
Abstract - Power and thermal reduction techniques are
presented for hardware level, operating system level and
application level. While the majority of control resides within
the hardware level, it is shown that allowing all three to operate
harmoniously and giving control to the level that has the best
understanding of the current process will yield the best results.
Topics such as DVFS, Clock gating, power metrics and custom
component design are covered.

I. Introduction

 The thermal characteristics of microprocessors does
not sound like a very riveting topic, but the ability to shape
these characteristics and lessen the power/heat output is one
of the most important challenges that is facing the computer
industry today. Not only does this affect the chip
manufacturer, but it also affects the OS Supplier and the
computer builder. Within these three segments lie three
different ways that the thermal output of a processor can be
handled: by design, by control and by force.

 The recent trend involved the latter, i.e. making the
processor operate at a lower temperature using liquid cooling,
Freon cooling, or an immense amount of fans. The purpose of
this paper is to highlight the ways chips are being designed
and manipulated as to decrease the need for these external
cooling systems. The total power of the processor
encompasses two parts; the dynamic power (power
consumption because of workload) and static power (the
innate power consumption that occurs with absolutely no
workload). Both types of power affect the overall power, with
the static power becoming more and more important as
transistors decrease in size.

 The power consumption of the computer has started
to become more important for two reason. Firstly, because the
costs associated with controlling the power have increased
significantly [6, 10]. The first sector to feel the brunt force of
this is the enterprise industry. Huge server rooms require
expensive cooling units and as processors become smaller,
and the static power significantly increases, the end customer
will also inevitably face added fees to help control the power
and thermal output of the processor. The second reason is that
of static power. As shown in the power consumption and
thermal loss section of this paper, the dynamic power will
continue to play a role in the total power of a system, but as

sizes decrease past .1 micron, static power drastically
increases [18] and thus plays a more important role.

 From the different techniques that chip architects
can use, to upcoming and proposed methods for software
applications to control and assist in dynamic power
management, there is a multitude of different techniques, of
varying degrees of effectiveness, that can be and will be
utilized to lessen the power/heat output of a computer system.

Low Power Characteristics of
Single-Core and Multi-core Systems

Mark Ewan Adam
ECE Department

George Mason University
Fairfax, VA

madam2@gmu.edu

Figure 1

 Mooreʼs Power Law [5]

II. Processor Level

A. Determining Power Characteristics

 Moore’s law is the statistic that has driven
microprocessors to the level they are at today. Moore stated
that the number of transistors in a processor will double every
1.8 years [5]. Another lesser known statistic of Moore is his
Power Law. Figure 1 shows the graph of this law. At first
examination, this graph appears well placed and within the
bounds of processing technology. The trend merely shows
that as time has progressed and transistor counts increased,
the operations per watt have also increased. This is very
intuitive, but points out an important characteristic of
processors. Operations per Watt or more specifically, millions
of instructions per Watt (MIPS/Watt) is a very common
metric used to convey the power characteristics of both single
core processors and multi core processors. This metric,

however, does not emphasize performance as strongly as the
energy delay product (Power x Delay x Delay) or EDP, nor
does it provide the ability to weigh a particular power/delay
component. The EDP metric can also be used alongside the
power delay product (Power x Delay) or PDP, and the power

energy product (Power x Power x Delay) or PEP, to more
efficiently architect a processor [19]. The ability of the
processor designer to utilize these metrics effectively plays a
large part in the inevitable power consumption of the
processor as these all place either a priority on power or
speed.

 An interesting point is made in [19], which states
that when designing for lower dynamic power, this can cause
the static power to increase. This tradeoff is something that
will affect designers more and more as the static power
becomes more weighted in the overall power equation. [19]
also compares EDP, PDP and PEP. Results show stark
differences between these metrics. The EDP puts a high
priority on delay, so the dynamic power and static power are
very high. The PEP puts a priority on power, so the dynamic
and static power are low, where as the delay is very high. The
EP on the other hand is a compromise between the two as
shown in in figure 2.

