/15/11 Sat 1/28/11 Elio

 Project Update Presentation 11 days Sat 1/29/11 Fri 2/11/11
 Third set of hash functions 11 days Fri 2/11/11 Fri 2/25/11 Fletcher

50

VIII. Schedule and Milestones

Project Milestones Date
 Existing XBX system running Mon 12/6/10
 HAL and bootloader working Wed 12/22/10
 One hash function running on the MSP430 via the XBX Fri 1/14/11
 Next available set of hash functions Sat 1/22/11
 Third set of hash functions Fri 2/25/11

F. Fall 2010 Administrative Schedule
Task Name Duration Start Finish

Fall 2010 ECE 492 77 days Fri 9/17/10 Fri 12/3/10
 Project Title Form 0 days Fri 9/17/10 Fri 9/17/10
 Draft Proposal 0 days Fri 10/8/10 Fri 10/8/10
 Oral Proposal Presentation 0 days Fri 10/15/10 Fri 10/15/10
 Oral Design Review Presentation 0 days Fri 11/12/10 Fri 11/12/10
 Draft Design Document 0 days Fri 11/19/10 Fri 11/19/10
 Document Tracking Form 0 days Fri 12/3/10 Fri 12/3/10
 Design Document 0 days Fri 12/3/10 Fri 12/3/10

G. Spring 2011 Administrative Schedule
Task Name Duration Start Finish

Spring 2011 ECE 493 91 days Mon 2/7/11 Mon 5/9/11
 Project Title Form 0 days Mon 2/7/11 Mon 2/7/11
 Project Description/Abstract 0 days Mon 2/7/11 Mon 2/7/11
 Progress Report #1 0 days Fri 2/25/11 Fri 2/25/11

 Test Plan & Work Breakdown Structure 0 days Mon 2/7/11 Mon 2/7/11

 Progress Report #2 0 days Fri 4/1/11 Fri 4/1/11
 Draft Final Report 0 days Mon 4/18/11 Mon 4/18/11
 Final Report 0 days Mon 5/2/11 Mon 5/2/11
 Document Tracking Form 0 days Mon 5/2/11 Mon 5/2/11
 In-Progress Presentation 0 days Mon 4/4/11 Mon 4/4/11
 Final Oral Presentation 0 days Mon 5/2/11 Mon 5/2/11
 Project Poster 0 days Mon 5/9/11 Mon 5/9/11

51

IX. Gantt Charts

H. Fall 2010

I. Spring 2011

52

X. References

[1] (2010, June) National Institute of Standards and Technology. [Online].

http://www.nist.gov/itl/csd/ct/hash_competition.cfm

[2] Christian Wenzel-Benner and Jens Gräf, "XBX: eXternal Benchmarking eXtension for the
SUPERCOP Crypto Benchmarking Framework," in Cryptographic Hardware and Embedded
Systems, CHES 2010, Stefan Mangard and François-Xavier Standaert, Eds.: Springer Berlin /
Heidelberg, 2010, vol. 6225/2010, pp. 294-305.

[3] (2010, Oct.) SUPERCOP. [Online]. http://bench.cr.yp.to/supercop.html

[4] Christian Wenzel-Benner and Jens Gräf. (2010, November) XBX: eXternal Benchmarking
eXtension. [Online]. https://xbx.das-labor.org/trac/wiki/HowItWorks

[5] Christian Wenzel-Benner and Jens Gräf. (2009, October) The Conferences - XBX: eXtenal
Benchmarking eXtension. [Online]. http://www.hyperelliptic.org/SPEED/slides09/wenzel-
XBX-benchmarking.pdf

