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Abstract:

Random  number  generators(RNG)  are  widely  being  used  in  number  of  applications,  particularly 
simulation  and  cryptography.  They  are  a  critical  part  of  many  cryptographic  systems  such  as  key 
generation, initialization vectors, message padding, nonces and many more. This paper discusses about 
the  Mersenne  Twister(MT),  a  pseudo  random  number  generator(PRNG)  and  its  variants.  It  mainly 
emphasizes on two of its  variants.  SIMD-Oriented Fast Mersenne Twister(SFMT) which is  a 128-bit 
PRNG analogous to MT making full  use of  its  features.  And the cryptographically secure CryptMT, 
considered to  be  one  of  the  fastest  stream ciphers  on  a  CPU with SIMD operations.  It  also  briefly 
discusses the theories and the choice of parameters used in the algorithms. The requirements for a PRNG 
to be certified as a good and cryptographically secure PRNG will be presented.

1. Introduction:

Random number generators are devices that generate a series of numbers or some kind of symbols that 
appear  random.  RNG’S  are  used  for  a  variety  of  purposes  such  as  simulating,  modeling  complex 
phenomena,  cryptography and  of  course  ever  popular  for  games and  gambling.  There  are  two main 
approaches  to  generating  random  numbers,  Pseudo  Random  Number  Generators(PRNG)  and  True 
Random  Number  Generators(TRNG).  TRNG  extracts  randomness  from  physical  phenomena  like 
atmospheric noise, little variations in mouse movements or the time between mouse strokes and feed then 
in to a computer. They are mainly used in games and gambling where genuine randomness is required, as 
they are to slow for use in statistical and cryptographic applications. In comparison to TRNG, PRNG’s 
are algorithms using some kind of mathematical formula or pre-calculated tables to generate a sequence 
of numbers that appear random. The sequence of numbers produced is not truly random. It is completely 
determined by an arbitrary initial state called seed state. If a PRNG's internal state contains  n bits, its 
period can be no longer than 2n results. PRNG’s are efficient, deterministic and periodic which makes 
them suitable for applications where many numbers are required and where it is useful that the same 
sequence  can  be  replayed  easily  such  as  simulation  and  modeling.  A  PRNG  should  posses  some 
requirements to be considered as a good PRNG, such as uniformity, independence, long period, proper 
initialization,  unpredictability,  efficiency  and  portability.  The  quality  of  randomness  of  a  PRNG  is 
measured by subjecting it to a set of statistical testes called diehard tests. Every cryptographically secure 
PRNG should satisfy two basic requirements, next-bit test and state compromise extensions. This paper 
discusses Mersenne Twister(MT) which is a PRNG and which satisfies all the requirements to be certified 
as a good PRNG. MT is proposed in 1997 by Makoto Matsumoto and Takuji Nishimura. It provides 
for fast generation of very high-quality pseudorandom numbers with a long period length which is chosen 
to be a Mersenne prime, high order of dimensional equidistribution, speed and reliability. Later many 
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different variants of MT has been introduced for better speed and security for cryptographic uses. Two of 
the  variants  this  paper  talks  about  are  SIMD-Oriented  Fast  Mersenne  Twister(SFMT)  and 
cryptographically secure CryptMT. SFMT is introduced by Mutsuo Saito and  Makoto Matsumoto in 
2006. It is typically a Linear Feedback Shift Register(LFSR) which generates a 128-bit pseudorandom 
integer at  one step. SFMT is introduced to use the new features of CPU’s such as Single Instruction 