 Beyond these metrics, there are two major ways that
single core and multi core processors are designed from a
power standpoint; power-limited design and hotspot limited
design. Power limited design deals with the average power of
the system. The system referred to in this context is the
processor and all of its architectural components (cache,
ALU, registers...). Hotspot limited deals with only the areas
of the processor that consume the most power and thus have
higher local temperatures. There is currently a division within
the processing community as to which one of these is more
applicable[12]. The power limited side believes that by
decreasing the overall power consumption, you in return
decrease the hotspots. On the other hand, the hotspot side
believes that this average power reduction may not reduce the
hotspots and in fact decreasing the average power does not
linearly decrease the hotspots [12].

 Figure 2 exemplifies these two different design
techniques very well. The first row shows two different
processors, the first being power-limited and the second
being hotspot-limited. The second row, which is the row of

Figure 2
 Comparison of different power metrics [19]

Figure 3
 Comparison of Power-limited design and Hotspot-limited design [11]

most importance in our current topic, shows the same
processor (original, non-power aware design on the left) with
the power-limiting and hotspot limiting design applied. While
both designs save 10 W in total power, it is truly the power
and temperature maps that bring to light their differences.
The power-limited design saves 10 watts by reducing the
power in the low power density region of the chip from 12.3
W/cm2 down to 7.4 W/cm2, but the high power region,
remains untouched. The hotspot-limited design on the other
hand reduces power in the high power density region from
185 W/cm2 down to 111 W.cm2 while leaving the low power
region the same. While this difference accounts for the same
total power loss, the temperature maps show a completely
different story. The power-limited design maintains the 96 K
above room temperature region in the bottom left of the die,
where as the hot-spot limited design has reduced this down to
61 K for a savings of 36%. This information, coupled with
the forth coming sections, will help highlight why this high
temperature region of the chip is of the utmost importance.

B. Power Consumption and Thermal Loss

 Power consumption has been generalized into two
different categories for single and multi-core processors:
dynamic power and static power. Dynamic power deals with
the power consumption of the processor and static power
deals with the innate power consumption of a processor
regardless of its workload. Dynamic power has long been the
most significant with processor architects but as transistors
get smaller, and thus chips do too, static power will
increasingly play a more crucial role.

 As dynamic power and static power comprise the
power consumption of a system, deriving a formula for this
system’s characteristics is not only helpful, but quite
essential. The equation below formulates this overall power
consumption. The terms to the right of the addition sign
constitute the dynamic power and the terms to the left
constitute the static power. The dynamic power terms in this
equation are as follows: A is the fraction of gates actively
switching, C is the total capacitive load of all gates, V is the
transistors supply voltage and f is the operating frequency.

 The dynamic power portion of this equation is
relatively straightforward and is equal to the total power of all
actively switching gates at speed f and supply voltage V. The
static power component on the other hand, needs further
clarification. The leakage current (Ileak) is comprised of the
summation of the sub-threshold power leakage (Isub) and of
the gate-oxide power leakage (Iox). The two equations below,
as well as the latter, are presented in [18] and are very useful
in conveying the static power consumption. The terms for the
static power equations are as follows: W is the gate width, Vϴ
is the thermal voltage (~25 mV at room temp), Vth is the
threshold voltage, Tox is the oxide thickness, V is the general
transistor supply voltage and K, n and α are experimentally
derived

 The ability to minimize the sub-threshold power
leakage as well as the gate-oxide power leakage will result in
a much more substantial decrease in the total system power.
Changing the value of the different components in these two
equations will of course change the power consumption and

Figure 4
 Thermal output of IBM Dual Power5 [11]

Table 1

 Custom ALU Power Savings [17]

performance of the overall system. We could increase Vth but
that substantially lowers performance of the system, and we
could turn off the supply voltage V, but that would result in a
loss of state. Another option would be to increase the gate
oxide thickness, Tox, but again that results in performance
degradation and reliability issues [18]. Given the later,
research is being done into high K dielectrics for the gate
oxide. The dielectric is the gate oxide material that is placed
in between the gate and the substrate in the transistor. By
increasing the dielectric of the gate oxide, you substantially
reduce the leakage current [18].

