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Executive Summary

This design document specifies the details of our project: a cryptographic coprocessor, implemented in an
FPGA, for a MICA2 wireless sensor node. The FPGA is be used to host an AES encryption core that
was provided to us by Dr. Kaps in VHDL. The project is being continued by another group for their Fall
2008-Spring 2009 as we did not complete the full vision for the project.

The FPGA device is mainly intended for prototyping and experimentation with various encryption al-
gorithms as ASIC components which can provide AES encryption in realtime are already available. On
the other hand, the work done for this project could help kickstart the development of ASICs suitable for
other encryption algorithms that would provide fast encryption with maximal power efficiency. Despite this
situation, we used various techniques to make the FPGA implementation as power-efficient as possible.
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1 Approach

We’ll begin with a gentle introduction to the various
aspects of this project and then ease into the details
of our specific design.

Wireless sensor nodes (WSNs) are small devices
equipped with an RF transceiver, a battery, multiple
sensors, and typically a small microcontroller. The
transceiver enables communication with other (often
identical) nodes and a base station, while the micro-
controller controls the communication and gives the
nodes local data-processing ability.

Hundreds or thousands of these sensor nodes can
collectively form mesh networks to facilitate monitor-
ing, tracking, and surveillance applications in com-
mercial, industrial, and military environments. A
few specific applications include detection of gas leaks
and pollution levels at chemical plants, early detec-
tion of forest fires or volcanic activity, and position
tracking for the armed forces [1].

It’s desirable that each node use as little energy
as possible because this saves labor and enables the
nodes to be deployed in locations where its difficult to
change a battery. Remote wilderness locations, toxic
and extreme environments, and even human or ani-
mal bodies are examples of places where sensor nodes
could be useful but it would also be very challenging
to replace a battery.

To minimize power consumption, it’s necessary to
carefully budget microcontroller clock cycle use and
transceiver activity. These components can be pow-
ered nearly all the way off on most node platforms
when they’re not in use which means the primary de-
terminant of battery life is the percentage of time the
various components are active, or their “duty cycle.”
Naturally, effectively balancing the use of these com-
ponents in a wireless sensor application to achieve
minimum energy consumption is challenging.

For example, it’s obvious that in the vast major-
ity of cases it would be wasteful of both power and
bandwidth for a mote to transmit every bit of the
data recorded to every other mote and to a mains-
powered base station with no processing or local logic
at all. What’s less clear is exactly how much local
processing should be done on each mote to keep the
transmitter power consumption low without inadver-
tently wasting power by running the microcontroller
for too long. Like most engineering problems, there
are obvious tradeoffs involved: do you want to focus
on having a high frequency of updates, maximizing
battery life, or getting the software working as quickly

as possible?
When you add an FPGA (a device that can cal-

culate extremely quickly but also uses a large amount
of power) into the mix, things only get more complex.
It should be clear, though, that any device which
could potentially reduce the energy consumption of
a wireless mote for a particular application would be
a useful addition. We’ll examine the use of an FPGA
for an encryption application and provide a detailed
analysis of the problem in the following section.

1.1 Applications for FPGA add-on

For some applications, an FPGA may be a suitable
addition to the onboard microcontroller for local data
processing. The high power consumption of FPGAs
can often be mitigated by the fact that they run
many algorithms orders of magnitude more quickly
than microcontrollers, and thus may use less total en-
ergy than a microcontroller to perform similar tasks.
Some FPGAs even have a “suspend” mode that al-
lows them to retain their configuration while oper-
ating in a low-power state so they don’t need to be
reconfigured every time operation is resumed.

1.2 Mote Software

TinyOS is a free and open source operating system
and support platform developed specifically for wire-
less sensor networks. It’s written in the specially-
developed nesC programming language and provides
a common set of commands and libraries that can be
used on multiple hardware platforms. The wireless
motes we’ll be using for this project are supported
by TinyOS 2.x, and so we’ll be using it extensively.
Details about nesC are discussed in §1.7.

1.3 Rationale for Encryption on WSNs

Many potential applications of wireless sensor nodes
can benefit from message authentication and confi-
dentiality. For instance, a sensor node deployed in
a critical military network with a remote command
interface should only accept commands from autho-
rized users. Likewise, it may be undesirable for unau-
thorized users to be able to view data the sensor
nodes are collecting. Encryption can assist with both
of these goals.

There are two major classes of encryption: sym-
metric and asymmetric. In general, symmetric-key
encryption is only effective if the symmetric key is
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kept secret by both parties involved in a communica-
tion. For this reason, it is not ideal for deployment
in wireless sensor network scenarios where individual
motes may be compromised and a private key recov-
ered by an attacker.

Asymmetric (or public-key) encryption involves a
pair of keys, public and private. Each public key is
published while its corresponding private key is kept
secret. Asymmetric encryption allows parties to dis-
guise information they send to each other, to ensure
data has not been modified in transit, to confirm a
sender’s identity, and to prevents a sender of informa-
tion from claiming at a later date that the informa-
tion was never sent. An additional benefit for WSNs
is the fact that each mote need only contain the pub-
lic keys of other motes and any base stations, which
would limit security risks if some motes were collected
and their contents analyzed by an attacker [2][3].

This has been only a brief discussion of the rea-
sons for encryption and security in WSNs. A full
analysis of the benefits and drawbacks of symmetric
vs asymmetric cryptography and their applications
for WSNs are outside the scope of this document.
For more information about the implementations and
their implications, see [2] and [4].