Multiple  Data  (SIMD)  operations  (i.e.,  128bit  operations)  and  multi-stage  pipelines.  CryptMT is  a 
stream cipher which uses MT and is considered to be cryptographically secure. It was developed 
by Makoto Matsumoto, Hagita Mariko, Takuji Nishimura and Mutsuo Saito in 2005. CryptMT ver. 3 
is the latest version. In section 2.1 of this paper we discuss the theories behind MT and its algorithm. 
Section 2.2 discusses the choice of parameters for MT also presents a table showing values for different 
parameters of 32-bit MT. Section 2.3 talks about the limitations of MT such as initialization and security, 
and also the modification made to overcome the limitations. Section 3 introduces SFMT and 3.1 shows 
the theories  and algorithms for SFMT, and also contains  two figures  of  a circuit  like description of 
SFMT19937 and block generation scheme. Next we talk about the choice of parameters of SFMT for the 
calculation of period and dimension of equidistribution in section 3.2. Then in 3.3 its limitation such as 
recovery from 0-excess state and the improvements made are discussed. Section 4 introduces CryptMT, 
we discuss its first version, the theories behind it and presents a block diagram of CryptMT ver. 1. Section 
4.1 talks about its latest version CryptMT ver. 3, its theories and contains a figure showing combined 
generator. It also shows a table containing the parameters for the speed comparison of CryptMT with 
other stream ciphers. Then its advantages and shortcomings are discussed in section 4.2. The appendix of 
the paper shows the inversive-decimation method for primitivity testing. 

2. Mersenne Twister:

Mersenne Twister, the name derives from the fact that it uses a period which is a Mersenne prime. It is a 
modification of a Twisted Generalized Feedback Shift Register(TGFSR) which takes in an incomplete 
array to realize a Mersenne prime as its period and uses an inversive-decimation method for primitivity 
testing of a characteristic polynomial of a linear recurrence with a computational complexity of  O(p2) 
where  p is  the  degree  of  the  polynomial.  MT  has  a  long  period  of  219937-1and  a  623  dimensional 
equidistribution up to 32-bit accuracy, generating an output which is free of long-term correlations. It is 
considered to be fast, as it avoids multiplications and divisions and uses the advantages of cashes and 
pipelines and efficient in memory use as only 624 words needed for the working area. 

2.1-MT Theories:

MT generates a sequence of word vectors considered as uniform pseudorandom integers between 0 and 
2w-1, where w is the dimension of row vectors over the finite binary field F2. It is based on the following 
recurring equation:
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Here:

Integer n is the degree of recurrence. 
Integer m, 1≤ m ≤ n.  
A is a constant w × w matrix chosen to ease the matrix multiplication shown below 
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 k is 0,1,2…… 
xn is a row vector  of a word size w  which is generated with  k =0. 
x0, x1, …., xn-1 are initial seeds.                 

l
kx 1+ are lower or rightmost r bits of 1+kx . 

u
kx are upper or leftmost w – r bits of kx . 

⊕  denotes a bitwise XOR. 
| denotes a concatenating operation. 

( u
kx | l

kx 1+ ) is the concatenation vector obtained by concatenating the upper w - r bits of kx and the lower 

r bits of l
kx 1+ in the order. Then the matrix A is multiplied from the right by this vector. Finally bitwise 

addition ⊕ is performed to add mkx + , and then generate the next vector nkx + . The multiplication of ( u
kx

| l
kx 1+ )A can be performed using simple bit shift operations as shown below.
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Where x is ),...,,( 021 xxx ww −− , 

a is the bottom row vector of A and 

‘ >>’ denotes bitwise right shifts. 

Thus the calculation of the recurrence (1) is realized with bitshift, bitwise EXCLUSIVE-OR, bitwise OR, 

and bitwise AND operations. 

MT has (n-1) dimensional equidistribution, which is a good characteristic of PRNG’s. k-distribution tests 
are considered to be a good way to measure the randomness of a PRNG. From the definition, a periodic 

sequence 110 ,...,,: −= pxxxX with period p of w -bit integers is said to have k-dimensional equidistribution 

property  if  it  has  the  maximum  period  and  if  any  kw -bit  pattern  equally  likely  occurs  as  k-tuple 

),...,,( 11 −++ klll xxx  for ,...2,1,0=l . All the overlapping k-tuples appearing in one period, then the output k-

tuples are uniformly distributed over the set of possible output numbers. A largest value of such k is 
called the  dimension of  equidistribution.  To improve the  k-distribution  to  v-bit  accuracy of  the  raw 
sequences generated from the recursion (1), a method called tempering is used to produce the final pseudo 



random number. Each generated word is multiplied by a w × w invertible matrix T from right yielding a 

result of tempering matrix  x into xTz =: .  The matrix  T is chosen such that binary operations can be 
performed as:

)(: uxxy >>⊕=

) &)(( : bsyyy <<⊕=

) &)(( : ctyyy <<⊕=

)( : lyyz >>⊕=

where landts,u     ,  are tempering bit shifts. 

b and c are tempering bitmasks. 
‘<<’ denotes a bitwise left shift and 
‘&’ denotes a bitwise AND operation.