C. Processor Component Power

 There are particular components of a single core or
multi-core system that affect the temperature and power
consumption much more significantly than others. The figure
on the previous page, figure 4, shows the thermal landscape
of a PowerPC970MP dual core processor running under a
high power workload. From this picture, and from an
understanding of the processor micro-architecture, we know
that the ALU, Registers and Floating Point Unit represent
very active parts of the processor. Minimizing the power
consumption and heat dissipation from these parts will lessen
the overall systems thermal and power characteristics as
pointed out in the section above. While the floating point unit
is shown in this figure, it will be covered in the next section.

 1) Arithmetic Logic Unit

 Completely redesigning any part of a system is more
often than not frowned upon as it is monetarily and
temporally consuming. A novel idea presented in [17]
suggests that complete re-design is not needed, just an
understanding of what aspects of the ALU are used more
frequently. By determining the most frequently used
operations of a common ALU (ADD, AND, OR, XOR),
iterating through the different combinations of the placement
of these components in the chain and placing the most
commonly used operations closest to the output (OR), the
ALU saved on average 49.6%. Table 1 on the previous page
shows the results for different types of operations coded in
VHDL and implemented in the design tool ASIPMesiter.
 As demonstrated, this simple technique saved power
across multiple different operations such as sorting (qsort),
shortest path algorithm (dijkstra) and hashing (CRC).
Implementation of this in new processors would be very
straightforward as it simple in both logic and hardware
requirements.

 2) Registers

 The registers on the processor are the one of the
most active memory elements on the processor. During an
operation it is very possible, and actually highly likely that
the registers are not being full utilized [15]. A particular
method for dealing with this would be to essentially trick the
operation into believing that the registers requested exist,
when in reality they do not. According to research and results

from [15], by reducing the number of registers from 2n to n
and changing the memory address decoder from an n to 2n to
an n to n, you save on average 30.625% power.

 This power savings is possible because of two
crucial principles, one of which is challenging to implement
in the real world. Firstly, the ability to reduce the number of
registers merely comes down to logic. The simplest way to
think of this is the modulo operator exp. if address 15 is
requested, then address 15 Mod n is given. This cuts the
number of registers required dramatically. The second
principle, is the foresight of knowing what operations are to
be used and how many registers are indeed needed. The
research and conclusions from [15] had a certain degree of
omniscience, in their knowledge of how many registers were
needed and being able to physically remove them from their
VHDL code. Two different types of updates were made, one
for only the registers and a second time for the registers and
decoder. By updating the decoder, the power savings was
increased even more as it did not have to reference extra
registers. In practice, this ability is of course not feasible. The
dynamic changing of registers and the address decoder would
require extra hardware and physically removing an item is
not possible.

 On the other hand, the ability to turn off registers is
currently practiced [13] and could be coupled with this new
research to produce a more power and thermal efficient
design. By determining how many registers are to be used,
and utilizing more advanced decode logic, the registers could
be turned off and the decoder could consume less power. The
trade-off would indeed have to be the overhead associated
with determining which registers are turned off and
dynamically changing the decoder logic.

D. Controlling the Power

 There are many different techniques that have been
used to lessen the power consumption and thus the thermal
characteristics of a processor. A majority of processors use
thresholds (triggers) based upon digital thermometers placed
around the processor and the die. Once a threshold is passed,
these methods are typically implemented, up to point when
the processor is completely shutdown to avoid thermal
runaway and potential harm. On the opposite side of this, are
techniques used to reduce the power when the processor is
idle. Both concepts actually overlap on their techniques to
reduce the power and thermal output of the system.

