
ECE 493 FINAL REPORT 1

ECE 493 Final Report
Energy and Power Comparison of Cryptographic

Algorithms on Sensor Nodes
Kiran Rizvi, John Pham, Mark McDermott, and Reginald Brown

Advisor : Dr. Jens-Peter Kaps

Abstract—We examine the feasibility of adding dedicated
encryption hardware to low-power wireless sensor nodes. Having
the ability to encrypt communications between sensor nodes
in a network is a desirable feature for obvious reasons. The
question is: What is the best way to approach adding encryption
capabilities? We examine two main approaches and consider the
tradeoffs for each approach. Adding hardware will increase the
speed at which encryption can be performed and will free up
processing resources on the sensor node. But extra hardware
will increase the overall power consumption of system. Another
disadvantage of dedicated hardware is that I/O pins on the
sensor node that could be used for sensor applications need to be
reserved for communication between the node’s processor and
the encryption hardware. On the other hand, if all the encryption
is performed in software on the sensor node then any encryption
schemes that benefit from parallizable hardware will certainly
run slower than is necessary. As a result, power consumption
is higher and processing time is longer than required. In this
project we attempt to quantify these tradeoffs so that an informed
decision can be made when designing a secure sensor node
system. We focus primarily on power consumption but will
discuss the other tradeoffs that have been mentioned.

CONTENTS

I Introduction 1
I-A Statement of Need 1
I-B Existing Work 2
I-C Design Trade-offs 2
I-D Proposed Solution 2
I-E Evaluation Criteria 2
I-F Team Responsibilities 2

II Technical Section 2
II-A Parallel Interface 3
II-B TinyOS 3
II-C Communication With Basestation 4

II-C1 BaseStation Application . . . 4
II-C2 Radio 4

II-D Software 4
II-D1 Software Encryption Modules 4
II-D2 Encryption Interface 4
II-D3 Communications Interface . . 4

II-E FPGA Encryption Cores 4
II-E1 AES 5
II-E2 Present 5
II-E3 XTEA 6

II-F Mote Based Encryption 6

III Experimentation 6
III-A Verification of Encryption Implementa-

tions 6
III-A1 Hardware 6
III-A2 Software 7

III-B Timing 7
III-C Power and Energy Measurement Method 7

IV Results 8
IV-A Algorithm Size 8
IV-B Timing 8
IV-C Energy Usage 9

IV-C1 Reality Check 9

V Project Administration 9
V-A Analysis of Success 9
V-B Changes to Design 9
V-C Surprises 10
V-D Remaining Issues 10

VI Future Work 10
VI-A A Reliable Method of Measuring Energy 10
VI-B Other Communication Methods 10
VI-C Assembly 10

VII Conclusion 10

References 11

I. INTRODUCTION

A. Statement of Need

W IRELESS mesh sensor networks are commonly used
to gather commercial and military intelligence as well

as for industrial monitoring. It is important that the individual
nodes have a security system to prevent unauthorized users
from controlling them. Also, in some applications the data be-
ing collected must be transmitted to an authorized controlling
station securely. Knowing the effect that adding encryption
capabilities to a sensor node will have on power consumption
and general usability of the node is invaluable information.
Thus, in this project, we gather power consumption data for
a variety of encryption implementations and compare them to
each other to provide said information for future development.

ECE 493 FINAL REPORT 2

B. Existing Work

Our work is extending the previous work of the ECE492-
493 who conducted the project [1]. Their work included the
design of system that allowed a MICA2 sensor node and an
FPGA based implementation of AES(ref) to communicate via
UART. With the addition of a second sensor node attached to a
PC they were able to control the system and retrieve encrypted
bytes from the sensor node which had the attached hardware
encryption solution. Their results showed the viability of such
a system.

The previous team also designed a FPGA platform that con-
nects directly to the sensor node through a hirose connector.
At the time that it was created there was no consideration
of alternate communication methods between the FPGA and
sensor node. As a result the custom PCB that they designed
only supports the UART connection.

C. Design Trade-offs

Each of the three encryption schemes are tested in two
different ways to show the tradeoffs involved with adding
encryption to a sensor node. First, we use the sensor node
and the FPGA communicating through the parallel interface.
This is the fastest mode of communication which means that
the FPGA can remain idle (using less energy) more. However
the parallel interface uses nine of the very precious I/O pins
on the sensor node.

The final solution is to not use the FPGA at all and perform
all the encryption directly on the sensor node. This means
that no power needs to be supplied to external hardware and
no I/O pins are used for encryption. However, many clock
cycles are used to perform the encryption which results in
a higher percentage of the sensor node’s total energy usage
being devoted to encryption.

