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Abstract— The Rijndael Algorithm was chosen for the 

Advanced Encryption Standard (AES) in 2001 and formally 
published in FIPS Publication 197.  Since Rijndael was released 
as a candidate a number of cores were created to test and 
benchmark the algorithm in both hardware and software.  
Rijndael was chosen partly based on its ability to be efficiently 
implemented in Field Programmable Gate Arrays (FPGAs) and 
Application Specific Integrated Circuits (AISCs).  In AISC 
design, heavy use of combinational logic is advantageous. In 
FPGA designs each logic cell has local memory available and all 
free logic cells are equally valuable for design use.  A survey of 
published AES architectures found they did not fully take 
advantage of ROM blocks to simplify and shorten critical paths in 
the algorithm’s rounds.  This paper will present a T-box design 
that will utilize FPGA memory in a core with a standard 32-bit 
bus width that will sustain a throughput of 20 Mbyte/sec. 

 
Index Terms—Advanced Encryption Standard, AES, Tbox, 

Cryptography, AES-128, AES-192, AES-256. 
 

I. AES OVERVIEW 

 
HE Advanced Encryption Standard (AES) specification is 
documented in the National Institute of Standards and 
Technology’s (NIST) FIPS 197 publication.[5]  J. 

Daemen and V. Rijmen  submitted Rijndael as part of NIST’s 
AES contest. Candidates for the contest were tested based on 
strength of the algorithm against attacks, maximum 
throughput, and resources required for both software and 
hardware implementations.  Rijndael was originally designed 
with a variety of key lengths and variable block lengths in 
mind.  When the variable block length requirement was 
dropped, Rijndael was amended to a fixed 128-bit block 
length.  Since the chosen core would be a US Federal Standard 
all teams participating had to openly publish their standard and 
must be free of Intellectual Property.  The finalists were 
evaluated equally, but each submission differed in 
implementation costs, throughput, and versatility in 
implementation.  Flexible algorithms that could run efficiently 
across Application Specific Integrated Circuits (ASICs) for 
smart cards, 32-bit microprocessors, and even 8 bit 
microcontrollers proved a challenge during final selection. 
[11] On October 2nd, 2000 NIST announced that Rijndael was 
the winner and new AES standard, based on the evaluation 

 
 

criteria, peer review, and excellent performance across a 
number of target platforms. 
 

 AES supports multiple key sizes (128,192, and 256 bits) 
and is used as a block cipher with a message size of 128 bits.  
The block cipher structure can be used in a variety of modes to 
create a secure stream cipher based on AES encryption and/or 
decryption.  Using the basic Electronic Code Book (ECB) 
mode, a 128-bit message is encrypted with a key of 128, 192, 
or 256 bits to produce a 128-bit cipher text, as shown in Figure 
1.  A key expansion is first performed on the initial key values, 
based on a key schedule, to generate unique keys for all rounds 
of encryption.  The key schedule was developed to use small 
amounts of memory, have no symmetries, have efficient 
diffusion of keys, and be non-linear. [11] Diffusion allows 
small changes in a previous key to cause significant changes in 
the next expanded key.  Elimination of symmetries and linear 
functions allows generation of expanded keys that resist 
attacks and analysis on the cipher text.  A perfect key 
expansion would generate seemingly random keys that are 
unique and easily computed from the initial and subsequent 
expanded keys.  With no pattern to attack, the attacker would 
have to pick from all possible keys for every round of the 
algorithm.  AES uses rotations, XOR operations for 
permutations, and table lookups from an Sbox table specified 
in FIPS 197 for direct substitutions on each byte of the key.   
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Figure 1: AES Encryption Round Structure 
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To further mix each key in the schedule a RCON value, a 
unique constant determined by the current key being 
generated, is added to break patterns in the key.  On every new 
round of four, six, or eight key values an incrementing RCON 
value is XORed with the key to eliminate symmetries in the 
expanded keys.[5]  An additional change is added for 256 bit 
keys; every fourth key undergoes a substitution to keep the 
same transform being applied over more than three 
consecutive expanded keys. The RCON values are listed in 
FIPS 197 along with example key expansions for 128, 192, 
and 256-bit key lengths.  

 
Based on the round structure chosen, there are a number 

of options for implementing the key schedule.  If each round is 
calculated iteratively, it is easy to calculate the expanded key 
on the fly.  This can be accomplished by expanding only the 
current key and retaining the previous key values required to 
calculate the next key.  To implement AES with a 128-bit key, 
only four previous values are required to calculate the keys on 
the fly.  A full key expansion for all modes, some times 
referred to as a 3 in 1 design, requires up to eight previous 
values to be retained.  If a full round is calculated for each 
cycle four keys must be simultaneously calculated and up to 
eight values need to be retained for all three key sizes.  A 
potential drawback to on the fly calculation is the worst-case 
delay of looking up a value in a ROM table, two bit-wise 
XORs, and the gate delay of two muxes. The full round in a 
cycle approach can provide very high throughputs (128 bits 
computed every cycle) but requires fast key expansion or the 
entire key schedule to be pre-computed and stored.  Storing 
the entire key schedule requires up to sixty 32-bit words to be 
stored for the 256-bit mode but allows the keys to be 
referenced in a single clock cycle if fast RAM blocks are used.  
Most modes having the pre-computed key values can speed the 
calculation of the rounds.  If a mode with a changing key is 
used the benefits of pre-computation are diminished compared 
to the memory resources required.  For memory limited 
applications, on the fly calculation provides fast key expansion 
without RAM blocks.   

