
Abstract  - Power and thermal reduction techniques are 
presented for hardware level, operating system level  and 
application level. While the majority of control resides within 
the hardware level, it is shown that allowing all three to operate 
harmoniously and giving control to the level that has the best 
understanding of  the current process will yield the best results. 
Topics such as DVFS, Clock gating, power metrics and custom 
component design are covered. 

I. Introduction
 
 The thermal characteristics of microprocessors does 
not sound like a very riveting topic, but the ability to shape 
these characteristics and lessen the power/heat output is one 
of the most important challenges that is facing the computer 
industry today.  Not only does this affect the chip 
manufacturer, but it also affects the OS Supplier and the 
computer builder. Within these three segments lie three 
different ways that the thermal output of a processor can be 
handled: by design, by control and by force.  

 The recent trend involved the latter, i.e. making the 
processor operate at a lower temperature using liquid cooling, 
Freon cooling, or an immense amount of fans. The purpose of 
this paper is to highlight the ways chips are being designed 
and manipulated as to decrease the need for these external 
cooling systems. The total power of the processor 
encompasses two parts; the dynamic power (power 
consumption because of workload) and static power (the 
innate power consumption that occurs with absolutely no 
workload). Both types of power affect the overall power, with 
the static power becoming more and more important as 
transistors decrease in size. 

 The power consumption of the computer has started 
to become more important for two reason. Firstly, because the 
costs associated with controlling the power have increased 
significantly [6, 10]. The first sector to feel the brunt force of 
this is the enterprise industry. Huge server rooms require 
expensive cooling units and as processors become smaller, 
and the static power significantly increases, the end customer 
will also inevitably face added fees to help control the power 
and thermal output of the processor. The second reason is that 
of static power. As shown in the power consumption and 
thermal loss section of this paper, the dynamic power will 
continue to play a role in the total power of a system, but as 

sizes decrease past .1 micron, static power drastically 
increases [18] and thus plays a more important role.

 From the different techniques that chip architects 
can use, to upcoming and proposed methods for software 
applications to control and assist in dynamic power 
management, there is a multitude of different techniques, of 
varying degrees of effectiveness, that can be and will be 
utilized to lessen the power/heat output of a computer system.
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Figure 1
 
 Mooreʼs Power Law [5]



II. Processor Level

A. Determining Power Characteristics
 
 Moore’s law is the statistic that has driven 
microprocessors to the level they are at today.  Moore stated 
that the number of transistors in a processor will double every 
1.8 years [5]. Another lesser known statistic of Moore is his 
Power Law. Figure 1 shows the graph of this law. At first 
examination, this graph appears well placed and within the 
bounds of processing technology. The trend merely shows 
that as time has progressed and transistor counts increased, 
the operations per watt have also increased. This is very 
intuitive, but points out an important characteristic of 
processors. Operations per Watt or more specifically, millions 
of instructions per Watt (MIPS/Watt)  is a very common 
metric used to convey the power characteristics of both single 
core processors and multi core processors. This metric, 

however, does not emphasize performance as strongly as the 
energy delay product (Power x Delay x Delay) or EDP, nor 
does it provide the ability to weigh a particular power/delay 
component. The EDP metric can also be used alongside the 
power delay product (Power x Delay) or PDP, and the power 

energy product (Power x Power x Delay) or PEP, to more 
efficiently architect a processor [19].  The ability of the 
processor designer to utilize these metrics effectively plays a 
large part in the inevitable power consumption of the 
processor as these all place either a priority on power or 
speed. 

  An interesting point is made in [19], which states 
that when designing for lower dynamic power,  this can cause 
the static power to increase. This tradeoff is something that 
will affect designers more and more as the static power 
becomes more weighted in the overall power equation. [19] 
also compares EDP, PDP and PEP. Results show stark 
differences between these metrics.  The EDP puts a high 
priority on delay, so the dynamic power and static power are 
very high. The PEP puts a priority on power, so the dynamic 
and static power are low, where as the delay is very high. The 
EP on the other hand is a compromise between the two as 
shown in in figure 2.

