
SCHOLARLY PAPER

1

Abstract— The Rijndael Algorithm was chosen for the

Advanced Encryption Standard (AES) in 2001 and formally
published in FIPS Publication 197. Since Rijndael was released
as a candidate a number of cores were created to test and
benchmark the algorithm in both hardware and software.
Rijndael was chosen partly based on its ability to be efficiently
implemented in Field Programmable Gate Arrays (FPGAs) and
Application Specific Integrated Circuits (AISCs). In AISC
design, heavy use of combinational logic is advantageous. In
FPGA designs each logic cell has local memory available and all
free logic cells are equally valuable for design use. A survey of
published AES architectures found they did not fully take
advantage of ROM blocks to simplify and shorten critical paths in
the algorithm’s rounds. This paper will present a T-box design
that will utilize FPGA memory in a core with a standard 32-bit
bus width that will sustain a throughput of 20 Mbyte/sec.

Index Terms—Advanced Encryption Standard, AES, Tbox,

Cryptography, AES-128, AES-192, AES-256.

I. AES OVERVIEW

HE Advanced Encryption Standard (AES) specification is
documented in the National Institute of Standards and
Technology’s (NIST) FIPS 197 publication.[5] J.

Daemen and V. Rijmen submitted Rijndael as part of NIST’s
AES contest. Candidates for the contest were tested based on
strength of the algorithm against attacks, maximum
throughput, and resources required for both software and
hardware implementations. Rijndael was originally designed
with a variety of key lengths and variable block lengths in
mind. When the variable block length requirement was
dropped, Rijndael was amended to a fixed 128-bit block
length. Since the chosen core would be a US Federal Standard
all teams participating had to openly publish their standard and
must be free of Intellectual Property. The finalists were
evaluated equally, but each submission differed in
implementation costs, throughput, and versatility in
implementation. Flexible algorithms that could run efficiently
across Application Specific Integrated Circuits (ASICs) for
smart cards, 32-bit microprocessors, and even 8 bit
microcontrollers proved a challenge during final selection.
[11] On October 2nd, 2000 NIST announced that Rijndael was
the winner and new AES standard, based on the evaluation

criteria, peer review, and excellent performance across a
number of target platforms.

 AES supports multiple key sizes (128,192, and 256 bits)
and is used as a block cipher with a message size of 128 bits.
The block cipher structure can be used in a variety of modes to
create a secure stream cipher based on AES encryption and/or
decryption. Using the basic Electronic Code Book (ECB)
mode, a 128-bit message is encrypted with a key of 128, 192,
or 256 bits to produce a 128-bit cipher text, as shown in Figure
1. A key expansion is first performed on the initial key values,
based on a key schedule, to generate unique keys for all rounds
of encryption. The key schedule was developed to use small
amounts of memory, have no symmetries, have efficient
diffusion of keys, and be non-linear. [11] Diffusion allows
small changes in a previous key to cause significant changes in
the next expanded key. Elimination of symmetries and linear
functions allows generation of expanded keys that resist
attacks and analysis on the cipher text. A perfect key
expansion would generate seemingly random keys that are
unique and easily computed from the initial and subsequent
expanded keys. With no pattern to attack, the attacker would
have to pick from all possible keys for every round of the
algorithm. AES uses rotations, XOR operations for
permutations, and table lookups from an Sbox table specified
in FIPS 197 for direct substitutions on each byte of the key.

AES Implementations Optimized for
Mid-Range FPGAs

Bryan M. Sobczyk

T

Figure 1: AES Encryption Round Structure

SCHOLARLY PAPER

2

To further mix each key in the schedule a RCON value, a
unique constant determined by the current key being
generated, is added to break patterns in the key. On every new
round of four, six, or eight key values an incrementing RCON
value is XORed with the key to eliminate symmetries in the
expanded keys.[5] An additional change is added for 256 bit
keys; every fourth key undergoes a substitution to keep the
same transform being applied over more than three
consecutive expanded keys. The RCON values are listed in
FIPS 197 along with example key expansions for 128, 192,
and 256-bit key lengths.

Based on the round structure chosen, there are a number

of options for implementing the key schedule. If each round is
calculated iteratively, it is easy to calculate the expanded key
on the fly. This can be accomplished by expanding only the
current key and retaining the previous key values required to
calculate the next key. To implement AES with a 128-bit key,
only four previous values are required to calculate the keys on
the fly. A full key expansion for all modes, some times
referred to as a 3 in 1 design, requires up to eight previous
values to be retained. If a full round is calculated for each
cycle four keys must be simultaneously calculated and up to
eight values need to be retained for all three key sizes. A
potential drawback to on the fly calculation is the worst-case
delay of looking up a value in a ROM table, two bit-wise
XORs, and the gate delay of two muxes. The full round in a
cycle approach can provide very high throughputs (128 bits
computed every cycle) but requires fast key expansion or the
entire key schedule to be pre-computed and stored. Storing
the entire key schedule requires up to sixty 32-bit words to be
stored for the 256-bit mode but allows the keys to be
referenced in a single clock cycle if fast RAM blocks are used.
Most modes having the pre-computed key values can speed the
calculation of the rounds. If a mode with a changing key is
used the benefits of pre-computation are diminished compared
to the memory resources required. For memory limited
applications, on the fly calculation provides fast key expansion
without RAM blocks.

A survey of other papers has found both preprocessed

and on the fly key expansion used in high throughput designs.
McCloone and McCanney utilized preprocessing of the key
with a LUT based Tbox implementation discussed later in this
paper. [15] Qing et al., Wang and Ni, Wang et al., Lofty et al.,
Rizk et al., and Standaert et al. had all generated their keys on
the fly to save on processing time and hardware resources.[29,
25, 26,14, 17, 23] Two on the fly key scheduling units are
chained to provide Schaumont et al. Rijndael processor
capable of 2.29 Gbit/sec throughput. [20] For a fully pipelined
high-speed core the keys are preprocessed to allow the rounds
to compute as soon as possible with no calculation delays,
achieving a throughput of 30-70 Gbits/sec.[9] Lin and Huang
pipelined the computation of the key to matched their
pipelined round structure. [13] The timesavings in pre-
expanding the key in the pipelined and single cycle
architectures justified the use of more memory resources to
store the keys.