D. Proposed Solution

We extend the previous team’s work by increasing the
number of implemented encryption standards to three: AES,
XTEA, and PRESENT. With the exception of PRESENT all of
the hardware implementations of these standard were already
implemented at the time this project began. We implement
software version of each of these standards as well. We also
add a parallel interface standard for communication between
the sensor node and FPGA.

The power consumption of each encryption standard will
be measured for the cases of FPGA for encryption, and all
encryption done on the sensor node. The results will be
compared to determine which solution is the most energy
efficient.

E. Evaluation Criteria

When measuring the power consumption of the FPGA based
implementations we split the data into sections corresponding
to the following modes of operation: receiving data from the
sensor node, encrypting, sending data back, and sitting idle. It
is important to know the contribution of each mode because
a real-world solution would include the ability to turn the

encryption hardware on and off when it is not in use. We
also, wish to know how much power is consumed during
just the encryption cycle so that we can calculate what effect
encrypting multiple blocks of data at a time has on overall
energy efficiency.

All of the results obtained for the FPGA solutions will
be adjusted according to power usage simulations for ASIC
implementations of the same design. This is because the
expected application of the research is towards an ASIC based
add-on for sensor nodes. We are using the FPGA purely as a
proof of concept.

The power measurements for the software-only encryption
implementations will be taken in a similar manner FPGA
measurements. Since operating modes of the sensor node do
fall neatly into the above categories (receive,encrypt,transmit)
we can not perform a direct comparison between them. We
can however compare the total energy used during a complete
cycle of data acquisition, data encryption, and transmission to
base station PC.

The solution which achieves a balance between usability
(see design trade-offs) and energy efficiency will be marked
as the most viable means for adding encryption to wireless
sensor nodes.

F. Team Responsibilities

Kiran Rizvi Project Manager, Hardware Encryption
Implementation, Hardware Integration

John Pham Parallel interface (Hardware/Software),
Software Integration, Node to Basesta-
tion Communication

Mark McDermott Hardware Integration, Software Encryp-
tion Implementation, Power Measure-
ments

Reginald Brown Hardware Integration

II. TECHNICAL SECTION

Fig. 1. High level view of system components.

The overall system shown in Figure 1 works as follows.
The sensor node gathers data from the environment. This data
is either stored or transmitted based on commands from the
controlling base station. When commanded to, the sensor node
passes the collected data to the encryption module where it
is encrypted and then sent back to the sensor node. In a
production system the sensor node would control when the
encryption module is powered. For our system we simply

ECE 493 FINAL REPORT 3

power the module all the time. Once the data is encrypted
it will be sent over the radio to the base station computer
where it can be decrypted and processed.

Fig. 2. Spartan3E development board from Digilent.

The software only implementation has an identical interface
to the base station but does all data encryption directly on the
sensor node in software.

Fig. 3. Crossbow Mica2 sensor node.

NOTE: This system is only a testbed to allow us to compare
the energy efficiency of the encryption algorithms. We could
have done these tests on any small, low-power platform but
because of their availability and ease of use we choose the
Mica2 sensor node (Figure 3) and the Digilent Spartan3E
development board (Figure 2) as our testing platform.

A. Parallel Interface
The parallel interface is designed to use as few pins as

possible. That said, it is still using 9 out of the 50 available pins
on the sensor node’s microcontroller. (There are fewer pins
actually available due to pins already being assigned to the
radio, power supply control, status LEDs, etc.) The interface
uses 8 data lines and a single control/clock line.

Fig. 4. State Transition Diagram of Communication Module for FPGA Side

After reset, the interface is in send mode (sensor node
transmits to FPGA). When ready to send data, the first byte
is written to the databus and then the signal is toggled. The
first byte sent is always a command word which tells the main
FPGA control (external to the parallel communication module,
see Figure 5) what to expect from the sensor node. In response
to this xmit_mode is set, which the communication module
will respond to. If xmit_mode is low, the FPGA waits for
data (and a signal line toggle) repeatedly until xmit_mode
goes high.

When this happens, the communication module goes to idle
and waits for another command word. This may be ignored by
the FPGA top level control holding xmit_mode high to enter
the transmit states. In the transmit modes, the communication
module will begin handshaking with the sensor node to change
the direction of the port. The communication module will wait
until the signal line is toggled a second time which indicates
that the sensor node has set its port to high impedance. Then
the communication module writes 0x80 to the port. This
indicates to the sensor node that the FPGA is ready to send
data. The sensor node will toggle the signal line every time
that it is ready for another byte. This works because the FPGA
is clocked at 50MHz and the microcontroller on the sensor
node is clocked at 8MHz. The FPGA is always ready to send
another byte by the time that the sensor node toggles the signal
line again. When xmit_mode goes high again and the signal
line is toggled again to acknowledge receipt of the last byte,
the FPGA goes back into idle state waiting for a command
word.

