
Mersenne Twister – A Pseudo Random Number Generator
and its Variants

Archana Jagannatam

Abstract:

Random number generators(RNG) are widely being used in number of applications, particularly
simulation and cryptography. They are a critical part of many cryptographic systems such as key
generation, initialization vectors, message padding, nonces and many more. This paper discusses about
the Mersenne Twister(MT), a pseudo random number generator(PRNG) and its variants. It mainly
emphasizes on two of its variants. SIMD-Oriented Fast Mersenne Twister(SFMT) which is a 128-bit
PRNG analogous to MT making full use of its features. And the cryptographically secure CryptMT,
considered to be one of the fastest stream ciphers on a CPU with SIMD operations. It also briefly
discusses the theories and the choice of parameters used in the algorithms. The requirements for a PRNG
to be certified as a good and cryptographically secure PRNG will be presented.

1. Introduction:

Random number generators are devices that generate a series of numbers or some kind of symbols that
appear random. RNG’S are used for a variety of purposes such as simulating, modeling complex
phenomena, cryptography and of course ever popular for games and gambling. There are two main
approaches to generating random numbers, Pseudo Random Number Generators(PRNG) and True
Random Number Generators(TRNG). TRNG extracts randomness from physical phenomena like
atmospheric noise, little variations in mouse movements or the time between mouse strokes and feed then
in to a computer. They are mainly used in games and gambling where genuine randomness is required, as
they are to slow for use in statistical and cryptographic applications. In comparison to TRNG, PRNG’s
are algorithms using some kind of mathematical formula or pre-calculated tables to generate a sequence
of numbers that appear random. The sequence of numbers produced is not truly random. It is completely
determined by an arbitrary initial state called seed state. If a PRNG's internal state contains n bits, its
period can be no longer than 2n results. PRNG’s are efficient, deterministic and periodic which makes
them suitable for applications where many numbers are required and where it is useful that the same
sequence can be replayed easily such as simulation and modeling. A PRNG should posses some
requirements to be considered as a good PRNG, such as uniformity, independence, long period, proper
initialization, unpredictability, efficiency and portability. The quality of randomness of a PRNG is
measured by subjecting it to a set of statistical testes called diehard tests. Every cryptographically secure
PRNG should satisfy two basic requirements, next-bit test and state compromise extensions. This paper
discusses Mersenne Twister(MT) which is a PRNG and which satisfies all the requirements to be certified
as a good PRNG. MT is proposed in 1997 by Makoto Matsumoto and Takuji Nishimura. It provides
for fast generation of very high-quality pseudorandom numbers with a long period length which is chosen
to be a Mersenne prime, high order of dimensional equidistribution, speed and reliability. Later many

http://en.wikipedia.org/w/index.php?title=Takuji_Nishimura&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Makoto_Matsumoto&action=edit&redlink=1

different variants of MT has been introduced for better speed and security for cryptographic uses. Two of
the variants this paper talks about are SIMD-Oriented Fast Mersenne Twister(SFMT) and
cryptographically secure CryptMT. SFMT is introduced by Mutsuo Saito and Makoto Matsumoto in
2006. It is typically a Linear Feedback Shift Register(LFSR) which generates a 128-bit pseudorandom
integer at one step. SFMT is introduced to use the new features of CPU’s such as Single Instruction

Multiple Data (SIMD) operations (i.e., 128bit operations) and multi-stage pipelines. CryptMT is a
stream cipher which uses MT and is considered to be cryptographically secure. It was developed
by Makoto Matsumoto, Hagita Mariko, Takuji Nishimura and Mutsuo Saito in 2005. CryptMT ver. 3
is the latest version. In section 2.1 of this paper we discuss the theories behind MT and its algorithm.
Section 2.2 discusses the choice of parameters for MT also presents a table showing values for different
parameters of 32-bit MT. Section 2.3 talks about the limitations of MT such as initialization and security,
and also the modification made to overcome the limitations. Section 3 introduces SFMT and 3.1 shows
the theories and algorithms for SFMT, and also contains two figures of a circuit like description of
SFMT19937 and block generation scheme. Next we talk about the choice of parameters of SFMT for the
calculation of period and dimension of equidistribution in section 3.2. Then in 3.3 its limitation such as
recovery from 0-excess state and the improvements made are discussed. Section 4 introduces CryptMT,
we discuss its first version, the theories behind it and presents a block diagram of CryptMT ver. 1. Section
4.1 talks about its latest version CryptMT ver. 3, its theories and contains a figure showing combined
generator. It also shows a table containing the parameters for the speed comparison of CryptMT with
other stream ciphers. Then its advantages and shortcomings are discussed in section 4.2. The appendix of
the paper shows the inversive-decimation method for primitivity testing.