 
A survey of other papers has found both preprocessed 

and on the fly key expansion used in high throughput designs.  
McCloone and McCanney utilized preprocessing of the key 
with a LUT based Tbox implementation discussed later in this 
paper. [15]  Qing et al., Wang and Ni, Wang et al., Lofty et al., 
Rizk et al., and Standaert et al. had all generated their keys on 
the fly to save on processing time and hardware resources.[29, 
25, 26,14, 17, 23]  Two on the fly key scheduling units are 
chained to provide Schaumont et al. Rijndael processor 
capable of 2.29 Gbit/sec throughput. [20] For a fully pipelined 
high-speed core the keys are preprocessed to allow the rounds 
to compute as soon as possible with no calculation delays, 
achieving a throughput of 30-70 Gbits/sec.[9] Lin and Huang 
pipelined the computation of the key to matched their 
pipelined round structure. [13] The timesavings in pre-
expanding the key in the pipelined and single cycle 
architectures justified the use of more memory resources to 
store the keys.   

 
 The AES standard is round based and operates on a 

thirty-two bit by thirty-two bit State array.  The array is 
divided into sixteen bytes as shown in Figure 2. It should be 
noted that the indexes into the array are row then column.  The 
indexes correspond to the byte sequence; every four bytes 
form a new row.  The state is then taken through 10, 12, or 14 
rounds for 128, 192, or 256-bit keys respectively.  All 
operations are performed in the Galois Field GF(28). A full 
explanation of Galois Fields is presented in Stallings’ textbook 
but the basic arithmetic operations can be explained briefly. 
[21] The equivalent of addition and subtraction in the field is 
XORing the two values.  Multiplication and division involve a 
more complex algorithm but a simple table lookup can 
perform the operations required for AES. As suggested by 
Daemen and Rijmen in [11], a table of all 256 values 
multiplied by 0x02 is listed as the xtime table.  Any multiplied 
value can be decomposed into a sum of powers of 0x02.  For 
example 0x03*X can be expressed as X*(0x01 XOR 0x02), 
which can be calculated as (X XOR xtime(X)).  This technique 
will be utilized later to pre-calculate the tBox values for our 
architecture. 
 

The plaintext message is loaded into the State array of 
Figure 2 and the AddRoundKey operation is performed.  
During this initial state the message is XORed with the initial 
key.  The new State array is taken through a series of identical 
rounds stated in the FIPS 197 standard including SubBytes, 
ShiftRows, MixColumns, and AddRoundKey.  The rounds are 
designed to be invertible for decryption while being simple to 
insure delays are low since rounds are repeated at least ten 
times.  SubBytes is a non-linear substitution of bytes directly 
substituted from the sBox array.  Details of the sBox’s 
construction are detailed in [11], where the authors provided 
the basis for choosing values. The sBox is mathematically 
proven to have both a transform for encryption and an inverse 
transform used for decryption.  ShiftRows provides a diffusion 
of values within the State array through simple shifts.  
MixColumns provides a linear permutation of the State array 
on a byte-by-byte basis, while being easily reversed by an 
inverse permutation. Daemon and Rijmen have stated in [11] 
that the performance of this step on 8-bit processors was a 
driving factor in the choice of permutation. The final step, 
AddRoundKey, performs a bit-wise XOR with each 32-bit 
column of the State array with one 32-bit word of the 
expanded key.  The number of rounds chosen by Daemen and 

 
Figure 2: AES State Array 
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Rijmen are based on known cryptanalysis attacks and  
diffusion criteria that require two rounds to fully diffuse single 
bit changes. The foreknowledge of how attackers could exploit 
the algorithm have lead to logical choices in each step of 
Rijndael, and hence AES, to make known attacks 
computationally infeasible, while preventing easily exploited 
patterns in the algorithm from developing. [11 & 21]  

 
After the specified number of rounds described above is 

done, the final round only includes SubBytes, ShiftRow, and 
AddRoundKey steps.  The resulting State array is the cipher 
text and is output as a 128-bit block.  Decryption is performed 
using the same round structure and sequences of operations, 
but inverse tables are used for each step.  The expanded keys 
are generated in the same way, but the groups of four 
sequential 32-bit expanded keys are used in reverse order.   