 Beyond these metrics, there are two major ways that 
single core and multi core processors are designed from a 
power standpoint; power-limited design and hotspot limited 
design. Power limited design deals with the average power of 
the system. The system referred to in this context is the 
processor and all of its architectural components (cache, 
ALU, registers...). Hotspot limited deals with only the areas 
of the processor that consume the most power and thus have 
higher local temperatures. There is currently a division within 
the processing community as to which one of these is more 
applicable[12].   The power limited side believes that by 
decreasing the overall power consumption, you in return 
decrease the hotspots. On the other hand, the hotspot side 
believes that this average power reduction may not reduce the 
hotspots and in fact decreasing the average power does not 
linearly decrease the hotspots [12]. 

 Figure 2 exemplifies these two different design 
techniques very well. The first row shows two different 
processors, the first being power-limited and the second 
being hotspot-limited. The second row, which is the row of 

Figure 2
          Comparison of different power metrics [19]

Figure 3
          Comparison of Power-limited design and Hotspot-limited design [11]



most importance in our current topic, shows the same 
processor (original,  non-power aware design on the left) with 
the power-limiting and hotspot limiting design applied. While 
both designs save 10 W in total power, it is truly the power 
and temperature maps that bring to light their differences.  
The power-limited design saves 10 watts by reducing the 
power in the low power density region of the chip from 12.3 
W/cm2 down to 7.4 W/cm2, but the high power region, 
remains untouched. The hotspot-limited design on the other 
hand reduces power in the high power density region from 
185 W/cm2 down to 111 W.cm2 while leaving the low power 
region the same. While this difference accounts for the same 
total power loss, the temperature maps show a completely 
different story. The power-limited design maintains the 96 K 
above room temperature region in the bottom left of the die, 
where as the hot-spot limited design has reduced this down to 
61 K for a savings of 36%. This information,  coupled with 
the forth coming sections, will help highlight why this high 
temperature region of the chip is of the utmost importance.

B. Power Consumption and Thermal Loss

 Power consumption has been generalized into two 
different categories for single and multi-core processors: 
dynamic power and static power.  Dynamic power deals with 
the power consumption of the processor and static power 
deals with the innate power consumption of a processor 
regardless of its workload. Dynamic power has long been the 
most significant with processor architects but as transistors 
get smaller,  and thus chips do too, static power will 
increasingly play a more crucial role.

 As dynamic power and static power comprise the 
power consumption of a system, deriving a formula for this 
system’s characteristics is not only helpful, but quite 
essential. The equation below formulates this overall power 
consumption. The terms to the right of the addition sign 
constitute the dynamic power and the terms to the left 
constitute the static power.  The dynamic power terms in this 
equation are as follows: A is the fraction of gates actively 
switching, C is the total capacitive load of all gates, V is the 
transistors supply voltage and f is the operating frequency.
 

 The dynamic power portion of this equation is 
relatively straightforward and is equal to the total power of all 
actively switching gates at speed f and supply voltage V. The 
static power component on the other hand, needs further 
clarification. The leakage current (Ileak) is comprised of the 
summation of the sub-threshold power leakage (Isub) and of 
the gate-oxide power leakage (Iox). The two equations below, 
as well as the latter, are presented in [18] and are very useful 
in conveying the static power consumption. The terms for the 
static power equations are as follows: W is the gate width, Vϴ 
is the thermal voltage (~25 mV at room temp), Vth is the 
threshold voltage, Tox is the oxide thickness, V is the general 
transistor supply voltage and K, n and α are experimentally 
derived

 The ability to minimize the sub-threshold power 
leakage as well as the gate-oxide power leakage will result in 
a much more substantial decrease in the total system power. 
Changing the value of the different components in these two 
equations will of course change the power consumption and 

