Benchmarking Hash Functions on the
MSP430

ECE 493Final Report

Team Members:
Elio Andia
Fletcher Ta
Margaux McGivern

Faculty Advisor: Dr. Jens-Peter Kaps

Date: May 2, 2011

Table of Contents

[, EXECULIVE SUMIMAIYciiiiiiiiieie ettt s 3
1 PR [o] (0T (3Tt 1o] o TSP PPPP PRSPPI 4
A. 1dentification Of NEEAooiiiiiiiiie e e e 4
B. Problem Statement...........uuuiiiii i cceeeme e e e e aan 4
S L o] o0 Y- T o OO PRRPR 5
1 PO I =Tod o o= | TP PP PP PO PPPPPPPPPRPPPR 8
A. The eXternal Benchmarking eXtension (XBX)....cccuuuiiiiiiiiiiiiiimmiiiiiieiieiieieeeieessieeeeens 8
B. XBD CirCUIt DIAQIAIMcooiieeeieeeeeee e e e 11
V. Experimentation and TeSHNGcooiii i i e ebeaeneees 12
V. AdMINISTrativVe DELAIIoocuiiiiiiiie et e e e e e e e e e e e e anees 13
A. Progress SUMMAry TabIeo 14
B. FUNG SPENL ..ottt ettt et e aaaaeas 15
C. MAN HOUIS ..o £+t e et e et e e e e e et e e e e et e et e e e e et a e e e e s a e e e e e e e e e e e e e e e eaaenas 16
VI. ConcluSioN @and EQUCALIONccciieiii s sttt e e e s et e e e e e e s ssmmne e e e e e e e e senenees 18
RV LR =71 o 1T =T] 19

Additional References:
Appendix A — Design Proposal ... e 21
Appendix B — Design DOCUMENTouutiie it e e e et e e e e e e 32

Executive Summary

The objective of this project is to add the Texagruments MSP430FG4618
microcontroller to the eXternal Benchmarking eXiengXBX), a system that builds upon
SUPERCOP (System for Unified Performance EvaluaRelated to Cryptographic Operations
and Primitives) to evaluate cryptographic algorishom embedded devices. Specifically, XBX
extends the eBASH (ECRYPT Benchmarking of All Sutbead Hash Functions) portion of
SUPERCOP. As a part of this project, the eXterremidhmarking Harness (XBH) must be
acquired, modified, and programmed correctly ineotd function. The XBH will serve as an
interface between the eXternal Benchmarking So#wxBS) and the eXternal Benchmarking
Device (XBD). In this case, the XBD is the MSP43@B&8. The XBS will compile the hash
functions, which in turn will be downloaded onte thSP430 via the XBH. The harness will
report the execution time and stack usage of tBa hanction on the device to the software. The
data collected by the XBS will be in a form compkiwith SUPERCOP’s data analysis scripts
A successful implementation will result in the #lito produce these database entries for the

execution of any hash function on the MSP430.

! Wenzel-Benner and Graf assert that they shoultbb®atible. See pg. 300 f|]

I ntroduction

A. ldentification of Need

The National Institute of Standards is holding mpetition for the next hash function,
called “SHA-3", which was proposed in responseh®riecent advances in cryptanalysis and
papers published showing weaknesses in the cust@miard, SHA-11]. To measure the
performance of the software implementation of @tographic algorithm, the Virtual
Application and Implementation Research Lab (VAMB)Rreated a toolkit called SUPERCOP
(System for Unified Performance Evaluation Reld@te@ryptographic Operations and
Primitives) that evaluates the algorithm based eataf timing and size criterid][Additional
tools for benchmarking hash functions were develpfming the eBASH (ECRPYT

Benchmarking of All Submitted Hash Functions) pmitof SUPERCOPJ].

B. Problem Statement

SUPERCORP is restricted to platforms that supp@tR@SIX standard; this eliminates
mobiles phones, PDAs, and Smart Cards, devicesthaiften target platforms for
cryptographic algorithms4]. The eXternal Benchmarking eXtension (XBX) desd by
Christian Wenzel-Benner and Jens Graf supportStieERCOP eBASH system for
microcontrollers, using a combination of softwanel dardware components. The device target
for the eXternal Benchmarking Software (XBS) idedithe eXternal Benchmarking Device
(XBD) and is replaceable in the XBX system. The XB&ble to run the SUPERCOP
framework to benchmark an algorithm based on anginglementation, compiler, and options
on the XBD H]. The XBD for this project will be changed to a ME&0FG4618 microcontroller,

expanding the family of microcontrollers supporbgdthe XBX.

C. Approach
Wenzel-Benner and Graf designed the XBX setup ailBD target that can be
interchangeable by changing the cross compileherXBS and supplying low level functions
that are supported by the generic bootloader aterfThe remaining components, the XBH and

XBS, are set up following Wenzel-Benner and Grdésign.

XBS XBH

eXtemal Banchmarking eXternal Benchmarking Harness
exiension Software

SBASH IF
[X-compiler] XBD-Client XBD-Server
[appl-binay |

¥XBH-Client XBH-Sarve

.r!_ILL'
HW / 5W fo be done,
will become "standand’

Figure 1 - Graphical representation of the standard and interchangeable components of the XBX [5].

Existing HW,
SW medification onby

Figure 1 illustrates the changes required wheimsggetip the XBX with a new device. It also
illustrates the operations of between the XBX congmis. XBS combines the application code
of hash function to be benchmarked with the appboaramework, the communication services
necessary for the XBD to communicate with the XBidplication binaries are downloaded onto
the XBD through the XBH, where they are executedittmed. The hardware abstraction layer,
HAL, provides the functions necessary to benchniaekxBD:

« I?C drivers for commands and data to be exchangedktketthe XBH and XBD.
» UART drivers for debugging output using the RS282le XBD.

* Routines for sending start and end execution siginain the device to the harness.

5

» Timing calibration to obtain the number of devigeles per harness cycles.
» Paint and count stack functions to obtain the steeige measurement in bytes.

The necessary work required to add the MSP430etXBX system consists of both
hardware and software. Initially the hardware waspesed to be simple, as currently
implemented devices only had a six pin connectimta/een the harness and the device itself
[5]. Unlike previous implementations, the MSP430 rah8 V, whereas the harness runs at 5 V.
The device datasheet for the MSP430 requires hlesgupply voltage not exceed 4.1 V. The 12C
bus was also limited by the maximum supply voltggempting the need for a voltage interface
between the harness and the device. The softwhoevénl the template of HAL functions, as

enumerated above.

Figure 2 - XBX setup with the M SP430

As a part of adding the MSP430 to the XBX systdma,dxisting setup must also be built. The
XBH is built using an AVR-NET-10 board, a break-baard for the DB-25 connector, and the
ATmega644 microcontroller to replace the standafdhaga32 that ships with the AVR-NET-
10. The XBS requires a PC running Linux as welaa<sthernet port to connect (either straight-

through or crossover).The contributions of eacmtezember as followed are: tHel

communication were handled by Elio, the bootloadet applications were rewritten by
Fletcher, and the integrations and set up coordinatere handled by Margaux. A more detailed
explanation on the descriptions of XBX componemis sk distributions can be referenced in
the design document. Further instructions on hobetechmark are given from the XBX

website.

Technical
A. The eXternal Benchmarking eXtension (XBX)

Compilation

Collections of Upload via TCP

Hash Functions

Compilation and i
A'QO' Execution Scripts Protocol Conversion Upload via UDP,
PﬂCkS TWI or UART
Platform
Configuration Execution
XBX XBH XBD
- Timing Signals,
Ti M t
iming Measuremen Hash Result
Analysis i .
Yy Data Aggregation Timing Data,
Data Collected Data Hash Results
Evaluation

Figure 3 - Overview diagram from [5].

The overall opeation of the XBX system is summari: in Figure3. The required inputs
for system operation are: algopack(s), compiled@piler settings, platform settings (page :
in bytes, communication mode, and clock frequenaygl the hardware abstraction Ir for the
selected platform. The XBS has three main comm#ratan be run by the users: imp:
compile, and execute. Import will copy the algophekh functions to a folder led algobase,
which contains théash functions to be executed on the XThe compile command reads t
compiler options provided in the platform directaryd compiles each hash function in
algobase with the application framework and sttimese binaries in a platform speci
directory. The execute command first read: platform settings and then checks the XBF
address argument for validity before initiating @P connection with the XBH. After the p«

number is set and the XBH revision number is resithe XBH issues a command to get

bootloader status, beginning the first steps towandning the imported hash functions on the
XBD. The execute script creates the result diréesoiperforms timing error measurements,
calculates the checksums for all the hash functiotise algobase, and issues commands to the
XBH to upload the binary and reports the resultshart benchmark is run for each
implementation of the hash functions with assodiampiler and options. A stack usage
measurement is performed at this time. Startingnftioe short benchmark, a ‘best binary’ is
found and a detailed benchmark is then perforniéds is where the XBD performs the hash for
messages of different lengths

The next step of benchmarking the hash functisrie pass the application binaries from
the PC to the XBH by uploading them through TCFl #ren striping the binaries from the TCP
packets to send them to the device usfly Hash functions are then executed on the XBLr afte
receiving the appropriate commands from the hari&ssults and timing signals are then sent to
the XBH for timing measurements. Timing measuresentthe XBH are calculated using the
timestamps taken when the XBD sends start and ezxligon signals. The XBH returns the
timing data and hash results to the PC for datacagdjon.