 The AES standard is round based and operates on a

thirty-two bit by thirty-two bit State array. The array is
divided into sixteen bytes as shown in Figure 2. It should be
noted that the indexes into the array are row then column. The
indexes correspond to the byte sequence; every four bytes
form a new row. The state is then taken through 10, 12, or 14
rounds for 128, 192, or 256-bit keys respectively. All
operations are performed in the Galois Field GF(28). A full
explanation of Galois Fields is presented in Stallings’ textbook
but the basic arithmetic operations can be explained briefly.
[21] The equivalent of addition and subtraction in the field is
XORing the two values. Multiplication and division involve a
more complex algorithm but a simple table lookup can
perform the operations required for AES. As suggested by
Daemen and Rijmen in [11], a table of all 256 values
multiplied by 0x02 is listed as the xtime table. Any multiplied
value can be decomposed into a sum of powers of 0x02. For
example 0x03*X can be expressed as X*(0x01 XOR 0x02),
which can be calculated as (X XOR xtime(X)). This technique
will be utilized later to pre-calculate the tBox values for our
architecture.

The plaintext message is loaded into the State array of
Figure 2 and the AddRoundKey operation is performed.
During this initial state the message is XORed with the initial
key. The new State array is taken through a series of identical
rounds stated in the FIPS 197 standard including SubBytes,
ShiftRows, MixColumns, and AddRoundKey. The rounds are
designed to be invertible for decryption while being simple to
insure delays are low since rounds are repeated at least ten
times. SubBytes is a non-linear substitution of bytes directly
substituted from the sBox array. Details of the sBox’s
construction are detailed in [11], where the authors provided
the basis for choosing values. The sBox is mathematically
proven to have both a transform for encryption and an inverse
transform used for decryption. ShiftRows provides a diffusion
of values within the State array through simple shifts.
MixColumns provides a linear permutation of the State array
on a byte-by-byte basis, while being easily reversed by an
inverse permutation. Daemon and Rijmen have stated in [11]
that the performance of this step on 8-bit processors was a
driving factor in the choice of permutation. The final step,
AddRoundKey, performs a bit-wise XOR with each 32-bit
column of the State array with one 32-bit word of the
expanded key. The number of rounds chosen by Daemen and

Figure 2: AES State Array

SCHOLARLY PAPER

3

Rijmen are based on known cryptanalysis attacks and
diffusion criteria that require two rounds to fully diffuse single
bit changes. The foreknowledge of how attackers could exploit
the algorithm have lead to logical choices in each step of
Rijndael, and hence AES, to make known attacks
computationally infeasible, while preventing easily exploited
patterns in the algorithm from developing. [11 & 21]

After the specified number of rounds described above is

done, the final round only includes SubBytes, ShiftRow, and
AddRoundKey steps. The resulting State array is the cipher
text and is output as a 128-bit block. Decryption is performed
using the same round structure and sequences of operations,
but inverse tables are used for each step. The expanded keys
are generated in the same way, but the groups of four
sequential 32-bit expanded keys are used in reverse order.

II. ENCRYPTION MODES

Use of low area and high throughput encryption cores

with an approved mode can match or exceed the throughput of
ECB mode encryption and decryption. The use of approved
modes can prevent identical plaintext blocks from having
identical cipher text blocks. NIST has listed the following
approved confidentiality modes in their publications:

• NIST SP 800-38A
o Electronic Code Book (ECB)
o Cipher Block Chaining (CBC)
o Cipher Feed Back (CFB)
o Output Feed Back (OFB)
o Counter (CTR)

• NIST SP 800-38B
o Cipher-based Message Authentication Code

(CMAC)
• NIST SP 800-38C

o Counter with Cipher Block Chaining-
Message Authentication Code (CCM)

• NIST SP 800-38D
o Galois/Counter Mode (GCM)
o Galois Message Authentication Code

(GMAC)
If only authentication is required, SP 800-38B specifies the use
of Cipher-based Message Authentication Code Mode
(CMAC). For both authentication and confidentiality, SP 800-
38C specifies Counter with Cipher Block Chaining – Message
Authentication Code (CCM). For high throughput
authentication with confidentiality Galois/Counter Mode
(GCM) is specified by SP 800-38D, but strict adherence to the
recommended Initialization Vectors is required to satisfy the
uniqueness requirement that provides the high degree of
security.

The choice of the listed modes provides stronger security
than the basic ECB mode but has consequences for the
operation of the cipher. The simple Counter (CTR) mode
provides a fast streaming cipher that only requires block
encryption. Each message is XORed with the counter value to
produce a block of cipher text. CTR mode encryption and
decryption can be done in parallel, is easily pipelined, and
allows changes to individual blocks without affecting other
blocks. The Initial Vector (IV) can be provided by a simple
counter or another unique but changing value like a memory
address. It should be noted the counter width should produce
enough unique values to prevent repeats or spread out repeats
so 2256-1 unique values get used before repeats occur between
the 128-bit blocks used with AES. If a single bit error is
encountered the message CTR will cause a single bit error in
the cipher text. CTR provides a simple way to use an
optimized encryption core for both stream encryption and
decryption. A subset of CTR can utilize only a portion of the
counter’s bits, but it should be noted that only the same portion
of the message could be encrypted with this method. Utilizing
a larger AES key will not overcome this limitation since only a
portion of the 128-bit State array can be used. This is
regardless of the key size used.