1.4 Project Overview

This project really contains two separate subprojects:
one using the FPGA on a Digilent starter board, and
one using the FPGA on a custom add-on board for
the mote that we designed. While there are some
differences, both are configured to handle encryp-
tion tasks in response to requests from the micro-
controller. Due to size limitations, the FPGA mod-
ule on the custom PCB can only use one encryption
algorithim: AES/Rijndael. The FPGA is useful be-
cause it can encrypt data at a higher speed and with
higher energy efficiency than the Atmega128L micro-
controller on the mote. We note also that there are
many other types of algorithms that are particularly
suited to operation on FPGAs. Our implementation
supports FPGA reconfiguration by JTAG so other
uses will simply require a new FPGA bitfile and new
code for the microcontroller.

Considering the nature of sensor nodes and the
specified constraints, we determined that the best
way to implement the FPGA expansion board was
to purchase a low-power, discrete FPGA and design a
PCB for direct connection to the sensor nodes through
the Hirose 51-pin expansion connector on the motes.

Sensor node 
needs encrypted 

data

Sensor node Sensor node can Sensor node 
supplies data and 

key to FPGA

Sensor node can 
transmit 

encrypted data

FPGA applies AES 
algorithm

FPGA returns 
encrypted data to 

sensor nodesensor node

Figure 1: A high-level overview of the communication
process.

Initially we considered using Block RAMs on the
FPGA to buffer incoming data so it was available
locally when requested by the encryption code. Af-
ter some discussion we concluded that it would make
sense to send the data “just in time,” especially since
for AES the bytes for the key and the data are re-
quested by the core in the same order each time. In
this case discrete chunks of the data and the key will
go across the bus alternately until all of the data has
been transferred. We acknowledge that it is wasteful
of both power and transmission bandwidth to repet-
itively send data over the serial bus in this way, but
since bandwidth will not be a constraint and this will
simply the overall design immensely it seems like a
worthwhile tradeoff. A total of 256 bits will be trans-
ferred for AES; 128 bits for the key, and 128 bits for
the data.

In figure 2, we show the dataflow for the system.
Initially data is sampled from a sensor to memory
in the microcontroller. Next, the data passes over a
USART link from the microcontroller to the FPGA
for encryption, and the encrypted data passes back
over the USART to the microcontroller. The mi-
crocontroller then sends the data to the CC1000 for
transmission, and the data is received by an identi-
cal CC1000 on a base station mote. The data finally
goes through the mote’s microcontroller and out over
USB to a host PC where a custom Java application
can be used to access and decrypt the data.

As mentioned in [2], there is some concern about
having key data travelling over an open bus if the

4



Senior Design Project Final Report ECE 493

Figure 2: A representation of the dataflow during device operation.

nodes are to be deployed in an untrusted environ-
ment. Our design does not make any effort to protect
the key data, and so using a public-key core like Ra-
bin would be essential if good security were desired in
this situation. Unfortunately the size of the FPGA
used on the PCB is insufficient for an algorithm of
this level of complexity.

1.5 Design Requirements

We identified some key requirements in the early de-
sign phase:

• Develop communication protocol between MICA
mote and FPGA

• Enable AES encryption on MICA2 platform with
FPGA

• Develop software platform to demonstrate en-
cryption

• Test with S3E Starter Board

• Increase speed compared to calculation on CPU

• Decrease CPU memory utilization

• Design portable, production-quality FPGA sup-
port platform

• Cost under $100 in mass-production

• Appropriate size for deployment with sensor node

• Power consumption profile:

• Suitable for battery operation

• Superior to CPU for encryption task

1.6 Power Consumption

To determine whether it was really feasible to power
an FPGA from two AA batteries, we examined the
power requirements of a Spartan 3AN and it’s neces-
sary support circuitry (a voltage regulator and per-
haps a DC–to–DC converter, depending on the num-
ber of battery cells used). We determined that this
was possible, but barely.

Based on the FPGA used in the project, the XC3S50AN,
an order-of magnitude estimate is that the device and
its support circuitry will dissipate about 3W of power
when operating in full active mode. To make the
math simple, let’s assume 3 battery cells in series,
which means 1W of power would need to be provided
by each cell.

Since Duracell alkaline AA batteries have char-
acteristics similar to other alkaline batteries, we’ve
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used the Duracell AA alkaline datasheet to determine
some general performance characteristics for AA bat-
teries. Alkaline batteries operate over a fairly wide
voltage range from 0.8V to 1.5V. If we average it out
to assume that most of the time they are operating at
1.1V, then roughly 909mA of current will be needed
from each battery on average. A constant 1 A drain
would cause the batteries to be depleted extremely
quickly, in less than one hour (total) of operation.

It looks like 3 AA batteries are not an appropri-
ate power source for the FPGA, and that means the
2 that come with the mote are definitely not appro-
priate. We’ll need to use a separate, higher capacity
power supply for the FPGA. 3 D cell batteries would
last longer; roughly 8 hours for 1 A of constant drain.
We would not be honoring the requirements of keep-
ing the size of the mote device small if we used multi-
ple D cell batteries to power it, but this tradeoff may
be unavoidable. 3 D cells are not likely to save much
space vs 4 D cells, and including an extra cell would
increase runtime significantly, so 4 D cells is probably
the magic number.

Of course, the FPGA will not be operated at the
full power consumption level for 3 straight hours: the
idea is to only turn it on only very briefly when an
encryption operation is desired and then turn it off
again as quickly as possible. What follows then is
a short analysis of the throughput of the device for
AES and Rabin.

1.7 nesC Program Structure

The nesC language is essentially C with some added
constructs for object-orientation and enabling con-
currency. All nesC applications consist of one or more
components assembled (or wired) together statically
to form an executable image. The components pro-
vide and use interfaces. “Provided” interfaces repre-
sent the functionality the component provides to its
user, while “used” interfaces represent the function-
ality the component needs to perform its job [5]. For
more information about nesC and why we used it, see
the proposal (starts on page 25).