B. TinyOS

TinyOS [2] is used in order to abstract some of the
hardware-specific features of the MICA2, provide drivers to
the hardware, and to allow for low-overhead multitasking. In
order to program for TinyOS, a language called NesC must
be used, which adds event-based programming and split-phase
features for non-blocking calls, as well as interfaces to C.
TinyOS uses a form of cooperative multitasking, requiring
large functions to be split up into tasks that are scheduled.

In NesC, there are multiple types of functions: events,
tasks, and commands. Commands and events are defined
inside interfaces. They behave like regular functions, however
a command is called to signify to a module that it should
do something and is defined within the module where it is

ECE 493 FINAL REPORT 4

declared, while an event is defined outside and is called to
signify that a response should occur. Both are blocking calls.
Tasks are void functions with no parameters that are to be
scheduled to run at some point in the future.

C. Communication With Basestation

Communication with the basestation PC is done through
another sensor node which is attached via a USB serial port
to the computer. The features of the application are geared
towards verifying the correct encryption and transmission of
data. To operate the system, the operator sends the key and
the plaintext to the node. The node encrypts and immediately
returns the ciphertext. Due to the lack of flow control and
reliability in the TinyOS radio stack, stop-and-wait was im-
plemented on the application level.

1) BaseStation Application: The basestation application is
written in java, and reads in a file containing hex strings,
transmitting the first line as key and subsequent lines as blocks
of data to be encrypted, splitting the data into 64 bit segments.
It transmits these blocks in reversed order with a sequence
number counting down. It waits for an ACK after each packet
containing the sequence number of the last transmitted packet
before continuing to transmit. After a timeout period without
a valid ACK it will attempt to retransmit, retrying 10 times.
After transmission is done, it then waits for encrypted packets
to be received. When this happen, an ACK packet with the
sequence number of the last received packet is sent and the
data inside the packets are displayed.

2) Radio: The radio code sends out an ACK with the
sequence number of the last packet received for both key and
data packets. TinyOS allows different packet types, and each
packet type has it’s own handler. The key handler places the
contents of the packet into a key buffer, and the data handler
places it in a location in the buffer determined by the sequence
number multiplied by the packet data size. Bounds checking
has not been implemented, therefore this is susceptible to
buffer overflow attacks. When the key and the data packet with
the sequence number 0 is received, the mote begins encrypting
the data. Data is sent and received in reverse order to avoid
having to transmit a done command or the length of the data,
since the first and last sequence number alone is sufficient
to determine this. This is not suitable for reliability protocols
other than stop and wait due to packet ordering. When the data
is encrypted, the encrypted data is transmitted in a fashion
similar to that of the the base station transmitting.

D. Software

1) Software Encryption Modules: All of the encryption
modules implemented in software were based on source code
freely available on the internet. [3] [4] [5] The source code
obtained from these sources was modified for speed, oriented
to 8 bits, and conformed to our TinyOS interfaces.

2) Encryption Interface: The software interface for the
crypto modules is defined in Listing 1. This interface is
implemented by both the software and hardware encryption
modules. The hardware driver modules also implement the
SplitControl [6] interface to turn the FPGA on and

/**
* Interface implemented by encryption modules

*/
interface Crypt{

/**
* Loads crypto module w/ key. In some implementations, key size is already

* known so size is ignored. Size is specified in bytes.

*
* Precondition: Module must be initialized, and no other operation on

* crypto module already pending

*
* Postcondition: Key loaded when keyLoaded() fires

*
* @param key Key to use when encrypting

* @return 1 when success, 0 when failed.

*/
command error_t setKey(uint8_t* key);

/**
* Encrypts data w/ key loaded in module. Length of datain and dataout must

* be identical and be an integer multiple of the block size of the crypto

* implementation.

*
* Precondition: key must already be loaded, and no encryption already

* pending. keyLoaded() must be fired.

*
* Postcondition: dataOut is filled with

* encrypted data

*
* @param dataIn Pointer to data to encrypt

* @param dataOut Pointer to buffer to write encrypted data to.

* @param numBlocks Size of data in blocks.

* @return 1 when success, 0 when failed

*/
command error_t encryptData(uint8_t* dataIn, uint8_t* dataOut,

uint16_t numBlocks);

/**
* Returns block size in bytes

* @return Block size

*/
command uint8_t getBlockSize();

/**
* Returns key size in bytes

* @return Key size

*/
command uint8_t getKeySize();

/**
* Fired when key is loaded into crypto module

* @param error SUCCESS if loading key successful, FAIL otherwise

*/
event void keyLoaded(error_t error);

/**
* Fired when data encrypted

* @param error SUCCESS if encryption successful, FAIL otherwise

*/
event void dataEncrypted(error_t error);

}

Listing 1. Software interface for crypto modules in Crypt.nc

off. This is not actually implemented in any of the drivers
(other than waiting for the FPGA to turn on) as we did
not implement power control for the FPGA. The software
implementations also implement the SplitControl inter-
face with dummy functions in order to minimize required
changes. In order to switch between modules, the ENC_IMPL
macro is set to algorithms defined in HWCryptC.nc and in
MoteEncryption.h.