2. Mersenne Twister:

Mersenne Twister, the name derives from the fact that it uses a period which is a Mersenne prime. It is a
modification of a Twisted Generalized Feedback Shift Register(TGFSR) which takes in an incomplete
array to realize a Mersenne prime as its period and uses an inversive-decimation method for primitivity
testing of a characteristic polynomial of a linear recurrence with a computational complexity of O(p2)
where p is the degree of the polynomial. MT has a long period of 219937-1and a 623 dimensional
equidistribution up to 32-bit accuracy, generating an output which is free of long-term correlations. It is
considered to be fast, as it avoids multiplications and divisions and uses the advantages of cashes and
pipelines and efficient in memory use as only 624 words needed for the working area.

2.1-MT Theories:

MT generates a sequence of word vectors considered as uniform pseudorandom integers between 0 and
2w-1, where w is the dimension of row vectors over the finite binary field F2. It is based on the following
recurring equation:

(1))|(: 1 Axxxx l
k

u
kmknk +++ ⊕=

http://en.wikipedia.org/w/index.php?title=Takuji_Nishimura&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Makoto_Matsumoto&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Makoto_Matsumoto&action=edit&redlink=1

Here:

Integer n is the degree of recurrence.
Integer m, 1≤ m ≤ n.
A is a constant w × w matrix chosen to ease the matrix multiplication shown below



























=

−− 021

1

0

100

10

aaa

A

ww 





 k is 0,1,2……
xn is a row vector of a word size w which is generated with k =0.
x0, x1, …., xn-1 are initial seeds.

l
kx 1+ are lower or rightmost r bits of 1+kx .

u
kx are upper or leftmost w – r bits of kx .

⊕ denotes a bitwise XOR.
| denotes a concatenating operation.

(u
kx | l

kx 1+) is the concatenation vector obtained by concatenating the upper w - r bits of kx and the lower

r bits of l
kx 1+ in the order. Then the matrix A is multiplied from the right by this vector. Finally bitwise

addition ⊕ is performed to add mkx + , and then generate the next vector nkx + . The multiplication of (u
kx

| l
kx 1+)A can be performed using simple bit shift operations as shown below.





=⊕>>
=>>

=
1)1(

0 1

0

0

xifax

xifx
xA

Where x is),...,,(021 xxx ww −− ,

a is the bottom row vector of A and

‘ >>’ denotes bitwise right shifts.

Thus the calculation of the recurrence (1) is realized with bitshift, bitwise EXCLUSIVE-OR, bitwise OR,

and bitwise AND operations.

MT has (n-1) dimensional equidistribution, which is a good characteristic of PRNG’s. k-distribution tests
are considered to be a good way to measure the randomness of a PRNG. From the definition, a periodic

sequence 110 ,...,,: −= pxxxX with period p of w -bit integers is said to have k-dimensional equidistribution

property if it has the maximum period and if any kw -bit pattern equally likely occurs as k-tuple

),...,,(11 −++ klll xxx for ,...2,1,0=l . All the overlapping k-tuples appearing in one period, then the output k-

tuples are uniformly distributed over the set of possible output numbers. A largest value of such k is
called the dimension of equidistribution. To improve the k-distribution to v-bit accuracy of the raw
sequences generated from the recursion (1), a method called tempering is used to produce the final pseudo

random number. Each generated word is multiplied by a w × w invertible matrix T from right yielding a

result of tempering matrix x into xTz =: . The matrix T is chosen such that binary operations can be
performed as:

)(: uxxy >>⊕=

) &)((: bsyyy <<⊕=

) &)((: ctyyy <<⊕=

)(: lyyz >>⊕=

where landts,u , are tempering bit shifts.

b and c are tempering bitmasks.
‘<<’ denotes a bitwise left shift and
‘&’ denotes a bitwise AND operation.

MT works in two parts: recurring and tempering. The recurring is a form of Linear Feedback Shift
Register(LFSR) in which each bit of the state derives from the recursion and each bit of the output also
satisfies the recurring of the bits forming the states. Figure 1 shows a high level block diagram of MT.

 ……………..