The results from the compile and execution scaptsevaluated by using tools provided
by the XBX top level directory. The errors, buildts, and binary information can be viewed in
table format after the compilation. The executionp produces information about the
checksum tests, quick benchmarks, detailed measmtspdrift measurements (timing error
calculation), and stack measurements. The impleatiens speeds of a cipher can be viewed in

graph form provided the user has installed gndplot

2 A summary of the execution command is includef#]nThe level of detail provided was found by an
examination of the execute file included in the XBdftware, available on the XBX websitg.|
¥ A command line based plotting software.

The functions the XBS uses to perform benchmark@tx@n include:
‘do_many_drift_measurements’, ‘get_timings’, ‘cdbte_measured_cycles’, ‘checksum’, and
‘benchmark’. Each function sends a command toXBE through a TCP connection and does
not directly call the functions used by the XBDp&rform timing measurements.

The XBH handles the protocol conversions and tymreasurement. The functions
within the XBH initialize and set up the connecsasf the PC and XBH as well as the XBH and
XBD. Timing on the XBH is handled by interrupts thre input capture pins. The function
‘port_time_stamp_request’ calculates the time edphiring execution. The remaining
functions to be implemented are from the HAL, imlthg ‘busy_loop_with_timing’,
‘load_string’, ‘switch_application’, ‘switch_bootéaler’, ‘read_page and program_page’,
‘paint_stack and count_stack’. The support fundibrom the HAL will execute the commands

from the XBH and provide debugging output.

Figure4 - Final XBX setup

10

B. XBD Circuit Diagram
The MSP430 requires an interface to act betweelit @aad the XBH because the XBH is
a 5 V device while the MSP430 is a 3 V device. dghe simplified schematic from the design

document, a new interface board was designed twiatdor differing supply voltages.

txb0104

VccA VeeB
B1
B2
B3

N Timing
Reset I

O N
g <0 20 = N

B4

0

NC —
OE EXT port from XBH
SDA
pca9306
R3
Timing __p— 10K
1 2 ISCL 8
Reset 3 4 | EN
2 8 3{scl1 spat 4
SCL2 SDA2
3V
 —
2
VREF1
MSP430 7
. VREF2 o —

1 1
GND S
5V 3
LED3¥ R2 GND___4

100
—J
LED 5V R1
470 D-sub connector

Figure5 - Schematic for voltage level interface board between M SP430 XBD and ATmega644 XBH.

The power and ground from the MSP430 are conndgotbdader pins soldered into the
breadboard area (the MSP430FG4618 is mounted er@erimenter’s board which provides
various peripherals, such as a limited breadboaa and an RS232 port). The timing pin is
connected to port 2 pin 1, which is Timer BO. Thset pin is connected to JTAG port 1, pin 11,
as there is no connection on the breakout headaitble? The FC pins are connected to port 3
pins 1 and 2 for SDA and SCL, respectively. Theutrshown in the design document without
the voltage interface was based on a schematicdogvChristian Wenzel-Benner for the group

to implement the 16 MHz ATmega644 XBD.

“There is a pull-up resistor connected internalljttenMSP430 FG4618.
11

V.

Experimentation and Testing

The testing and experimental procedures for soéwaare conducted by testing the rewritten
bootloader functions in C for the MSP430. The poasi XBX system used an ATmegal281
which called functions from its own library. Reweih bootloader functions for the MSP430
were simulated and debugged on the microcontroligtr the IAR embedded Workbench.
Simulations in IAR were performed for the followiMSP430 HAL functions: stack, flash, and
communication. The data from these tests did ndergo any processing, but were used to
verify functionality. The MSP430 was connectedie PC via the debugger, not the XBH. An
IAR workspace with simulated inputs produced owtghat are then compared to the expected
results. For the stack functions, the test verifieat the RAM is filled with stack canaries and
that the correct number of stack canaries are edwmd returned. For the flash functions,
patterned data was written to the flash and theifiee through the debugger and read back into
an array. The communication drivers under test W&eand UART. The?C driver was tested
using the MSP430 experimenter’s board, where thergkchip, the F2013, was used as the
master device. An echo communication took placesresthe MSP430FG4618 sent a byte and
the F2013 acknowledged the byte by returning ie OART driver used a similar testing, where
the characters received from the PC was sent Gdekpurpose of these tests was to catch any
bugs before integrating the MSP430 with the XBH.

Testing and experimental procedures for the harelware conducted by individually testing
the operation of each electronic component befoliedesing and assembling. Once the XBH was
assembled, setting up a connection between the #BHXBS and XBD was conducted. Packets
from the XBS to the XBH were successfully sent esekived, confirmed by running the execute

command from the XBS prompt. To test the XBX systene of the SPHLIB hash functions

12

was compiled to run on the ATmega644 XBD. The eteecommand failed, retuning afCl
non-acknowledgement. It was discovered that Bedtiver on the XBH was masking out the
least significant bit of the slave addresses, tieguin a constant zero address being sent to the
device.

The MSP430 was connected to the XBH for testing flilst execute command failed,
returning the same error as the ATmega644 XBD. WMais expected, so the SDA and SCL pins
of the both the MSP430 and the XBH were conneaelbgic analyzer. The waveforms were
as expected on the XBH side, but the waveformeaSibA and SCL pins of the MSP430
revealed a problem in the voltage interface boanis was fixed by removing a connection
between the 3.3V output on tH€lbus and the input voltage pin on the MSP430. The
waveforms matched on both the XBH and XBD aftes tipdate. The MSP430 was still not
responding to the request being sent from the XiBias after this test that the masking of the
least significant bit of the slave address wasadisted by looking closely at th&Q bytes being
sent on the oscilloscope. After changing the stddress to 2 on the XBH (effectively shifting
the slave address left by one, making the leastfsignt bit the read/write bit), the MSP430

began to respond to the XBH request, but only sertds back.

V. Administrative Detail

The tasks for this project were divided into softsvand hardware components. The software
is the hardware abstraction layer, which must fater with the existing XBX system to support
running the MSP430 as an XBD. The hardware poxiahis project was divided between the

existing implementation (XBH) using the test platfio(ATmega644), and then the MSP430 as

13

the XBD and its associated voltage level shiftégrimce. The Progress summary table is shown

below in Figure 6.

A. Progress Summary Table

Hash Functiors o the , FetcherTs, JonsPatar aps
o [rask Name Duration [start Finish Resource b Trebra March April Tutay
Names _compiet 123 [130 I 26 13 220 27 e ym 320 E73) 41 410 41 424 [
i [MSP430 HAL 62 days Fri 1U12/10 Sun2/6/11 0%
5| Busyloop with timing 2dags Fii 111210 Sat 111310 Margaws 100%
| 7117] MSP430FG4618 memory map & 6days Fri 11/12/10 Fri 11/19/10 Fletcher 100%
mspgce stack organization
4| Send execution tart md stop signa2 days Th 11/18/10 Fri 11/19/10 Margaw 100%
2| Paint & count stack 2days Tue 11/23/10 Wed 11/24/1(Margaws 100%
3| Stack Banction revision Gdays Fei 12811 Fi2fefll Margan 100% E—— Moz
& | Serve communication Tdays Fi 2911 SatdSA1 Bl 100% Ee— flo
7| UART diver Tdays F V2811 S50 Elio 100% L —
& | Debug Out Tdays Fi L2911 SatdSA1 Elio 100% E—— 0
5| 12C deiver Tdays Fi U211 Sat2SN1 Elio 100% Ee— 0
[32| Load string from constant data area days Fri 1/28/11 Fri 2/4/11 Fletcher 100% E— Fether
13| Readpagemdprogranpage Gdays Fi V2811 Fi2@ll Flecher 100% Ee— Fetcher
| 07| switchto application/bootloader 3days Fri24/11 Sun2/6/il Fletcher 100% B Fiotcher
| 14 Testing 66 days Mon 1/17/11 Fri 4/15/11
| 715 ATmega644 XBD Hardware 11days Mon 1/17/11 Sat 1/29/11 Margaw 100% e— Margau
16 | Compile and progran XBHand 10 days Mon V1711 Fri 1/28/11 Margans 100 e Mareau
ATmegatd4 XBD
17| Run SPHLIB hash functions on the 11 days Sat 1/29/11 Thu 21011 Margaws 45% Margaus
ATimegatd4 XBD
19| Tes MSP430 RS232 driver Zdags FA24l1 Sa25l Margan 0%
20| Witetest code forprogram flach 2days Fi 204/11 Sat2(5/11 Flecher 100%
functions
18 | Compareresults for ATmegastd 2days Fi 2/11/11 Sat21211 Margaw 0% Margaue
XBD with those by XBX team
| 24| MSP430 hardware lday Sat2/12/11 Sat212/11 Margaw 85% B4 Margaux
u | Makefle Gdays Fi32511 Fi4/1/11 Margan 100% E— Mariau
3| Voltage Shifter Tdays Fi4/11 Sundll0L1 Margan 0% E—— Mo £3
23 | RunEmpty HashonMSP430 Uldays Fi4/U/11 Frid/IS/11 Margaw 0% C— Merga
| 25 X BX with MSP430 XBD 66 days Fri2/&/11 Fri 5/6/11 54%
[728 | Project Title Form Odays Fi2d1 Fi2M/11 Margaw 100%) ot
| 27| Project Description/Abstract. Odays Fri2/4/ll Fri2/é/l]l Fletcher 100% o
| 728 | TestPlan & Work Breakdown Odays Fri 24/11 Fri2/4/11 Margaw 100% oy
Structure
| 742 | Design final harware layout Gdays Frid/l/11 Fri4/sii1 Elio (2 C— El0
% | Experted resilts Gdays Sun2/6/l Fei211/11 Margaws 100% Be— Margaux
|77 PR#t Outline Gdays Fri2/1l/11 Fri2/18/11 Margaw 100% C——_ Mg
3 | Findize PRAL Gdays Fri2/18/11 Fri2/25/11 Margaws 100% e—Margau
3 | Introduction, level 1+2 Gdays Fi2/18/11 Fi2/25/11 Margaw 100% E— Maru
architecture, system mo dels
| era
20| Progress Report#1 Odays Fei /2511 Fri 2/25/11 100% o
% | Ouline PRAZ assignsections 6days Fri 42511 Fri 34/11 Margaw 100% C——Marsau
% | Revise PR 15 dags Fi 1111 Thu 331011 Margauw 100% e —— M2 X
47| Outine Draft Final Report, assign 6 days Fri 32511 4/l Margaw 0% Co—] Margaux
sections
41| Prepare man how and funds spent 2 days Wed 3011 Thu 33111 Fletcher 0% G Flscher
for PR
% | Progress Report #2 Odays FA4/1/11 Frid/i/11 [o4
| 73] In-Progress Fresentation Odays Frid/1/11 Fri4/U/11 04 o
4 | Practice In-Pragress Presentation 1day Fri4/1/11 Frid/i/11 w 2]
@
4| Fillin Draft Final Report Gdays FA4/I11 Frid4/a11 [C——
[73% | HALand Bootloader working 0 days Fl 4/&/11 Fri 4/a/11 o o
4 | Revise Draft Find Report Gdays Fi4/811 Fridf1s/i1 [C—
| 32| Draft Findl Report Odays Frid/15/11 Fri4/15/11 04 o418
0| Receive draft with comments 3 days Mon 4/18/11 Wed 4/20/11 [a—
51| Asign sections to revise 3days Wed 420011 Fri 4f22/11 [=
52| Revise Find Report 6days Fri4/22/11 Fridf29/11 [C—
| 3| Find Report Odays Fri4/29/11 Fri4/29/11 04 ° 42
3 | Document Tracking Form 0days Fri4/29/11 Fridf29/11 [o420
| 35| Findl Ordl Presentation Odays Fri4/29/11 Fri4/29/11 04 o4
[736 | Project Poster Odays Fri 5/6/11 Fri 5/6/11 0%
Task — Surmary G—— Cunaibisone ¢ Insthve Summary G ManyalSummary Rolltp e Finishorly 3
e spit . . Prosctsmmay G nacive Task e ManwalTask Dradine .
Miestons . sl Tasks C— e Mistone O Ouration-cnly starconly c Progress
Page 1