 

II. ENCRYPTION MODES 

 
Use of low area and high throughput encryption cores 

with an approved mode can match or exceed the throughput of 
ECB mode encryption and decryption. The use of approved 
modes can prevent identical plaintext blocks from having 
identical cipher text blocks.  NIST has listed the following 
approved confidentiality modes in their publications: 
 

• NIST SP 800-38A 
o Electronic Code Book (ECB) 
o Cipher Block Chaining (CBC) 
o Cipher Feed Back (CFB) 
o Output Feed Back (OFB) 
o Counter (CTR) 

• NIST SP 800-38B 
o Cipher-based Message Authentication Code 

(CMAC) 
• NIST SP 800-38C 

o Counter with Cipher Block Chaining-
Message Authentication Code (CCM) 

• NIST SP 800-38D 
o Galois/Counter Mode (GCM) 
o Galois Message Authentication Code 

(GMAC) 
If only authentication is required, SP 800-38B specifies the use 
of Cipher-based Message Authentication Code Mode 
(CMAC).  For both authentication and confidentiality, SP 800-
38C specifies Counter with Cipher Block Chaining – Message 
Authentication Code (CCM).  For high throughput 
authentication with confidentiality Galois/Counter Mode 
(GCM) is specified by SP 800-38D, but strict adherence to the 
recommended Initialization Vectors is required to satisfy the 
uniqueness requirement that provides the high degree of 
security. 
 

The choice of the listed modes provides stronger security 
than the basic ECB mode but has consequences for the 
operation of the cipher.  The simple Counter (CTR) mode 
provides a fast streaming cipher that only requires block 
encryption.  Each message is XORed with the counter value to 
produce a block of cipher text.  CTR mode encryption and 
decryption can be done in parallel, is easily pipelined, and 
allows changes to individual blocks without affecting other 
blocks.  The Initial Vector (IV) can be provided by a simple 
counter or another unique but changing value like a memory 
address. It should be noted the counter width should produce 
enough unique values to prevent repeats or spread out repeats 
so 2256-1 unique values get used before repeats occur between 
the 128-bit blocks used with AES.  If a single bit error is 
encountered the message CTR will cause a single bit error in 
the cipher text.  CTR provides a simple way to use an 
optimized encryption core for both stream encryption and 
decryption.  A subset of CTR can utilize only a portion of the 
counter’s bits, but it should be noted that only the same portion 
of the message could be encrypted with this method.  Utilizing 
a larger AES key will not overcome this limitation since only a 
portion of the 128-bit State array can be used.  This is 
regardless of the key size used. 

 

 
Figure 3: Approved Modes of Operation 
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OFB mode chains the resulting encryption from the 
previous block as input to the next block’s encryption block.  
The resulting cipher text is XORed with the message to 
provide the cipher text.  Since each block encryption is 
dependent on the previous result, it is not possible to pipeline 
or use parallelism to speed up the calculation. OFB does not 
depend on a sequence of Initial Vectors as CTR mode does.  
The first IV value provides the seed value used for all 
subsequent blocks.  Again, the same encryption module can 
perform encryption and decryption. OFB can provide security 
for noisy channels, since small bit errors do not propagate 
through other blocks. 

 
CFB mode differs from OFB in that the feedback is taken 

from the previous cipher text and not the encryption step.  The 
drawback to this approach is that errors can propagate between 
each subsequent block.  CBC mode is unique from previous 
modes since an IV is XORed with the message before 
encryption/decryption is performed.  Unlike the other modes 
encryption and decryption modules are required but errors 
affect the current and next blocks of data. 
 

A summary of modes is depicted in Figure 3.  Of the 
available modes, this paper’s architecture makes use of 
Counter mode for increased strength over ECB mode. A 
simple modification can allow OFB to be implemented due to 
its similar structure to CTR mode. These modes allow the 
encryption module to be utilized for both block encryption and 
decryption without requiring extra tables to be stored. 

 

III. T BOX IMPLEMENTATION 

 
Since the publication of Rijndael and the final AES 

specification a number of architectures to improve 
performance have been proposed and tested.  One method to 
increase throughput without resorting to pipelining was to 
shorten the rounds to a single cycle.  The tBox table approach 
was suggested and derived by Daemen and Rijmen and 
utilized by a number of researchers to improve performance. 
[11] An excellent explanation and datapath example is derived 
and explained by Gaj and Chodowiec in a chapter of 
Cryptographic Engineering. [7] The tBox structure combines 
the SubBytes, ShiftRows, and MixColumns steps utilizing 
linear algebra rules, in the GF(28),  creating a 256 value table 
of thirty two bit words called a tBox.  Every standard eight-bit 
sBox lookup in SubBytes can now be looked up in the tBox, 
which returns a 32-bit result.   
 