The shift register is composed of 624 elements and a total of 19937 cells. Each element has a 32-bit
length except for the first element which has only 1bit due to the bit-discarding. Following steps shows
the working of an MT algorithm:

Step 0. Create bitmask for upper and lower bits

 ,0.....01.....1
1

ee
rw

u
−

← bit mask of upper w-r bits,

 ,1.....10.....0
rrw

ll 
−

← bit mask of lower r bits,

,..... 0121 aaaaa ww −−← the last row of matrix A.

LFSR

19937-bit output

 0 1 622 623

32-bit 32-bit 32-bit 32-bit

Tempering

Fig 1. Block diagram of MT

Step 1. Initialize the x array with seeds of nonzero values.

[] [] []1 ,......,1 ,0 −nxxx

Step 2. Compute)|(1
l
i

u
i xx + , where the upper bits of []ix

are concatenated with the lower bits of []1+ix

[] []) mod)1(() (llANDnixORuANDixy +←

Step 3. Calculate the next state

[] []




=
=

⊕>>⊕+←
1

0 0
)1(mod)(

yofLSBifa

yofLSBif
ynmixix

Step 4. Multiply []ix by the tempering matrix T for better equidistribution

[]ixy ←

)(uyyy >>⊕←

) &)((bsyyy <<⊕←

) &)((ctyyy <<⊕←

)(lyyz >>⊕←

output y

Step 5. Increment i by 1

nii mod)1(+←

Step 6. Repeat the process
Go to step 2.

2.2 Choice of parameters:

The choice of parameters for MT are carefully made so as to satisfy the above mentioned properties.
There are two classes of parameters to be chosen: period parameters for determining the period and
tempering parameters for k-distribution. The parameters n and r are selected so that the characteristic
polynomial is primitive or rnw − is equal to the Mersenne exponent of 19937. The value w is the word
size of the computer and here it is 32-bit. The value of the last row of matrix A is chosen randomly and

the values wandrmn , , are fixed. The tempering parameters must be chosen to satisfy the k-distribution

test. k(v) has to be near a multiple of n,)/)((vrnw − being its upper bound. Table I shows the list

parameters for 32-bit MT

2.3Limitation and Improvement:

One of the limitations of MT is the initialization. If the initial state has too many zeros then the generated
sequence may also contain many zeros for more than 10000 generations and if the seeds are chosen
systematically such as 0, 20, 30….. the output sequences will be correlated. The use of 32-bit words for
initial seeds in MT poses a problem known as birthday paradox. Four years later the inventors corrected
these limitations in their implementation code. To fix the latter problem they proposed an array of
arbitrary length as an initial seed and also manipulated the initializing routine so that any one bit change
in the initial seed will result in dramatic changes in the initial state.

Another limitation of original MT is not preferred for cryptographic purposes. It is easy to predict the
next state given the present outputs in MT, because of its linearity and the large output of 19937 bits. To
overcome this limitation the inventors recommended to have the outputs of MT gone through a hash
function such as SHA-1. Based on this aspect, a cryptographically secure generator called CryptMt was
designed. CryptMT is discussed in section 4 of this paper.

Parameter Quantity

n 624

w 32

r 31

m 397

a 99083B0DF

u 11

s 7

t 15

l 18

b 9D2C5680

c EFC60000

3. SIMD-Oriented Fast Mersenne Twister:

SFMT is the 128-bit variant of MT, which takes the advantage of new features of CPU’s such as parallel
processing, namely Single Instruction Multiple Data(SIMD) and multi-stage pipelines. It is twice as fast
as original MT from fact that it uses SIMD operations and a block-generation function, which fills an
array of 32-bit integers in one call makes it two times faster than original MT if implemented with SIMD.
It supports various periods from 2607-1 to 2216091-1 with a better dimensional equidistribution property of v-
bit accuracy than MT.

3.1 SFMT Theories:
SFMT is a LFSR generator based on a recursion over finite binary field. It uses the following recurrence
equation:

TABLE I
PARAMETERS OF 32-BIT MT19937

 DxCxBxAxx nnmkknk 12: −−++ ⊕⊕⊕=

Where A, B, C and D are 128 × 128 matrices over F2 field perform the computations with few SIMD bit-
operations. The choice of the suffixes n-2 and n-1 are for speed considerations. Reading xk and xk+m from
memory takes time. SFMT benefits from the fact that it computes xn-2C and xn-1D in the mean time,
because copies of xn-2 and xn-1 are kept in registers. The linear transformations of A, B, C and D are as
follows:

1.
kkk xdxAx ⊕<<=)(:

128

The result xkA is the left shift of xk by d(=8) bits ex-ored with xk itself and xk is a single 128-bit integer.