Figure 3: Approved Modes of Operation

SCHOLARLY PAPER

4

OFB mode chains the resulting encryption from the
previous block as input to the next block’s encryption block.
The resulting cipher text is XORed with the message to
provide the cipher text. Since each block encryption is
dependent on the previous result, it is not possible to pipeline
or use parallelism to speed up the calculation. OFB does not
depend on a sequence of Initial Vectors as CTR mode does.
The first IV value provides the seed value used for all
subsequent blocks. Again, the same encryption module can
perform encryption and decryption. OFB can provide security
for noisy channels, since small bit errors do not propagate
through other blocks.

CFB mode differs from OFB in that the feedback is taken

from the previous cipher text and not the encryption step. The
drawback to this approach is that errors can propagate between
each subsequent block. CBC mode is unique from previous
modes since an IV is XORed with the message before
encryption/decryption is performed. Unlike the other modes
encryption and decryption modules are required but errors
affect the current and next blocks of data.

A summary of modes is depicted in Figure 3. Of the
available modes, this paper’s architecture makes use of
Counter mode for increased strength over ECB mode. A
simple modification can allow OFB to be implemented due to
its similar structure to CTR mode. These modes allow the
encryption module to be utilized for both block encryption and
decryption without requiring extra tables to be stored.

III. T BOX IMPLEMENTATION

Since the publication of Rijndael and the final AES

specification a number of architectures to improve
performance have been proposed and tested. One method to
increase throughput without resorting to pipelining was to
shorten the rounds to a single cycle. The tBox table approach
was suggested and derived by Daemen and Rijmen and
utilized by a number of researchers to improve performance.
[11] An excellent explanation and datapath example is derived
and explained by Gaj and Chodowiec in a chapter of
Cryptographic Engineering. [7] The tBox structure combines
the SubBytes, ShiftRows, and MixColumns steps utilizing
linear algebra rules, in the GF(28), creating a 256 value table
of thirty two bit words called a tBox. Every standard eight-bit
sBox lookup in SubBytes can now be looked up in the tBox,
which returns a 32-bit result.

 As stated in [11] and [7], the transformations for one full
round of AES are listed below:





















⊗







































=





















+

+

+

j

j

j

j

j

j

j

j

j

j

j

j

k

k

k

k

aS

aS

aS

aS

e

e

e

e

,3

,2

,1

,0

3,3

2,2

1,1

,0

,3

,2

,1

,0

][

][

][

][

02010103

03020101

01030201

01010302

Using the rules and properties of matrix math in GF(28):





















⊕



















⊕



















⊕



















⊕



















=





















+++

j

j

j

j

jjjj

j

j

j

j

k

k

k

k

aSaSaSaS

e

e

e

e

,3

,2

,1

,0

3,32,21,1,0

,3

,2

,1

,0

03

02

01

01

][

01

02

03

01

][

01

01

02

03

][

03

01

01

02

][

The equation above can be implemented by tables that include
the values of the Sbox multiplied by the 4x1 matrices, which
are now represented as Tboxes below:





















⊕⊕⊕⊕=





















+++

j

j

j

j

jjjj

j

j

j

j

k

k

k

k

aTaTaTaT

e

e

e

e

,3

,2

,1

,0

3,332,221,11,00

,3

,2

,1

,0

][][][][

Each Tbox table uses an eight-bit index into a 256-element
array of 32-bit values. Storing these tables takes 8Kbits of
ROM per table, for a total of 32Kbits of memory. A reduction
in the number and size of the tables can take advantage of two
FPGA strengths. First, the FPGA can use wires to copy or
shift values at no cost in resources. This advantage is not
possible with general-purpose processors that require separate
processing cycles to shift values. Second, the four tables are
built on the same eight-bit values that are shifted to form the
other tables. It is possible to use a 256-item table of 24-bit
words and shift it a total of three times to get al.l four Tbox
table values. To save memory only one tBox could be used to
give a four-time reduction in memory requirements. The down
side is the single table would cause a four-fold increase in
processing time. For this paper a trade off was made to use
four tables from the same Tbox initial values, and shift them as
necessary. This allows 32-bits of the State array to be
computed every cycle and stored in the next State’s registers.





















⊕⊕⊕⊕=





















+++

j

j

j

j

jjjj

j

j

j

j

k

k

k

k

aTShiftaTShiftaTShiftaT

e

e

e

e

,3

,2

,1

,0

3,3032,2021,101,00

,3

,2

,1

,0

])[(])[(])[(][

AddRoundKey

ShiftRows
(addition mod 4)

MixColumns

SubBytes

SameTbox0 SameTbox0 SameTbox0 SameTbox0

SCHOLARLY PAPER

5

At the cost of memory and logic element resources, it is
possible to build a high throughput core that computes the four
instances of the above tBox equations in a single cycle. In this
architecture a maximum of fourteen cycles would be needed to
complete the 128-bit cipher text from a given plaintext already
loaded at high speeds. Gaj and Chodowiec present an efficient
version of this architecture that can be easily pipelined. [8] A
similar decryption architecture, using inverse tables, can be
used in the same way but must be supplied keys in the correct
order to perform decryption. Wang et al., McLoone and
McCanny, and Rouvroy et al. have published architectures
similar or identical to the tBox architecture as presented by
Gaj and Chodowiec.[26, 15, 22] Of specific interest to mid-
range FPGA implementations is the approach the UCL Crypto
Group took to use RAM blocks, shift registers, and short data
paths to create a core that can encrypt and decrypt at 208
Mbit/sec on Spartan II devices. This was achieved with only
163 slices and 3 RAM blocks used. [22] The numbers
compare favorably with a number of designs optimized for use
on the larger and more capable Virtex FPGAs, while not using
a majority of the device’s resources. This paper’s architecture
will be compared to the UCL group’s efficient core in the
comparison section.

It should be further noted that tBox implementations do

not always meet or exceed the throughput of more
conventional AES implementations optimized for speed and/or
area. The tBox method is not well suited to ASIC design due
to the large amount of memory required. Memory can be laid
out very efficiently in Very Large Scale Integration (VLSI)
processes but consumes a large area of the die compared to a
sea-of-gates implementation of combinational logic functions.
The UCL Crypto Group Core on a Spartan 3 FPGA achieves
208 Mbit/sec with 163 slices used. McLoone et al. achieved
6956 Mbit/sec using 2222 slices but required a Virtex FPGA.
Huang et al. bested the UCL Group by not using tBox
architecture and achieved 647 Mbit/sec at a cost of 148 slices
and 11 Block RAMs of a Spartan 3 device.