In figure 3 we show an automatically generated
flow diagram for our USART test code created using
the free GraphViz tool. Since large, well-designed
nesC applications tend to have a little bit of code
spread out over many small text files, it can some-
times be hard to grasp the purpose of the various
linkages all at once. The use of the GraphViz tool to
create these component maps makes the code layout

easier to understand.

Figure 3: Automatically-generated flow diagram for
our USARTTest application.

While we did use a 500kbit/s serial link, it was
not the fastest serial implementation supported by
the mote’s microcontroller: 1Mbit/s is available. Due
to some problems getting this baud rate supported
on the FPGA side we stuck with the second highest
speed.

There are also some small delays in between bytes
the mote sends when the serial line is idle. Removing
these delays could increase transmission speed by 10-
20%.

2 Design

For the primary project we have used the Digilent
Spartan 3E Starter board (provided by Dr. Kaps),
shown in figure 4.

Figure 4: The Digilent Spartan 3E Starter Board
( c©2007 Digilent)

We used this board to ensure that our USART in-
terconnections work, that the software developed for
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the motes is effective, and that the cores implemented
on the FPGA return the expected results for the keys
and data that are input. For more details about the
board, see the proposal (starts on page 25).

2.1 VHDL Design

As we did decide to do serial transmission, we had
to implement a UART on the FPGA. We did have a
choice in implementing synchronous or asynchronous
communication, but this was not a difficult decision,
because using synchronous communication means shar-
ing the same clock between the sensor node and our
PCB. Therefore, the FPGA rate would have been
slowed, because the mote runs on an 8 MHz oscil-
lator, and the FPGA runs on a 50 MHz oscillator. In
using asynchronous communication, all we needed to
do was send start and stop bits attached to each byte
for handshaking between the two components; there-
fore, we opted to use asynchronous communication.

We originally tried opening source code, however
in all the designs we found, the baud rate was always
set to one specific value. This ended up becoming a
problem, because the baud rate was not easily mod-
ified for our application. After spending too much
time trying to fix other peoples UART codes, we de-
cided to design our own unit which would be tai-
lored for our needs. We also wanted to make our unit
portable in the fact that the baud rate could easily
be changed, because we werent sure how fast we were
going to be able to get the baud rate at the time,
but also so it could be used in other applications.
Therefore the UART we designed consists of 3 files
which are a baud rate generator, a transmit unit and
a receive unit.

The baud rate generator was not a very complex
unit, because all that really needs to be done is di-
vide the system clock by a certain amount to give the
baud rate that is needed. However, since we wanted
multiple rates and the mote could send rates up to
1 MHz, there is an initial operation which divides
the system clock using a basic counter. The value
the counter counts to can be changed in the package
file which creates baud rates ranging from 1.2 KHz
to 3.125 MHz. Without this initial divisor, the baud
rate would be 3.125 MHz, so it was already needed
to slow the rate down some to work with the sensor
node. The second counter is used for sampling, so it
just divides the system clock a second time after the
divisor by 16, because each bit is sampled 16 times
to check for a new start bit.

There is a third counter which is used for synchro-
nizing. Since the baud rates of the two components
dont match, timing errors develop after each bit is
sent through. However, as long as the timing error
is small enough, less than 50% per byte, the errors
will not affect the operation of the unit. However,
since the timing errors do accumulate, they need to
be fixed, because they will accumulate and cause mis-
takes no matter how small it is. The third counter
serves the purpose of re-synchronizing the baud rate
generator after each byte is sent to ensure proper op-
eration.

The receive and transmit units behave in much
the same way; they turn bytes into bits and vice versa
using a shift register. I originally made a separate file
that implemented an 8 bit shift register, but then I
realized I can just as easily shift in each bit by just
implementing it in my state machine and just looping
through the same state until the shift register is full.
Therefore the receive unit is coded solely by using
a state machine. It had a total of 6 states which
included error checking, but this was not needed so
I changed it back to 4 states. The receive unit state
machine is shown in figure 5.

As can be shown from the figure, the receive unit
will stay in the idle state until a start bit arrives from
the sensor node. Once this happens, the operation
goes to the start state where it checks to make sure
the shift register is not full. If it is full, then the
control instead goes to the done state, and if is not full
then it goes to the shift state. The shift state shifts
each new bit into the least significant bit position of
the shift register. The RxRdy signal goes high when
the shift register is full which tells the system that the
receive unit is ready to send the byte out. Therefore
when RxRdy = 1, the control will go to the done
state. The control stops in this state for 1 cycle to
send the byte out and set the ClrDiv bit which goes to
the baud rate generator to re-synchronize the system.

The transmit unit was also implemented with a
state machine which is shown below in figure 6. It
basically has the same characteristics of the receive
unit, the only difference being that it starts with a
full shift register and each bit needs to be shifted out
on the serial line to the mote.

As seen in the figure, the transmit unit stays in
an idle state until it gets a load signal from the top
level control. When load goes high, a byte is coming
in from the RAM. The operation then goes to the
load state for one cycle which loads the 10-bit shift
register. The reason this is a 10-bit register is that
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idle start shift stop

Rst = 0 / ClrDiv
Dout = RxRegDout = RxReg

RxReg = Rx & RxReg(7 dow nto 1)RxReg = Rx & RxReg(7 dow nto 1)Top16 = 1 and Rx = 0 / St_Bit

bit_cnt = 8 / RxRdy

bit_cnt < 8

TopRx = 1

TopRx = 1 / ClrDiv

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Receive unit state machine

idle stopshiftload

Rst = 0

TopTx = 1

TopTx = 1 / TxReg = '1' & RegDin & '0'
                   bit_cnt = 9

Ld = 1

RegDin = DinRegDin = Din

bit_cnt = 1

bit_cnt > 1 / TxReg = '1' & TxReg(9 dow nto 1)
                    bit_cnt--

Tx = TxReg(0)Tx = TxReg(0)

TxBusy = 0TxBusy = 0

 

Figure 6: Receive unit state machine
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the start and stop bit needed to be added to the byte
so the mote can detect when data is coming in. The
load state also sets the TxBusy signal which tells the
system that the transmit unit is busy and it cannot
accept new data yet. The control then goes to the
shift state where the least significant bit of the shift
register is sent out on the serial line. The transmit
unit loops through these states until the last bit is
shifted out, and it then the control goes to the done
state. This state turns off TxBusy which notifies the
system that transmit can accept a new byte, and the
state machine returns to idle.