Figure 4
          Thermal output of IBM Dual Power5 [11]
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              Custom ALU Power Savings [17]



performance of the overall system. We could increase Vth but 
that substantially lowers performance of the system, and we 
could turn off the supply voltage V, but that would result in a  
loss of state.  Another option would be to increase the gate 
oxide thickness, Tox, but again that results in performance 
degradation and reliability issues [18].  Given the later, 
research is being done into high K dielectrics for the gate 
oxide. The dielectric is the gate oxide material that is placed 
in between the gate and the substrate in the transistor.  By 
increasing the dielectric of the gate oxide, you substantially 
reduce the leakage current [18]. 

C. Processor Component Power

 There are particular components of a single core or 
multi-core system that affect the temperature and power 
consumption much more significantly than others. The figure 
on the previous page, figure 4,  shows the thermal landscape 
of a PowerPC970MP dual core processor running under a 
high power workload. From this picture, and from an 
understanding of the processor micro-architecture, we know 
that the ALU, Registers and Floating Point Unit represent 
very active parts of the processor.  Minimizing the power 
consumption and heat dissipation from these parts will lessen 
the overall systems thermal and power characteristics as 
pointed out in the section above.  While the floating point unit 
is shown in this figure, it will be covered in the next section.

   1) Arithmetic Logic Unit  

 Completely redesigning any part of a system is more 
often than not frowned upon as it is monetarily and 
temporally consuming. A novel idea presented in [17] 
suggests that complete re-design is not needed, just an 
understanding of what aspects of the ALU are used more 
frequently. By determining the most frequently used 
operations of a common ALU (ADD, AND, OR, XOR), 
iterating through the different combinations of the placement 
of these components in the chain and placing the most 
commonly used operations closest to the output (OR), the 
ALU saved on average 49.6%. Table 1 on the previous page 
shows the results for different types of operations coded in 
VHDL and implemented in the design tool ASIPMesiter. 
 As demonstrated, this simple technique saved  power 
across multiple different operations such as sorting (qsort),  
shortest path algorithm (dijkstra) and hashing (CRC). 
Implementation of this in new processors would be very 
straightforward as it simple in both logic and hardware 
requirements.

   2)  Registers

 The registers on the processor are the one of the 
most active memory elements on the processor. During an 
operation it is very possible, and actually highly likely that 
the registers are not being full utilized [15]. A particular 
method for dealing with this would be to essentially trick the 
operation into believing that the registers requested exist, 
when in reality they do not. According to research and results 

from [15], by reducing the number of registers from 2n to n 
and changing the memory address decoder from an n to 2n to 
an n to n, you save on average 30.625% power. 

 This power savings is possible because of two 
crucial principles, one of which is challenging to implement 
in the real world. Firstly, the ability to reduce the number of 
registers merely comes down to logic. The simplest way to 
think of this is the modulo operator exp. if address 15 is 
requested, then address 15 Mod n is given. This cuts the 
number of registers required dramatically. The second 
principle,  is the foresight of knowing what operations are to 
be used and how many registers are indeed needed. The 
research and conclusions from [15] had a certain degree of 
omniscience, in their knowledge of how many registers were 
needed and being able to physically remove them from their 
VHDL code. Two different types of updates were made, one 
for only the registers and a second time for the registers and 
decoder. By updating the decoder, the power savings was 
increased even more as it did not have to reference extra 
registers. In practice, this ability is of course not feasible. The  
dynamic changing of registers and the address decoder would 
require extra hardware and physically removing an item is 
not possible. 
 
 On the other hand, the ability to turn off registers is 
currently practiced [13] and could be coupled with this new 
research to produce a more power and thermal efficient 
design. By determining how many registers are to be used, 
and utilizing more advanced decode logic, the registers could 
be turned off and the decoder could consume less power.  The 
trade-off would indeed have to be the overhead associated 
with determining which registers are turned off and 
dynamically changing the decoder logic.