3) Communications Interface: The interface in Listing 2
is implemented by MoteRadioC in order to transmit data
coming in and out of the sensor node. The operation of
this code is described in Section II-C2. Prior to the use of
MoteRadioC the toplevel mote code must initialize the radio
hardware by utilizing the SplitControl interface provided
by ActiveMessageC [6].

E. FPGA Encryption Cores

The FPGA design was designed to be as generic and
reusable as possible. To do this we defined a standard interface
between the four main components: encryption core, key store
(RAM), communication module, and top level control.(see
Figure 5) The key store is used to keep the key intact so

ECE 493 FINAL REPORT 5

/**
* Interface for transmitting data in and out.

* of mote

*/
interface KeyDataXmit{

/**
* Precondition: Implementation specific

* Postcondition: sendDataDone() called at some point in the future

* @param data Pointer to data to be sent

* @param len Size of data in number of datapacket data size chunks,

* implementation specific.

*/
command error_t sendData(uint8_t *data,uint8_t len);

/**
* Precondition: Transmission of data complete

* Postcondition: User defined

* @param err Status of data transmission, may return SUCCESS, FAIL, or

* EBUSY

* @return SUCCESS or FAIL

*/
event error_t sendDataDone(error_t err);

/**
* Precondition: None

* Postcondition: Needs unlock() called to receive data

* Sets address of receive key and data buffers

* TODO Add bounds limits

* @param keyAddr Address of key RX buffer

* @param dataAddr Address of data RX buffer

*/
command error_t setAddresses(uint8_t *keyAddr,uint8_t *dataAddr);

/**
* Precondition: Key successfully received after setAddresses() and unlock()

* Postcondition: None

* @return SUCCESS if succeeded

* @param len: Length of key in keypacket data size chunks

* @return SUCCESS or FAIL

*/
event error_t keyLoaded(error_t err,uint8_t len);

/**
* Precondition: Data successfully received after setAddresses() and unlock()

* Postcondition: None

* @param err: SUCCESS if succeeded

* @param len: Length of data in datapacket data size chunks

* @return SUCCESS or FAIL

*/
event error_t dataLoaded(error_t err,uint8_t len);

/**
* Precondition: Object is previously unlocked

* Postcondition: Radio cannot receive key or data

* @return SUCCESS or FAIL

*/
command error_t lock();

/**
* Precondition: Object is previously locked

* Postcondition: Radio can receive key or data

* @return SUCCESS or FAIL

*/
command error_t unlock();

}

Listing 2. Software interface for crypto modules in Crypt.nc

that when encrypting more that one block of data we need
only transmit the key once.

Both methods of communicating with the sensor node
(parallel and serial) have the same top level structure. They
differ only in the number and type of connections (See section
II-A) to the sensor node. The communication modules serve
as translators between the internal top level signals and the
signals coming from and going to the sensor node. The internal
signals are defined in Table I

The basic operation is as follows. When a byte has been
fully transferred from the sensor node then the ByteTransferred
signal is asserted. This signals the control module to allow the
received data onto the bi-directional bus into the encryption
core. In general the first byte that is transferred is not read by
the encryption core because it is a command byte that tells
the control module how to interpret the remaining data. After
reading the command byte, Control manages each incoming
byte from the communication module choosing to whether
or not to save it in RAM (key or text) and when to enable
the encryption. When all the data and key are received
then encryption is performed. When the encryption core has

Fig. 5. Block Diagram of top level FPGA design

finished with a byte, it informs Control which then manages
the passing of data out of the encryption core and through the
communication module back to the sensor node.

All of the encryption schemes that we implemented operate
this way with slight variations. We attempted to keep them
as similar as possible so that power consumption can be
meaningfully compared.

1) AES: The AES implementation takes 128 bits of data
and 128 bits of key. These bytes come in interleaved starting
with a byte of key first. The top level control can operate it
two different modes. The first is where all of the key and data
are read. The key will automatically be stored in the key store
RAM. In the second mode, only the data is sent from the
sensor node and the key bytes will be read from the RAM.
The mode is indicated by the two most significant bits of the
first byte sent (command byte): ”00” for key and data, ”01”
for just data.