The purpose of this portion of the project was to
get the AES encryption design and the UART work-
ing properly together on the FPGA. This constituted
a significantly difficult portion of the project to im-
plement properly. The block diagram of the top level
system that was downloaded to the FPGA is shown
below in figure 8 and the state machine for the control
is shown below in figure 9.

As seen from the block diagram, we treated the
AES and mote as black boxes with inputs and out-
puts, and the RAM, control unit, and the UART are
also included. We did need to learn a little about the
AES to ensure that it sends and receives data prop-
erly and communicates with the rest of the system,
and the RAM was included to ensure that the data
was received and sent to the mote with correct bytes
and in correct order.

Referring to the state machine in figure 9, the sys-
tem stays in a pause state until a start bit is detected
from the sensor node. Once this happens the system
goes to the receive state which controls the behav-
ior of the receive unit shown above in figure 5. Each
time a byte is ready in the receive unit which is sig-
naled by the RXRdy signal, the system will go to the
UartRam stage which loads the byte from the receive
unit into the RAM. Since the mote sends 32 bytes to
the FPGA, which constitutes 16 bytes for data and
16 bytes for the key, the system loops through the
receive and UartRam states 32 times collecting all
the bytes from the mote. Once the RAM is full, the
system will go to the compute state which sends an
enable signal to the AES unit turning it on to en-
crypt. All the bytes are sent into the AES, and the
AES processes the data. It takes approximately 514
clock cycles to perform the encryption.

Using a counter to count the encryption cycles,
the system then goes to the AesRam state which con-
trols the process of returning the encrypted bytes to
the RAM. The key is not needed anymore so only the

16 bytes of encrypted data is returned. The counter
in the AesRam state does go to 18 which can be a bit
confusing, but it was needed to ensure correct opera-
tion. This is because a write signal from the control
of the AES unit is asserted a couple cycles early, and
rather than modify the AES, I just made the counter
count to 18 to receive the correct data.

Once the RAM has the 16 bytes of encrypted data,
the AES enable signal is turned off and the system
then moves to the RamUart state. This state loads
each byte from the RAM to the transmit unit, so it
only stays in this state for one cycle, then it goes to
the transmit state. The RamUart and transmit states
controls the behavior of transmit unit shown above in
figure 6. Therefore the system stays in the transmit
unit until TxBusy goes low, which tells the system to
return to the RamUart state and load another byte.
However, the transmit state also detects if this is the
16th byte, and if it is, the system returns to pause
because that was the last of the data. Once the mote
receives the last byte from the PCB, it sends a done
signal which returns the FPGA to suspend mode to
save power. The system is once again in sleep mode
until a new start bit signals new data coming in.

2.2 Software

The software is designed to provide communication
interface between all the hardware components. One
of the sensor node is placed remotely connected with
FPGA and the second sensor node is connected to
the host PC via USB port. Mainly for the purpose of
testing the successful operation of all the components,
three programs are written:

2.2.1 UART and Data Gathering application

The remote sensor node, connected with the FPGA
add-on module is programmed with this application.
The flowchart of the program execution is given in fig-
ure 10. The sensor node waits for a command from
the base station. When it receives command, the
code executes to take data samples from the photo-
cell on the sensor board connected with the remote
FPGA. Sixteen samples are taken by the sensor node
(the number of samples being taken can be changed
according to the user demand). Once the data is
collected, it is placed in an array. According to the
command data, for just retrieving data from sensor
node, or aes, for obtaining data in encrypted form-
the code transfers the collected data to the proper
medium of communication.

9
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Figure 7: ASM chart for the top-level state machine.
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Figure 10: Flow chart for UART-DATA Application.

Command = data The collected data is placed in
a packet (packet is predefined by the user) and sent to
the sensor node connected at the base station. The
radio communication utilizes 916.7 MHz frequency.
The wireless sensor nodes manufactured by Cross-
bow use this radio frequency for wireless communica-
tion. The communication via radio is unreliable but
acknowledgements are sent for each packet sent.

Command = aes The collected data is transferred
to the FPGA via UART on the sensor node. The
URAT transfers data serially, 1-byte at a time. The
start and the end of each byte is denoted by start
bit and stop bit. A total of 32-bytes, which include
the data and the AES encryption key, are transferred
to the FPGA. FPGA runs the AES algorithm and
returns a 16-byte encrypted data. Once the data is
received from the FPGA, sensor node sends the en-
crypted data to the base station sensor node via radio
communication.

2.2.2 Base Station Application

The sensor node connected with the base station is
programmed to provide interface for both radio and
serial communication. The application acts as a bridge
between the remote sensor node and the host PC. The
flow of the code is given in figure 11.