MT works  in two parts:  recurring and tempering.  The recurring is  a form of  Linear  Feedback Shift 
Register(LFSR) in which each bit of the state derives from the recursion and each bit of the output also 
satisfies the recurring of the bits forming the states. Figure 1 shows a high level block diagram of MT. 

                                                                      ……………..

The shift register is composed of 624 elements and a total of 19937 cells. Each element has a 32-bit 
length except for the first element which has only 1bit due to the bit-discarding. Following steps shows 
the working of an MT algorithm:

Step 0.  Create bitmask for upper and lower bits 
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Fig 1. Block diagram of MT



Step 1.  Initialize the x array with seeds of nonzero values. 
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Step 3.  Calculate the next state 

[ ] [ ]




=
=

⊕>>⊕+←
1     

0     0
)1(mod)(

yofLSBifa

yofLSBif
ynmixix

Step 4.  Multiply [ ]ix  by the tempering matrix T for better equidistribution

[ ]ixy ←

)( uyyy >>⊕←

) &)(( bsyyy <<⊕←

) &)(( ctyyy <<⊕←

)( lyyz >>⊕←

output y

Step 5.  Increment i by 1 

nii mod)1( +←

Step 6.  Repeat the process 
Go to step 2.

2.2 Choice of parameters:

The choice of parameters for MT are carefully made so as to satisfy the above mentioned properties. 
There are two classes of  parameters to be chosen:  period parameters for  determining the period and 
tempering parameters for k-distribution. The parameters  n and  r are selected so that the characteristic 
polynomial is primitive or rnw − is equal to the Mersenne exponent of 19937. The value w is the word 
size of the computer and here it is 32-bit. The value of the last row of matrix A is chosen randomly and 

the values wandrmn    , , are fixed. The tempering parameters must be chosen to satisfy the k-distribution 

test.  k(v)  has  to  be  near  a  multiple  of  n,  )/)(( vrnw − being  its  upper  bound.  Table  I  shows  the  list 

parameters for 32-bit MT

2.3Limitation and Improvement:



One of the limitations of MT is the initialization. If the initial state has too many zeros then the generated 
sequence may also contain many zeros for more than 10000 generations and if the seeds are chosen 
systematically such as 0, 20, 30….. the output sequences will be correlated. The use of 32-bit words for 
initial seeds in MT poses a problem known as birthday paradox. Four years later the inventors corrected 
these  limitations  in  their  implementation  code.  To fix  the  latter  problem they  proposed  an  array  of 
arbitrary length as an initial seed and also manipulated the initializing routine so that any one bit change 
in the initial seed will result in dramatic changes in the initial state.

Another limitation of original MT is not preferred for cryptographic purposes. It is easy to predict the 
next state given the present outputs in MT, because of its linearity and the large output of 19937 bits. To 
overcome this limitation the inventors recommended to have the outputs of MT gone through a hash 
function such as SHA-1. Based on this aspect, a cryptographically secure generator called CryptMt was 
designed. CryptMT is discussed in section 4 of this paper.

                                                            

Parameter Quantity

n 624

w 32

r 31

m 397

a 99083B0DF

u 11

s 7

t 15

l 18

b 9D2C5680

c EFC60000

  

3. SIMD-Oriented Fast Mersenne Twister:

SFMT is the 128-bit variant of MT, which takes the advantage of new features of CPU’s such as parallel 
processing, namely Single Instruction Multiple Data(SIMD) and multi-stage pipelines. It is twice as fast 
as original MT from fact that it uses SIMD operations and a block-generation function, which fills an 
array of 32-bit integers in one call makes it two times faster than original MT if implemented with SIMD. 
It supports various periods from 2607-1 to 2216091-1 with a better dimensional equidistribution property of v-
bit accuracy than MT. 