D. Controlling the Power

 There are many different techniques that have been 
used to lessen the power consumption and thus the thermal 
characteristics of a processor.  A majority of processors use 
thresholds (triggers) based upon digital thermometers placed 
around the processor and the die. Once a threshold is passed, 
these methods are typically implemented, up to point when 
the processor is completely shutdown to avoid thermal 
runaway and potential harm. On the opposite side of this,  are 
techniques used to reduce the power when the processor is 
idle. Both concepts actually overlap on their techniques to 
reduce the power and thermal output of the system.

    1) Clock gating

 Clock gating allows the ability to turn off different 
parts of the processor when they are not being used and is 
normally done by ANDing the clock with the gating control 
logic. For example,  a set of registers could have their clock 
source “turned off” so that the gates do not switch, there is no 
charging or dis-charging and thus no wasted power.  The 
AND gate will of course dissipate some power, but this is 
much less than the register or block of registers [20]. 
 Relatively recent research into the measuring of the 



operating temperature of a processor under different 
workloads has determined that clock gating can save 14% in 
the hotspot temperature while simultaneously saving 18% in 
total power for an IBM Dual Power5 processor[11].  Clock 
gating has also been applied to the cache of the processor. 
This has been done to blocks of cache and with single 
registers as well,  but it is the later of these two techniques 
that is used more frequently. 
 
 Clock gating is also used in the pipeline of the 
processor. The pipeline of the processor varies from 
manufacturer to manufacturer and even within the different 
chips that these companies produce. The same idea is present 
behind the pipeline in a superscalar machine. The main stages 
of a pipeline include Fetch, Decode, Execute, Memory and 
Writeback. Between each stage are latches to hold data from 
the previous stage until the next stage is ready. 

 The pipeline represents one of the most active and 
power consuming regions of the processor [20]. A current 
method to control the power consumption of this area is the 
pipeline balancing technique (PLB). There are two different 
versions of PLB, original and extended, and as extended has a 
higher power savings, we will mainly be dealing with it and it 
should be assumed that we are referring to PLB extended 
when using the abbreviation PLB.  PLB utilizes predictive 
clock gating to decide whether a programs instruction level 
parallelism (ILP) will be less or more for a specific window 
of 256 cycles. ILP  can be simply thought of as a measure of 
how many operations can be performed simultaneously for a 
given program. If PLB predicts that  the next windows ILP is 
less than the current, then certain areas of the processor can 

be turned off. What is turned off is dependent upon the 
program but the areas of the processor that are gated in PLB 
are the Issue queue, pipeline-latches, d-cache wordline 
decoders,  result bus and execution units. The clock gating of 
these components saves on average 11.0% for integer 
operations and 8.7% for floating point operations but imposes 
delay as it is predictive in nature, and a wrong prediction will 
result in a rollback of the gates that are turned off.
 
 [20] proposes a more efficient solution using a 
deterministic approach. If you are able to determine ahead of 

time what the different stages of the pipeline are doing, you 
can then deterministically clock gate those components. 
 
 Deterministic Clock Gating (DCG) is the name 
given to this method. DCG utilizes the knowledge of the 
fetch and decode stages to effectively clock gate parts of the 
later stages such as the pipe-line latches, d-cache wordline 
decoders,  results bus and execution units. This method is able 
to turn units off for 1-2 cycles at a time and able to determine 
which components to clock gate a few cycles ahead of time. 
Results from [20] show that DCG has much more power 
savings than PLB. DCG saves on average 20.9% for integer 
operations and 18.8% for floating point operations. While this  
is an almost doubling of the power savings over PLB, it is 
within the Floating Point Unit that the savings are truly seen. 
Figure 4 showed the most act ive uni ts in the 
PowerPC970MP processor and one of the most power 
consuming units was the Floating Point unit,  which is in line 
with [11, 13]. The floating point savings from DCG is 77.2% 
while the PLB savings is only 23% for floating point 
benchmarks [20].  The savings from DCG over PLB 
primarily come from the DCG ability to clock gate at 1-2 
cycle duration where as the PLB approach uses a 256 cycle 
duration. 
 This triple the amount of power savings of DCG, 
coupled with its negligible delay provides a very good 
alternative to PLB and one that shows substantial savings for 
both the power and the thermal output  of the system. 