Software implantations would not benefit from the same

techniques described above since software cannot make use of
efficient shifts, cross wiring, and fast logic operations. The
sequential nature of all modern general-purpose processors
makes all operations equally costly in terms of delay. The
basic algorithm can be optimized for specific processors in
order to utilize matrix instructions, parallel processing via
multiple cores, and/or the use of efficient compilers to
minimize the assembly instructions required. Bernstein and
Schwabe have outlined fast AES techniques that use each
processor unique structure such as 64 bit operations, verses 32
bit calculations, masked tables, and efficient use of caches to
shorten the time required to compute all rounds of AES.
[30,31] In a method similar to the matrix math performed for
Tboxes, another manipulation of the matrix is possible to
effectively compute across the rows of the state to save extra
corrective shifts. Bertoni et al. have saved rotations and extra
memory lookups to speed up the standard software
implementation used for embedded processors. [30] The effect

of Graphics Processing Units (GPUs) and Single Instruction,
Multiple Data (SIMD) instructions that are designed for array-
based calculations may provide efficient matrix
transformations that can use methods like the tBox to obtain
faster software implementations. Further Discussion of
software implantations are beyond the scope of this paper and
provide an open field for further research.

IV. FPGA CELL ARCHITECTURE

This paper aims for a Field Programmable Gate Array

(FPGA) implementation of AES and warrants an investigation
into the architecture of both the Xilinx and Altera families.
The Cyclone II and Spartan 3 part families are equivalent low
cost, mid-range small FPGAs (a sample of which is presented
in Table 1). These devices do not have the resources or speed
of a Virtex or Stratix device but they do provide greater
performance than the older APEX/MAXII and
XC/CoolRunner parts.

 Altera’s Cyclone II/III families are composed of Logic
Array Blocks (LABs). Each LAB contains sixteen Logic
Elements (LE). Dual ported RAM is also available via M4K
RAM blocks with high clock rates (up to 260 Mhz). Each LE
provides a four input Look Up Table (LUT), a register, carry
chain logic, and connection muxes. Unlike the Xilinx
equivalents of LE blocks, called slices, Altera elected not to
add extra discrete logic elements within the cells. All
functions are implemented via LUTs. This gap in
implementation paths is offset by Altera’s LE modes; a normal
mode allows arbitrary functions while arithmetic mode
configures the LE for fast and compact arithmetic functions.
Using both the primary inputs and carry-in logic a six input
function can be implemented in each LE. For comparison,
Xilinx’s slices can implement only four input functions in each
slice.

Table 1: Sampling of Mid-Range FPGA Parts

SCHOLARLY PAPER

6

 Xilinx’s Spartan 3 family is built on Configurable Logic
Blocks (CLBs) that contain four slices each. Every slice
contains two logic function tables, two registers, carry logic,
and individual logic gates. A number of slices provide shift
registers and distributed RAM as special functions. Better use
of the cells provides high resource utilization, and allows large
and complex designs to fit in smaller devices. The function
tables can be used as Look Up Tables (LUTs) that can
implement any four-input function as stored values. Two four-
input tables can be stored in each slice, and the output can be
registered within the slice. Many adders and multipliers can
be implemented to fit within the cell, and make use of the carry
logic and spare gates for very high slice utilization. Spartan’s
block RAMs offer 18Kbits of fast, dual-ported, synchronous
storage. For 32-bit numbers, 512 elements can be stored in
one 18K block. As outlined in the Xilinx Spartan 3 User
Guide, each dual ported RAM can also be used for 128 states
with up to 36 outputs in a single block. Use of the SRL16 shift
register blocks can greatly lower device utilization if a reset is
not required. SRL16 blocks configure the LUTs as a shift
register, but do not use the slice’s flip-flops. The built-in Mux
can select either of the slice’s LUTs to configure longer shift
registers at low hardware cost.

 Each manufacturer has gone to great lengths to point out
the similarities between underlying hardware and promote any
difference in performance. Altera claims their faster speed
grades produce faster customer implementations, and Xilinx
promotes the special configuration modes like SRL16 registers
and the fast carry logic as leading to better, high performance
designs. Xilinx has acknowledged that newer versions of the
Quartus design suite from Altera have higher performance than
earlier implementations. Due to Altera’s table centric cells,
the software’s optimization and fitting of logic is very
important to high throughput designs. Xilinx has a similar

push for their ISE tools to recognize logical parts of designs
that can fit into each cell and still recognize special cases like
the SRL16 register. Ultimately, only real life testing of
designs across devices, vendors, and software tools can prove
the advantages of each manufacturer’s product line.

V. OUR ARCHITECTURE

The architecture described in this paper is based on the

tBox implementation but targets smaller CPLD families like
Altera’s Cyclone II/III and Xilinx’s Spartan III. The
specification for the core shown in Figure 4 included a number
of items that were included for interfacing and re-utilizing
costly resources and not for performance. The specification
included:

• Throughput of at least 20Mbyte/second (160
Mbit/second) through the core

• 32-bit Input/Output registers utilizing interrupt-like
triggering

• tBox-based round architecture to achieve single cycle
calculations inside the rounds

• Reuse of most registers, minimal use of RAM
• Use of only standard IEEE compatible VHDL code to

insure code can be ported across vendor tools
• Register-Transfer-Level (RTL) style coding to avoid

excess hardware creation
• No vendor specific libraries, macros, or Intellectual

Property (IP) cores
• Modular bottom-up construction to aid in testing and

reuse
• Separation of data path and controllers to keep

control hardware apart from the data path.