3.1 SFMT Theories:
SFMT is a LFSR generator based on a recursion over finite binary field. It uses the following recurrence 
equation:

TABLE I 
PARAMETERS OF 32-BIT MT19937



                 DxCxBxAxx nnmkknk 12: −−++ ⊕⊕⊕=

Where A, B, C and D are 128 × 128 matrices over F2 field perform the computations with few SIMD bit-
operations.  The choice of the suffixes n-2 and n-1 are for speed considerations. Reading xk and xk+m from 
memory takes time. SFMT benefits from the fact that it computes xn-2C and xn-1D in the mean time, 
because copies of  xn-2 and  xn-1 are kept in registers. The linear transformations of  A,  B,  C and  D are as 
follows:

1.
kkk xdxAx ⊕<<= )(:

128

The result xkA is the left shift of xk by d(=8) bits ex-ored with xk itself and xk is a single 128-bit integer. 

2. gexBx kmk &)(:
32

>>=+
    

xk+m  is  a  quadruple  of  32-bit  integers,  and each 32-bit  integer is  shifted to right  by  e(=11)  bits.  The 
notation & means the bitwise AND with a constant g, having a value of BFFFFFF6 BFFAFFFF DDFECB7F 
DFFFFFEF in its hexadecimal form.

3. )(:
128

2 dxCx kn >>=−

The result is the right shift of xk , a 128-bit integer by d(=8) bits.

4. )(:
32

1 hxDx kn <<=−

xn-1 is a quadruple of 32-bit integers. The result is obtained by left shift of xk by h(=18) bits.
Figure 2 shows the functioning of SFMT19937 with period a multiple of 219937-1.

                                           

                                              Fig 2. A circuit like description of SFMT19937

The  SFMT  implements  a  scheme  called  block  generation  where  a  w-bit  array  is  filled  up  with 
pseudorandom integers in one call. Block generation is introduced to avoid delay of function call like 
branch conditions. In this scheme an array of w-bit integers of length L is specified, where w 32 or 64 bits 

x0

x122

x154

x155

128 bit

128 
<< 8

32 
>>11

128 
>> 8

32 
<<18

AND
0xBFFFFFF6
0xBFFAFFFF
0xDDFECB7F
0xDFFFFFEF



and  L is chosen such that  wL is a multiple of 128 and no less than  N × 128 (N being 156). Figure 3 
describes the block generation scheme. An internal array of 128-bit integers of length 156 is concatenated 
with the  state  array  using  the  indexing technique.  Then a  user-specified array  of  128-bit  integers  is 
generated by recursion until it fills up the array, and the last 156 128-bit integers are copied back to the 
internal array. 

3.2 Choice of Parameters:

Computation of period and the dimension of equidistribution are the two critical factors in SFMT. The 
choice of parameters must be made such that the calculated period and the dimension of equidistribution 
must satisfy the requirements of the generator. An LFSR with the state transition function  f:  S → S,  S 
being the state space and Xf the characteristic polynomial is considered an automaton. If Xf is primitive,
then  the  period  of  the  state  transition  takes  the  maximal  value  2dim(S)  −1.  To  check  for  primitivity, 
factorization of  this  huge number  is  hard,  so SFMT adopts  a  method called the  reducible  transition 
method (RTM) which avoids integer factorization. The parameters for the recursion of LFSR are chosen 
randomly. All the factors of small degree are from Xf are removed until it has no irreducible factor of 
degree p, or that it has a factor of degree p, where p being the Mersenne exponent. Hence by definition, 
the period of SFMT19937 as a 128-bit integer generator is a nonzero multiple of 219937 − 1, if the 32 MSBs 
of x0 are set to the value 6d736d6d in hexadecimal form. The value of the dimension of equdistribution 
depends on the defect ratio of the system. By definition, the defect ratio up to 1/(P +1) is allowed to claim 
the dimension of equidistribution. If P = 219937 −1, then 1/(P +1) = 2−19937. In the following, the dimension 
of equidistribution allows the defect ratio up to 2−19937.
                  