2. gexBx kmk &)(:
32

>>=+

xk+m is a quadruple of 32-bit integers, and each 32-bit integer is shifted to right by e(=11) bits. The
notation & means the bitwise AND with a constant g, having a value of BFFFFFF6 BFFAFFFF DDFECB7F
DFFFFFEF in its hexadecimal form.

3.)(:
128

2 dxCx kn >>=−

The result is the right shift of xk , a 128-bit integer by d(=8) bits.

4.)(:
32

1 hxDx kn <<=−

xn-1 is a quadruple of 32-bit integers. The result is obtained by left shift of xk by h(=18) bits.
Figure 2 shows the functioning of SFMT19937 with period a multiple of 219937-1.

 Fig 2. A circuit like description of SFMT19937

The SFMT implements a scheme called block generation where a w-bit array is filled up with
pseudorandom integers in one call. Block generation is introduced to avoid delay of function call like
branch conditions. In this scheme an array of w-bit integers of length L is specified, where w 32 or 64 bits

x0

x122

x154

x155

128 bit

128
<< 8

32
>>11

128
>> 8

32
<<18

AND
0xBFFFFFF6
0xBFFAFFFF
0xDDFECB7F
0xDFFFFFEF

and L is chosen such that wL is a multiple of 128 and no less than N × 128 (N being 156). Figure 3
describes the block generation scheme. An internal array of 128-bit integers of length 156 is concatenated
with the state array using the indexing technique. Then a user-specified array of 128-bit integers is
generated by recursion until it fills up the array, and the last 156 128-bit integers are copied back to the
internal array.

3.2 Choice of Parameters:

Computation of period and the dimension of equidistribution are the two critical factors in SFMT. The
choice of parameters must be made such that the calculated period and the dimension of equidistribution
must satisfy the requirements of the generator. An LFSR with the state transition function f: S → S, S
being the state space and Xf the characteristic polynomial is considered an automaton. If Xf is primitive,
then the period of the state transition takes the maximal value 2dim(S) −1. To check for primitivity,
factorization of this huge number is hard, so SFMT adopts a method called the reducible transition
method (RTM) which avoids integer factorization. The parameters for the recursion of LFSR are chosen
randomly. All the factors of small degree are from Xf are removed until it has no irreducible factor of
degree p, or that it has a factor of degree p, where p being the Mersenne exponent. Hence by definition,
the period of SFMT19937 as a 128-bit integer generator is a nonzero multiple of 219937 − 1, if the 32 MSBs
of x0 are set to the value 6d736d6d in hexadecimal form. The value of the dimension of equdistribution
depends on the defect ratio of the system. By definition, the defect ratio up to 1/(P +1) is allowed to claim
the dimension of equidistribution. If P = 219937 −1, then 1/(P +1) = 2−19937. In the following, the dimension
of equidistribution allows the defect ratio up to 2−19937.

3.3 Limitation and Improvement:

128-bit

156

156

L

Internal
array

User-
specified
array

Copied
back to
internal
array

g

g

Fig 3. Block-generation scheme

SFMT has a limitation of recovery from 0-excess states. By definition a LFSR with a sparse feedback
function has the phenomenon: if the bits in the state space contain too many 0’s and few 1’s (called a 0-
excess state), then this tendency continues for considerable generations, since only a small part is changed
in the state array at one generation, and the change is not well-reflected to the next generation because of
the sparseness. A method was introduced in [11] to measure the recovery time from 0-excess states:
generate k pseudorandom numbers from an initial state with only one bit being 1 and discard them.
Compute the ratio of 1’s among the next 1000 pseudorandom numbers of 32-bit integers and take the
average of them. The speed of recovery from 0-excess states is a trade-off with the speed of generation.
The number of initializations are much smaller than the generations in typical simulations and hence by
well-designed initialization, 0-excess initial state can be avoided. A new version of SFMT was introduced
in 2007 known as Double precision SIMD-oriented Fast Mersenne Twister (DSFMT). It is the faster
version of SFMT and also supports various periods from 2607-1 to 2132049-1. It directly generates double
precision floating point pseudorandom numbers by avoiding the conversion of integer to double(floating
point).