Serial Communication The sensor node commu-
nicates with host PC via serial ports. The serial com-

Receive Command from Host PC

Create radio Packet with command as “pay load” 

and send to remote sensor node via Radio

Receive Message back from 

Transfer Received data from remote sensor node to 

Host PC via USB port

Receive Message back from 

Remote Sensor Node

Figure 11: Flow chart for base station.

munication is slow with the baud rate for Mica2 of
57600. The sensor node is programmed to receive and
send serial packets to the host PC via USB port on
the Host PC. The sensor node is connected to one of
the USB ports using which the sensor node is able to
send packets to the PC. The sensor node, however,
receives packets on the next USB port on the PC (as
defined by the PC).

Send packets to PC The code uses user de-
fined packet definition which allows sensor node to
send one byte per packet to the PC. The data re-
ceived by the base station sensor node from the re-
mote sensor node is an array of size sixteen (decided
by the user). When base station mote receives the
data, it sends the data to the PC by sending each
element of the data array one at a time. This imple-
mentation solved the speed conflict between the radio
communication and the serial communication.

Receive packets from PC When sensor node
receives a serial packet from PC via USB, it sends it as
a radio message to the remote sensor node. According
to the application design, the received data from the
serial port is always a command entered by the user
for the remote sensor node.

Radio Communication The base station requires
radio communication to transfer messages between
the PC and the remote sensor node.

12
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Send packets to radio The base station mote,
upon receiving command from the PC (in the serial
packet), creates a radio packet (defined by the user)
and sends to the remote sensor node.

Receiving packets from radio The base sta-
tion receives radio packets from the remote sensor
node which contain the data demanded by the user
at the host PC. The mote receives the data and stores
in an array, which is then returned to the PC via se-
rial communication.

2.2.3 User Application

The user application is a simple java application run-
ning on the host PC which allows user to command
the remote sensor node via base station sensor node.
The command entered by the user (data or aes) is
sent to the base station via USB port at which the
sensor node is connected with the MIB500 program-
ming board and then data is received, after execution
cycle, from the base station sensor node via another
USB port on the PC, which is decided by the hard-
ware on the PC.

The UART and data application and the radio
and serial communication applications are programmed
using nesC. nesC is an event based programming lan-
guage, which is an extension to C programming lan-
guage. The nesC code links the hardware components
being used for the application with the interfaces.

2.3 Custom PCB

We initially envisioned a fully-custom PCB, approxi-
mately the same size as the mote, that would be used
to host the encryption core. The benefits of designing
a PCB for a discrete FPGA are two-fold: power con-
sumption is much lower than the demo board, and the
size is more appropriate. Both are important for wire-
less sensor nodes which are small and are expected to
be deployed for long periods of time without recharg-
ing.

While we did successfully design and prototype a
PCB, unfortunately we began to run short of time
just as we entered the testing phase, and there cer-
tainly was no time for a second revision. Despite the
time shortage, we believe that the design is solid and
that it would be a very effective add-on module for
the FPGA with only a few minor tweaks and revi-
sions. Some details about the finished PCB follow.

Texas Instruments developed a triple voltage reg-
ulator specifically for the Spartan 3 series which sup-

plies the correct voltages to the FPGA and takes care
of many complex regulation issues. While soldering
this tiny, tiny chip turned out to be somewhat of a
nightmare, the time and energy it saved during the
design process was well worth any hassle. The fin-
ished circuit design for the regulation circuit is shown
in figure 12 and is based heavily on work by An-
drew Greensted[6]. The parts used were of course
completely different since we did not use a UK-based
parts supplier, and this necessitated using some parts
from existing libraries and CADding out some parts
from scratch based on manufacturers datasheets and
other sources. One thing we learned during this pro-
cess was that product datasheets are not always ac-
curate or readable!

The expansion board uses the same 51-pin expan-
sion connector as the mote so that it can be plugged
directly into the mote. This adds to the convenience,
appearance, and sturdiness of the device as there are
not a lot of unsightly wires and volatile connections
to constantly worry about.

To reprogram the FPGA, the user needs to load
a special program on the mote which sets the config-
uration pins on the FPGA correctly and then powers
on the device. A standard JTAG cable can then be
used to program the nonvolatile memory included in
the FPGA package. Once configuration is complete,
the program on the mote can be changed back to the
standard program used for normal operation.

We considered including configuration jumpers on
the board such that the user would not need to load
a program on the mote in order to reconfigure the
FPGA. The problem was that three configuration
jumpers would be required and there was not any
room to add these jumpers on the board without in-
creasing the physical dimensions of the board. En-
gineering is always about tradeoffs, and in this case
we decided that the size of the board was more im-
portant than easy configuration ability. Besides, for
our application the image never needs to be changed
after it is loaded for the first time!

Choosing the best size for the FPGA was chal-
lenging as well. Larger sizes offer more flexibility
for simulating larger cores (like the public-key Ra-
bin, and any others that Dr. Kaps might like to try)
but also consume significantly more power. Another
big issue is that most large FPGAs are only available
in a ball-grid array pattern which is impossible to sol-
der by hand. Some “breakout”–type boards for ball
grid array packages do exist, but they are large, un-
wieldy, and expensive. After much consideration we
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Figure 13: FPGA Schematic
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Item Quantity per board Unit Cost Total
50 Mhz Oscillator 1 $2.97 $2.97
6-pin, single-row header 1 $0.30 $0.30
12-pin, dual-row header 1 $0.74 $0.74
Green LED 3 $0.14 $0.42
100uF Tantalum capacitor (large, low ESR) 2 $0.67 $1.33
100uF Tantalum capacitor 1 $1.02 $1.02
10uF ceramic capacitor 1 $0.39 $0.39
1uF ceramic capacitor 1 $0.03 $0.03
1.5nF ceramic capacitor 2 $0.02 $0.04
10pF ceramic capacitor 1 $0.03 $0.03
0.01uF ceramic capacitor 2 $0.16 $0.32
0.1uF ceramic capacitor 2 $0.01 $0.02
0.033ohm current sense resistor 2 $0.37 $0.74
61.9kohm resistor 2 $0.04 $0.08
15.4kohm resistor 1 $0.04 $0.04
36.5kohm resistor 1 $0.04 $0.04
220ohm resistor 3 $0.03 $0.09
100kohm resistor 2 $0.02 $0.05
5uH Power inductor 1 $2.06 $2.06
15uH Power inductor 1 $0.66 $0.66
PMOS SI2323 2 $0.56 $1.12
Schottky Rectifier SS32 1 $0.45 $0.45
Jumpers 2 $0.11 $0.22
Hirose Connector 1 $3.13 $3.13
TPS75003 1 $2.95 $2.95
Spartan 3 AN FPGA 1 $12.06 $12.06
Photocell 1 $1.79 $1.79
Thermistor 1 $0.45 $0.45
Schottky Rectifier 1 $0.26 $0.26
Shipping 1 $5 $5.00
PCB manufacturing 1 $17 $17.00
Total 44 $55.79