                  

                                                           

3.3 Limitation and Improvement: 
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Fig 3.  Block-generation scheme



SFMT has a limitation of recovery from 0-excess states. By definition a LFSR with a sparse feedback 
function has the phenomenon: if the bits in the state space contain too many 0’s and few 1’s (called a 0-
excess state), then this tendency continues for considerable generations, since only a small part is changed 
in the state array at one generation, and the change is not well-reflected to the next generation because of 
the sparseness.  A method was introduced in [11] to measure the recovery time from 0-excess states: 
generate k pseudorandom numbers from an initial  state with only one bit  being 1 and discard them. 
Compute the ratio of 1’s among the next 1000 pseudorandom numbers of 32-bit integers and take the 
average of them. The speed of recovery from 0-excess states is a trade-off with the speed of generation.
The number of initializations are much smaller than the generations in typical simulations and hence by 
well-designed initialization, 0-excess initial state can be avoided. A new version of SFMT was introduced 
in 2007 known as Double precision SIMD-oriented Fast Mersenne Twister (DSFMT). It  is the faster 
version of SFMT and also supports various periods from 2607-1 to 2132049-1. It directly generates double 
precision floating point pseudorandom numbers by avoiding the conversion of integer to double(floating 
point).

4 CryptMT:

CryptMT internally uses MT. It is stream cipher which has been submitted to the eSTREAM project of 
the  eCRYPT network.  CryptMT ver.  1  is  the  first  implementation of  MT as  a  cryptographic  secure 
generator. It contains a combination of MT as a mother generator and a multiplicative filter with 32-bit 
memory. It computes the accumulative product of the output of MT, and uses the most significant 8 bits. 
The concatenation of key and IV is passed to the initialization scheme of MT. A variable accum of word 
size is used with its initial value set to 1. This type of filter with memory, based on multiplication and use 
of MSB’s is called as a multiplicative filter.  Then the following set of steps is processed to obtain a 
cryptographically secure sequence of pseudorandom numbers of 8-bit integers. 
(1) Generate one pseudorandom word gen rand by MT.
(2) Multiply it to accum:  accum ← accum × (gen rand | 1).
(3) Output the most significant 8 bits of accum. Go to Step 1.
“|” denotes bitwise-OR operation.
The internal state of the MT is sufficient enough to take care of time-memory-trade-off attacks making 
CryptMT fast. It is 1.5 – 2.0 times faster than the optimized counter-mode AES. The reason that only 
most significant 8-bits of the output are used is because it will be hard to obtain the internal state of MT at 
any time. The most significant bits are safe, since the bit-diffusion pattern of the multiplication is from 
right  to  left,  and  most  significant  bits  gather  information  of  all  the  less  significant  bits  of  the  two 
operands,  accum and the  output  of  MT.  And hence it  is  clear  that  the  security  of  CryptMT largely 
depends on the mother generator MT. Figure 4 shows the block diagram of CryptMT.
One of the advantages of CryptMT over other ciphers is that the key size and IV size are variable and can 
be specified by the users, both up to 2048 bits. And the other is its internal size of 19937+32 bits with a 
period of 219937-1.
The latest version of CryptMT is CryptMT ver. 3. It is proposed to have faster speed than CryptMT by 
using the new features of CPU’s like SIMD and parallel pipelining.
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                                                   Fig 4. Block diagram of CryptMT ver. 1

4.1 CryptMT ver. 3:

It uses a variant of SFMT as its LFSR, and a non-linear multiplicative filter and a booter. Its period is a 
non-zero multiple of 219937-1 and a dimension of equidistribution of at  least 1241. It  also possesses a 
property that,  any bit  of the 8-bit  integer stream generated by CryptMT Ver.3 has a period that  is  a 
multiple  of  219937  -1. It  uses  the  version  of  SFMT  that  generates  128-bit  integers  by  the  following 
recursion:

xN+j : = (xN+j-1 & 128-bit MASK)     (xM+j >> 64 S)     (xM+j[2][0][3][1])      (xj[0][3][2][1])           (2)

The first term is a result of the bit wise AND of  xN+j-1  and a constant 128-bit MASK given by ffdfafdf 
f5dabfff ffdbffff ef7bffff in its hexa-decimal form. The second term is the concatenation of two 64-bit 
integers (xM+j [3][2] >> S) and (xM+j [1][0] >> S), where S = 3, N = 156 and M = 108. Third term is a 
permutation of four 32-bit integers in xM+j, and the last term is a rotation of those in xj. 