4 CryptMT:

CryptMT internally uses MT. It is stream cipher which has been submitted to the eSTREAM project of
the eCRYPT network. CryptMT ver. 1 is the first implementation of MT as a cryptographic secure
generator. It contains a combination of MT as a mother generator and a multiplicative filter with 32-bit
memory. It computes the accumulative product of the output of MT, and uses the most significant 8 bits.
The concatenation of key and IV is passed to the initialization scheme of MT. A variable accum of word
size is used with its initial value set to 1. This type of filter with memory, based on multiplication and use
of MSB’s is called as a multiplicative filter. Then the following set of steps is processed to obtain a
cryptographically secure sequence of pseudorandom numbers of 8-bit integers.
(1) Generate one pseudorandom word gen rand by MT.
(2) Multiply it to accum: accum ← accum × (gen rand | 1).
(3) Output the most significant 8 bits of accum. Go to Step 1.
“|” denotes bitwise-OR operation.
The internal state of the MT is sufficient enough to take care of time-memory-trade-off attacks making
CryptMT fast. It is 1.5 – 2.0 times faster than the optimized counter-mode AES. The reason that only
most significant 8-bits of the output are used is because it will be hard to obtain the internal state of MT at
any time. The most significant bits are safe, since the bit-diffusion pattern of the multiplication is from
right to left, and most significant bits gather information of all the less significant bits of the two
operands, accum and the output of MT. And hence it is clear that the security of CryptMT largely
depends on the mother generator MT. Figure 4 shows the block diagram of CryptMT.
One of the advantages of CryptMT over other ciphers is that the key size and IV size are variable and can
be specified by the users, both up to 2048 bits. And the other is its internal size of 19937+32 bits with a
period of 219937-1.
The latest version of CryptMT is CryptMT ver. 3. It is proposed to have faster speed than CryptMT by
using the new features of CPU’s like SIMD and parallel pipelining.

http://en.wikipedia.org/wiki/ECRYPT
http://en.wikipedia.org/wiki/ESTREAM

 Fig 4. Block diagram of CryptMT ver. 1

4.1 CryptMT ver. 3:

It uses a variant of SFMT as its LFSR, and a non-linear multiplicative filter and a booter. Its period is a
non-zero multiple of 219937-1 and a dimension of equidistribution of at least 1241. It also possesses a
property that, any bit of the 8-bit integer stream generated by CryptMT Ver.3 has a period that is a
multiple of 219937 -1. It uses the version of SFMT that generates 128-bit integers by the following
recursion:

xN+j : = (xN+j-1 & 128-bit MASK) (xM+j >> 64 S) (xM+j[2][0][3][1]) (xj[0][3][2][1]) (2)

The first term is a result of the bit wise AND of xN+j-1 and a constant 128-bit MASK given by ffdfafdf
f5dabfff ffdbffff ef7bffff in its hexa-decimal form. The second term is the concatenation of two 64-bit
integers (xM+j [3][2] >> S) and (xM+j [1][0] >> S), where S = 3, N = 156 and M = 108. Third term is a
permutation of four 32-bit integers in xM+j, and the last term is a rotation of those in xj.

The filter is given by:

 f(y; x) := y × (x|1) mod 232; g(y) := 8 MSBs of y (3)

(x|1) shows that x is set with its LSB as 1.
8 MSBs means 8 most significant bits of y.
By setting the LSB to 1, the multiplication is restricted to odd integers in the ring of 232, avoiding
degenerations.
Figure 5 shows a block diagram of the combination generator.

MT Make
odd

multipli
cation

8-bits accum

Secure Pseudorandom
8-bit integers

 xi

 Fig. 5 Combined generator = linear generator + filter with memory.

As CryptMT is a stream cipher the key and IV initialization is the critical part in its functioning. The key
and IV used for the initialization has to be expanded to a sequence of 128-bit integers, which happens to
be expensive when the message length is much less than N × 128. Hence the new aspect introduced, is to
use a smaller PRNG called the Booter. It generates a shorter sequence efficiently. The output of the
booter is simultaneously used to pass to the filter and also fill the state of SFMT.

Speed is one of the important property that has to be possessed by a stream cipher. Table II shows the
comparison of number of cycles consumed per byte, by CryptMT and some of the other stream ciphers in
three different CPU’s. It also shows the number of cycles consumed for Key and IV set-up.