Table 1: The costs associated with fabricating and populating one board.
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Figure 14: The front of the finished PCB device. Figure 15: The back of the finished PCB device.
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Figure 16: The top copper layer as a gerber file.

have decided that any FPGA package that uses ball
grid array pins will not be acceptable for this project.

2.4 Voltages

Spartan-3 devices are designed and characterized to
support various I/O standards for VCCO values of
+1.2 V, +1.5 V, +1.8 V, +2.5 V, and +3.3 V. The
ATMega128L (Vcc = 3.0 V) supports an input low
voltage from -0.5 V to 0.2Vcc (0.6 V) and an input
high voltage from 0.6Vcc (1.8 V) to Vcc + 0.5 V (3.5
V). The output low voltage is 0.5 V and the output
high voltage is 2.2 V. We anticipate that if the FPGA
IO pins that are used to connect to the mote are con-
figured in TTL logic mode, there will be no voltage-
related issues that hamper communication between
the devices [7],[8].

2.5 Device Communication Interface

After much comparison between possible communica-
tion methods, we concluded that a USART connec-
tion operating in asynchronous mode would be the
ideal communication method, mostly because it al-
lows us to operate the mote and the FPGA from un-
synchronized clock sources.

To implement the UART, we initially planned to
use (and modify if necessary) code written by some-
one else and made available as open-source on www.
opencores.org. Eventually we decided to write our
own UART as it proved to be difficult to understand
the opencores code (which didn’t really have sufficient
documentation).

Being able to use unsynchronized clock sources is
a huge advantage because we are then able to use
the 8MHz clock provided by the ATMega128’s inter-
nal oscillator rather than the 7̃MHz external oscil-
lator provided by the mote (which is the only clock
available on the data bus). The 8MHz oscillator con-
sumes less power and is recommended by Crossbow
for battery-powered operation.

2.5.1 About USARTs

A USART device’s maximum possible data rate is
based on its input clock rate: the input clock rate
divided by 16 gives the maximum data rate (or di-
vided by 8 for DDR). On the FPGA we are limited
by the maximum speed of the cores (slightly less than
80MHz) and the available oscillator (can be changed),
while on the mote we are limited by the maximum
speed of the microcontroller oscillator (8 MHz). A
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64 MHz oscillator for the Spartan 3e starter board
would probably be ideal because it divides evenly to
8MHz for higher rate UART communication, allows
a higher FPGA calculation rate, and costs only $3
from DigiKey (SG531). As an alternative to using an
external oscillator, we could consider simply using a
DCM on one of the FPGAs to create a modified clock
signal at the appropriate frequency.

It’s also worth noting that the maximum transmit
rate for the mote is only 38.4K baud and thus even if
the microcontroller can talk to the mote at the higher
rate it can’t actually send the data anywhere. Clearly
then the FPGA can be run at a somewhat higher
speed than is necessary for continuous transmission
of data with this particular hardware.

It was also necessary to synchronize the UART
settings between the ATmega and the VHDL code.
We eventually chose a configuration of 500kbaud with
an unorthodox 8-1-1 data/start/stop configuration
(8-N-1 is more typical).

On the other hand, since demonstrating the high
throughput of the FPGA is an important part of the
project, it makes sense to try and get as high of a
bandwidth link between the FPGA and the micro-
controller as we can even if we can’t transmit the
resulting data in realtime from the microcontroller.

2.6 Pin Functions

This section lists the functions of and our purposes
for the specific FPGA pins we’ll be using.

PROG B When pulsed low, this pin causes the FPGA
to reprogram from one of multiple sources. With
the Spartan 3AN, it can be used to configure the
device from an internal flash memory source.
With the Spartan 3E starter board, it can be
used to configure the device from an on-board
Xilinx platform PROM which can be preconfig-
ured via USB. We can connect to to the pin on
the Digilent board using the JP8 header.

DONE This signal is asserted when the FPGA has
finished configuration.

AWAKE This signal is deasserted when the FPGA
enters suspend mode.

SUSPEND This pin can be driven high to put the
FPGA into a low power state.

Two general (non-differential I/O) pins will also
be used for the Tx and Rx connections of the USART.

Differential I/O should be unnecessary at the speed
we plan to use the USART.

3 Experimentation Plan

Our experimentation plan involves testing all the com-
ponents as a system to verify that it performs the
required tasks. We begin with a description of the
dataflow and then move on to the details of how we’ll
verify correct operation.