Figure6 - Progress Summary Table

14

B. Fund Spent

Reciept

Description Quantity Date Vendor/Supplier Elio Fletcher Margaux
AVR-NET-10 (payment 1) 1 10/13/10 Pollin Electronic S 62.70
AVR-NET-10 (payment 2) 1 10/29/10 Pollin Electronic S 51.68

Print and Paper supplies $18.00
ATmega644 MCU 2 11/8/11 AVNet S 11.99
Atmel AVRISPmkII 1 1/4/11 Newark S 34.00
Heat Sink 2 1/4/11 Newark S 0.83
PCA9306DCTT 2 1/4/11 Newark S 133
74LVX3245MTC 2 1/4/11 Newark S 179
2x5 Pin IDC Ribbon Cable 2 2/25/11 MDFly S 2098
2x5 Pin Shrouded Header - 10 Pins 2 2/25/11 MDFly S 0.30

Breakboard for PCF8575 1 2/21/11 Sparkfun S 11.95

Breakboard for Voltage translator 1 2/21/11 diydrones S 12.90
Exp IC Perfboard 1 3/19/11 Radioshack S 299
LM317T Voltage Regulator 1 3/19/11 Radioshack S 249
40 Pin IC Socket 1 3/25/11 Radioshack S 0.99
8 Pin IC Socket 2 3/25/11 Radioshack S 048
Exp IC Perfboard 1 3/25/11 Radioshack S 299
TXB0104 Voltage Shifter 1 4/4/11 RobotShop S 5.06
9VDC Power Supply 1 4/4/11 RobotShop S 595
Seeedstudio Barrel Jack 1 4/4/11 RobotShop S 1.95
Ceramic Resonator 1 4/4/11 RobotShop S 0.95
Total Money Spent by each member: $ - S 42.85 $ 191.45

Grand Total $ 234.30
Figure 7 - Funds Spent

The total amount of money spent purchasing thepom@ants to set up the XBX adds up
to $234.30. After testing XBX on the control set with the original XBD ATmega644, we did
not purchase the ATmega debugger which would hestan additional $200. Our target XBD
was the MSP430, and we had the debugger for tineidfbcontroller from the lab kit purchased

in ECE 447. We decided to just test and run the X33tem with the MSP430 as the XBD.

15

C. Man Hours

Elio Fletcher Margaux
Total Time 110.0 128.0 160.0
Total Time from all
398.0
team members
Total Labor Cost at $ 7.960.00
$20/hour pE
Labor Cost and Fund $ 819430
Spent
Figure8 - Labor Cost
Week Week Elio Fletcher Margaux
Ending
Educational/ Productive Educational/ Productive Educational/ Productive
Learning Effort Learning Effort Learning Effort
1 3-Sep-10
2 10-Sep-10
3 17-Sep-10 1.0 3.0 3.0 3.0 2.0 3.0
4 24-Sep-10 4.0 2.0 2.0 2.0 4.0 2.0
5 1-Oct-10 2.0 5.0 1.0 5.0 1.0 5.5
6 8-Oct-10 2.0 1.0 3.0 2.0 1.0 2.0
7 15-Oct-10 2.0 1.0 2.0 2.0 3.0 4.0
8 22-Oct-10 1.0 1.0 2.0 1.0 1.0 2.0
9 29-Oct-10 1.0 2.0 2.0 1.0 6.5 2.0
10 5-Nov-10 2.0 0.0 2.0 3.0 4.0 1.0
11 12-Nov-10 2.0 5.0 2.0 3.0 3.0 4.0
12 19-Nov-10 0.0 1.0 2.0 4.0 6.0 6.0
13 26-Nov-10 1.0 1.0 1.0 2.0 2.0 1.0
14 3-Dec-10 0.0 0.0 2.0 2.0 2.0 3.0
15 10-Dec-10 0.0 0.0 1.0 2.0 1.0 2.0
16 17-Dec-10 1.0 0.0 0.0 0.0 0.0 0.0
17 24-Dec-10 2.0 1.0 0.0 0.0 0.0 0.0
18 31-Dec-10 0.0 0.0 0.0 0.0 0.0 0.0
19 7-Jan-10 1.0 0.0 0.0 0.0 2.0 1.0
20 14-Jan-10 1.0 0.0 4.0 0.0 5.0 0.0
21 21-Jan-10 2.0 0.0 2.0 0.0 1.0 0.0
22 28-Jan-10 5.0 1.0 4.0 0.0 5.0 2.0
23 4-Feb-10 0.0 2.0 2.5 3.0 2.0 10.0
24 11-Feb-10 2.0 4.0 3.8 1.0 1.0 5.0
25 18-Feb-10 4.0 1.0 3.0 1.0 1.0 3.0
26 25-Feb-10 1.0 8.0 6.0 3.0 1.0 4.0
27 4-Mar-10 0.0 2.0 1.0 2.0 1.0 3.0
28 11-Mar-10 0.0 1.0 0.0 0.0 1.0 1.0
29 18-Mar-10 4.0 0.0 2.0 10.0 0.0 0.0
30 25-Mar-10 1.0 4.0 2.0 4.0 1.0 4.0
31 1-Apr-10 4.0 2.0 0.0 4.0 1.0 5.0
32 8-Apr-10 2.0 1.0 0.0 4.0 5.0 5.0
33 15-Apr-10 0.0 1.0 1.0 4.0 1.0 4.0
34 22-Apr-10 5.0 7.0 1.0 3.0 4.0 7.0
35 29-Apr-10
36 6-May-10
37 13-May-10
Time Spent: 53.0 57.0 57.3 71.0 68.5 91.5
Total Time 110.0 128.3 160.0

Figure9- Man hoursdevoted

16

A large majority of the time devoted was on selfieation and debugging. The JTAG
interface and application of the bootstrap loadeth® MSP430 had to be researched as the
libraries of AVR library could not be used. Somdlwése functions had to be rewritten in
assembly using the MSP430x instruction set. TBebus specification and user manual, as well
as applying the’C Master-Slave Library had to be further researasethe topic was briefly
covered in ECE447. The set up between the XBHX8 was not immediately obvious either.
In the code for the web server on which the XBHgpam is based, an interface via the serial
port is provided to change the MAC and IP addrestése XBH. Upon programming, the MAC
address of the XBH was initialized to all F’s, rendg it unable to communicate via the
Ethernet port. A mismatch between the baud rateeoferminal and the device prevented this
from being discovered, as the default baud ratbefveb server program is 9600, while the
program itself initializes the port at 115200 batdirst.