 As stated in [11] and [7], the transformations for one full 
round of AES are listed below: 
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Using the rules and properties of matrix math in GF(28): 
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The equation above can be implemented by tables that include 
the values of the Sbox multiplied by the 4x1 matrices, which 
are now represented as Tboxes below: 
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Each Tbox table uses an eight-bit index into a 256-element 
array of 32-bit values.  Storing these tables takes 8Kbits of 
ROM per table, for a total of 32Kbits of memory.  A reduction 
in the number and size of the tables can take advantage of two 
FPGA strengths.  First, the FPGA can use wires to copy or 
shift values at no cost in resources. This advantage is not 
possible with general-purpose processors that require separate 
processing cycles to shift values.  Second, the four tables are 
built on the same eight-bit values that are shifted to form the 
other tables.  It is possible to use a 256-item table of 24-bit 
words and shift it a total of three times to get al.l four Tbox 
table values.  To save memory only one tBox could be used to 
give a four-time reduction in memory requirements.  The down 
side is the single table would cause a four-fold increase in 
processing time.  For this paper a trade off was made to use 
four tables from the same Tbox initial values, and shift them as 
necessary.  This allows 32-bits of the State array to be 
computed every cycle and stored in the next State’s registers.    
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At the cost of memory and logic element resources, it is 
possible to build a high throughput core that computes the four 
instances of the above tBox equations in a single cycle.  In this 
architecture a maximum of fourteen cycles would be needed to 
complete the 128-bit cipher text from a given plaintext already 
loaded at high speeds.  Gaj and Chodowiec present an efficient 
version of this architecture that can be easily pipelined. [8] A 
similar decryption architecture, using inverse tables, can be 
used in the same way but must be supplied keys in the correct 
order to perform decryption. Wang et al., McLoone and 
McCanny, and Rouvroy et al. have published architectures 
similar or identical to the tBox architecture as presented by 
Gaj and Chodowiec.[26, 15, 22]  Of specific interest to mid-
range FPGA implementations is the approach the UCL Crypto 
Group took to use RAM blocks, shift registers, and short data 
paths to create a core that can encrypt and decrypt at 208 
Mbit/sec on Spartan II devices.  This was achieved with only 
163 slices and 3 RAM blocks used. [22] The numbers 
compare favorably with a number of designs optimized for use 
on the larger and more capable Virtex FPGAs, while not using 
a majority of the device’s resources.  This paper’s architecture 
will be compared to the UCL group’s efficient core in the 
comparison section. 

 
It should be further noted that tBox implementations do 

not always meet or exceed the throughput of more 
conventional AES implementations optimized for speed and/or 
area.  The tBox method is not well suited to ASIC design due 
to the large amount of memory required.  Memory can be laid 
out very efficiently in Very Large Scale Integration  (VLSI) 
processes but consumes a large area of the die compared to a 
sea-of-gates implementation of combinational logic functions.  
The UCL Crypto Group Core on a Spartan 3 FPGA achieves 
208 Mbit/sec with 163 slices used.  McLoone et al. achieved 
6956 Mbit/sec using 2222 slices but required a Virtex FPGA.  
Huang et al. bested the UCL Group by not using tBox 
architecture and achieved 647 Mbit/sec at a cost of 148 slices 
and 11 Block RAMs of a Spartan 3 device. 

 
Software implantations would not benefit from the same 

techniques described above since software cannot make use of 
efficient shifts, cross wiring, and fast logic operations.  The 
sequential nature of all modern general-purpose processors 
makes all operations equally costly in terms of delay.  The 
basic algorithm can be optimized for specific processors in 
order to utilize matrix instructions, parallel processing via 
multiple cores, and/or the use of efficient compilers to 
minimize the assembly instructions required. Bernstein and 
Schwabe have outlined fast AES techniques that use each 
processor unique structure such as 64 bit operations, verses 32 
bit calculations, masked tables, and efficient use of caches to 
shorten the time required to compute all rounds of AES. 
[30,31] In a method similar to the matrix math performed for 
Tboxes, another manipulation of the matrix is possible to 
effectively compute across the rows of the state to save extra 
corrective shifts. Bertoni et al. have saved rotations and extra 
memory lookups to speed up the standard software 
implementation used for embedded processors. [30] The effect 

of Graphics Processing Units (GPUs) and Single Instruction, 
Multiple Data (SIMD) instructions that are designed for array-
based calculations may provide efficient matrix 
transformations that can use methods like the tBox to obtain 
faster software implementations. Further Discussion of 
software implantations are beyond the scope of this paper and 
provide an open field for further research.  

 

IV. FPGA CELL ARCHITECTURE 

 
This paper aims for a Field Programmable Gate Array 

(FPGA) implementation of AES and warrants an investigation 
into the architecture of both the Xilinx and Altera families.  
The Cyclone II and Spartan 3 part families are equivalent low 
cost, mid-range small FPGAs (a sample of which is presented 
in Table 1).  These devices do not have the resources or speed 
of a Virtex or Stratix device but they do provide greater 
performance than the older APEX/MAXII and 
XC/CoolRunner parts. 
 

 Altera’s Cyclone II/III families are composed of Logic 
Array Blocks (LABs).  Each LAB contains sixteen Logic 
Elements (LE).  Dual ported RAM is also available via M4K 
RAM blocks with high clock rates (up to 260 Mhz).  Each LE 
provides a four input Look Up Table (LUT), a register, carry 
chain logic, and connection muxes.  Unlike the Xilinx 
equivalents of LE blocks, called slices, Altera elected not to 
add extra discrete logic elements within the cells.  All 
functions are implemented via LUTs.  This gap in 
implementation paths is offset by Altera’s LE modes; a normal 
mode allows arbitrary functions while arithmetic mode 
configures the LE for fast and compact arithmetic functions.  
Using both the primary inputs and carry-in logic a six input 
function can be implemented in each LE. For comparison, 
Xilinx’s slices can implement only four input functions in each 
slice. 
 