 Table II. Summary from eSTREAM benchmark by Bernstein[18]

Huge State long
period Linear

Generator

Memory yi

Pseudorandom
numbers

Key,
IV

nonlinear

f g

 Core 2 Duo AMD Athlon 64 X2 Motorola PowerPC G4

 Primitive Stream Key setup IV setup Stream Key setup IV setup Stream Key setup IV setup

CryptMT3 2.95 61.41 514.42 4.73 107.00 505.64 9.23 90.71 732.80

HC-256 3.42 61.31 83805.33 4.26 105.11 88726.20 6.17 87.71 71392.00

SOSEMANUK 3.67 848.51 624.99 4.41 1183.69 474.13 6.17 1797.03 590.47

SNOW-2.0 4.03 90.42 469.02 4.86 110.70 567.00 7.06 107.81 719.38

Salsa20 7.12 19.71 14.62 7.64 61.22 51.09 4.24 69.81 42.12

Dragon 7.61 121.42 1241.67 8.11 120.21 1469.43 8.39 134.60 1567.54

AES-CTR 19.08 625.44 18.90 20.42 905.65 50.00 34.81 305.81 34.11

It can be seen that, CryptMT3 is the fastest in generation in Intel Core 2 Duo CPU, reflecting the
efficiency of SIMD operations. It is slower in Motorola PowerPC due to the lack of 32-bit integer
multiplication in Motorola.

4.2 Advantages and Shortcomings:

CryptMT ver. 3 has many advantages over many other stream ciphers proposed. It is 1.8 times faster than
the first version. It has a variable Key and IV size from 128-bits to 2048-bits. The size of the state and the
length of the period make time-memory-trade-off attacks infeasible, and the high non-linearity introduced
by the integer multiplication would make any kind of algebraic attacks impossible. It has no look-up table
and hence has resistance to cache timing attacks.

Despite of all the above mentioned advantages CryptMT ver. 3 is not selected for eSTREAM portfolio. It
is not because of the defect of CryptMT. The concern is that the security of the cipher, in particular the
non-linear filter component is not yet well understood and insufficient confidence in the design.

5. Conclusion:

Mersenne Twister is theoretically proven to be a good PRNG, with a long period and high
equidistribution. It is extensively used in the fields of simulation and modulation. The defects found by
the users have been corrected by the inventors. MT has been upgraded, to use and to be compatible with
the newly emerging technologies of CPU’s such as SIMD and parallel pipelines in its version of SFMT.
SFMT is the much faster version of original MT, with a wide range of variable periods and better
dimension of equidistribution. It has a good initialization scheme to overcome the limitations of original
MT and has been theoretically proven. MT is also been upgraded to be cryptographically secure.
CryptMT is the cryptographic secure version of MT. CryptMT ver. 1 uses MT as its mother generator and
a multiplicative filter to generate pseudorandom numbers. It takes variable user specified values for key
and IV. It is resistant to memory-trade-off-attacks and faster compared to other stream ciphers. CryptMT
ver. 1 has been improved for faster speed using SFMT as its mother generator in its latest version
CryptMT ver. 3. It is a 128-bit version of CryptMT ver.1 and also faster. It uses a component called
booter in addition to the multiplicative filter, for the expansion of Key and IV to 128-bits. CryptMT is
new and has not been widely used or truly evaluated it could be a good candidate for future researches
and evaluations.

Appendix:

The inversive-decimation method:

The standard method of testing if a linear feedback shift register has maximum period is by first
determining that it does, in fact, return to its initial state at the end of that period, and then establishing
that it does not return to its initial state after any shorter period which is not a factor of the maximum
period. The maximum period of an LFSR is always one less than a power of two.

A prime number is a number which has no factors, except, of course, one (so one must also test that the
generator actually changes state after a single step).A prime number which is one less than a power of two
is a Mersenne prime; hence, a shift register whose maximum period is a Mersenne prime is easier to test
for maximum period. It is not so much the extra tests that are the problem as finding when to perform
them by factoring the period when it is not a prime.

The same basic algorithm is used to run an LFSR for an enormous number of iterations as is used to raise
numbers to large exponents when performing RSA; instead of thousands of repeated multiplications by
the characteristic polynomial of the shift register, that polynomial can be squared, and the result squared,
repeatedly.