 1) Clock gating

 Clock gating allows the ability to turn off different
parts of the processor when they are not being used and is
normally done by ANDing the clock with the gating control
logic. For example, a set of registers could have their clock
source “turned off” so that the gates do not switch, there is no
charging or dis-charging and thus no wasted power. The
AND gate will of course dissipate some power, but this is
much less than the register or block of registers [20].
 Relatively recent research into the measuring of the

operating temperature of a processor under different
workloads has determined that clock gating can save 14% in
the hotspot temperature while simultaneously saving 18% in
total power for an IBM Dual Power5 processor[11]. Clock
gating has also been applied to the cache of the processor.
This has been done to blocks of cache and with single
registers as well, but it is the later of these two techniques
that is used more frequently.

 Clock gating is also used in the pipeline of the
processor. The pipeline of the processor varies from
manufacturer to manufacturer and even within the different
chips that these companies produce. The same idea is present
behind the pipeline in a superscalar machine. The main stages
of a pipeline include Fetch, Decode, Execute, Memory and
Writeback. Between each stage are latches to hold data from
the previous stage until the next stage is ready.

 The pipeline represents one of the most active and
power consuming regions of the processor [20]. A current
method to control the power consumption of this area is the
pipeline balancing technique (PLB). There are two different
versions of PLB, original and extended, and as extended has a
higher power savings, we will mainly be dealing with it and it
should be assumed that we are referring to PLB extended
when using the abbreviation PLB. PLB utilizes predictive
clock gating to decide whether a programs instruction level
parallelism (ILP) will be less or more for a specific window
of 256 cycles. ILP can be simply thought of as a measure of
how many operations can be performed simultaneously for a
given program. If PLB predicts that the next windows ILP is
less than the current, then certain areas of the processor can

be turned off. What is turned off is dependent upon the
program but the areas of the processor that are gated in PLB
are the Issue queue, pipeline-latches, d-cache wordline
decoders, result bus and execution units. The clock gating of
these components saves on average 11.0% for integer
operations and 8.7% for floating point operations but imposes
delay as it is predictive in nature, and a wrong prediction will
result in a rollback of the gates that are turned off.

 [20] proposes a more efficient solution using a
deterministic approach. If you are able to determine ahead of

time what the different stages of the pipeline are doing, you
can then deterministically clock gate those components.

 Deterministic Clock Gating (DCG) is the name
given to this method. DCG utilizes the knowledge of the
fetch and decode stages to effectively clock gate parts of the
later stages such as the pipe-line latches, d-cache wordline
decoders, results bus and execution units. This method is able
to turn units off for 1-2 cycles at a time and able to determine
which components to clock gate a few cycles ahead of time.
Results from [20] show that DCG has much more power
savings than PLB. DCG saves on average 20.9% for integer
operations and 18.8% for floating point operations. While this
is an almost doubling of the power savings over PLB, it is
within the Floating Point Unit that the savings are truly seen.
Figure 4 showed the most act ive uni ts in the
PowerPC970MP processor and one of the most power
consuming units was the Floating Point unit, which is in line
with [11, 13]. The floating point savings from DCG is 77.2%
while the PLB savings is only 23% for floating point
benchmarks [20]. The savings from DCG over PLB
primarily come from the DCG ability to clock gate at 1-2
cycle duration where as the PLB approach uses a 256 cycle
duration.
 This triple the amount of power savings of DCG,
coupled with its negligible delay provides a very good
alternative to PLB and one that shows substantial savings for
both the power and the thermal output of the system.

 2) Voltage and Frequency Scaling

 This is a very commonly used control, but results in
a performance loss when it is implemented as voltage and
frequency have a direct relationship. A decrease in the voltage
(whether supply or threshold) will result in an at least similar,
if not more drastic decrease in the operating frequency.

 Voltage and Frequency scaling will lessen the
frequency and voltage of a processor once a certain power/
thermal threshold has been reached. This requires an amount
of delay as exemplified in Table 2 for a 700 MHz processor
that supports voltage and frequency scaling. There are only
certain levels that the voltage and frequency can be scaled to
i.e. scaling is more of a step-function than linear or
exponential.