Immediately after the resolution of the IP and MA@Hresses, the XBX scripts were able to
connect to the XBH but failed to connect to the AAga644 XBD, reporting possible problems
with the FC connections. The debugging output suggeststieairoblem is related to the CRC,
which was found to be related to the slave addaadshe read/write bit on the XBH, rather than
any FC issue on the XBD. Most of the man hours were @piging to find this particular bug in
both the ATmega644 XBD and the MSP430 XBD.

With the use of logic analyzer, we concluded thate was a problem with the hardware
components. The pull up resistor was increasedtandoltage shifter was fixed. The problem
now resides within théC communication driver on the XBD, or the given coumication on

the XBH. Further detail on self-education is expéal in the next section.

17

VI.

Conclusion and Education
The last testing period for the MSP430 involvedI2@ communication between the XBD

and the XBH. The error reported through the RS232 gn the XBH was a non-
acknowledgment on the MSP430 side. As mentionéldrexperimentation and testing section,
the problem was found in the XBEQ driver. Further oscilloscope readings showed tthet
correct request (bootloader status request: XBD08erc), was being sent to the MSP430, but
the response form the device was incorrect; atleerPreliminary research into the actions
taken by the bootloader when the status requestéved suggests the problem can be isolated
to three areas: the bootloader wrapper provideithéyBX team, the load string function in the
HAL, or the condition for sending the responsehia €C communication. Further testing will
reveal which of the areas causes the sending o§ zerthe XBH.

The team’s education primarily consisted of the gamication protocols required to
implement the project, mainly because a majoritthefdebugging was done in this area. In
addition to fC and UART, the issue of programming the upperipomf the flash was resolved
by using 20-bit pointers. Unfortunately, the mspgompiler does not support these extended
pointers easily, and IAR does not provide very ssfifated methods of handling them either, so
the MSP430x instruction set was used to accesst26¢isters while read and programming
flash.

A summary of the XBX system is that it was createtdenchmark hash function.
Researchers would benefit most from this proje¢hasviSP430 is a new device that is now
added to the XBX system. There would be no cogtaiit, as the system is open source. If any
new updates are done, it would most likely jusbime updating the software on the XBS. The

only time to add new hardware onto the desigrf,tisal structure of XBX changes. Disposal of

18

any components of XBX should be handled similaslyhte disposing of any other electronic

devices.

VII. Bibliography

[1] (2010, June) National Institute of Standards anchfelogy. [Online].
http://www.nist.gov/itl/csd/ct/hash_competition.cfm

[2] (2011, May) SUPERCOP. [Onlindittp://bench.cr.yp.to/supercop.html
[3] (2011, May) eBASH: ECRYPT Benchmarking of All Sultted Hashes. [Online].
http://bench.cr.yp.to/ebash.html

[4] Christian Wenzel-Benner and Jens Graf, "XBX: eXa¢Benchmarking eXtension for the
SUPERCOP Crypto Benchmarking Framework,Ciyptographic Hardware and Embedded
Systems, CHES 2010, Stefan Mangard and Francgois-Xavier Standaert, Egginger Berlin /
Heidelberg, 2010, vol. 6225/2010, pp. 294-305.

[5] Christian Wenzel-Benner and Jens Gréaf. (2010, Ndez)iXBX: eXternal Benchmarking
eXtension. [Online]https://xbx.das-labor.org/trac/wiki/HowlItWorks

[6] Christian Wenzel-Benner and Jens Gréaf. (2009, @ecjokhe Conferences - XBX: eXtenal
Benchmarking eXtension. [Onlindjttp://www.hyperelliptic.org/SPEED/slides09/wenzel-
XBX-benchmarking.pdf

19

Appendix A

Design Proposal

20

ECE-492 DESIGN DOCUMENT

BENCHMARKING HASH
FUNCTIONS ON THE M SP430

The objective of the Benchmarking Hash FunctionthenMSP430 project is to add
the MSP430 microcontroller from Tl to the eXterBalnchmarking eXtension (XBX), a
system that builds on SUPERCOP (System for Uniflecformance Evaluation Related to
Cryptographic Operations and Primitives) perforngaecaluation suite for cryptographic
algorithms. Specifically, XBX extends eBASH (ECRYB&nchmarking of All Submitted
Hash Functions). As a part of the project the eddeBenchmarking Harness (XBH) must f
acquired, modified, and programmed in order to fiamccorrectly. The XBH will serve as
the interface between the eXternal Benchmarkingwoé (XBS) and the eXternal
Benchmarking Device (XBD), in this case the MSP413te XBS will be able to run the
imported hash functions on the MSP430 via the XBH ke timing and power
measurements while the MSP430 executes the hastidius. The output of the XBS will be

in a form compatible with the database entry ougivegn by the SUPERCOP program for

October 15, 2010 Team Members:
Elio Andia
Fletcher Ta

J.P. Kaps Margaux McGivern

21

e

Executive Summary

The objective of the Benchmarking Hash FunctionsheniMSP430 project is to add the
MSP430 microcontroller from Tl to the eXternal Banwarking eXtension (XBX), a system that
builds on SUPERCOP (System for Unified PerformaEealuation Related to Cryptographic
Operations and Primitives) performance evaluatiotedor cryptographic algorithms.
Specifically, XBX extends eBASH (ECRYPT Benchmarkiof All Submitted Hash Functions).
As a part of the project the eXternal Benchmarkiagness (XBH) must be acquired, modified,
and programmed in order to function correctly. RigH will serve as the interface between the
eXternal Benchmarking Software (XBS) and the eXdeBenchmarking Device (XBD), in this
case the MSP430. The XBS will be able to run thgarted hash functions on the MSP430 via
the XBH and take timing and power measurementsawhig MSP430 executes the hash
functions. The output of the XBS will be in a foonampatible with the database entry output
given by the SUPERCOP program for CPUs in persooputers. A successful
implementation will result in the ability to prodethese database entries for the execution of

any hash function on the MSP430.

Problem Statement

The National Institute of Standards is holding mpetition for the next hash function, called

“*SHA-3”, which was proposed in response to the meeglvances in cryptanalysis and papers

22

published against the approved standard, SHA-IT[d measure the performance of a
cryptographic algorithm the Virtual Application atrdplementation Research Lab (VAMPIRE)
created a toolkit called SUPERCOP (System for @difPerformance Evaluation Related to
Cryptographic Operations and Primitives) that eatda the algorithm based on a set of timing
and size criteria. Additional tools for benchmartkhmash functions were developed, forming the
eBASH (ECRPYT Benchmarking of All Submitted HasmEtions) portion of SUPERCOP.

The only problem with SUPERCORP is that it restritgause to platforms that support the POSIX
standard, which eliminates mobiles phones, PDAg,Smart Cards, devices that are often target
platforms for cryptographic algorithms [2]. The eXtal Benchmarking eXtension (XBX)
developed by Christian Wenzel-Benner and Jens saigiforts the SUPERCOP eBASH system
for microcontrollers, using a combination of softeyand hardware components. The device
target for the eXternal Benchmarking Software (XB)alled the eXternal Benchmarking
Device (XBD) and is replaceable in the XBX systdine XBS is able to run the SUPERCOP
framework to benchmark an algorithm based on anginglementation, compiler, and options
on the XBD.

The XBD for this project is the MSP430. The motigatfor this selection is based on the current
microcontroller used in ECE 447 and ECE 511, wipiddvides background knowledge to
successfully implement the hardware abstractioarl@AL) and drivers for the XBD.
Furthermore, the MSP430 is not a part of the exgsiBX implementations. Given the XBX
system’s capability with the SUPERCOP frameworkfutture applications are not limited to
hash functions; stream ciphers, Diffie-Hellman (Otf)ctions, and public-key encryption and

signatures are all possible extensions (SUPERCQE))2

23

Approach

The purpose of the eXternal Benchmarking eXtenfx@X) system is to extend SUPERCOP’s
benchmarking capabilities to small devices. Thd gbthis project is to add the MSP430 to the
current XBX implementation.

Wenzel-Benner and Graf designed the XBX in threéspane software part and two hardware
parts. The software portion of the system is cad¥ternal Benchmarking Software (XBS) and
is responsible for the compilation of the hash fioms and overhead code (called the application
framework) necessary to successfully benchmarKkguorithm on the target device. The
hardware setup consists of the eXternal Benchmauderness (XBH) and the eXternal
Benchmarking Device (XBD). The XBH handles the caimimation between the XBS and XBD
as well as the timing measurements of the exedasHt functions.

The XBS performs in a similar fashion to the SUPERCscripts it was modeled after, with the
exception that it requires a user to specify whlgtform the software will be benchmarking.
XBS first combines the application code of the hfastttion to be benchmarked with the
application framework, the communication servicesassary for the XBD to communicate with
the XBH. A size check on this binary is performed @ communication session between the
XBS, XBH, and XBD is made in order to download biearies. After download the XBD
executes the code and the results are sent bélck XBH and then to the XBS running on the
PC. The most important part of the XBS for thisjpebis the hardware abstraction layer, HAL.
The HAL will provide the necessary drivers to all@ communication between the XBH and

XBD, which is the channel through which the XBS eoamds are given to the XBD. The

24

locations of program memory, constant data storaige the methods of manipulating the data
there are hidden from the XBS by the HAL.