    2) Voltage and Frequency Scaling

 This is a very commonly used control, but results in 
a performance loss when it is implemented as voltage and 
frequency have a direct relationship. A decrease in the voltage 
(whether supply or threshold) will result in an at least similar, 
if not more drastic decrease in the operating frequency.

 Voltage and Frequency scaling will lessen the 
frequency and voltage of a processor once a certain power/
thermal threshold has been reached. This requires an amount 
of delay as exemplified in Table 2 for a 700 MHz processor 
that supports voltage and frequency scaling. There are only 
certain levels that the voltage and frequency can be scaled to 
i.e. scaling is more of a step-function than linear or 
exponential. 

 Conclusions and research from [1] have taken a 
different approach to DVFS (dynamic voltage and frequency 

Figure 5
          PIpeline Clock Gating Power Results [16]

Table 2
 
 Cycle loss for changes in DVFS [14]



scaling). Instead of utilizing thresholds as triggers for DVFS, 
the clock frequency is instead started out at a much lower 
speed and, as demonstrated in the above sections, initially 
produces much less heat and power output.  The users were 
then allowed to up the speed of the CPU as they saw fit 
which is how this technique has been deemed UDFS (User 
Driven Frequency Scaling). This incorporation of the user as 
a performance metric is relatively new, provides insight into 
what is actually necessary and poses a compelling questions; 
is just enough good enough? Results from these tests showed 
that on average, 22.1% of total system power was saved 
compared to the typical Windows XP DVFS. Even though 
this incorporates the OS and is not truly a hardware solution, 
it shows the necessity for all levels (hardware, OS, 
application) to work together and not rely solely on one 
entity.

    3) Processor Sleep Cycles and ACPI

 Advanced Configuration and Power Interface 
(ACPI) is by now a standard in systems and allows the 
Operating System to control the processor during its idle 
stages. ACPI is   the technique used when you decide to put 
your computer in hibernate mode or suspend mode. The 
different modes of ACPI affect all the different components 
(Hard drives, memory, processor,  input devices, power 
supply..). This is being covered here because of the different 
processor components that are affected during the different C 
stages of ACPI. 

 The first C stage is C0. In this state the processor is 
operating at a specific frequency with a workload. The next 
state is C1. In this state the processor is idle and some 
processors, such as the Intel Core Duo Processor, gates the 
core clocks for reduced power savings as described in the 
clock gating section of this paper.  The C1 state can change to 
the C0 state almost instantaneously as the cache and chipset 
are still active. In the next state, C2, the processor needs 
approval from the chipset to access the bus, so processor, 
chipset and front-side bus can enter a lower power state. The 
next state is the C3 state in which the processor disables all 
internal phase locked-loops and does not need to refresh its 
internal cache, so the L1 cache is typically flushed as it is 
assumed that almost all of the data in the L1 cache is 
contained in the L2 cache. A new state found in the Intel Core 
Duo processor is the C4 state [9]. The C4 state primarily 
deals with the L2 cache. The L2 cache is the largest cache on 
the processor and therefore contains a large amount of data. 
Completely flushing the L2 cache would result in a 
substantial performance loss as this data would need to be 
fetched from higher memory such as the main memory or, 
worse yet,  the hard drive. This C4 technique checks for 
interrupts and then flushes out the blocks of L2 cache that are 
not affected. This is repeated until the processor needs to 
moved to a higher state or until all of the applicable blocks 
have been flushed.