 Conclusions and research from [1] have taken a
different approach to DVFS (dynamic voltage and frequency

Figure 5
 PIpeline Clock Gating Power Results [16]

Table 2

 Cycle loss for changes in DVFS [14]

scaling). Instead of utilizing thresholds as triggers for DVFS,
the clock frequency is instead started out at a much lower
speed and, as demonstrated in the above sections, initially
produces much less heat and power output. The users were
then allowed to up the speed of the CPU as they saw fit
which is how this technique has been deemed UDFS (User
Driven Frequency Scaling). This incorporation of the user as
a performance metric is relatively new, provides insight into
what is actually necessary and poses a compelling questions;
is just enough good enough? Results from these tests showed
that on average, 22.1% of total system power was saved
compared to the typical Windows XP DVFS. Even though
this incorporates the OS and is not truly a hardware solution,
it shows the necessity for all levels (hardware, OS,
application) to work together and not rely solely on one
entity.

 3) Processor Sleep Cycles and ACPI

 Advanced Configuration and Power Interface
(ACPI) is by now a standard in systems and allows the
Operating System to control the processor during its idle
stages. ACPI is the technique used when you decide to put
your computer in hibernate mode or suspend mode. The
different modes of ACPI affect all the different components
(Hard drives, memory, processor, input devices, power
supply..). This is being covered here because of the different
processor components that are affected during the different C
stages of ACPI.

 The first C stage is C0. In this state the processor is
operating at a specific frequency with a workload. The next
state is C1. In this state the processor is idle and some
processors, such as the Intel Core Duo Processor, gates the
core clocks for reduced power savings as described in the
clock gating section of this paper. The C1 state can change to
the C0 state almost instantaneously as the cache and chipset
are still active. In the next state, C2, the processor needs
approval from the chipset to access the bus, so processor,
chipset and front-side bus can enter a lower power state. The
next state is the C3 state in which the processor disables all
internal phase locked-loops and does not need to refresh its
internal cache, so the L1 cache is typically flushed as it is
assumed that almost all of the data in the L1 cache is
contained in the L2 cache. A new state found in the Intel Core
Duo processor is the C4 state [9]. The C4 state primarily
deals with the L2 cache. The L2 cache is the largest cache on
the processor and therefore contains a large amount of data.
Completely flushing the L2 cache would result in a
substantial performance loss as this data would need to be
fetched from higher memory such as the main memory or,
worse yet, the hard drive. This C4 technique checks for
interrupts and then flushes out the blocks of L2 cache that are
not affected. This is repeated until the processor needs to
moved to a higher state or until all of the applicable blocks
have been flushed.

 The ACPI technique uses a finite state machine
(FSM) to change states back and forth as described above.
When the processor must jump up a stage i.e. move from a

lower state to a higher one (C4 to C3), the preceding actions
are undone. This method also applies to multi-core
processors, but adds an extra layer of complexity. In a multi-
core system, there must be a check in the FSM as to whether
or not the L2 cache is being utilized by the other cores as a
majority of current processors have a shared L2 cache.
Beyond this, the ACPI method is standard for single core and
multi-core systems and allows a substantial amount of power
savings.

 All of these sections have described different ways
that the hardware can within itself optimize the components
as well as providing the higher levels more options for
controlling the power. Together this allows for the further
lowering of the power output and as a result, the thermal
output of the processor.

III. Operating System Level

 The amount of control and potential effect that the
Operating System has on the power and thermal
characteristics of a system is substantial. ACPI is of course
utilized in most major operating systems, and was covered in
the previous section. One of the main tasks that the OS
handles is that of task scheduling. From the preceding section

on hardware topics, we showed that dynamic power is
currently the major consumer of power, but with static power
gaining ground as time progresses. As the last section dealt
with both of these topics (static and dynamic) as they are both
hardware related, this section deals primarily with dynamic
power but addresses static power as well.