Every time the communication module receives a byte from
the sensor node, the control will decide if that byte is key
or data. For AES 32 bytes are sent in total which come in
interleaved fashion starting with a byte of key. Every other
byte is stored in the keystore RAM. If a byte is data, then
AES is enabled for one clock cycle to allow it to read in the
byte. When all bytes have been received AES is enabled for all
clock cycles and encryption is performed (the communication
module switches directions during this time). When encryption
of a byte is done, ByteEncrypted is set high which signals
control to stop AES and wait for the communication module
to send the byte to the sensor node. Once it is sent, then
encryption resumes until another byte is ready to be sent back.
This process continues until all the encrypted bytes have been
sent back to the sensor node. At this point control returns to
idle and reset_AES is asserted. See Table II for a summary
of AES specific control signals.

2) Present: Present uses the key store differently from AES
because it is capable of reading all 128 bits of key data at once.
Therefore the keystore is a large register instead of a RAM.
To start an encryption cycle for Present the sensor node first
sends 16 bytes of key and 8 bytes of data. The top level control
in the FPGA will save the key into the key store and pass the

ECE 493 FINAL REPORT 6

TABLE I
FPGA INTERNAL COMMUNICATION SIGNALS

Type Name Active Width Duration Purpose

From Control ByteReady high 1 1 clk Signals that Data_in is valid
xmit_mode high 1 varies Tells communication with uC to change direc-

tions
To Control ByteTransfered high 1 1 clk Tells control that a byte has been transmitted

(either in or out)
From Datapath Data_in n/a 8 held Encrypted data to be sent out
To Datapath Data_out n/a 8 held Data received from uC

TABLE II
AES CONTROL SIGNALS

Type Name Active Width Duration Purpose

control

EnableECore high 1 held Allows AES to run
oe high 1 held Allows output on bidirectional if clk is high
reset_AES high 1 held Resets AES
transmit high 1 held Gives AES complete control of bidirectional bus

Feedback ByteEncrypted high 1 1 clk Signals that a byte has been encrypted

data to Present. Then after all the data has been sent, Present
is enabled at which time the entire key is read from RAM in
a single operation.

Fig. 6. Block diagram of PRESENT.

Once the encryption is finished, the encrypted data is sent
back to the sensor node in the same manner as with AES.

3) XTEA: The operation of XTEA very similar to that of
AES with two key differences. AES will perform the same
operation each time it is sent data from the sensor node.
commands are: load key, load data, and encrypt. The com-
munication between the FPGA and sensor node is identical
because the controller sends these commands to XTEA and

enables operations at the appropriate times. In addition, the
key is not used as scratch space, therefore having a seperate
keystore external from the encryption core for quick reloading
of the key is unnecessary.

The XTEA encryption core has also undergone changes
during this project even though it was finalized prior to when
we started the project. The capability to halt the encryption
process has been added in order for core to wait upon more
data coming from the sensor node.

F. Mote Based Encryption

The software framework that controls communication with
the FPGA is leveraged to make software implementations of
all the encryption standards very easy to perform. For each
of the encryption standards a TinyOS module is created that
performs the encryption and conforms to the same interface
definition has does the sensor node’s side of the parallel
communication standard.

The main controlling software on the sensor node, which
handles radio communication and data acquisition is unaware
of how encrypted data is being acquired. It simply passes data
from the radio to the interface and reads encrypted data back
regardless of what kind of encryption scheme is implemented
(hardware or software).

III. EXPERIMENTATION

A. Verification of Encryption Implementations

1) Hardware: Each hardware implementation was verified
by observing the data as it crossed the bus between the sensor
node and the FPGA with a logic analyzer. Later when the radio
component was finished we also verified the correct results by
printing the received packets on the base station PC.

ECE 493 FINAL REPORT 7

TABLE III
PRESENT CONTROL SIGNALS

Type Name Active Width Duration Purpose

Feedback RecievedData high 2 held Opcode value coming from comm
roundCounter high 5 held Counter for rounds of PRESENT

Control

enEcore high 1 held Starts encryption when high
writeKey high 1 held Enables write to keystore
KeyAddr high 4 held Address of key byte to write to
writeTxt high 1 held Enables writing of text to text store
TxtAddr high 4 held Address of text byte to write to
rstEcore high 1 held Soft resets the encryption core

TABLE IV
XTEA CONTROL SIGNALS

Type Name Active Width Duration Purpose

Feedback
RecievedData high 2 held Opcode value coming from comm
w high 1 held Feedback from TEA control unit signifying TEA is

writing on data bus
read high 1 held Feedback from TEA control unit signifying TEA is

reading data bus

Control

stopEcore low 1 held HALT COMMAND
stopKeyStore high 1 held Enables/disables loading of key into TEA’s internal

keystore
command high 2 held Command to TEA control unit- ’00’ read data command,

’01’ read key command, ’10’ encrypt command, ’11’
decrypt command

byteReady high 1 held Signifies that bytes are ready to be transmitted to the
microcontroller

encrypting high 1 held Output register is loaded
waiting high 1 held Output register loaded when ByteTransferred
idle_s high 1 held If idle or reset=0, a soft reset is performed on TEA
oe high 1 held Enables TEA output

2) Software: The verification procedure for software was
very simple; we just printed out the results of each radio trans-
mission to the base station. In both cases we used test vectors
and results obtained from reference software implementations
of each algorithm and compared each byte with our results to
verify their correct operation.