 The ACPI technique uses a finite state machine 
(FSM) to change states back and forth as described above. 
When the processor must jump up a stage i.e.  move from a 

lower state to a higher one (C4 to C3), the preceding actions 
are undone. This method also applies to multi-core 
processors, but adds an extra layer of complexity. In a multi-
core system, there must be a check in the FSM as to whether 
or not the L2 cache is being utilized by the other cores as a 
majority of current processors have a shared L2 cache. 
Beyond this, the ACPI method is standard for single core and 
multi-core systems and allows a substantial amount of power 
savings. 

 All of these sections have described different ways 
that the hardware can within itself optimize the components  
as well as providing the higher levels more options for 
controlling the power. Together this allows for the further 
lowering of the power output and as a result,  the thermal 
output of the processor. 

III. Operating System Level

 The amount of control and potential effect that the 
Operating System has on the power and thermal 
characteristics of a system is substantial. ACPI is of course 
utilized in most major operating systems, and was covered in 
the previous section. One of the main tasks that the OS 
handles is that of task scheduling. From the preceding section 

on hardware topics, we showed that dynamic power is 
currently the major consumer of power, but with static power 
gaining ground as time progresses. As the last section dealt 
with both of these topics (static and dynamic) as they are both 
hardware related, this section deals primarily with dynamic 
power but addresses static power as well.

A. Power and Task Scheduling
 
 There has been a lot of research on the power 
consumption and proposed power savings for embedded 
systems. Within this lies the realm of real-time embedded 

Figure 6
 
 LAMP Power Reduction Results [14]



systems. At first glance, the concepts and scheduling used in 
real time embedded systems seems not to apply to our current 
end user operating system (Windows XP, Mac OS X...) as 
they do not have strict deadlines, but this idea combined with 
ideas from the hardware section could yield some truly 
applicable and power/thermal efficient results.
 Research and conclusions from [4,  16] provides us 
with a starting point on applying real time task scheduling to 
that of non-real time OS’s. In a real time system, a task has a 
certain deadline that it must be completed by. It does not 
matter if the task finishes in unison with the deadline or 
finishes far before it. [4, 16] demonstrated, using similar 
concepts, that a concept similar to DVFS could be applied 
before the task starts based upon its deadline. The algorithm, 
Leakage Aware Multiple Processor Scheduling (LAMPS), 
developed and used in [16] determines the number of 
processors required to finish the algorithm. This differs from 
the Schedule and Stretch routine commonly used in realtime 
operating systems,  in that Lamps defines at what speed the 
processors should run, how many should be used and uses the 
earliest deadline first technique. Both finish the task in unison 
with the deadline. Based upon these results, the frequency of 
the processors is reduced to the amount calculated and the 
task is scheduled. This calculation requires a small amount of 
overhead, but as shown in the figure below, results in a 
substantial savings over typical stretch and schedule routines.   

 As figure 6, on the previous page demonstrates, the 
savings for particular operations are very significant The 
abscissa above is of unit deadline/CPL or deadline/Critical 
Path Length and is how many times larger the deadline is 
than the critical path. The looser the deadline, the more the 
power savings. 

 By extrapolating the above results to non real time 
operating systems, we can see a potential for power savings. 
All that needs to be done is to determine the deadline for a 
given operation and apply the LAMPS algorithm to it.  While 
simple sounding, this deadline of course is dependent upon 
multiple factors such as the hardware performance, OS 
interrupts and the user themselves which makes determining 
a deadline quite problematic. A solution to this can be taken 
from the application section of this paper, mainly making the 
deadline 50 ms (20 Hz) which is on the threshold of human 
vision [16].

IV.  Application Level

 The control of power consumption from an 
application level is a very new concept, but presents a lot of 
promise. In the recent paper [14], many of the ideas 
expressed in the Operating System section of this paper are 
relinquished to the Application and User level. 