 

Table 1: Sampling of Mid-Range FPGA Parts 
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 Xilinx’s Spartan 3 family is built on Configurable Logic 
Blocks (CLBs) that contain four slices each.  Every slice 
contains two logic function tables, two registers, carry logic, 
and individual logic gates.  A number of slices provide shift 
registers and distributed RAM as special functions.  Better use 
of the cells provides high resource utilization, and allows large 
and complex designs to fit in smaller devices.  The function 
tables can be used as Look Up Tables (LUTs) that can 
implement any four-input function as stored values. Two four-
input tables can be stored in each slice, and the output can be 
registered within the slice.  Many adders and multipliers can 
be implemented to fit within the cell, and make use of the carry 
logic and spare gates for very high slice utilization.  Spartan’s 
block RAMs offer 18Kbits of fast, dual-ported, synchronous 
storage.  For 32-bit numbers, 512 elements can be stored in 
one 18K block. As outlined in the Xilinx Spartan 3 User 
Guide, each dual ported RAM can also be used for 128 states 
with up to 36 outputs in a single block. Use of the SRL16 shift 
register blocks can greatly lower device utilization if a reset is 
not required.  SRL16 blocks configure the LUTs as a shift 
register, but do not use the slice’s flip-flops.  The built-in Mux 
can select either of the slice’s LUTs to configure longer shift 
registers at low hardware cost. 
 

 Each manufacturer has gone to great lengths to point out 
the similarities between underlying hardware and promote any 
difference in performance. Altera claims their faster speed 
grades produce faster customer implementations, and Xilinx 
promotes the special configuration modes like SRL16 registers 
and the fast carry logic as leading to better, high performance 
designs.  Xilinx has acknowledged that newer versions of the 
Quartus design suite from Altera have higher performance than 
earlier implementations.  Due to Altera’s table centric cells, 
the software’s optimization and fitting of logic is very 
important to high throughput designs.  Xilinx has a similar 

push for their ISE tools to recognize logical parts of designs 
that can fit into each cell and still recognize special cases like 
the SRL16 register.  Ultimately, only real life testing of 
designs across devices, vendors, and software tools can prove 
the advantages of each manufacturer’s product line.       

V. OUR ARCHITECTURE 

 
The architecture described in this paper is based on the 

tBox implementation but targets smaller CPLD families like 
Altera’s Cyclone II/III and Xilinx’s Spartan III.  The 
specification for the core shown in Figure 4 included a number 
of items that were included for interfacing and re-utilizing 
costly resources and not for performance.  The specification 
included: 
 

• Throughput of at least 20Mbyte/second (160 
Mbit/second) through the core 

• 32-bit Input/Output registers utilizing interrupt-like 
triggering 

• tBox-based round architecture to achieve single cycle 
calculations inside the rounds 

• Reuse of most registers, minimal use of RAM 
• Use of only standard IEEE compatible VHDL code to 

insure code can be ported across vendor tools 
• Register-Transfer-Level (RTL) style coding to avoid 

excess hardware creation 
• No vendor specific libraries, macros, or Intellectual 

Property (IP) cores 
• Modular bottom-up construction to aid in testing and 

reuse 
• Separation of data path and controllers to keep 

control hardware apart from the data path. 

 
Figure 4: Our Architecture 
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• Strict use of only STD_LOGIC and 
STD_LOGIC_VECTORS to insure no type 
conversions are necessary  

• Simple external control of the core for I/O, mode 
selection (AES128/192/256), and status 

 
 

The tBoxes used in this paper were computed manually 
utilizing the xtime tables provided by Daemen and Rijmen.  
The results were copied to a VHDL description of a ROM. 
[11] It should be noted that McLoone and McCanny published 
three tables used to create the tBoxes. An Sbox, Sbox * 02, 
and Sbox * 03 table were presented to form all four tBoxes as 
necessary.   A comparison of this paper’s tables with the tables 
published by McLoone and McCanny turned up five 
discrepancies: 

 
• sBox * 02 table for B3 & B4 are reversed from the 

order of this project’s tables (CA CF instead of CF 
CA) 

• sBox * 03 table for B3 & B4 are also reversed (AF 
25 instead of 25 AF) 

• sBox * 03 value for 56 contains a typo (E0 instead of 
E8) 
 

Examination of the specific terms suggest the swapped 
terms in the Sbox * 02 table were continued to the Sbox * 03 
table, since the correct values were listed.  The E0/E8 type 
looks like a simple typing mistake.  The remainder of the 
tables successfully confirmed the table data in this paper’s 
implementation when NIST test vectors were run and verified. 

 
Original planning for the tables included only one tBox 

selected by multiple XORs, but it was realized that having only 
one tBox allowed only a single look up per clock cycle.  This 
would require multiple clock cycles per round.  During key 
expansion and final rounds the need for the sBox values would 
also take a performance hit since only one eight bit value can 
be looked up at a time.  It was decided to use the same 24-bit 
wide table four times to allow single cycle rounds and 
simultaneous 32-bit sBox lookups.   