A. Power and Task Scheduling

 There has been a lot of research on the power
consumption and proposed power savings for embedded
systems. Within this lies the realm of real-time embedded

Figure 6

 LAMP Power Reduction Results [14]

systems. At first glance, the concepts and scheduling used in
real time embedded systems seems not to apply to our current
end user operating system (Windows XP, Mac OS X...) as
they do not have strict deadlines, but this idea combined with
ideas from the hardware section could yield some truly
applicable and power/thermal efficient results.
 Research and conclusions from [4, 16] provides us
with a starting point on applying real time task scheduling to
that of non-real time OS’s. In a real time system, a task has a
certain deadline that it must be completed by. It does not
matter if the task finishes in unison with the deadline or
finishes far before it. [4, 16] demonstrated, using similar
concepts, that a concept similar to DVFS could be applied
before the task starts based upon its deadline. The algorithm,
Leakage Aware Multiple Processor Scheduling (LAMPS),
developed and used in [16] determines the number of
processors required to finish the algorithm. This differs from
the Schedule and Stretch routine commonly used in realtime
operating systems, in that Lamps defines at what speed the
processors should run, how many should be used and uses the
earliest deadline first technique. Both finish the task in unison
with the deadline. Based upon these results, the frequency of
the processors is reduced to the amount calculated and the
task is scheduled. This calculation requires a small amount of
overhead, but as shown in the figure below, results in a
substantial savings over typical stretch and schedule routines.

 As figure 6, on the previous page demonstrates, the
savings for particular operations are very significant The
abscissa above is of unit deadline/CPL or deadline/Critical
Path Length and is how many times larger the deadline is
than the critical path. The looser the deadline, the more the
power savings.

 By extrapolating the above results to non real time
operating systems, we can see a potential for power savings.
All that needs to be done is to determine the deadline for a
given operation and apply the LAMPS algorithm to it. While
simple sounding, this deadline of course is dependent upon
multiple factors such as the hardware performance, OS
interrupts and the user themselves which makes determining
a deadline quite problematic. A solution to this can be taken
from the application section of this paper, mainly making the
deadline 50 ms (20 Hz) which is on the threshold of human
vision [16].

IV. Application Level

 The control of power consumption from an
application level is a very new concept, but presents a lot of
promise. In the recent paper [14], many of the ideas
expressed in the Operating System section of this paper are
relinquished to the Application and User level.

 Chameleon [16] is the name of the application level
power management scheme given to the following
techniques. Firstly, the estimated demand of the processor is
determined using previous CPU statistics and knowledge of
the current operations demands. Secondly, the processor
availability due to concurrent applications is determined, and

thirdly the processor speed setting, similarly to the schedule
and stretch technique descried in the preceding section, is
determined. Chameleon also uses the accepted concept that to
a user, instantaneous response is anything that occurs under
50 ms [16]. Utilizing this, Chameleon will use the calculated
speed for a task, and at defined interval’s check that it will
meet this 50 ms deadline. If the task will not, then the speed
is increased to the next setting. As described in the hardware
section, processors have preset levels for DVFS and a
majority of systems have less than 6 different levels. This
increase occurs until the task is either finished on time, or the
deadline has passed in which case the CPU is increased to
full speed.

 The results from Chameleon are very appealing.
Chameleon was able to save between 32% and 50%
compared to no DVFS scheme and an average of 20%
savings over the Longrun power savings as demonstrated in
table 3. (Longrun is a hardware technique developed for
Transmeta Crusoe processors that utilizes an implementation
of DVFS and FULL is no DVFS scheme at all.)

 While Chameleon is just one application domain
power management system, it allows the ability of
applications to rely upon it, rather than the OS to determine
the proper DVFS settings. Chameleon utilizes information
provided from the application as well keeping a historical
summary of what settings were used for each application.
Overall, Chameleon has shown that it can provide substantial
savings to the power and thermal output of the processor as
well as the system as a whole.