B. Timing

The length of time needed for encryption was obtained
by measuring the time difference between the start and stop
of an encryption cycle on the logic analyzer. Also, we used
this method to obtain time measurements for how long it
took to perform each part of the cycle (send data to FPGA,
encrypt, receive encrypted data). Of course, for the software
only implementations there is no outside communication and
therefore we only record the total time taken to encrypt a block
(or two). All comparisons are made between encryption cycles
that successfully encrypt 16 bytes in total. This means that,
in the cases of XTEA and PRESENT, we encrypt two blocks
and record the total time for both to be encrypted.

C. Power and Energy Measurement Method
The energy that each encryption algorithm uses is the sum

of the dynamic power and the static power integrated over the
time that it takes to perform the encryption. For the hardware
implementations we measure the dynamic power of both the
sensor node and the FPGA. For the software implementations
it is of course sufficient to only measure the dynamic power of
the sensor node. The static power of each device is obtained
from the manufactures’ estimates since directly measuring
static power was deemed difficult enough to place it outside
the scope of this project.

TABLE V
STATIC POWER

Device Static Power (W)
Mica II 0.003
Spartan 3E 0.008

The instantaneous dynamic power is recorded by attaching
a current probe in series with the power supply of the device
being tested. In the case of the FPGA we were only able to
measure the core voltage because the other power supplies on
the development board feed power to peripherals as well as

ECE 493 FINAL REPORT 8

to the FPGA. The signal from the current probe appears as a
voltage waveform on an oscilloscope. The particular current
probe we used has the relationship of 5mV/mA so we divided
the voltage waveforms by 5 to obtain the actual instantaneous
current. The waveform is then multiplied by the supply voltage
(to obtain instantaneous power) and integrated over the length
of time it took to perform the encryption to find the total
energy.

This process is automated through the use of Matlab and a
custom driver program for the that sets the correct oscilloscope
modes and prepares the it to collect the data. The oscilloscope
begins recording data when it encounters a rising edge on
the trigger line (Channel 2). The trigger is explicitly set by
the device being tested so that data is recorded exactly at the
start of encryption. The device continues to set triggers at
different points in the encryption cycle to aide analysis but
the oscilloscope only responds to the first trigger edge. Once
both the instantaneous current and the trigger data has been
captured (see Figure 7), Matlab is used to find the energy.

Fig. 7. Top: instantaneous FPGA power for encrypting one block of
data. Bottom: Triggers showing start of data and key transmission, start
of encryption, start of transmission of encrypted data, and finish point of
encryption cycle.

The formulas used to compute the energy for each encryp-
tion cycle are:

E = (Pavg) (Tencrypt) (1)

Edyn =

(
1
N

N∑
n=0

Vprobe[n]
5Ω

Vsupply

)(
N

fsamp

)
(2)

Total energy for the hardware implementations is

Etot = Edyn:fpga + Edynmote + Estatf pga + Estatmote (3)

. The total energy for the software implementations is only

Etot = Estatmote + Estatmote (4)

. Note that we are ignoring all FPGA power in these calcula-
tions other than power supplied by Vcore. This will skew our
results.

IV. RESULTS

A. Algorithm Size

All the implementations were of comparable size with
some notable differences. PRESENT in hardware has a much
smaller encryption core than the other implementations but
because of the way it reads the key in one clock cycle instead
of multiple clock cycles, the key store was much larger and
the total size was similar. PRESENT can be greatly reduced
in size by modifying the way it reads the key.

TABLE VII
SIZE ON MICA2 (TOTAL OF 128 KB AVAILABLE)

Bytes in ROM
Algorithm No Optimizations O3

HW
AES 1276 3588
TEA 1992 2998

PRESENT 766 1712

SW
AES 970 3956
TEA 978 3220

PRESENT 1148 3466

B. Timing

Not surprisingly the hardware implementations are much
faster than the software (Figure 8). The interesting result
is how slow PRESENT is in software. It takes an order of
magnitude longer than next slowest implementation. This is
due to the large number of bit level manipulations performed
by this algorithm. Swapping bits in hardware is no problem
but in software many repeated shifting and masking operations
are required. Also, in order to decide which bits should be
swapped (this happens during the permutation layer), multi-
plication and division operations need to be performed which
add even more time to total required for computation.

Fig. 8. Time required to encrypt 16 bytes.