 Chameleon [16] is the name of the application level 
power management scheme given to the following 
techniques. Firstly, the estimated demand of the processor is 
determined using previous CPU statistics and knowledge of 
the current operations demands. Secondly, the processor 
availability due to concurrent applications is determined, and 

thirdly the processor speed setting, similarly to the schedule 
and stretch technique descried in the preceding section, is 
determined. Chameleon also uses the accepted concept that to 
a user, instantaneous response is anything that occurs under 
50 ms [16].  Utilizing this, Chameleon will use the calculated 
speed for a task,  and at defined interval’s check that it will 
meet this 50 ms deadline. If the task will not, then the speed 
is increased to the next setting. As described in the hardware 
section, processors have preset levels for DVFS and a 
majority of systems have less than 6 different levels. This 
increase occurs until the task is either finished on time, or the 
deadline has passed in which case the CPU is increased to 
full speed.

 The results from Chameleon are very appealing. 
Chameleon was able to save between 32% and 50% 
compared to no DVFS scheme and an average of 20% 
savings over the Longrun power savings as demonstrated in  
table 3. (Longrun is a hardware technique developed for 
Transmeta Crusoe processors that utilizes an implementation 
of DVFS and FULL is no DVFS scheme at all.)

 While Chameleon is just one application domain 
power management system, it allows the ability of 
applications to rely upon it, rather than the OS to determine 
the proper DVFS settings. Chameleon utilizes information 
provided from the application as well keeping a historical 
summary of what settings were used for each application. 
Overall, Chameleon has shown that it can provide substantial 
savings to the power and thermal output of the processor as 
well as the system as a whole. 

V. Conclusion

 The sections in this paper represent different parts of 
the overall problem that is power consumption and thermal 
dissipation. At the beginning we analyzed different metrics 
used by chip designers to determine the power consumption 
and potential speed of a processor while highlighting the need  
to understand and utilize a metric that combines both 
dynamic power, static power and speed into one concise, fair 
metric. 
 The second section of the paper overviewed the 
different techniques currently used for lowering the power 
consumption of the processor. New techniques were 
presented that offer substantial savings over the current 

Table 3
 
 Chameleon Application Level Power Savings. [14]

Mix M1 = encoded DVD playback and web browser
Mix M2 = encoded DVD playback and word processor
Mix M3 = encoded DVD playback and batch compilations (make and pnice)
Mix M4 = batch compilations and word processor



techniques. The optimizing of certain components, such as 
the L1 cache and the ALU were described and shown that 
their results are both substantial and easy to implement.
 
 The third section focused on the Operating System 
and the main function of task scheduling. While the examples 
used were for real-time systems, it was shown that these are 
indeed applicable to non-real time operating systems and 
could indeed present a beneficial amount of power savings.

 Finally, the possibilities for the Application to lower 
power consumption was investigated. While this section 
primarily discussed the Chameleon Power Management, it 
also highlighted the vast amount of savings that is possible 
from a better understanding of what the application needs in 
terms of speed and performance. 

 Combining all of these sections together allows a 
concise example of where the industry as a whole should be 
headed. By optimizing different processor components and 
deterministically deciding what units of the processor should 
be clock-gated, a DVFS enabled processor can provide a very 
substantial base for the OS and Application levels to help 
control the power consumption. As the application level of 
the system inevitably determines what operations are going to 
be run and hence the system load in a power and speed sense, 
it would seem only fitting that an application level power 
management solution would be the most efficient and energy 
aware. 

 Currently, the primary goal of reducing the power 
and thermal output of a system is to save money. In the near 
future, the increasing importance of the static power in the 
power equation will result in a much more basic need to 
control the output of the system so it does not spike out of 
control. It will take all levels of the computer i.e.  hardware, 
operating system and application, to work together, and 
further technological improvements, such as high k di-
electrics, to help solve the problem of decreasing the power 
and thermal output.
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