The mote connected with the FPGA will be a re-
mote, battery-powered device. This mote will also
be connected with the sensor board and will be pro-
grammed to sense some physical stimulation like tem-
perature, pressure, humidity, or other physical val-
ues at specific time intervals. The sensor board will
gather data and pass it to the microcontroller of the
mote. To acquire encrypted data for transmission,
the microcontroller on the FPGA mote will trans-
fer data to the FPGA, which will encrypt it and then
send the encrypted data back to the mote. This mote
will next transmit the encrypted data to the mote
attached to the programmer and a personal com-
puter. XServe and XSniffer will be used to monitor
and document the communication flow between the
two motes. The sensor nodes will be programmed
with TinyOS applications, using MoteWorks, to de-
tect and acknowledge the networking communication
between the microcontroller and the FPGA.

3.1 Hardware Components

The hardware components will be tested to ensure
proper functioning of the devices both individually
and as a system. The devices themselves will be
tested as follows:

1. Programming board (MIB520): The MIB520
(see figure 19) will be used to install application pro-
grams onto the sensor nodes. We will use NesC to
code the programs and the tool Programmers Notepad
2 or a similar text editor to compile and download the
programs to the sensor nodes.

2. Sensor Nodes (MICA2): Each MICA2 mote
(see figure 20) will be first tested individually and
then operating in tandem as a small point-to-point
network. For proper program installation and ac-
curate operation in accordance with the application
specifications, each node will be connected with the
programming board. The code will be compiled and
downloaded onto each node via the MIB520. The cor-
rect loading of the code can be verified by using the
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Figure 17: State diagram for the control on the mote.
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Figure 18: FPGA State diagram.

21



Senior Design Project Final Report ECE 493

Figure 19: The MIB520 User Interface Board
( c©2006 Crossbow Technologies)

three LEDs available on each sensor node. Once the
nodes are programmed, they will then be configured
to operate as a point-to-point network.

XSniffer and XServe will be used to test the com-
munication activity in the network. XServe provides
the platform to monitor the communication between
the base station and the wireless node in the mesh
network, while XSniffer allows monitoring of the multi-
hop communication between the nodes in the mesh
network.

Figure 20: The MICA2 916 Wireless Mote ( c©2006
Crossbow Technologies)

3. Sensor board (MDA100): The sensor board
(see figure 21) will provide the gateway between the
mote and the FPGA if we choose one of the applica-
tions that doesn’t involve building a custom PCB. In
this case the FPGA pins will be connected to the fifty-

one pins on the sensor board and one of the nodes
will be programmed to read the sensor board activ-
ity. The node can transmit samples of information
from the sensor board to another sensor node at the
base station or in the mesh network, although we will
not be testing this application.

Figure 21: The MICA2 MDA100 Sensor Board
( c©2006 Crossbow Technologies)

3.2 Evaluation Criteria

The final system will be primarily evaluated on the
power consumption of the device. Considering the
future extension of this project to an implementation
using ASICs instead of FPGAs, the simulation re-
sults of the FPGA system will be compared to the
estimated results obtained from the ASIC simula-
tion. The results will be divided into three sections—
speed, number of resources on chip being used, and
the power consumption of the chip—and each will be
analyzed for compliance with the requirement speci-
fications provided earlier in this document.

The system will also be evaluated on the following
secondary criteria: reliability, accuracy, compatibil-
ity, and compactness.

Reliability: The code used for programming the
motes and encrypting data on the FPGA should be
reliable under all circumstances, including varying
speeds of transmission, varying levels of network traf-
fic, and different levels of load on the encryption unit.
For practical reasons we won’t be testing the equip-
ment to an extreme degree or specifying all possible
program states like NASA would, but these issues are
still of practical concern.

Accuracy: The FPGA will be used to run en-
cryption algorithms for a secure data transmission
between the sensor nodes. The VHDL code running
on the FPGA and the hardware itself must provide
accurate results every time a transmission is made.
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Compatibility: Ideally, the code for programming
the FPGA should be simple in complexity and easily
transferred to another FPGA family. We don’t have
much control over Dr. Kaps’ code or anything we
download from www.opencores.org, but we will try
to ensure that our code meets these standards. Also,
since the future concept for this project is an imple-
mentation using an ASIC instead of FPGA, highly-
compatible code will provide the preliminary ground-
work for such an implementation.

Compactness: Since a fundamental characteris-
tic of sensor nodes is their small size, the add-on
module must have a similar form factor. A compact,
application-specific FPGA implementation is highly
desirable but considering the monetary and time con-
straints, it may not be achieved.

4 Experimentatal Evaluation

An experimental evaluation is necessary to ensure we
acheived what we set out to accomplish. We had
a few major evaluation critiera when beginning the
project. Here is a quick summary:

4.1 Original Evaluation Criteria

Reliability: The code used for programming the motes
and encrypting data on the FPGA should be reliable
under all circumstances, including varying speeds of
transmission, varying levels of network traffic, and
different levels of load on the encryption unit. For
practical reasons we won’t be testing the equipment
to an extreme degree or specifying all possible pro-
gram states like NASA would, but these issues are
still of practical concern.

Accuracy: The FPGA will be used to run en-
cryption algorithms for a secure data transmission
between the sensor nodes. The VHDL code running
on the FPGA and the hardware itself must provide
accurate results every time a transmission is made.

Compatibility: Ideally, the code for programming
the FPGA should be simple in complexity and easily
transferred to another FPGA family. We don’t have
much control over Dr. Kaps’ code or anything we
download from www.opencores.org, but we will try
to ensure that our code meets these standards. Also,
since the future concept for this project is an imple-
mentation using an ASIC instead of FPGA, highly-
compatible code will provide the preliminary ground-
work for such an implementation.

Compactness: Since a fundamental characteris-
tic of sensor nodes is their small size, the add-on
module must have a similar form factor. A compact,
application-specific FPGA implementation is highly
desirable but considering the monetary and time con-
straints, it may not be achieved.