Another interesting observation is the effect that compiler
optimizations has on the speed of the encryption. Even when
doing hardware encryption, optimizing the code resulted in
very large time savings. Since total energy it directly depen-
dent and how much time the encryption takes we choose to
use O3 level optimizations for all tests.

ECE 493 FINAL REPORT 9

TABLE VI
SIZE ON FPGA

FPGA Slices
Name Core Key Store Control Other Total %on xc3s500e Maximum Clock(MHz)
AES 424 4 24 22 471 10 75.5
TEA 423 0 22 8 451 9 73.8

PRESENT 314 64 23 6 401 8 153.0

C. Energy Usage

The total energy usage of each algorithm is shown in Figure
9. As expected the faster algorithms use less energy than the
algorithms that take more time to finish. An interesting result is
that hardware versions of TEA and PRESENT are less efficient
than AES. Of the three algorithms AES is the largest and most
complex so we would expect it to use the most energy. It
turns out to be more efficient because of a problem with our
implementations of TEA and PRESENT.

Fig. 9. Energy required to encrypt 16 bytes.

Both of these algorithms take in 8 bytes of data from the
sensor node, encrypt the data, and then send it back. But since
we are measuring for 16 bytes total the process has to be
completed twice. This means that the port between the sensor
node and FPGA has to be reversed a total of 3 times (only
once for AES). This port reversal process is time consuming
and adds significantly to the amount of time it takes to finish
encrypting 16 bytes. Figure 10 dramatically illustrates how
much energy is wasted on communication between the FPGA
and sensor node.

Fig. 10. Relative energy usage per operation mode.

1) Reality Check: The results in this section seem to
indicate that there is no reason to every use encryption in
software. If hardware is faster, more energy efficient, and
more secure then why would anyone want to use a software
solution? Well, in this project we were unable measure any of
the FPGA supplies other than Vcore since the other supplies
are used by peripherals on the development board. If these
power supplies were taken into consideration then we suspect
that the hardware solutions would actually be quite a bit less
power efficient than the software solutions. This prediction is
reasonably because one of the largest consumers of power is
setting FPGA outputs. None of the core voltage goes directly
to perform this task and as a result none of our power
measurements include the energy used by the FPGA as it sends
back the encrypted data to the sensor node.

V. PROJECT ADMINISTRATION

A. Analysis of Success

There are some parts of the project that we had to drop
because of time that we would have liked to finish. Most
notably we were not able to finish testing the PCB that the
previous team designed. Had we finished, then we would have
been able to get accurate measurements of all three FPGA
power supplies.

We also had to cut the UART from the list of comparisons
to make. This is not a total loss however because we did
compare the speed of the two communication methods and
determined that the new parallel interface is roughly 5 times
faster than the UART (Figure ??). In the previous section
we already discussed how much energy is begin wasted on
communication; it makes not sense to waste more by using
a slow method of moving data between the sensor node
and FPGA. The only scenario where someone would want
to use a serial interface is if they could not spare the pins
on microcontroller. We used 9 pins for our parallel interface
which was 27%of the available pins on the Mica2.

We wish that we could have had time to examine many
other facets of energy efficiency but feel like we got a good
start. Our greatest success is that we implemented a reliable,
extendable system that can be used to conduct further power
measurements and can support other encryption algorithms.
We knew that we would not be able to do everything for
this project so we intentionally designed our testbed with
modularity in mind.

B. Changes to Design

We originally intended to create a fully universal frame-
work for the top level FPGA design so that we could swap

ECE 493 FINAL REPORT 10

Fig. 11. Top: Encryption cycle via UART. Bottom: Encryption cycle via
FPGA

encryption cores with ease. As we learned more about each
encryption standard, we realized that such a framework would
be very complex. Since the main focus of the project is to
achieve maximum energy efficiency we decided to reduce the
complexity of our design (and thus reduce the area) at the cost
of some reusability.

C. Surprises

We had no experience with multiple clock domains and
failed to realize that we needed to sample the clock/control
signal from the microcontroller multiple times on the FPGA
to avoid setup and hold time violations. Rectifying this mistake
caused delays as we had to repeat some of our design work.

Due to failure to properly read the datasheets throughway,
we failed to realize that when both the microcontroller and the
FPGA are in receive mode, the microcontroller would default
to a logic 1 instead of 0 due to pull-up resistors [7]. The
microcontroller pin for controlling the radio was also being
used for signalling the FPGA, requiring us to reallocate it.

In addition, documentation for frequency settings to be
placed in preprocessor defines for the radio was not updated
for TinyOS 2.1, but was buried in TinyOS 1 documentation
[8]. The radio does not seem to have flow control or reliability
implemented on the network layer, requiring us to implement
stop-and-wait to provide a crude degree of reliability.