 
In order to better utilize each Slice or Logic Element an 

experiment was conducted.  It was suggested that the synthesis 
tools would use memory resources better if the tables were not 
256 items x 24-bit words but left as 256 items x 8 bit tables.   
Both the Xilinx and Altera synthesis tools were given a two-

register bank and one table design. One used a 24 bit x 256 
word ROM and another using three separate 8 bit x 256 word 
ROM tables. No code was added to specify the ROM should 
be implemented as chained Lookup Tables (LUTs) or static 
RAM blocks.  Xilinx ISE Webpack utilized BRAM blocks, 
achieving a final clock rate of 134 MHz. Splitting up the tables 
utilized 3 BRAM blocks with a slightly higher clock rate of 
139 MHz.  Altera’s Quartus II Web Edition was set to use 
RAM and ROM for any size table, but when optimizing for 
speed implemented Logic Element LUTs were used instead of 
RAM blocks.  Quartus reported a final clock rate of 205 MHz.  
A second test with four instances of the first test was run and 
summarized in Table 2.  Based on the findings the individual 
tables were used to provide a small increase in speed for the 
Xilinx devices. 

 
Key Expansion was originally going to be pre-computed 

and stored in a RAM block until required.  This design 
requires both a counter and a large 32-bit x 60 item RAM 
block.  The requirement for a design that can work for all three 
modes of AES (128/192/256 bit), without reloading the device 
required a simple but flexible design. A straightforward design 
with 32-bit x 4 word register for the key and a maximum of 
32-bit x 8 word temporary register bank allows enough storage 
for the largest 256 bit key size.  A small table and a counter 
that advances on every count that equals zero modulo four, six, 
or eight, respectively, supply the RCON constant.  As stated 
before, four separate sBox lookups are performed 
simultaneously to insure the next key is calculated in one 
cycle. 

 
It should be noted that if all four lookups of this design 

are done in one cycle, using a network of 16 Tbox tables 
described previously, they could be stored in Look Up Tables 
(LUTs) in each individual Logic Element (Altera’s LE) or 
Configurable Logic Block (Xilinx’s CLB).  This approach 
allows 128 bits to be calculated every cycle but comes at a 
high logic element cost.  This made it possible to implement 
the core on smaller FPGA devices, but remains better suited 
for the larger logic cells of the Stratix and Virtex families. 

 
Aside from memory issues, the ports on the core had to be 

planned to not exceed the I/O pins available on smaller 
devices. The 32-bit I/O requirement was based on standard bus 

 

Table 2: Sampling of Mid-Range FPGA Parts 

Table 2: Tbox Resource Tests 

 

Table 3: Disk Drive Throughput Tests 
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widths for interfacing to other logic on the FPGA or to an 
external processor.  A survey of open AES cores found most 
were based on 128-bit I/O to the core, which would not fit in 
many smaller FPGA families.  The I/O bottleneck was also 
important to consider if the core was partnered with a 
transceiver chip for use with Universal Serial Bus (USB), 
Ethernet, or serial port.  A fast core throughput would be 
wasted if it could not exchange data with these interfaces 
effectively.  Therefore a throughput of 20Mbyte/second was 
chosen based on the actual throughput seen on a number of 
USB transceivers and microcontrollers after the USB stack and 
processor overhead is taken into account. (See Table 3)  This 
speed is not the raw 480 Mbyte/second data rates advertised in 
the USB Version 2.0 specification but the average observed 
data rates once the delays of the USB stack and the 8/16/32 bit 
microcontrollers that contained a USB physical layer.  

 

VI. USE OF ATHENA SCRIPTS 

 
To aid in comparing results of this paper with other cores 

George Mason University’s Cryptographic Engineering 
Research Group (CERG) scripts were utilized to batch 
synthesize the core with a variety of parts and optimization 
options.  ATHENa, Automated Tool for Hardware EvaluatioN 
consists of a number of Perl scripts run with the free versions 
of Xilinx and Altera’s synthesis tools.  Version 0.2 was used 
for the preliminary results in Table 4 that uses Xilinx Webpack 
9.1i. The early version of the tool provided an easy way to 
synthesize and summarize results from the tool.  The results 
for Spartan 3, Virtex 4, and Virtex 5 parts in Table 5 were all 
reported by ATHENa for the encryption only and CTR mode 
cores.  It should be noted ATHENa does not fill in the units 
for the metrics listed, all frequencies are in Mhz, clocks are 
reported in nanoseconds, latency in clock cycles, and the 

throughput is measured in megabytes per second.  The script 
used is listed as an Appendix at the end of this paper. 

VII. RESULTS 

 
After our architecture for AES 128-bit key encryption was 

synthesized, implemented, and placed, both the Xilinx and 
Altera tools reported a clock rate that would sustain the 
required 20 Mbyte/sec data rate.  A maximum throughput of 
29.4 Mbyte/sec was possible with a Cyclone II.  Addition of 
the counter and extra register for CTR mode operation had 
opposite effects for the vendors.  With Xilinx Spartan 3 family 
adding the extra data path components decreased the number 
of slices required.  With Altera Cyclone II family an increase 
in Logic Elements was found. In both cases a reduction of at 
least 10 Mhz was observed but both product families still met 
the throughput requirement. Post-implementation testing 
showed the test data was still valid. Comparisons with other 
published results are provided in Table 3. 
 