The inversive decimation method achieves a modest, but important, increase in speed over the
conventional method of testing an LFSR for maximum period; the time remains proportional to the length
of the LFSR squared, but a factor proportional to the number of active taps on the LFSR is eliminated.
This was sufficient to make testing the Mersenne Twister for maximum period practical. An essential step
in this method is the ability to invert the operation of the LFSR; given a stream of bits produced by the
shift register, it is necessary to be able to determine the state which gave rise to it. To make this easy, the
bit which determines if the "magic number" A is XORed to the 32 bits of the array being processed is
used as the output; thus, by knowing this output, one knows a very important piece of what is going on
during the step that produced it. Then, to run the shift register backwards, we begin by noting that the
bottom row of bits will be output without modification. The bit at position M in that row will then modify
the last bit in that row as it moves to the next higher row, while the bits in the output sequence will
modify what other bits in the shift register will need to have been, through applying the XOR vector A.

The truly bizarre step in this algorithm is that, instead of squaring the polynomial of the shift register, one
merely needs to take every second bit in its output sequence, and then obtain the state which would
generate those bits. This unusual result is said to be a consequence of the fact that only XOR, rather than
modular arithmetic with a higher modulus, is used. To provide an example of this astounding property of
binary LSFRs, we see the following:

0000001 1 1
1000000 0
0100000 0 0
0010000 0
0001000 0 0
0000100 0
0000010 1 1
1000001 1

1100000 0 0
0110000 0
0011000 0 0
0001100 0
0000110 1 1
1000011 0
0100001 1 1001001 1
1010000 0
0101000 0 1100100 0
0010100 0
0001010 1 0110010 1
1000101 1
1100010 1 1011001 1
1110001 1
1111000 0 1101100 0
0111100 0
0011110 1 0110110 1
1001111 0
0100111 0 1011011 0
0010011 0
0001001 1 0101101 1
1000100 0
0100010 1 1010110 1

Starting the generator from 0000001, we then take seven bits of the output of the 'twice as fast' generator
to derive the contents which the same generator would need to produce that sequence, and indeed the
sequences continue to correspond with the same polynomial. Squaring the sequence instead of the
recurrence itself is what removes the dependence on the number of taps.

(From the paper: The Mersenne Twister. http://www.quadibloc.com/crypto/co4814.htm)

References:

[1] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-dimensionally equidistributed uniform
 pseudorandom number generator” ACM Trans. on Modeling and Computer Simulation, vol. 8, no. 1,
 pp. 3-30, Jan. 1998.
[2] M. Matsumoto and Y. Kurita, “Twisted GFSR generators” ACM Trans. On Modeling and Computer
 Simulation, vol. 2, pp. 179-194, 1992.
[3] Mersenne Twister – A Very Fast Random Number Generator.
 http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
[4] Paul C. Leopardi, “Mersenne Twister with improved initialization” (2002): default seed varies in
 different implementations. http://www.cygwin.com/ml/gsl-discuss/2006-q4/msg00014.html
[5] M. Matsumoto, M. Saito, H. Haramoto and T. Nishimura, “Pseudorandom number generation:
 impossibility and compromise” Journal of Universal Computer science, vol. 12, no.6, 2006.
[6] SIMD-oriented Fast Mersenne Twister (SFMT): twice faster than Mersenne Twister.
 http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html
[7] M. Matsumoto and M. Saito, “SIMD-oriented fast Mersenne twister: a 128-bit pseudorandom number
 generator” in Proceeding of MCQMC, 2006.

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html
http://www.cygwin.com/ml/gsl-discuss/2006-q4/msg00014.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
http://www.quadibloc.com/crypto/co4814.htm

[8] Papers on random number generators.
 http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/earticles.html#sfmt
[10] Mutsuo Saito, “An Application of Finite Field: Design and Implementation of 128-bit Instruction-
 Based Fast Pseudorandom Number Generator”, Master’s Thesis, 2007.
[11] F. Panneton, P. L’Ecuyer, and M. Matsumoto. “Improved long-period generators based on linear
 reccurences modulo 2”. ACM Transactions on Mathematical Software, 32(1):1–16, 2006.
[12] M. Matsumoto, M. Saito, T. Nishimura and M. Hatagi, “Cryptographic Mersenne Twister and
 Fubuki stream/block cipher” Cryptographic ePrint Archive, June 2005.
[13] M. Matsumoto, M. Saito, T. Nishimura and M. Hatagi, “CryptMT stream cipher version 3” eStream
 Proposal. http://www.ecrypt.eu.org/stream
[14] The cryptographic Mersenne Twister.
 http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/CRYPTMT/index.html
[15] M. Matsumoto, M. Saito, T. Nishimura and M. Hatagi, “Crypt Stream Cipher Version 3”,
 Cryptographic ePrint Archive, June 2006.
[16] Matsumoto, M., Saito, M., Nishimura, T. and Hagita, M. CryptMT Stream Cipher Version 3,
 SASC2007 Conference Volume.
[17] Matsumoto, M., Saito, M., Nishimura, T. and Hagita, M. CryptMT Version 2.0: a large state
 generator with faster initialization, SASC2006 Conference Volume.
 http://www.ecrypt.eu.org/stream/cryptmtfubuki.html.
[18] Bernstein, D.J. http://cr.yp.to/streamciphers/timings.html.