V. Conclusion

 The sections in this paper represent different parts of
the overall problem that is power consumption and thermal
dissipation. At the beginning we analyzed different metrics
used by chip designers to determine the power consumption
and potential speed of a processor while highlighting the need
to understand and utilize a metric that combines both
dynamic power, static power and speed into one concise, fair
metric.
 The second section of the paper overviewed the
different techniques currently used for lowering the power
consumption of the processor. New techniques were
presented that offer substantial savings over the current

Table 3

 Chameleon Application Level Power Savings. [14]

Mix M1 = encoded DVD playback and web browser
Mix M2 = encoded DVD playback and word processor
Mix M3 = encoded DVD playback and batch compilations (make and pnice)
Mix M4 = batch compilations and word processor

techniques. The optimizing of certain components, such as
the L1 cache and the ALU were described and shown that
their results are both substantial and easy to implement.

 The third section focused on the Operating System
and the main function of task scheduling. While the examples
used were for real-time systems, it was shown that these are
indeed applicable to non-real time operating systems and
could indeed present a beneficial amount of power savings.

 Finally, the possibilities for the Application to lower
power consumption was investigated. While this section
primarily discussed the Chameleon Power Management, it
also highlighted the vast amount of savings that is possible
from a better understanding of what the application needs in
terms of speed and performance.

 Combining all of these sections together allows a
concise example of where the industry as a whole should be
headed. By optimizing different processor components and
deterministically deciding what units of the processor should
be clock-gated, a DVFS enabled processor can provide a very
substantial base for the OS and Application levels to help
control the power consumption. As the application level of
the system inevitably determines what operations are going to
be run and hence the system load in a power and speed sense,
it would seem only fitting that an application level power
management solution would be the most efficient and energy
aware.

 Currently, the primary goal of reducing the power
and thermal output of a system is to save money. In the near
future, the increasing importance of the static power in the
power equation will result in a much more basic need to
control the output of the system so it does not spike out of
control. It will take all levels of the computer i.e. hardware,
operating system and application, to work together, and
further technological improvements, such as high k di-
electrics, to help solve the problem of decreasing the power
and thermal output.

VI. References

 The following papers were either directly referenced
in the paper or were used for general background knowledge
on a specific topic.

[1] Arindam Mallik, Bin Lin, Gokhan Memik, Peter Dinda, Robert P.
 Dick, "User-Driven Frequency Scaling," IEEE Computer
 Architecture Letters, vol. 5, no. 2, pp. , July-December, 2006.
[2] Aviad Cohen, Finkelstein Finkelstein, Avi Mendelson, Ronny
 Ronen, Dmitry Rudoy, "On Estimating Optimal Performance of
 CPU Dynamic Thermal Management," IEEE Computer
 Architecture Letters, vol. 2, no. 1, pp. , January-December, 2003.
[3] Sazeides, Y.; Kumar, R.; Tullsen, D.M.; Constantinou, T., "The
 Danger of Interval-Based Power Efficiency Metrics: When Worst
 Is Best," Computer Architecture Letters , vol.4, no.1, pp.1-1,
 January-December 2005
[4] Jejurikar, R.; Gupta, R., "Energy-aware task scheduling with task
 synchroniza t ion for embedded rea l - t ime sys tems,"
 Computer- Aided Design of Integrated Circuits and Systems,