  Both vendors’ synthesis and implementation tools took 
different paths in synthesizing the design.  ISE Webpack 9.1i 
optimized the design further than expected.  When BRAMs 
were inferred they provided registered inputs that made 
separate “Old State” register banks unnecessary. The ROMs 
were packed into single Block RAMs to save resources.  ISE 
9.1i found a total of 17 ROMs, 16 of which were the 256x8 bit 
ROMs. One-Hot Finite State Machine (FSM) coding was used 
for the twenty states to optimize for speed. 96 SRL16E shift 
registers were created for the 64 3-bit shift registers and 32 x 
4-bit shift registers, compacting the design considerably.  
Quartus did not use RAM resources; instead it elected to use 
LE blocks that allowed for a faster design in both the 
encryption and CTR mode variants.  Options in Quartus were 
set to use memory for any size table but the tool found the LE 

 

Table 4: Core Comparison Chart 
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blocks faster and the overall utilization of the device was still 
low.  For the Xilinx families the manual synthesis was 
compared with ATHENa’s results and yielded similar after 
running the tool in batch mode and trying various optimization 
techniques.  ATHENa showed the throughput required was 
possible even with various software switches in use and batch 
mode tested various Xilinx part families with one script and 
the same source files. 
 

VIII. PERFORMANCE AND RESOURCE COMPARISONS 

 
Our design was built on trade-offs but aimed for mid-

range FPGAs.  A survey of published results found the ECB 
AES128 encryption-only core and CTR mode AES128 core 
both were slower than the other cores researched but used a 
smaller mix of resources than most of the other high 
throughput cores.  The highest throughput cores utilized many 
BRAM modules and as few slices as possible.  The downside 
was heavy use of fast BRAM resources and the core still 
required a large number of Slices/LE.   The Tbox based 
designs of McLoone and McCanny, Wang et al., and Rourvoy 
and Standaert all had higher throughput but required the use of 
Xilinx Vertex family parts which have larger slices than the 
Spartan 3 family.  [15,26,22]  

 
The closest design to this paper’s architecture would be 

the compact design of Rouvroy et al.. [22] Their design team 
targeted the Virtex XC3S50 with 163 Slices, 3 RAM blocks, 
and a 71.5 Mhz clock.  While less slices and LUTs were used 
they were still only able to output a 128-bit block every 44 
cycles. Moving to the XC2V40 part, the clock rose to 123 
Mhz but still had a 44-cycle latency before the data was ready.  

They reported a throughput of 26 Mbyte/sec (208 Mbit/sec) 
using the XC3S50 and 44 Mbyte/sec (358 Mbit/sec) using the 
XC2V40. [22] The difference in resources required could be 
attributed to the full utilization of SRL16 registers, dual port 
RAM, and short data paths.  Their Spartan 3 throughput result 
was similar to this paper’s, but our architecture can be directly 
synthesized on Altera’s Cyclone family.  The other design was 
optimized for Xilinx parts.   We believe the use of the lower 
cost Spartan and Cyclone devices both met the design goals 
and made good use of the available resources to achieve 20 
Mbyte/sec throughput.      

 

IX. CONCLUSION 

 
This paper set out to create a core capable of sustaining a 

20 Mbytes/sec data rate while being portable to both Xilinx 
and Altera’s mid-range FPGA families.  The use of tBoxes 
allowed memory available on the devices to simplify and 
speed up the basic AES/Rijndael algorithm.  Our architecture 
also set out to present an area efficient design capable of using 
a 3-in-1 key schedule since many surveyed papers only offered 
AES with 128-bit keys.  Reuse of data paths and 
foreknowledge of the intended application for the core drove 
design trade-offs.  Design choices were made in favor of 
saving resources while not sacrificing throughput.  The 
application of encryption modes was introduced to simplify the 
design of the core and prevent duplicate blocks of data from 
being encrypted to the same cipher block.  The final result was 
portable, had a small footprint, and was ideal for becoming a 
coprocessor or peripheral core in an embedded design. 

 

Table 5: Sample of ATHENa v0.2 Results 
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X. APPENDIX A: ATHENA V0.2 SCRIPT LISTING 
# work directory, used as a root for all result directories 