Figure 4: Our Architecture

SCHOLARLY PAPER

7

• Strict use of only STD_LOGIC and
STD_LOGIC_VECTORS to insure no type
conversions are necessary

• Simple external control of the core for I/O, mode
selection (AES128/192/256), and status

The tBoxes used in this paper were computed manually
utilizing the xtime tables provided by Daemen and Rijmen.
The results were copied to a VHDL description of a ROM.
[11] It should be noted that McLoone and McCanny published
three tables used to create the tBoxes. An Sbox, Sbox * 02,
and Sbox * 03 table were presented to form all four tBoxes as
necessary. A comparison of this paper’s tables with the tables
published by McLoone and McCanny turned up five
discrepancies:

• sBox * 02 table for B3 & B4 are reversed from the

order of this project’s tables (CA CF instead of CF
CA)

• sBox * 03 table for B3 & B4 are also reversed (AF
25 instead of 25 AF)

• sBox * 03 value for 56 contains a typo (E0 instead of
E8)

Examination of the specific terms suggest the swapped
terms in the Sbox * 02 table were continued to the Sbox * 03
table, since the correct values were listed. The E0/E8 type
looks like a simple typing mistake. The remainder of the
tables successfully confirmed the table data in this paper’s
implementation when NIST test vectors were run and verified.

Original planning for the tables included only one tBox

selected by multiple XORs, but it was realized that having only
one tBox allowed only a single look up per clock cycle. This
would require multiple clock cycles per round. During key
expansion and final rounds the need for the sBox values would
also take a performance hit since only one eight bit value can
be looked up at a time. It was decided to use the same 24-bit
wide table four times to allow single cycle rounds and
simultaneous 32-bit sBox lookups.

In order to better utilize each Slice or Logic Element an

experiment was conducted. It was suggested that the synthesis
tools would use memory resources better if the tables were not
256 items x 24-bit words but left as 256 items x 8 bit tables.
Both the Xilinx and Altera synthesis tools were given a two-

register bank and one table design. One used a 24 bit x 256
word ROM and another using three separate 8 bit x 256 word
ROM tables. No code was added to specify the ROM should
be implemented as chained Lookup Tables (LUTs) or static
RAM blocks. Xilinx ISE Webpack utilized BRAM blocks,
achieving a final clock rate of 134 MHz. Splitting up the tables
utilized 3 BRAM blocks with a slightly higher clock rate of
139 MHz. Altera’s Quartus II Web Edition was set to use
RAM and ROM for any size table, but when optimizing for
speed implemented Logic Element LUTs were used instead of
RAM blocks. Quartus reported a final clock rate of 205 MHz.
A second test with four instances of the first test was run and
summarized in Table 2. Based on the findings the individual
tables were used to provide a small increase in speed for the
Xilinx devices.

Key Expansion was originally going to be pre-computed

and stored in a RAM block until required. This design
requires both a counter and a large 32-bit x 60 item RAM
block. The requirement for a design that can work for all three
modes of AES (128/192/256 bit), without reloading the device
required a simple but flexible design. A straightforward design
with 32-bit x 4 word register for the key and a maximum of
32-bit x 8 word temporary register bank allows enough storage
for the largest 256 bit key size. A small table and a counter
that advances on every count that equals zero modulo four, six,
or eight, respectively, supply the RCON constant. As stated
before, four separate sBox lookups are performed
simultaneously to insure the next key is calculated in one
cycle.

It should be noted that if all four lookups of this design

are done in one cycle, using a network of 16 Tbox tables
described previously, they could be stored in Look Up Tables
(LUTs) in each individual Logic Element (Altera’s LE) or
Configurable Logic Block (Xilinx’s CLB). This approach
allows 128 bits to be calculated every cycle but comes at a
high logic element cost. This made it possible to implement
the core on smaller FPGA devices, but remains better suited
for the larger logic cells of the Stratix and Virtex families.

Aside from memory issues, the ports on the core had to be

planned to not exceed the I/O pins available on smaller
devices. The 32-bit I/O requirement was based on standard bus

Table 2: Sampling of Mid-Range FPGA Parts

Table 2: Tbox Resource Tests

Table 3: Disk Drive Throughput Tests

SCHOLARLY PAPER

8

widths for interfacing to other logic on the FPGA or to an
external processor. A survey of open AES cores found most
were based on 128-bit I/O to the core, which would not fit in
many smaller FPGA families. The I/O bottleneck was also
important to consider if the core was partnered with a
transceiver chip for use with Universal Serial Bus (USB),
Ethernet, or serial port. A fast core throughput would be
wasted if it could not exchange data with these interfaces
effectively. Therefore a throughput of 20Mbyte/second was
chosen based on the actual throughput seen on a number of
USB transceivers and microcontrollers after the USB stack and
processor overhead is taken into account. (See Table 3) This
speed is not the raw 480 Mbyte/second data rates advertised in
the USB Version 2.0 specification but the average observed
data rates once the delays of the USB stack and the 8/16/32 bit
microcontrollers that contained a USB physical layer.

VI. USE OF ATHENA SCRIPTS

To aid in comparing results of this paper with other cores

George Mason University’s Cryptographic Engineering
Research Group (CERG) scripts were utilized to batch
synthesize the core with a variety of parts and optimization
options. ATHENa, Automated Tool for Hardware EvaluatioN
consists of a number of Perl scripts run with the free versions
of Xilinx and Altera’s synthesis tools. Version 0.2 was used
for the preliminary results in Table 4 that uses Xilinx Webpack
9.1i. The early version of the tool provided an easy way to
synthesize and summarize results from the tool. The results
for Spartan 3, Virtex 4, and Virtex 5 parts in Table 5 were all
reported by ATHENa for the encryption only and CTR mode
cores. It should be noted ATHENa does not fill in the units
for the metrics listed, all frequencies are in Mhz, clocks are
reported in nanoseconds, latency in clock cycles, and the

throughput is measured in megabytes per second. The script
used is listed as an Appendix at the end of this paper.