To accomplish the goal of the project, a hardwatapsfor the XBX system is required to
connect the MSP430 while it runs the hash functiortake measurements of the time and
power consumptions. In order to do this, an intetisng interface for the XBS and the XBD is
required. The eXternal Benchmarking Harness (XBétjgrms this function. The commands
from the XBS are sent via TCP to the XBH and thienl3C or UART to the XBD using the
XBH protocol. The firmware for the XBH is a modifieersion of an embedded web server
program by Ulrich Radig and is provided by the XBystem developers. In order to add the
MSP430 to the platforms benchmarked (and possdidysamilar microcontrollers in future
projects) it is necessary to create the commumicatrivers that will allow the MSP430 to
communicate via’C or UART with the XBH as well as firmware that ékecute the XBS
binaries and provide debugging output. These coaabiunctions serve as the hardware
abstraction layer (HAL) for the XBS. The hardwaoseections to the XBH must also be
mapped to the MSP430. The data connection sigrfiR{Uor I°C) is established between the
XBH and XBD by the bootloader, which also handigsals that come from the control I/O
lines for hard reset and timing measurements.

Our XBH design will be similar to the original XBdesign, setting up an Atmel ATmega644
running at 20 MHZ opposed to the 16 MHZ chip usgd\tenzel-Brenner and Graf, an
ENC28J60 Ethernet controller, and a MAX232 TTL/R328Itage level shifter on the AVR-
NET-IO board.

The XBS for this project is required to run on aux machine. On recommendation, Kubuntu

10.04 was chosen as the development environmeatddhe MSP430 to the XBX platforms. In

25

order to run the hash functions on the MSP430, smsaembl conversion is required for tt
chosen algorithms provided in C. The assembly gassfor the MSP430 will be provided to 1
team. The specific platform version that will bedsn the project is the MSP430FG461¢
order to reduce monetary and time s as this is the device currently used in ECE &iigle-
Chip Microcomputers), which all team members akenta

Preliminary Design

Black Box
Operator
And Users
Hash
Functions Compiles for XBD
Power/Timing
Gives commands to XBD Measurements
Table
Platform)
. Protocol conversion
Settings
(XBD)

26

White Box

Collection of
Hash
Functions
(Algo-Packs)

Compile target (XBD) scripts
- application code (AC)
-application framework (AF)

l AC
AF
eXternal eXternal Embedded Web Server eXternal AF Application code
i UDP- i . - protocol conversion l—°C—> Benchmarking
Software (XBS) Harness (XBH) Timing - timing measurement Device . .
ements. %ﬂmlng signals___ |
‘ Hash results Hash results
Timing measurements
Hash results

— AC

execution

Data aggregation

.

Analysis
- data
evaluations

The XBH setup is comprised of an Atmel ATmega644drogontroller, a Microchip ENC28J60
Ethernet controller and a MAX232 TTL/RS232 voltdgeel shifter. The XBD is the device on
which the actual benchmarking takes place; the N8P#he basic set up will be a PC that runs
XBS and the XBH acting as a fixed interface toXBD.
The XBH will be connected to the PC running the XB&its Ethernet port. This will provide an
interface with any computer that supports the SUBER framework regardless of its operating
system. An RS232 port is available for low levehfoguration and debugging output during
development [2]. The communication between the X8I0 the XBH will be handled through a
data connection and control I/O lines. As previgustated, the data connection will be
implemented using eithef@ or UART. The digital I/O lines will be used foomtrol purposes,
such as resetting the device and timing measurement

The control 1/O lines are connected to the rpsebn the XBD. This allows the XBH to

issue a hardware reset on the XBD, either dugtitoeout or because of a command received

27

from the PC. In the event that the XBD crasheas,due to stack overflow, the XBH will be able
to recover communication to the XBD in a situatwimere the data connection would fail [2].
Timing measurement is another reason for dediaadattol 1/0O lines. An output pin on the XBD
is connected to the XBH timer event capture pire filmes when a function begins executing
and when it stops executing are captured in the J4B#ithe amount of time in clock cycles can
be calculated.

In order to perform such functions &€ Icommunication, USART for debugging, sending
signals, stack measurement, switching betweengplkcation program and the bootloader, and
others, the hardware abstraction layer (HAL) m@swiitten. This allows the XBS to create
binaries with functions that are suited to theipatar platform being benchmarked. The HAL
also provides a timing calibration service, whick@unts for the time difference between clock
cycles on the XBH and XBD. This allows for accurtiteing measurements to be computed on
the XBH using the timestamps from the XBD.

Achieving a successful implementation of the handwabstraction layer and development of
hardware specific drivers for the microcontrollal wnable the MSP430 to run the hash

function as the XBD.

Preliminary Experimentation Plan

» Set up and test XBX and XBH with a preexisting folah, Atmega644, to make sure that
the XBH works correctly.

» Compile the XBX for the Atmega644 platform.

* Run hash functions on the Atmega644 which actsmstatype XBD.

» Compare results file with already acquired resaNasilable online.

* Write the firmware for MSP430 (bootloader).

28

* Write the drivers for MSP430 (HAL).

» Test drivers outside of XBS to see if they workhwtihe MSP430
» Compile with XBS.

» Use the SPY debugger to test data communication

» Test the firmware on the MSP430 by means of a dgdrug

» Test the drivers via the XBH

* Run various hash functions multiple times and campae result tables.

Preliminary List and Brief Description of Tasks aflibcation of Responsibilities
Hardware
e eXternal Benchmarking Harness Margaux McGivern
0 AVR-NET-IO
0 Heat sink
0 D-sub connector
* Benchmarking Platform Test Microcontrollers MargacGivern
0 Atmega644
« MSP430FG4618 Elio Andia, Fletcher Ta, Margaux M&&n

0 MSP430FG4618 Data pin connections (XBD): Elio Andiiketcher Ta

Software
e eXternal Benchmarking Software Margaux McGivern
0 Test platforms: Atmega644
e MSP430 Communication Drivers Elio Andia
o I°CISPI
* MSP430 Firmware Fletcher Ta

29

Milestones and Tasks

Date Milestone/Task
5-Nov-10 | Existing XBX system running
12-Nov-10 | Design Review Presentation
MSP430 electrically connected to the XBX system
19-Nov-10 | HAL and firmware (bootloader) ready to test
Draft Design Document
25-Nov-10| HAL and firmware (bootloader) working
3-Dec-10 | Design Document
14-Jan-11 | One hash function running on the MSP430 via the X
Project Title Form
4-Feb-11 | Project Description/Abstract
Test Plan and WBS
25-Feb-11| Progress Report #1
In-Progress Presentation and Review
1-Apr-11
Progress Report #2
15-Apr-11 | Draft Final Report
Oral Presentation
29-Apr-11 | Final Report
Document Tracking Form
6-May-11 | Project Poster

BX

30

Refer ences

[1] (2010, June) National Institute of Standards anchmelogy. [Online].

http://www.nist.gov/itl/csd/ct/hash competition.cfm

[2] Christian Wenzel-Benner and Jens Gréaf, "XBX: eXa¢Benchmarking eXtension for the
SUPERCOP Crypto Benchmarking Framework,Ciyptographic Hardware and Embedded
Systems, CHES 2010, Stefan Mangard and Frangois-Xavier Standaert,: Bgginger Berlin /

Heidelberg, 2010, vol. 6225/2010, pp. 294-305.

[3] (2010, Oct.) SUPERCOP. [Onlindittp://bench.cr.yp.to/supercop.html

31

Appendix B

Design Document

32

Benchmarking Hash Functions on the
MSP430

ECE 492 Design Document

Team Members:
Elio Andia
Fletcher Ta
Margaux McGivern

Faculty Advisor: Dr. Jens-Peter Kaps

Date: 12/03/2010

33

Table of Contents

TR [01 (oo [¥To{ 1o o PP PP OPPPPPPRPTPP 35
A. 1dentification Of NEEAooiiiiiiieee e e 44
B. Problem STatemENt........cooo it 44

[I. Requirements SPeCIfiCatiONooii e e e ee e 38

I, SYStem ArChItECIUIEcooei it a e e e e e e e e e e 40

LY 0= = V1 I T [o 42
C. XBD CirCUIt DIAQIamcccooiiiiiiiiii it 43

V. Prototyping Progress REPOIT..... ... 45

VI TeSHNG PLAN .. e e b e es s nbnabnnnnneee a7

VII. List and DeSCrPLON Of TASKScuiiiiiiiceeee et 48
D. Fall 2010 Task AlIOCALIONcoovviiiiicccceeee e e e e e e e 48
E. Spring 2011 Task AlIOCALIONeveiieeitir e e e 49

VIII. Schedule and MIlESIONES............uuuiiiiiiieei e 50
F. Fall 2010 Administrative SChedule............ococeiiiiiiiiiii e 50
G. Spring 2011 Administrative Schedule.........o oo 50

D 7= 1 B 4 T g £ PP 51
[PO = | 22 0 O PSSO PPPPUPPPPPPPP 51
. SPHNG 201 .. 51

D SR S U= (=] (=T o S PP PP PPPPTPPPR 52

34

I ntroduction
A. Identification of Need
The National Institute of Standards is holding mpetition for the next hash function,

called “SHA-3", which was proposed in responseh®riecent advances in cryptanalysis and
papers published showing weaknesses in the custamiard, SHA-11]. To measure the
performance of the software implementation of @tographic algorithm, the Virtual
Application and Implementation Research Lab (VAMB)Rreated a toolkit called SUPERCOP
(System for Unified Performance Evaluation Reldate@ryptographic Operations and
Primitives) that evaluates the algorithm based sataf timing and size criteria. Additional
tools for benchmarking hash functions were develpfming the eBASH (ECRPYT

Benchmarking of All Submitted Hash Functions) pmmtof SUPERCOP.