WORK_DIR = <C:\single_run\tboxAES128\> 

# directory containing synthesizable source files for the project 

SOURCE_DIR = <C:\single_run\tboxAES128\src> 

   # synthesizable source files listed in the order suitable for synthesis and implementation 

# low level modules first, top level entity last 

SOURCE_FILES = sbox.vhd, regN.vhd, tboxes.vhd, Rcon.vhd, upcounter.vhd, keyReg8x32.vhd, 

shftReg8x32.vhd, datapath.vhd, AES128controller.vhd, AES128.vhd 

# directory containing synthesizable source files for the project 

TESTBENCH_DIR = <../sources> 

# testbench files listed in the order suitable for simulation 

# low level modules first, top level entity last 

TESTBENCH_FILES =  

# project name 

# it will be used in the names of result directories 

PROJECT_NAME = tboxAES128 

# name of top level entity 

TOP_LEVEL_ENTITY = tboxAES128 

# name of top level architecture 

TOP_LEVEL_ARCH = core 

# name of clock net 

CLOCK_NET = clk 

#formulas for latency 

LATENCY = TCLK*55 

#formulas for THROUGHPUT 

THROUGHPUT = TCLK*128/55 

# OPTIMIZATION_TARGET = speed | area 

OPTIMIZATION_TARGET = speed 

# OPTIONS = default | user 

OPTIONS = default 

 

# APPLICATION = single_run | placement_search 

# single_run: single run through synthesis and implementation with options 

#             defined in the file options.<OPTIONS>_<OPTIMIZATION_TARGET> 

# placement_search: runs through impementation with different values of cost table 

# with constant options defined in options.<OPTIONS>_<OPTIMIZATION_TARGET> 

#  APPLICATION = placement_search the list of all FPGA devices targeted by a given  

#    application 

# FPGA_VENDOR = Xilinx 

# END VENDOR is used to denote the end of list of devices for a given vendor 

# for FPGA_VENDOR = Xilinx 

# FPGA_FAMILY = SpartanXL | Spartan-II | Spartan3 | Spartan3A | Spartan3ADSP |  

# Spartan3AN | Spartan3E        VIRTEX | VIRTEX-E | VIRTEX-E EM | VIRTEX-II |  

# VIRTEX-II_PRO | VIRTEX-II_PRO_X |   VIRTEX-4_LX | VIRTEX-4_SX | VIRTEX-4_FX |  

#               VIRTEX-5_LX | VIRTEX-5_LXT |  VIRTEX-5_SXT | VIRTEX-5_FXT 

# END FAMILY is used to denote the end of list of devices for a given family 

# FPGA_DEVICES = <list of device names from vendor.device.lib separated by commas>  

#| best_match | all 

# For best match, parameters of the best match must be provided 

FPGA_VENDOR = Xilinx 

FPGA_FAMILY = Spartan3 

FPGA_DEVICES = best_match 

MAX_SLICE_UTILIZATION  = 0.95 

MAX_BRAM_UTILIZATION   = 1.0 

MAX_DSP_UTILIZATION    = 1.0 

MAX_MUL_UTILIZATION    = 1.0 

MAX_PIN_UTILIZATION    = 1.0 

SYN_CONSTRAINT_FILE = default 

IMP_CONSTRAINT_FILE = default 

REQ_SYN_FREQ = 50 

REQ_IMP_FREQ = 25 

END FAMILY 

FPGA_FAMILY = Spartan 

FPGA_DEVICES = best_match 

MAX_SLICE_UTILIZATION  = 0.95 

MAX_BRAM_UTILIZATION   = 1.0 

MAX_DSP_UTILIZATION    = 1.0 

MAX_MUL_UTILIZATION    = 1.0 

MAX_PIN_UTILIZATION    = 1.0 

SYN_CONSTRAINT_FILE = default 

IMP_CONSTRAINT_FILE = default 

REQ_SYN_FREQ = 50 

REQ_IMP_FREQ = 25 

END FAMILY 

FPGA_FAMILY = Spartan3ADSP 

FPGA_DEVICES = best_match 

MAX_SLICE_UTILIZATION  = 0.95 

MAX_BRAM_UTILIZATION   = 1.0 

MAX_DSP_UTILIZATION    = 1.0 

MAX_MUL_UTILIZATION    = 1.0 

MAX_PIN_UTILIZATION    = 1.0 

SYN_CONSTRAINT_FILE = default 

IMP_CONSTRAINT_FILE = default 

REQ_SYN_FREQ = 50 

REQ_IMP_FREQ = 25 

END FAMILY 

FPGA_FAMILY = VIRTEX-4_LX 

FPGA_DEVICES = all 

MAX_SLICE_UTILIZATION  = 0.8 

MAX_BRAM_UTILIZATION   = 1.0 

MAX_DSP_UTILIZATION    = 1.0 

MAX_MUL_UTILIZATION    = 1.0 

MAX_PIN_UTILIZATION    = 0.9 

SYN_CONSTRAINT_FILE = default 

IMP_CONSTRAINT_FILE = default 

REQ_SYN_FREQ = 450 

REQ_IMP_FREQ = 400 

END FAMILY 

FPGA_FAMILY = VIRTEX-5_LX 

FPGA_DEVICES = best_match 

MAX_SLICE_UTILIZATION  = 0.95 

MAX_BRAM_UTILIZATION   = 1.0 

MAX_DSP_UTILIZATION    = 1.0 

MAX_MUL_UTILIZATION    = 1.0 

MAX_PIN_UTILIZATION    = 1.0 

SYN_CONSTRAINT_FILE = default 

IMP_CONSTRAINT_FILE = default 

REQ_SYN_FREQ = 50 

REQ_IMP_FREQ = 25 

END FAMILY 

END VENDOR 
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