VII. RESULTS

After our architecture for AES 128-bit key encryption was

synthesized, implemented, and placed, both the Xilinx and
Altera tools reported a clock rate that would sustain the
required 20 Mbyte/sec data rate. A maximum throughput of
29.4 Mbyte/sec was possible with a Cyclone II. Addition of
the counter and extra register for CTR mode operation had
opposite effects for the vendors. With Xilinx Spartan 3 family
adding the extra data path components decreased the number
of slices required. With Altera Cyclone II family an increase
in Logic Elements was found. In both cases a reduction of at
least 10 Mhz was observed but both product families still met
the throughput requirement. Post-implementation testing
showed the test data was still valid. Comparisons with other
published results are provided in Table 3.

 Both vendors’ synthesis and implementation tools took
different paths in synthesizing the design. ISE Webpack 9.1i
optimized the design further than expected. When BRAMs
were inferred they provided registered inputs that made
separate “Old State” register banks unnecessary. The ROMs
were packed into single Block RAMs to save resources. ISE
9.1i found a total of 17 ROMs, 16 of which were the 256x8 bit
ROMs. One-Hot Finite State Machine (FSM) coding was used
for the twenty states to optimize for speed. 96 SRL16E shift
registers were created for the 64 3-bit shift registers and 32 x
4-bit shift registers, compacting the design considerably.
Quartus did not use RAM resources; instead it elected to use
LE blocks that allowed for a faster design in both the
encryption and CTR mode variants. Options in Quartus were
set to use memory for any size table but the tool found the LE

Table 4: Core Comparison Chart

SCHOLARLY PAPER

9

blocks faster and the overall utilization of the device was still
low. For the Xilinx families the manual synthesis was
compared with ATHENa’s results and yielded similar after
running the tool in batch mode and trying various optimization
techniques. ATHENa showed the throughput required was
possible even with various software switches in use and batch
mode tested various Xilinx part families with one script and
the same source files.

VIII. PERFORMANCE AND RESOURCE COMPARISONS

Our design was built on trade-offs but aimed for mid-

range FPGAs. A survey of published results found the ECB
AES128 encryption-only core and CTR mode AES128 core
both were slower than the other cores researched but used a
smaller mix of resources than most of the other high
throughput cores. The highest throughput cores utilized many
BRAM modules and as few slices as possible. The downside
was heavy use of fast BRAM resources and the core still
required a large number of Slices/LE. The Tbox based
designs of McLoone and McCanny, Wang et al., and Rourvoy
and Standaert all had higher throughput but required the use of
Xilinx Vertex family parts which have larger slices than the
Spartan 3 family. [15,26,22]

The closest design to this paper’s architecture would be

the compact design of Rouvroy et al.. [22] Their design team
targeted the Virtex XC3S50 with 163 Slices, 3 RAM blocks,
and a 71.5 Mhz clock. While less slices and LUTs were used
they were still only able to output a 128-bit block every 44
cycles. Moving to the XC2V40 part, the clock rose to 123
Mhz but still had a 44-cycle latency before the data was ready.

They reported a throughput of 26 Mbyte/sec (208 Mbit/sec)
using the XC3S50 and 44 Mbyte/sec (358 Mbit/sec) using the
XC2V40. [22] The difference in resources required could be
attributed to the full utilization of SRL16 registers, dual port
RAM, and short data paths. Their Spartan 3 throughput result
was similar to this paper’s, but our architecture can be directly
synthesized on Altera’s Cyclone family. The other design was
optimized for Xilinx parts. We believe the use of the lower
cost Spartan and Cyclone devices both met the design goals
and made good use of the available resources to achieve 20
Mbyte/sec throughput.

IX. CONCLUSION

This paper set out to create a core capable of sustaining a

20 Mbytes/sec data rate while being portable to both Xilinx
and Altera’s mid-range FPGA families. The use of tBoxes
allowed memory available on the devices to simplify and
speed up the basic AES/Rijndael algorithm. Our architecture
also set out to present an area efficient design capable of using
a 3-in-1 key schedule since many surveyed papers only offered
AES with 128-bit keys. Reuse of data paths and
foreknowledge of the intended application for the core drove
design trade-offs. Design choices were made in favor of
saving resources while not sacrificing throughput. The
application of encryption modes was introduced to simplify the
design of the core and prevent duplicate blocks of data from
being encrypted to the same cipher block. The final result was
portable, had a small footprint, and was ideal for becoming a
coprocessor or peripheral core in an embedded design.

Table 5: Sample of ATHENa v0.2 Results

SCHOLARLY PAPER

10

X. APPENDIX A: ATHENA V0.2 SCRIPT LISTING
work directory, used as a root for all result directories

WORK_DIR = <C:\single_run\tboxAES128\>

directory containing synthesizable source files for the project

SOURCE_DIR = <C:\single_run\tboxAES128\src>

 # synthesizable source files listed in the order suitable for synthesis and implementation

low level modules first, top level entity last

SOURCE_FILES = sbox.vhd, regN.vhd, tboxes.vhd, Rcon.vhd, upcounter.vhd, keyReg8x32.vhd,