The filter is given by:

                  f(y; x) := y × (x|1) mod 232;    g(y) := 8 MSBs of y                                (3)

(x|1) shows that x is set with its LSB as 1.
8 MSBs means 8 most significant bits of y.
By setting the  LSB to 1,  the  multiplication is  restricted to  odd integers  in  the  ring of  232,  avoiding 
degenerations.
Figure 5 shows a block diagram of the combination generator.
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                  Fig. 5 Combined generator = linear generator + filter with memory. 

As CryptMT is a stream cipher the key and IV initialization is the critical part in its functioning. The key 
and IV used for the initialization has to be expanded to a sequence of 128-bit integers, which happens to 
be expensive when the message length is much less than N × 128. Hence the new aspect introduced, is to 
use a smaller PRNG called the Booter.  It  generates a shorter  sequence efficiently. The output  of  the 
booter is simultaneously used to pass to the filter and also fill the state of SFMT. 

Speed is one of the important property that has to be possessed by a stream cipher. Table II shows the 
comparison of number of cycles consumed per byte, by CryptMT and some of the other stream ciphers in 
three different CPU’s. It also shows the number of cycles consumed for Key and IV set-up. 

                                            Table II. Summary from eSTREAM benchmark by Bernstein[18]

Huge State long 
period Linear 

Generator

Memory yi

Pseudorandom 
numbers

Key, 
IV

nonlinear

f g

                                               Core 2 Duo                                 AMD Athlon 64 X2                      Motorola PowerPC G4

 Primitive                Stream       Key setup       IV setup      Stream     Key setup   IV setup     Stream    Key setup   IV setup 

CryptMT3                      2.95              61.41             514.42             4.73           107.00            505.64          9.23          90.71            732.80

HC-256                         3.42               61.31            83805.33          4.26           105.11            88726.20      6.17          87.71            71392.00

SOSEMANUK             3.67               848.51           624.99              4.41           1183.69          474.13         6.17         1797.03          590.47

SNOW-2.0                    4.03              90.42              469.02              4.86           110.70            567.00         7.06          107.81           719.38

Salsa20                          7.12             19.71              14.62                 7.64            61.22             51.09            4.24         69.81             42.12

Dragon                          7.61              121.42            1241.67             8.11          120.21           1469.43         8.39         134.60          1567.54

AES-CTR                     19.08            625.44             18.90                20.42         905.65            50.00           34.81       305.81            34.11



It  can be  seen  that,  CryptMT3 is  the  fastest  in  generation in  Intel  Core  2 Duo CPU,  reflecting the 
efficiency  of  SIMD operations.  It  is  slower  in  Motorola  PowerPC due  to  the  lack  of  32-bit  integer 
multiplication in Motorola.

4.2 Advantages and Shortcomings:

CryptMT ver. 3 has many advantages over many other stream ciphers proposed.  It is 1.8 times faster than 
the first version. It has a variable Key and IV size from 128-bits to 2048-bits. The size of the state and the 
length of the period make time-memory-trade-off attacks infeasible, and the high non-linearity introduced 
by the integer multiplication would make any kind of algebraic attacks impossible. It has no look-up table 
and hence has resistance to cache timing attacks.

Despite of all the above mentioned advantages CryptMT ver. 3 is not selected for eSTREAM portfolio. It 
is not because of the defect of CryptMT. The concern is that the security of the cipher, in particular the 
non-linear filter component is not yet well understood and insufficient confidence in the design. 