B. Problem Statement
A problem with SUPERCORP is that it restricts ite o platforms that support the

POSIX standard, which eliminates mobiles phoneA$fand Smart Cards; devices that are
often target platforms for cryptographic algorithfas The eXternal Benchmarking eXtension
(XBX) developed by Christian Wenzel-Benner and Jeré supports the SUPERCOP eBASH
system for microcontrollers, using a combinatiorsaftware and hardware components. The
device target for the eXternal Benchmarking SofeMxBS) is called the eXternal
Benchmarking Device (XBD) and is replaceable inXlBX system. The XBS is able to run the
SUPERCOP framework to benchmark an algorithm baseal given implementation, compiler,
and options on the XBD.

Wenzel-Benner and Graf designed the XBX in thraéspane software and two
hardware parts. The software portion of the systecalled eXternal Benchmarking Software

(XBS) and is responsible for the compilation of bash functions and an overhead code (called
35

the application framework) necessary to succesgsfidhchmark an algorithm on the target
device. The hardware setup consists of the eXt®&eaathmarking Harness (XBH) and the
eXternal Benchmarking Device (XBD). The XBH handlles communication between the XBS
and XBD as well as the timing measurements of Weewted hash functions.

The XBS performs in a similar fashion to the SUPERGCscripts it was modeled after,
with the exception that it requires a user to dyeghich platform the software will be
benchmarking. XBS combines the application codia@thash function to be benchmarked with
the application framework, the communication sexsinecessary for the XBD to communicate
with the XBH. A size check on this binary is perfead to ensure that it does not exceed the
XBD’s storage and a command is sent to the XByubh the XBH, in order to download the
binaries. After download, the XBD executes the cade the results are sent back to the XBH
and then to the XBS running on the PC. The mosbitapt part of the XBS for this project is
the hardware abstraction layer, HAL. The HAL pr@sdhe necessary drivers to alld@ |
communication between the XBH and XBD, which is ¢hannel through which the XBS
commands are given to the XBD. The locations ofm@m memory, constant data storage, and
the methods of manipulating the data are hiddem ftee XBS by the HAL.

The XBD for this project is the MSP430. The motigatfor this selection is based on the
current microcontroller used in ECE 447 and ECE, 5dich provides background knowledge
to successfully implement the hardware abstradéger (HAL) and drivers for the XBD.
Furthermore, the MSP430 is not a part of the exgsiBX implementations. The current XBD
devices include some of Atmel's AVR ATmega processdexas Instruments’ Luminary

Micro, and a few Linux compatible routers.

36

Atmel Tl Linux Routers
ATmegal284p LM3S811 NSLU2 (Linksys)
ATmegal281 FRITZ!box Fon WLAN 7170 (AVM)

ATmega644 Artilla M-501

Table1 The XBX currently supported platforms.

These platforms are grouped according to theinkare abstraction layer and compiler
compatibility. The devices in Table 1 (shown by nifacture/device type) fall under the
following categories: AVR based (Atmel processofsIM based (LM3S811), and embedded
Linux devices (LM3S811, NSLU2, Artilla M-501). Tleeldition of the MSP430 will provide a
template for TI's line of MSP430 microcontrollerghich have a unique RISC instruction set.
TI's Luminary Micro microcontrollers use a modifi@dhumb instruction set and an ARM GCC
or ARM C compiler, whereas the MSP430 will useoiten version of the GNU cross compiler to
compile the hardware abstraction layer and theiegan framework.

Given the XBX system’s capability with the SUPERCfdmework, its future
applications are not limited to hash functionseain ciphers, Diffie-Hellman (DH) functions,

and public-key encryption and signatures are abjie extensions (SUPERCOP, 2010).

37

II. Requirements Specification

To accomplish the goal of the project, a hardwatagsfor the XBX system is required
to connect the MSP430 while it runs the hash fomstito take measurements of the time to
compute. In order to do this, an intermediary ifatez for the XBS and the XBD is required. The
eXternal Benchmarking Harness (XBH) performs thisction. The commands from the XBS
are sent via TCP to the XBH and then i@ br UART to the XBD using the XBH protocol.
This protocol uses ASCII encoded commands with A8Gtoded hex digits and the parameters
[2]. The firmware for the XBH is a modified versiohan embedded web server program by
Ulrich Radig and is provided by the XBX system depers. In order to add the MSP430 to the
platforms benchmarked (and possibly add similaroaantrollers in future projects) it is
necessary to create the communication driversatisallow the MSP430 to communicate via
IC or UART with the XBH as well as addition suppfmctions that will execute the XBS
commands and provide debugging output. These cadlfiimctions serve as the hardware
abstraction layer (HAL) for the XBS. The hardwaosections to the XBH must also be
mapped to the MSP430. The data connection sign@R{Uor I’C) between the XBH and XBD
is established by the bootloader of the XBD, whatdo handles signals that come from the
control I/O lines for hard reset and timing meamaats.

Our XBH design will be similar to the original XB&esign, setting up an Atmel
ATmega644 running at 16MHz using the on board ¢lackENC28J60 Ethernet controller, and
a MAX232 TTL/RS232 voltage level shifter on the AANET-10 board for debugging output.

The XBS for this project is required to run on aux machine. On recommendation,
Kubuntu 10.04 was chosen as the development emeagonto add the MSP430 to the XBX

platforms. In order to run the hash functions anMSP430, some assembly conversion is

38

required for the chosen algorithms provided in B8e &ssembly versions for the MSP430 will be
provided to the team. The specific platform verdiwat will be used in the project is the
MSP430FG4618. This will reduce monetary and tingas this is the device currently used in

ECE 447 (Single-Chip Microcomputers), which alltemnembers are currently enrolled in.

39

[11. System Architecture

Compilation Uoload via TCP
Collections of pload via

Hash Functions

Compilation and .
Algo- Execution Scripts Protocol Conversion Upload via UDP,
Packs TWI or UART
Platform
Configuration Execution
XBX XBH XBD
. Timing Signals,
Timing Measurement
g Hash Result
Analysis - .
Y Data Aggregation Timing Data,

Data Collected Data Hash Results

Evaluation

Figure 2 Overview diagram from [4].

The overall operation of the XBX system is showtfrigure 1. The required inputs 1
system operation are: algop(s), compiler(s), compiler settings, platform sejt (page size i
bytes, communication mode, and clock frequencyd,the hardware abstraction layer for
selected platform. The XBS has three main comm#ratan be run by the users: imp:
compile, and execute. Import will copy the algopack Hasletions to a folder called algoba:
which contains that hash functions to be executethe XBD. The compile command reads
compiler options provided in the platform directaryd compiles each he function in the
algobase with the application framework and sttiiese binaries in a platform speci
directory. The execute command first reads thd@iatsettings and then checks the XBF
address argument for validity before initiating @P coniection with the XBH. After the po
number is set and the XBH revision number is resithe XBH issues a command to get

bootloader and application framework beginningfitet steps towards running the import

40

hash functions on the XBD. The execute script eetie result directories, performs timing
error measurements, calculates the checksumsg| filmeghash functions in the algobase,and
issues commands to the XBH to upload the binaryrapdrts the results. A short benchmark is
run for each implementation of the hash functioith wssociated compiler and options. A stack
usage measurement is performed at this time. 8gafrom the short benchmark, a ‘best binary’
is found and a detailed benchmark is then perforniguds is where the XBD performs the hash
for messages of different lengths.

The results from the compile and execution scapésevaluated by using tools provided
by the XBX top level directory. The errors, buildts, and binary information can be viewed in
table format after the compilation. The execution produces information about the
checksum tests, quick benchmarks, detailed measmtendrift measurements (timing error
calculation), and stack measurements. The implestiens speeds of a cipher can be viewed in
graph form provided the user has installed gnuplot.

The next step of benchmarking the hash functisns pass the hash functions from the
PC to the XBH by uploading them through TCP, arehtbonverting the protocol to upload from
XBH to XBD by UART for execution. This process isree by the XBH initializing the Ethernet
port, UART, andiC channels and setting up the TCP and UDP chawisishe PC and XBD,
respectively. Hash functions are then executedherXBD. Results and timing signals are then
returned to the XBH for timing measurements. Timingasurements on the XBH are handled
with the port time stamp request function. XBH theturns the timing data and hash results to

the PC for data aggregation.

41

V. Detail Design

Operator
And Users

Hash
Functions ————= Compiles for XBD
Timing
Gives commands to XBD Measurements
Platform , Table
Settings Protocol conversion
(XBDY)

Figure 3 Level 0 Black Box Design from the Preliminary Design of the Design Proposal.

Collection of
Hash
Functions
(Algo-Packs)

Compile target (XBD) scripts
- application code (AC)
-application framework (AF)

l AC |
AF ‘ e |
eXternal . eXternal Embedded Web Server . | eXternal AF Application code
UDI . - protocol conversion «—1°C——{ Benchmarking execution |
Software (XBS) Harness (XBH) Timing - timing measurement Device o |
ements. | Timing signals
‘ Hash results | Hash results |

Timing measurements
Hash results

Data aggregation

Analysis
- data
evaluations

Figure4 Level 1White Box Design from the Preliminary Design of the Design Proposal.

The top level designs are shown in Figure 2 agdréi 3. Expected inputs of the design
are the hash functions provided and the platforitngs of the XBD. The design will allow
compilation of hash functions and commands, suchriégg and reading flash memory and
taking measurements on the XBD. The results wiltbllected and the execution time
calculated by the XBH and formatted for SUPERCQi#p&by the XBS. A summary of our

preliminary design and a description of benchmaykiash functions on the XBX were

42

explained in System Architecture. This sectiorl véttate the necessary changes for replacing
the XBD with the MSP430, explain what functions ased by the XBX, and provide a more

detailed top level view for further clarification.