shftReg8x32.vhd, datapath.vhd, AES128controller.vhd, AES128.vhd

directory containing synthesizable source files for the project

TESTBENCH_DIR = <../sources>

testbench files listed in the order suitable for simulation

low level modules first, top level entity last

TESTBENCH_FILES =

project name

it will be used in the names of result directories

PROJECT_NAME = tboxAES128

name of top level entity

TOP_LEVEL_ENTITY = tboxAES128

name of top level architecture

TOP_LEVEL_ARCH = core

name of clock net

CLOCK_NET = clk

#formulas for latency

LATENCY = TCLK*55

#formulas for THROUGHPUT

THROUGHPUT = TCLK*128/55

OPTIMIZATION_TARGET = speed | area

OPTIMIZATION_TARGET = speed

OPTIONS = default | user

OPTIONS = default

APPLICATION = single_run | placement_search

single_run: single run through synthesis and implementation with options

defined in the file options.<OPTIONS>_<OPTIMIZATION_TARGET>

placement_search: runs through impementation with different values of cost table

with constant options defined in options.<OPTIONS>_<OPTIMIZATION_TARGET>

APPLICATION = placement_search the list of all FPGA devices targeted by a given

application

FPGA_VENDOR = Xilinx

END VENDOR is used to denote the end of list of devices for a given vendor

for FPGA_VENDOR = Xilinx

FPGA_FAMILY = SpartanXL | Spartan-II | Spartan3 | Spartan3A | Spartan3ADSP |

Spartan3AN | Spartan3E VIRTEX | VIRTEX-E | VIRTEX-E EM | VIRTEX-II |

VIRTEX-II_PRO | VIRTEX-II_PRO_X | VIRTEX-4_LX | VIRTEX-4_SX | VIRTEX-4_FX |

VIRTEX-5_LX | VIRTEX-5_LXT | VIRTEX-5_SXT | VIRTEX-5_FXT

END FAMILY is used to denote the end of list of devices for a given family

FPGA_DEVICES = <list of device names from vendor.device.lib separated by commas>

#| best_match | all

For best match, parameters of the best match must be provided

FPGA_VENDOR = Xilinx

FPGA_FAMILY = Spartan3

FPGA_DEVICES = best_match

MAX_SLICE_UTILIZATION = 0.95

MAX_BRAM_UTILIZATION = 1.0

MAX_DSP_UTILIZATION = 1.0

MAX_MUL_UTILIZATION = 1.0

MAX_PIN_UTILIZATION = 1.0

SYN_CONSTRAINT_FILE = default

IMP_CONSTRAINT_FILE = default

REQ_SYN_FREQ = 50

REQ_IMP_FREQ = 25

END FAMILY

FPGA_FAMILY = Spartan

FPGA_DEVICES = best_match

MAX_SLICE_UTILIZATION = 0.95

MAX_BRAM_UTILIZATION = 1.0

MAX_DSP_UTILIZATION = 1.0

MAX_MUL_UTILIZATION = 1.0

MAX_PIN_UTILIZATION = 1.0

SYN_CONSTRAINT_FILE = default

IMP_CONSTRAINT_FILE = default

REQ_SYN_FREQ = 50

REQ_IMP_FREQ = 25

END FAMILY

FPGA_FAMILY = Spartan3ADSP

FPGA_DEVICES = best_match

MAX_SLICE_UTILIZATION = 0.95

MAX_BRAM_UTILIZATION = 1.0

MAX_DSP_UTILIZATION = 1.0

MAX_MUL_UTILIZATION = 1.0

MAX_PIN_UTILIZATION = 1.0

SYN_CONSTRAINT_FILE = default

IMP_CONSTRAINT_FILE = default

REQ_SYN_FREQ = 50

REQ_IMP_FREQ = 25

END FAMILY

FPGA_FAMILY = VIRTEX-4_LX

FPGA_DEVICES = all

MAX_SLICE_UTILIZATION = 0.8

MAX_BRAM_UTILIZATION = 1.0

MAX_DSP_UTILIZATION = 1.0

MAX_MUL_UTILIZATION = 1.0

MAX_PIN_UTILIZATION = 0.9

SYN_CONSTRAINT_FILE = default

IMP_CONSTRAINT_FILE = default

REQ_SYN_FREQ = 450

REQ_IMP_FREQ = 400

END FAMILY

FPGA_FAMILY = VIRTEX-5_LX

FPGA_DEVICES = best_match

MAX_SLICE_UTILIZATION = 0.95

MAX_BRAM_UTILIZATION = 1.0

MAX_DSP_UTILIZATION = 1.0

MAX_MUL_UTILIZATION = 1.0

MAX_PIN_UTILIZATION = 1.0

SYN_CONSTRAINT_FILE = default

IMP_CONSTRAINT_FILE = default

REQ_SYN_FREQ = 50

REQ_IMP_FREQ = 25

END FAMILY

END VENDOR

REFERENCES

[1] Altera Corp., Advanced Synthesis Cookbook: A Design Guide for
Stratix II/III/IV Devices, available at
http://www.altera.com/literature/manual/stx_cookbook.pdf.

[2] Altera Corp., Cyclone II Device Handbook, Vol. 1, available at
http://www.altera.com/literature/hb/cyc2/cyc2_cii5v1.pdf.

[3] Altera Corp., Stratix III FPGAs vs. Xilinx Virtex-5 Devices:
Architecture and Performance Comparison, available at
http://www.altera.com/literature/wp/wp-01007.pdf.

[4] Chodowiec, P., Khuon, P., Gaj, K., “Fast implementations of secret-key
block ciphers using mixed inner- and outer-round pipelining”,
Proceedings of the 2001 ACM/SIGDA ninth international symposium
on Field programmable gate arrays, p.94-102, February 2001.

[5] FIPS 197: Advanced Encryption Standard. National Institute of
Standards and Technology, 2001, available at
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[6] Fischer, V. and Drutarovsky, M., “Two Methods of Rijndael
Implementation in Reconfigurable Hardware,” Lecture Notes in
Computer Science, Volume 2162/2001, pp 77-92, 2001.

[7] Gaj, K. and Chodowiec P. “FPGA and ASIC Implementations of AES”
in Cryptographic Engineering, Koc, Cenin Kaya (ed.), ISBN 978-0-
387-71816-3, Springer Science+Business Media LLC, 2009, pp 235-
294.

[8] Gaj, K. and Chodowiec, P., “Comparison of the Hardware Performance
of the AES Candidates Using Reconfigurable Hardware,” Proc. Third
Advanced Encryption Standard Candidate Conf., pp. 40-56, 2000.

[9] Hodjat, A., Verbauwhede, I., “Area-Throughput Trade-offs for Fully
Pipelined 30 to 70 Gbits/s AES Processors,” IEEE Transactions on
Computers, vol. 55, no. 4, pp. 366-372, April, 2006.