 IEEE Transactions on , vol.25, no.6, pp.1024-1037, June 2006
[5] Jonathan G. Koomey, Stephen Beard, Marla Sanchez, Henry
 Wong, “Assessing trends in the electrical efficiency of
 computation over time”, IEEE Annals of the History of
 Computing, Submitted August 5, 2009
[6] Jonathan G. Koomey, Christina Belady, Michael Patterson,
 Anthony Santos, Klaus-Dieter Lange, “Assessing trends over time
 in performance, costs and energy use for servers.” Release on web
 August 17, 2009.
[7] Eren Kursun, Chen-Yong Cher, "Temperature Variation
 Characterization and Thermal Management of Multicore
 Architectures," IEEE Micro, vol. 29, no. 1, pp. 116-126,
 January/February, 2009.
[8] David Brooks, Robert P. Dick, Russ Joseph, Li Shang, "Power,
 Thermal, and Reliability Modeling in Nanometer-Scale
 Microprocessors," IEEE Micro, vol. 27, no. 3, pp. 49-62,
 May/June, 2007.
[9] Alon Naveh, Efi Rotem, Avi Mendelson, Simcha Gochman,
 Rajshree Cabuksmar, Karthik Krishan, Arun Kumar, “Power and
 Thermal Management in the Intel Core Duo Processor”, May 15,
 2006, retrieved October 2009
[10] Intel, “Intel is leading the way in in designing energy-efficine
 platforms”, retrieved October 2009,
[11] Hamann, H. F.; Weger, A.; Lacey, J. A.; Hu, Z.; Bose, P.; Cohen,
 E.; Wakil, J., "Hotspot-Limited Microprocessors: Direct
 Temperature and Power Distribution Measurements," Solid-State
 Circuits, IEEE Journal of , vol.42, no.1, pp.56-65, Jan. 2007
[12] Kevin Skadron, Pradip Bose, Kanad Ghose, Resit Sendag, Joshua
 J. Yi, Derek Chiou, "Low-Power Design and Temperature
 Management," IEEE Micro, vol. 27, no. 6, pp. 46-57,
 November/ December, 2007.
[13] Brooks, D.; Martonosi, M., "Dynamic thermal management for
 high-performance microprocessors," High-Performance
 Computer Architecture, 2001. HPCA. The Seventh International
 Symposium on , vol., no., pp.171-182, 2001
[14] Xiaotao Liu; Shenoy, P.; Corner, M.D., "Chameleon:
 Application-Level Power Management," Mobile Computing,
 IEEE Transactions on , vol.7, no.8, pp.995-1010, Aug. 2008
[15] Yu Zhou, Hui Guo, Ji Gu, "Register File customization for low
 power embedded processors," Computer Science and Information
 Technology, International Conference on, pp. 92-96, 2009 2nd
 IEEE International Conference on Computer Science and
 Information Technology, 2009.

[16] P. de Langen, B. Juurlink, "Leakage-aware multiprocessor
 scheduling for low power," Parallel and Distributed Processing
 Symposium, International, pp. 60, Proceedings 20th IEEE
 International Parallel & Distributed Processing Symposium,
 2006.
[17] Yu Zhou, Hui Guo, "Application Specific Low Power ALU
 Design," Embedded and Ubiquitous Computing, IEEE/IFIP
 International Conference on, vol. 1, pp. 214-220, 2008 IEEE/IFIP
 International Conference on Embedded and Ubiquitous
 Computing, 2008.
[18] Nam Sung Kim, Todd Austin, David Blaauw, Trevor Mudge,
 Kriszti Flautner, Jie S. Hu, Mary Jane Irwin, Mahmut Kandemir,
 Vijaykrishnan Narayanan, "Leakage Current: Moore's Law Meets
 Static Power," Computer, vol. 36, no. 12, pp. 68-75, December,
 2003.
[19] Sengupta, D.; Saleh, R., "Power-delay metrics revisited for 90 nm
 CMOS technology," Quality of Electronic Design, 2005. ISQED
 2005. Sixth International Symposium on , vol., no., pp. 291-296,
 21-23 March 2005
[20] Hai Li; Bhunia, S.; Chen, Y.; Vijaykumar, T.N.; Roy, K.,
 "Deterministic clock gating for microprocessor power reduction,"
 High-Performance Computer Architecture, 2003. HPCA-9 2003.
 Proceedings. The Ninth International Symposium on , vol., no.,
 pp. 113-122, 8-12 Feb. 2003