Hardware Abstraction Layer (HAL)

external Benchmarking external Benchmarking eXternal Benchmarking
Software Harness Device
modifications: modifications: modifications:
- X compiler - none - XBD-Bootioader
- application binary - Application
WEH - Client P XBH - Server
[@D - client W—’b{xan _ Server

Figure5 A Redrawn Diagram of [5].

A restatement of the necessary changes to beisoepresented by Figure 4, a redrawn
diagram from Wenzel's power point [5]. These chegill be: to replace the previously used
XBD (the Atmega644) with the MSP430, to modify &BD bootloader, to write the hardware
abstraction layer for the XBD, and to modify themgmler and platform settings on the XBS.
The XBH will remain unchanged. As defined in th&aduction, the HAL is used by the XBS
and the XBD bootloader to provide the necessamedsifor FC communication between the
XBH and XBD.

Compilation and execution scripts, platform couofation, and data aggregation are
handled by the XBS. The functions the XBS usgsetdorm benchmark execution include: ‘do

many drift measurement’, ‘get timings’, ‘calculateasured cycles’, ‘checksum’, and

43

‘benchmark’. Each function sends a command toXBE through a TCP connection and dc

not directly call the functions ed by the XBD to perform timing measureme

The XBH handles the protocol conversions and tinmegasurement. The functio

within the XBH initialize and set up the connecsarf the PC and XBH as well as the XBH

XBD. Timing on the XBH is handleby interrupts on the input capture pins. The fiamctport

time stamp request’ calculates the time elapseimhgexecution. The remaining functions to

implemented are from the HAL, including ‘busy loagh timing’, ‘load string’, ‘switch

application, ‘switch bootloader’, ‘read and program pageaipt and count stack’. The supp

functions from the HAL will execute the commandsnfrthe XBH and provide debuggii

output.

C. XBD Circuit Diagram

U1A msp430fgd618

vce

—891 yoin

X20UT
—26.1 b6 1/A1/0A00
—87 pg.2/A2/0A0I1
—2-1 P6.3/A3/OATO
—3 P6.4/A4/OATI0
—4 PE.5/ABI0A20
—51 P6.6/AB/IDACO/OAID
—bB1 P6.7/A7/IDACT/SVSIN
—451 p7 0UCAQSTE/S33
—44.1 p711/UCAOSIMO/S32
—431 p7.21CAOSOMI/S31
—421 p7.31UCAOCLK/S30
—411 p7.4/529

—401 p751528

—391 p7.61527

—38 p7.7/526

—371 pg0/s25

—361 pg 11524

—35 1 pg 21523

—34 pg3/s22

—331 pga/s2t

—32.1 pg 51520

—31 pgiste

—30 pg 71518

—291 pg0i517

—281 pg 1516

—211 pg 21515

—26 po3/si4

—251 pg 41513

—241 pg 5512

—23 pg /11

—221 pg 7/510

—211 p1o.0/se

—20 1 p1g 1/s8

—18 pro.rs7

—18 p1o.3y/s6

—1 proasss

—16 pros/sa

—15 p1o.6/syals
—14 p1o 7is27A14/08211

—90 |
TDO/TDI
—101 VeREF+DACO

vee

DVss
RST/NMI
P1.0/TAQ
P1.1/TAO/MCLK
P1.2/TA1
P1.3/TBOUTH/SVSOUT
P1.4/TBCLK/SMCLK
P1.5/TACLK/ACLK
P1.6/CAO

P1.7/CA1

P2.0/TA2

P2.1/TBO

P2.2(TB1

P2.3/TB2
P2.4/UCADTXD
P2.5/JCAORXD
6/CAOUT
P2.7/ADC12CLK/DMAEO
P3.0/UCBOSTE
P3.1/UCBOSIMO/UCBOSDA
P3.2/UCBOSOMI/UCBOSCL
P3.3/UCBOCLK
P3.4/TB3

P3.5/TB4

P3.6/TB5

P3.7/TB6

P4.0/UTXD1
P4.1/URXD1
P4.2/STE1/S39
P4.3/SIMO1/S38

P4 4/SOMI1/S37
P4.5/UCLK1/536
P4.6/UCAOTXD/S35
P4.7/JUCADRXD/S34
P5.0/S1/A13/0A1 I
P5.1/S0/A12/DACT
P5.2/COM1

P5.3/COM2

P5.4/COM3

P5.5/1
P5.6/LCDREF/R13

P5.7/
P6.0/A0/OA0ID
AvCcC

AVss

Timin
Reset from XBH

EXT

GND

?:E

Connects to the AVR-NET-IO using a 10-pin flat cable.

CONN DSUB 25-R

1=
14 J4-1

AAA
v
~
N
=
V

R2
4.7k

c1
10 uF

L
Connects to the AVR-NET-IO through the SubD connector breakout board.

Figure 6 Schematic for the M SP430FG4618 XBD connectionsto the XBH. External circuit provided by Christian Wenzel-
Benner and modified for the M SP430FG4618.

44

V. Prototyping Progress Report

The stack and flash programming code has beerewiiitr the XBD. The twi
ATmega644 MCUs, the AV-NET-10, D-sub connector, RS232 to TTL converter, USI
RS232 cable, and the test platform crystal an@22)F decoupling capacitors have all b
acquired. The (2) 100 nF and 10 uF capacitors 8kdafhd (2) 4.7k resistors used iile XBD
power supply circuit and the 12C data and clockdimvere already owned by the te

Connects to the AVR-NET-IO using a 10-pin flat cable

Timing

7
Reset from XBH N g 1

L

IC1-XBD

vee

2

10k

BEEGEEEREE

o)
)

o
S
E

T

L

F | 22pF
ol e Lol oL
33%525733838338
288 59
QEBRISH

Lol ool oL

==

22p!

AAAARARAARARA
\

|

9|
Sl
_LCZ

222220
JO555%
a3233
; O
| B
R2
—{—1—1
4k7
R3
——L——
4k7

Lprco [&
A Connects to the AVR-NET-IO through the SubD connector breakout board

ATMEGAB44-20PU

Figure 7 ATmega644 XBD cir cuit diagram, provided by Christian Wenzel-Benner.

The power supply will remain as described below,thea inteface between the AC*
DC adapter and XBH as well as the voltage levdtiagibetween the XBH and the MSP4
may change as the design approaches the end pifdtoetyping phas

A +12 V supply for the XBH is provided by an ACI& adapter from an exnal hard
drive enclosure, which conveniently includes a slwénd jumpers to easily connect power
ground lines. The enclosure serves as a tempoeatysink, allowing the 7805 voltage regule
on the AVR-NETIO to maintain a temperature that is uncomfortable to touch. Test ru
without the heat sink resulted in unacceptable tzatpre levels. The second regulator,

LM317, for the +3 V output on the AV-NET-IO experienced no noticeable increas

45

temperature during test operations with or withbetheat sink on the 7805. The AVR-NET-IO
has various +5 V outputs and ground terminals tweoto an external device; these will serve
as the power to the XBD.

The outputs from the XBH require no additional camgnts other than the pull-up
resistors and decoupling capacitors for the ATmé4acBD because it operates at +5 V. The
MSP430 is a 3 V device, not tolerate to +5 V inpiitss requires voltage level shifting at the
inputs. Currently two solutions are being consideeevoltage divided using resistors between
the output from the XBH and the MSP430, or a spetdf that performs the voltage level
shifting. If the latter option is chosen, the PCABdidirectional 12C-bus voltage-level translator
will serve for the 12C lines, which would also remeahe need for pull-up resistors on the data
and clock lines. The TXS0104E voltage-level tratmslar something similar would serve as a
general bidirectional interface between the XBH XBID. Once the voltage shift is achieved,
no additional components are needed because tleeimenter’s board includes decoupling

capacitors for the clock crystal and a capacittwben the input voltage and ground.

46

VI.

10.

11.

12.

13.

Testing Plan

Set up and test XBX and XBH with a preexistitatform, the ATmega644, to make sure

that the XBH works correctly.

Compile the XBX for the Atmega644 platform.

Run hash functions on the Atmega644 which acts arototype XBD.
Compare results file with already acquired ressavailable online.
Write the firmware for MSP430 (bootloader).

Write the drivers for MSP430 (HAL).

Test drivers outside of XBS to see if they wanith the MSP430
Compile with XBS.

Use the USB FET debugger to test data commuoircat

Test the firmware on the MSP430 by means ataigger

Test the drivers via the XBH

Run various hash functions multiple times amahgare the result tables.

Report Results to XBX project and SUPERCOP.

47

VII. List and Description of Tasks

D. Fall 2010 Task Allocation

The Fall 2010 task list is focused on the setughefexisting system implementation and the

software required to add the MSP430 to the XBXfptats.