5. Conclusion:
 
Mersenne  Twister  is  theoretically  proven  to  be  a  good  PRNG,  with  a  long  period  and  high 
equidistribution. It is extensively used in the fields of simulation and modulation. The defects found by 
the users have been corrected by the inventors. MT has been upgraded, to use and to be compatible with 
the newly emerging technologies of CPU’s such as SIMD and parallel pipelines in its version of SFMT. 
SFMT is  the  much faster  version of  original  MT,  with a  wide  range  of  variable  periods  and better 
dimension of equidistribution. It has a good initialization scheme to overcome the limitations of original 
MT  and  has  been  theoretically  proven.  MT  is  also  been  upgraded  to  be  cryptographically  secure. 
CryptMT is the cryptographic secure version of MT. CryptMT ver. 1 uses MT as its mother generator and 
a multiplicative filter to generate pseudorandom numbers. It takes variable user specified values for key 
and IV. It is resistant to memory-trade-off-attacks and faster compared to other stream ciphers. CryptMT 
ver.  1  has  been  improved for  faster  speed  using SFMT as  its  mother  generator  in  its  latest  version 
CryptMT ver. 3. It is a 128-bit version of CryptMT ver.1 and also faster. It uses a component called 
booter in addition to the multiplicative filter, for the expansion of Key and IV to 128-bits. CryptMT is 
new and has not been widely used or truly evaluated it could be a good candidate for future researches 
and evaluations.



Appendix:

The inversive-decimation method:

The  standard  method  of  testing  if  a  linear  feedback  shift  register  has  maximum  period  is  by  first 
determining that it does, in fact, return to its initial state at the end of that period, and then establishing 
that it does not return to its initial state after any shorter period which is not a factor of the maximum 
period. The maximum period of an LFSR is always one less than a power of two.

A prime number is a number which has no factors, except, of course, one (so one must also test that the 
generator actually changes state after a single step).A prime number which is one less than a power of two 
is a Mersenne prime; hence, a shift register whose maximum period is a Mersenne prime is easier to test 
for maximum period. It is not so much the extra tests that are the problem as finding when to perform 
them by factoring the period when it is not a prime.

The same basic algorithm is used to run an LFSR for an enormous number of iterations as is used to raise 
numbers to large exponents when performing RSA; instead of thousands of repeated multiplications by 
the characteristic polynomial of the shift register, that polynomial can be squared, and the result squared, 
repeatedly.

The  inversive  decimation method  achieves  a  modest,  but  important,  increase  in  speed  over  the 
conventional method of testing an LFSR for maximum period; the time remains proportional to the length 
of the LFSR squared, but a factor proportional to the number of active taps on the LFSR is eliminated. 
This was sufficient to make testing the Mersenne Twister for maximum period practical. An essential step 
in this method is the ability to invert the operation of the LFSR; given a stream of bits produced by the 
shift register, it is necessary to be able to determine the state which gave rise to it. To make this easy, the 
bit which determines if the "magic number" A is XORed to the 32 bits of the array being processed is 
used as the output; thus, by knowing this output, one knows a very important piece of what is going on 
during the step that produced it. Then, to run the shift register backwards, we begin by noting that the 
bottom row of bits will be output without modification. The bit at position M in that row will then modify 
the last bit in that row as it moves to the next higher row, while the bits in the output sequence will  
modify what other bits in the shift register will need to have been, through applying the XOR vector A.

The truly bizarre step in this algorithm is that, instead of squaring the polynomial of the shift register, one 
merely needs to take every second bit  in its output sequence, and then obtain the state which would 
generate those bits. This unusual result is said to be a consequence of the fact that only XOR, rather than 
modular arithmetic with a higher modulus, is used. To provide an example of this astounding property of 
binary LSFRs, we see the following:

0000001 1 1
1000000 0
0100000 0 0
0010000 0
0001000 0 0
0000100 0
0000010 1 1
1000001 1



1100000 0 0
0110000 0
0011000 0 0
0001100 0
0000110 1 1
1000011 0
0100001 1   1001001 1
1010000 0
0101000 0   1100100 0
0010100 0
0001010 1   0110010 1
1000101 1
1100010 1   1011001 1
1110001 1
1111000 0   1101100 0
0111100 0
0011110 1   0110110 1
1001111 0
0100111 0   1011011 0
0010011 0
0001001 1   0101101 1
1000100 0
0100010 1   1010110 1

Starting the generator from 0000001, we then take seven bits of the output of the 'twice as fast' generator 
to derive the contents which the same generator would need to produce that sequence, and indeed the 
sequences  continue  to  correspond  with  the  same  polynomial.  Squaring  the  sequence  instead  of  the 
recurrence itself is what removes the dependence on the number of taps.