[10] Huang, C., Chang, C., Lin, M., Tai, H., "The FPGA Implementation of
128-bits AES Algorithm Based on Four 32-bits Parallel Operation,"
Data, Privacy, and E-Commerce, International Symposium on, pp. 462-
464, The First International Symposium on Data, Privacy, and E-
Commerce (ISDPE 2007), 2007.

[11] J. Daemen and V. Rijmen. The Design of Rigndael: AES – The
Advanced Encryption Standard, ISBN 3-540-42580-2, Springer-
Verlag, 2002.

[12] Li, C., Chien, C., Hong, J., Chang, T., "An Efficient Area-Delay Product
Design for MixColumns/InvMixColumns in AES," VLSI, IEEE
Computer Society Annual Symposium on, pp. 503-506, 2008 IEEE
Computer Society Annual Symposium on VLSI, 2008.

SCHOLARLY PAPER

11

[13] Lin, S., and Huang, C., “A High-Throughput Low-Power AES Cipher
for Network Applications,” Proceedings of the 2007 Asia and South
Pacific Design Automation Conference, pp 595-600, 2007.

[14] Lotfy, O., Ahmed, M., Camel, T., “AES Embedded Hardware
Implementation,” Adaptive Hardware and Systems, NASA/ESA
Conference on, pp. 103-109, Second NASA/ESA Conference on
Adaptive Hardware and Systems (AHS 2007), 2007.

[15] McLoone, M., McCanny, J., “Rijndael FPGA Implementation Utilizing
Look-up Tables”,IEEE Workshop on Signal Processing Systems, pp.
349-360, 2001.

[16] Panato, A., Barcelo, M., Reis, R., “A Low Device Occupation IP to
Implement Rijndael Algorithm”, Design, Automation and Test in
Europe Conference and Exhibition, pp 20 – 25, 2003.

[17] Rizk, M.R.M., Morsy, M., “Optimized Area and Optimized Speed
Hardware Implementations of AES on FPGA,” 2nd International Design
and Test Workshop, pp. 207-217, 2007.

[18] Rodriguez-Heriquez, F., Saqib, N. A., Diaz-Perez, A., “4.2Gbit/s single-
chip FPGA Implementation of AES Algorithm”, Electronics Letters
Volume 39, Issue 15, pp. 1115 – 1116, 2003.

[19] Rodriguez-Henriquez, F, Saqib, N. A., Perez, A. D., Koc, C. K.,
Cryptographic Algorithms on Reconfigurable Hardware, ISBN 0-387-
33883-7, Springer Science+Business Media LLC, 2006.

[20] Schaumont, P., Kuo, H., Verbauwhede, I., “Unlocking the Design
Secrets of a 2.29 Gb/s Rijndael Processor,” Annual ACM IEEE Design
Automation Conference, Proceedings of the 39th annual Design
Automation Conference, 2002.

[21] Stallings, W., Cryptography and Network Security, ISBN 0-13-
1873162, Pearson Prentice Hall, 2006, Upper Saddle River, NJ, 2006.

[22] Standdaert, F., Rouvroy, G., Quisquater, J., Legat, J., "Compact and
Efficient Encryption/Decryption Module for FPGA Implementation of
the AES Rijndael Very Well Suited for Small Embedded Applications,"
Information Technology: Coding and Computing, International
Conference on, vol. 2, pp. 583, International Conference on Information
Technology: Coding and Computing (ITCC'04) Volume 2, 2004.

[23] Standdaert, F., Rouvroy, G., Quisquater, J., Legat, J., “A Methodology
to Implement Block Ciphers in Reconfigurable Hardware and its
Application to Fast and Compact AES RIJNDAEL,” International
Symposium on Field Programmable Gate Arrays, Proceedings of the
2003 ACM/SIGDA eleventh international symposium on Field
programmable gate arrays, pp 216 - 224 , 2003.

[24] Standaert, F., Rouvroy G., Quisquater, J., Legat, J., “Efficient
Implementation of Rijndael Encryption in Reconfigurable Hardware:
Improvements and Design Tradeoffs,” Lecture Notes in Computer
Science, Volume 2779/2003, pp 334-350, 2003.

[25] Wang, S. and Ni, W., “An Efficient FPGA Implementation of Advanced
Encryption Standard,” Computational Intelligence and Multimedia
Applications, International Conference on, vol. 2, pp. 179-187,
International Conference on Computational Intelligence and Multimedia
Applications (ICCIMA 2007), 2007.

[26] Wang, J., Chang, S., Lin, P., “A Novel Round Function Architecture for
AES Encryption/Decryption Utilizing Look-up Table,” Application-
Specific Systems, Architectures and Processors, IEEE International
Conference on, pp. 296, 13th IEEE International Conference on
Application-Specific Systems, Architectures and Processors (ASAP'02),
2002.

[27] Xilinx Corp., Spartan-3 FPGA Family Datasheet, available at
http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf.

[28] Xilinx Corp., Advantages of the Virtex-5 FPGA 6-Input LUT
Architecture, available at
http://www.xilinx.com/support/documentation/white_papers/wp284.pdf.

[29] Zhong, Y., Wang J., Zhao, Z., Yu, D., Li, L., “A Low –Cost and High
Efficiency Architecture of AES Crypto-Engine,” Communication and
Networking in China 2007, pp. 308-312, Second International
Conference on Communications and Networking in China
(CHINACOM 2007), 2007.

SOFTWARE REFERENCES

[30] Bertoni,G., Breveglieri, L., Fragneto, P., Macchetti, M., Marchesin, S.,

“Efficient Software Implementation of AES on 32-Bit Platforms,”

Revised papers from the 4th International Workshop of Cryptographic
Hardware and Embedded Systems, pp. 159-171, 2002.

[31] Bernstein, D., Schwabe, P., “New AES Software Speed Records,”
Lecture Notes in Computer Science Vol. 5365, pp. 322-336,
Proceedings of the 9th International Conference on Cryptology in India,
2008.