Task Name Duration Start Finish Rl
Names
Fri
BHFM SP430 (Fall 2010) 55 days 10/29/10 Sat 1/14/11
mspgcc toolchain & programming MSP430 29 days Fri Wed Elio
11/12/10 | 12/22/10
- . Fri Mon
Existing XBX system running 7 days 11/26/10 | 12/6/10 Margaux
HAL and bootloader ready to test 26 days Fri Mon
y YS | 10/29/10 | 12/6/10
. Tue Wed
Paint & count stack 2 days 11/23/10 | 11/24/10 Margaux
, , Thu Fri
Send execution start and stop signal 2 days 11/18/10 | 11/19/10 Margaux
Busy loop with timin 2 days Fri Sat Margaux
yloop g S | 1112110 | 11/13/10 g
L Sat Tue .
Serve communication 3 days 11/27/10 | 11/30/10 Elio
. Fri Mon .
UART driver 22 days 10/29/10 | 11/29/10 Elio
Fri Mon .
Debug Out 2days | 1112610 | 11/29/10 | EM°
. Fri Mon .
I2C Driver 22 days 10/29/10 | 11/29/10 Elio
Switch to application/bootloader 2 days Fri Mon Fletcher
PP YS | 1213110 | 12/6/10
MSP430FG4618 memory map & mspgcc st Fri Fri
organization 6 days 11/12/10 | 11/19/10 Fletcher
. Sat Sun
Load string from constant data area 2 day 11/27/10 | 11/28/10 Fletcher
Fri Wed
readPage & programPage 5 days 11/19/10 | 11/24/10 Fletcher
Fri Tue
Expected results 13 days 12/3/10 12/21/10 Margaux
, Mon Wed
HAL and bootloader working 12 days 12/6/10 12/22/10
One hash function running on the MSP430 via 6 days | Fri 1/7/11 | Fri 1/14/11 | Margaux

XBX

48

E. Spring 2011 Task Allocation

The Spring 2011 task list moves forward from thedhare implementation and revises the
code written last semester. The goal is to proéxpected results similar to the test XBD
(ATmega644) and integrate the remaining sphlib lasbtions into the MSP430 algopack.

Resource

Task Name Duration | Start Finish
Names

BHFM SP430 (Spring 2011) 35days | Fri U/7/11 Fri 2/25/11

Project Assessment & Task Assignment | O days Fri 1/7/11 Fri 1/7/11

Prepare Results Table for Hash Function| 11 days | Fri 1/7/11 Fri 1/21/11 Fletcher

Code Revision & Commenting 11 days | Fri 1/7/11 Fri 1/21/11 Margaux
Compiler options 11 days | Fri 1/7/11 Fri 1/21/11 Elio
Next available set of hash functions 12 days | Sat 1/15/11 | Sat 1/28/11 Elio
Project Update Presentation 11 days | Sat 1/29/11 | Fri 2/11/11

Third set of hash functions 11 days | Fri 2/11/11 Fri 2/25/11 Fletcher

49

VIII. Scheduleand Milestones

Project Milestones Date
Existing XBX system running Mon 12/6/10
HAL and bootloader working Wed 12/22/10
One hash function running on the MSP430 via the XBX Fri 1/14/11
Next available set of hash functions Sat 1/22/11
Third set of hash functions Fri 2/25/11

F. Fall 2010 Administrative Schedule

Task Name Duration Start Finish

Fall 2010 ECE 492 77 days Fri 9/17/10 Fri 12/3/10
Project Title Form 0 days Fri 9/17/10 Fri 9/17/10
Draft Proposal 0 days Fri 10/8/10 Fri 10/8/10
Oral Proposal Presentation 0 days Fri 10/15/10 Fri 10/15/10
Oral Design Review Presentation 0 days Fri 11/12/10 Fri 11/12/10
Draft Design Document 0 days Fri 11/19/10 Fri 11/19/10
Document Tracking Form 0 days Fri 12/3/10 Fri 12/3/10
Design Document 0 days Fri 12/3/10 Fri 12/3/10

G. Spring 2011 Administrative Schedule

Task Name Duration Start Finish

Spring 2011 ECE 493 91 days Mon 2/7/11 Mon 5/9/11
Project Title Form 0 days Mon 2/7/11 Mon 2/7/11
Project Description/Abstract 0 days Mon 2/7/11 Mon 2/7/11
Progress Report #1 0 days Fri 2/25/11 Fri 2/25/11
Test Plan & Work Breakdown Structure 0 days Mon 2/7/11 Mon 2/7/11
Progress Report #2 0 days Fri 4/1/11 Fri 4/1/11
Draft Final Report 0 days Mon 4/18/11 Mon 4/18/11
Final Report 0 days Mon 5/2/11 Mon 5/2/11
Document Tracking Form 0 days Mon 5/2/11 Mon 5/2/11
In-Progress Presentation 0 days Mon 4/4/11 Mon 4/4/11
Final Oral Presentation 0 days Mon 5/2/11 Mon 5/2/11
Project Poster 0 days Mon 5/9/11 Mon 5/9/11

50

IX. Gantt Charts

H. Fall 2010

[Task Name Duration [Start

[oct31,'10

Finish "10 ct3L, " [Nov7,'50 |Nov14,10 |Nov21,'10 |Nov28,'10 _|Dec5’'10 _|Dec12,'0 _|Dec19,'L Dec26,'10 _[Jan2,"11 __ |Jan9,'11
wlt[E[s[sImTMTIE[s[sIMTIWT[F[s sIMTw[T[F (s sImTWT]F[s[sIMTMITF s[s mTM[TTE[s[sIMTIW T]F[[sIMT Wl T[F s sImT M T]E[s|sIM ThwlT[F[s[s M[TIw(T[F[
[BHFMSPA30 (Fall 2010) 55days Fril0/29/10 Fril/14/11
Existing XBX system running 7days Fri11/26/10 Mon 12/6/10 C——— Margaux
HAL and hootloader ready to test 26days Fril0/29/10 Mon12/6/10
Busy loop with timing 2days Fril1/12/10 Sat11/13/10 &8 Margaux
Send execution start and stop signal 2days Thu11/18/10 Fri 11/19/10 &3 Margaux
MSP430FGA618 memory map & mspgec 6days Fri 11/12/10 Thu11/18/10 -
stack organization
Paint & count stack 2days Tue 11/23/10 Wed 11/24/10 Margaux
HAL function: readPage & programPage 4 days Fri 11/19/10 Wed 11/24/10| E%—Uajar
Load string from constant data area 2days Sat11/27/10 Sun11/28/10 Fletcher
UART driver 22days Fri 10/29/10 Mon 11/29/10 Elio
Debug Out 2 days Fri 11/26/10 Mon 11/29/10 G Elio
12C Driver 22days Fri 10/29/10 Mon 11/29/10 Elio
Serve communication 3days Sat11/27/10 Tue11/30/10 g Elio
Switch to application/hootloader 2days Fri12/3/10 Mon 12/6/10 G Fletcher
Expected results 13days Fri12/3/10 Tue12/21/10 | ———7 M rgaux
mspgcc toolchain & programming MSP430 29 days Fri 11/12/10 Wed 12/22/10| Elio
HAL and bootloader working 12days Mon 12/6/10 Wed 12/22/10
One hash function running on the MSP430 via6 days Fri1/7/11 Fri 1/14/11 l ™
the XBX
. Spring 2011
[Task Name Duration [Start Finish llang,'11 [1an16,'11 [1an23,'11 [1an30,'11 [Feb6,'11 [Feb13,'11 |Feb20,'l1
Tle[s[s MTWTIF[s[sIMTiwIT[F[s[sIMTIwIT[F[s[sIMTIWIT[F[s[sIMTIwT[F[s[s IMTwlTIF[s[sIMTWiT[F]
BHFMSP430 (Spring 2011) 35days Fri1/7/11 Fri2/25/11 | @
Project Assesment & Task Assignment 0 days Fril/7/11 Fri1/7/11 ¢ 17
Prepare Results Table for Hash Function 11days Fri1/7/11 Thu1/20/11 | G Fletcher
Code Revision & Commenting 11days Fri1/7/11 Fri1/21/11 SN Margaux
Compiler options 1ldays Fril/7/11 Fri1/21/11 e Fli0
Next available set of hash functions 12 days Sat1/15/11 Fri1/28/11 1 s Elio
Presentation Slides 11days Fri1/21/11 Fri2/4/11) Fletcher
Research & Select Parts 6days Sat1/29/11 Fri2/4/11 Casssssa Elio
Design Final Hardware Setup 11days Sat1/22/11 Fri2/4/11 . Mlargaux
Project Update Presentation 11days Sat1/29/11 Fri2/11/11 NN —— |
Third set of hash functions 11days Fri2/11/11 Fri2/25/11 g F

51

X. References

[1] (2010, June) National Institute of Standards anchfelogy. [Online].
http://www.nist.gov/itl/csd/ct/hash_competition.cfm

[2] Christian Wenzel-Benner and Jens Gréaf, "XBX: eXa¢Benchmarking eXtension for the
SUPERCOP Crypto Benchmarking Framework,Cnyptographic Hardware and Embedded
Systems, CHES 2010, Stefan Mangard and Frangois-Xavier Standaert,: Bgginger Berlin /
Heidelberg, 2010, vol. 6225/2010, pp. 294-305.

[3] (2010, Oct.) SUPERCORP. [Online]. http://bench.ctgfsupercop.html

[4] Christian Wenzel-Benner and Jens Gréaf. (2010, Ndez)iXBX: eXternal Benchmarking
eXtension. [Online]. https://xbx.das-labor.org/{eiki/HowltWorks

[5] Christian Wenzel-Benner and Jens Graf. (2009, @ecjokthe Conferences - XBX: eXtenal
Benchmarking eXtension. [Online]. http://www.hypépgic.org/SPEED/slides09/wenzel-
XBX-benchmarking.pdf

52