http://cr.yp.to/streamciphers/timings.html
http://www.ecrypt.eu.org/stream/cryptmtfubuki.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/CRYPTMT/index.html
http://www.ecrypt.eu.org/stream
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/earticles.html#sfmt

	Random number generators are devices that generate a series of numbers or some kind of symbols that appear random. RNG’S are used for a variety of purposes such as simulating, modeling complex phenomena, cryptography and of course ever popular for games and gambling. There are two main approaches to generating random numbers, Pseudo Random Number Generators(PRNG) and True Random Number Generators(TRNG). TRNG extracts randomness from physical phenomena like atmospheric noise, little variations in mouse movements or the time between mouse strokes and feed then in to a computer. They are mainly used in games and gambling where genuine randomness is required, as they are to slow for use in statistical and cryptographic applications. In comparison to TRNG, PRNG’s are algorithms using some kind of mathematical formula or pre-calculated tables to generate a sequence of numbers that appear random. The sequence of numbers produced is not truly random. It is completely determined by an arbitrary initial state called seed state. If a PRNG's internal state contains n bits, its period can be no longer than 2n results. PRNG’s are efficient, deterministic and periodic which makes them suitable for applications where many numbers are required and where it is useful that the same sequence can be replayed easily such as simulation and modeling. A PRNG should posses some requirements to be considered as a good PRNG, such as uniformity, independence, long period, proper initialization, unpredictability, efficiency and portability. The quality of randomness of a PRNG is measured by subjecting it to a set of statistical testes called diehard tests. Every cryptographically secure PRNG should satisfy two basic requirements, next-bit test and state compromise extensions. This paper discusses Mersenne Twister(MT) which is a PRNG and which satisfies all the requirements to be certified as a good PRNG. MT is proposed in 1997 by Makoto Matsumoto and Takuji Nishimura. It provides for fast generation of very high-quality pseudorandom numbers with a long period length which is chosen to be a Mersenne prime, high order of dimensional equidistribution, speed and reliability. Later many different variants of MT has been introduced for better speed and security for cryptographic uses. Two of the variants this paper talks about are SIMD-Oriented Fast Mersenne Twister(SFMT) and cryptographically secure CryptMT. SFMT is introduced by Mutsuo Saito and Makoto Matsumoto in 2006. It is typically a Linear Feedback Shift Register(LFSR) which generates a 128-bit pseudorandom integer at one step. SFMT is introduced to use the new features of CPU’s such as Single Instruction Multiple Data (SIMD) operations (i.e., 128bit operations) and multi-stage pipelines. CryptMT is a stream cipher which uses MT and is considered to be cryptographically secure. It was developed by Makoto Matsumoto, Hagita Mariko, Takuji Nishimura and Mutsuo Saito in 2005. CryptMT ver. 3 is the latest version. In section 2.1 of this paper we discuss the theories behind MT and its algorithm. Section 2.2 discusses the choice of parameters for MT also presents a table showing values for different parameters of 32-bit MT. Section 2.3 talks about the limitations of MT such as initialization and security, and also the modification made to overcome the limitations. Section 3 introduces SFMT and 3.1 shows the theories and algorithms for SFMT, and also contains two figures of a circuit like description of SFMT19937 and block generation scheme. Next we talk about the choice of parameters of SFMT for the calculation of period and dimension of equidistribution in section 3.2. Then in 3.3 its limitation such as recovery from 0-excess state and the improvements made are discussed. Section 4 introduces CryptMT, we discuss its first version, the theories behind it and presents a block diagram of CryptMT ver. 1. Section 4.1 talks about its latest version CryptMT ver. 3, its theories and contains a figure showing combined generator. It also shows a table containing the parameters for the speed comparison of CryptMT with other stream ciphers. Then its advantages and shortcomings are discussed in section 4.2. The appendix of the paper shows the inversive-decimation method for primitivity testing.