Due to endianness issues, our test vector results for XTEA
in hardware did not agree with XTEA in software. Also, the
use of 32 bit integers with XTEA on the 8 bit microcontroller
caused the microcontroller to malfunction, requiring a port of
the XTEA algorithm to 8-bits.

D. Remaining Issues

The AES hardware driver, and probably the rest of the
hardware drivers do not reset properly after one encryption
command. A few of the implementations have issues working
with more than 16 blocks of 16-byte data at a time, most likely
due to the use of 8 bit instead of 16 bit indices. The stop-
and-wait reliability protocol is fairly inefficient, and changing
it would also require adding a command packet type to start
encryption and/or tell how many packets of data to be received.
The large degree of packet loss without a reliability protocol
needs to be investigated further.

In addition, the packets are not as large as they can be,
decreasing efficiency [9] [10]. The drivers may need to be
rewritten to support interrupts instead of polling for FPGA
initialization, which has not been implemented due to the
PCB not working yet. Finally, TEA has not yet been actually
“TinyOSified” into small tasks. This was not an issue for our
project as no radio packets are transmitted while encryption
is occurring.

VI. FUTURE WORK

A. A Reliable Method of Measuring Energy

The power measurement method that we used is troubling
because it is difficult to get accurate measurements for both
parts of the system (FPGA,sensor node) at the same time. In
addition it is difficult to interpret the data once it has been
acquired because it has to be scaled and shifted by constants
that are reported by the oscilloscope to the PC.

Some have suggested that using a large capacitor that has
been fully charged as the sole power supply to the system is
the best method for measuring how much energy is used by
the system. After an operation has been finished the voltage on
the capacitor can be measured and from that the total energy
used by the system can be found. This method does have
its draw backs because it does not give you any idea of the
instantaneous energy usage. Future work would be to use the
capacitor method to confirm the measurements taken with the
oscilloscope.

B. Other Communication Methods

Implementing SPI would be faster than the UART but still
use fewer pins than the parallel interface that we designed.
This would result in saved power (need to drive fewer pins)
and use less microcontroller and FPGA resources. We would
have like to have implemented SPI ourselves but we began
discussing it too late to seriously consider it.

C. Assembly

Writing the software implementations (or parts of them) in
assembly to maximize their speed would allow for better com-
parison between the software and hardware implementations.

VII. CONCLUSION

Though we did not finish everything that we have liked to
have done, we did make a good start towards understanding
the issues involved with adding encryption to lower-power
embedded systems. Our system is well modularized and is
ready to be extended by any one who would like to do so.

ACKNOWLEDGMENT

We would like to extend our gratitude to our advisor Dr.
Jens-Peter Kaps for his advice (and patience!) throughout
the course of this project. Thanks also to Dr. Kris Gaj for
his advice. Thanks to the previous team members: Brandon
Thompson, Supreet Kaur, and James McCall for meeting with
us to explain their work and give us a jump start into this

ECE 493 FINAL REPORT 11

project. Thanks also to Rajesh Velegalati for his help with the
oscilloscope scripts. And finally thanks to all the members of
CERG for their advice concerning our presentation and for
bearing with us while we noisily conducted this project.

REFERENCES

[1] B. Thomson, J. McCall, and S. Kaur, “Cryptographic coprocessor for
wireless sensors,” George Mason University, Fairfax, VA, USA, Senior
Design Project Report, Dec. 2008.

[2] “Tinyos documentation wiki.” [Online]. Available: http://docs.tinyos.
net/index.php/Main Page

[3] I. O. Levin, “A byte-oriented aes-256 implementation,” 2007. [Online].
Available: http://www.literatecode.com/2007/11/11/aes256/

[4] D. Wheeler and R. Needham, “Standard c implementation of xtea.”
[Online]. Available: http://en.wikipedia.org/wiki/XTEA

[5] “C present implementation (8 bit),” 2007. [Online]. Available:
http://www.lightweightcrypto.org/present/

[6] “Interfaces and components.” [Online]. Available: http://www.tinyos.
net/tinyos-2.x/doc/nesdoc/mica2/

[7] A. Inc., “8-bit AVR microcontroller with 128K bytes In-System
programmable flash - ATMega128/ATMega128L.” [Online]. Available:
http://www.atmel.com/dyn/resources/prod documents/doc2467.pdf

[8] “CC1000 radio stack manual,” http://www.tinyos.net/tinyos-
1.x/doc/mica2radio/CC1000.html, 2003. [Online]. Available: http:
//www.tinyos.net/tinyos-1.x/doc/mica2radio/CC1000.html

[9] P. Levis, “message t.” [Online]. Available: http://www.tinyos.net/
tinyos-2.x/doc/html/tep111.html

[10] J. A. Sobrino, “[Tinyos-help] maximum packet size.” [Online].
Available: https://www.millennium.berkeley.edu/pipermail/tinyos-help/
2009-February/038495.html