(From the paper: The Mersenne Twister. http://www.quadibloc.com/crypto/co4814.htm)
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	Random number generators are devices that generate a series of numbers or some kind of symbols that appear random. RNG’S are used for a variety of purposes such as simulating, modeling complex phenomena, cryptography and of course ever popular for games and gambling. There are two main approaches to generating random numbers, Pseudo Random Number Generators(PRNG) and True Random Number Generators(TRNG). TRNG extracts randomness from physical phenomena like atmospheric noise, little variations in mouse movements or the time between mouse strokes and feed then in to a computer. They are mainly used in games and gambling where genuine randomness is required, as they are to slow for use in statistical and cryptographic applications. In comparison to TRNG, PRNG’s are algorithms using some kind of mathematical formula or pre-calculated tables to generate a sequence of numbers that appear random. The sequence of numbers produced is not truly random. It is completely determined by an arbitrary initial state called seed state. If a PRNG's internal state contains n bits, its period can be no longer than 2n results. PRNG’s are efficient, deterministic and periodic which makes them suitable for applications where many numbers are required and where it is useful that the same sequence can be replayed easily such as simulation and modeling. A PRNG should posses some requirements to be considered as a good PRNG, such as uniformity, independence, long period, proper initialization, unpredictability, efficiency and portability. The quality of randomness of a PRNG is measured by subjecting it to a set of statistical testes called diehard tests. Every cryptographically secure PRNG should satisfy two basic requirements, next-bit test and state compromise extensions. This paper discusses Mersenne Twister(MT) which is a PRNG and which satisfies all the requirements to be certified as a good PRNG. MT is proposed in 1997 by Makoto Matsumoto and Takuji Nishimura. It provides for fast generation of very high-quality pseudorandom numbers with a long period length which is chosen to be a Mersenne prime, high order of dimensional equidistribution, speed and reliability. Later many different variants of MT has been introduced for better speed and security for cryptographic uses. Two of the variants this paper talks about are SIMD-Oriented Fast Mersenne Twister(SFMT) and cryptographically secure CryptMT. SFMT is introduced by Mutsuo Saito and Makoto Matsumoto in 2006. It is typically a Linear Feedback Shift Register(LFSR) which generates a 128-bit pseudorandom integer at one step. SFMT is introduced to use the new features of CPU’s such as Single Instruction Multiple Data (SIMD) operations (i.e., 128bit operations) and multi-stage pipelines. CryptMT is a stream cipher which uses MT and is considered to be cryptographically secure. It was developed by Makoto Matsumoto, Hagita Mariko, Takuji Nishimura and Mutsuo Saito in 2005. CryptMT ver. 3 is the latest version. In section 2.1 of this paper we discuss the theories behind MT and its algorithm. Section 2.2 discusses the choice of parameters for MT also presents a table showing values for different parameters of 32-bit MT. Section 2.3 talks about the limitations of MT such as initialization and security, and also the modification made to overcome the limitations. Section 3 introduces SFMT and 3.1 shows the theories and algorithms for SFMT, and also contains two figures of a circuit like description of SFMT19937 and block generation scheme. Next we talk about the choice of parameters of SFMT for the calculation of period and dimension of equidistribution in section 3.2. Then in 3.3 its limitation such as recovery from 0-excess state and the improvements made are discussed. Section 4 introduces CryptMT, we discuss its first version, the theories behind it and presents a block diagram of CryptMT ver. 1. Section 4.1 talks about its latest version CryptMT ver. 3, its theories and contains a figure showing combined generator. It also shows a table containing the parameters for the speed comparison of CryptMT with other stream ciphers. Then its advantages and shortcomings are discussed in section 4.2. The appendix of the paper shows the inversive-decimation method for primitivity testing. 