And of course, the design requirements:

• Develop communication protocol between MICA
mote and FPGA

• Enable AES encryption on MICA2 platform with
FPGA

• Develop software platform to demonstrate en-
cryption

• Test with S3E Starter Board

• Increase speed compared to calculation on CPU

• Decrease CPU memory utilization

• Design portable, production-quality FPGA sup-
port platform

• Cost under $100 in mass-production

• Appropriate size for deployment with sensor node

• Power consumption profile:

• Suitable for battery operation

• Superior to CPU for encryption task

4.2 Results

The final conclusion is that most of the requirements
were successful, with the exception of testing the FPGA
board and demonstrating that the FPGA (either the
demo board or the finished production version) were
superior to the CPU for encryption tasks. These
things are some primary tasks that will be left for
the next group to take a look at.

5 Administrative Details

Ah, progress... There is much to discuss. Unfortu-
nately, we did not complete all the tasks we set out to
complete successfully. To finish the core part of the
project we had to sacrifice some ancillary functional-
ity, namely some things related to the mote commu-
nication and the testing and implementation of the
printed circuit board. I’m still quite happy with how
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Description Cost
First parts order $42.92

Second parts order $54.27
Third parts order $31.45
PCB Manufacture $52.30

Hot Plate $17.74
Poster $50.00

Table 2: The parts we bought and their associated
costs.

far along we got, but it’s unfortunate that we ran out
of time.

There were plenty of extra, not-originally-planned
tasks that we had to carry out. Initially we did not
plan to implement a UART from scratch, for instance;
we planned to use open source code to acheive this
functionality. When that didn’t go according to plan
one of our members had to spend more than 2 months
coding the required functionality from scratch. Nat-
urally this affected our timeline significantly.

5.1 Funds spent

The expenses for the project included costs for the
PCB fabrication, costs for the parts for the PCB, a
one-time cost for the poster production, and some
other miscalenous expenses. See table 2 for the full
description.

6 Source Code

All together about 2000 lines of custom source code
were written for this project. To save space we are
not including all this source in the document here,
but it can be provided upon request. Also be sure to
see Figure 3 for the flow of the nesC test component.
Some source code is available in the proposal and
design documents which follow.

7 Lessons Learned

7.1 VHDL Design

As can be seen, it takes approximately 700 s for the
data to be received from the sensor node. Once the
input signal is done, the system then goes to the com-
pute stage. It can be a bit difficult to see from the
diagram, but the total computation time of the en-
cryption takes 514 clock cycles or approximately 10.7

s with a system clock of 50 MHz. Once the com-
pute stage is done, the output stage sends the data
back to the mote which takes about 350 s. When
adding up the total transmission time, it is easy to see
that the serial transmission is over 100 times slower
than it takes to encrypt the data. However, this next
point could easily be overlooked. The baud rate was
mostly constrained by the mote and not the clock
on the FPGA. The AES speed is only constrained
by the clock speed of the FPGA. If the FPGA had
a slower oscillator, the AES time would have taken
longer, and the difference between transmission and
encryption would not have been so grossly accentu-
ated. In any case, the next group to work on this
project should definitely implement their system us-
ing a parallel interface.

The FPGA we decided to use was mostly con-
strained by us designing our own PCB and making
sure our FPGA had a suspend mode to save power.
The Spartan 3AN series does have this functionality,
so we needed to use this type. However, the only
size FPGA that came in the TQ packaging was the
smallest possible FPGA, the 50 series. All other sizes
were built using ball grid array arrangements. There-
fore, we had no choice but to choose the Spartan 3AN
50. This limited the applications we could actually
perform on our board, but the AES and UART de-
sign did fit on the board using approximately 70%
of the available slices. However, recall that this is
a custom FPGA board; therefore it doesnt necessar-
ily have to perform cryptography tasks. There are
many applications for which this board will be fine
for. However, if it is going to be used for cryptog-
raphy, the next group should definitely think about
using a larger FPGA so public-key applications can
be performed.

7.2 Other Experiences

My experience in work and in this project has been
that plans are great, but that they are ultimately not
very useful. It’s hard to predict what’s going to hap-
pen and it is not really possible to anticipate in ad-
vance all the issues that you will run into, especially
when the project you are working on is something
that you have never worked on before. Experience
helps here.

The teaming experience was good and useful, though
I wouldn’t say it was representative of the kind of
teaming experiences I’ve had the in the workplace.
When no one is getting paid, there is no single loca-
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Figure 22: A simulation run in Modelsim of the total transmission and encryption from beginning to end.

Figure 23: Same as the modelsim, but on a logic analyzer.

tion where everyone can work and store their equip-
ment, and no one is motiviated to drive their part of
the project to completion, it’s a completely different
team situation than you have when those conditions
are different. A lot of effort is wasting doing things
that are automatically and much more easily handled
in a workplace environment. It wasn’t worthless, but
it wasn’t great either.

A major change I would recommend to GMU’s
senior design project are a reduction in the paperwork
requirements. Sure, projects in the real world require
documentation and they require a lot of clerical work,
but in the real world you get paid to do boring stuff
that is required. Here we are paying to attend the
university and it would be nice if we could focus on
the fun stuff, i.e., the actual design, without having
to slog though miles and miles of boring paperwork
and documentation.

I know it probably wouldn’t make the industry
folks happy, but being a student who wasted a lot
of valuable time that could have been spent on the
design doing meaningless paperwork, I am naturally
somewhat annoyed with the situation.

8 Appendix A: Proposal (ECE
492)
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1 Executive Summary

This project has two primary goals:

1. Create an add-on board with an FPGA for the
MICA II wireless mote platform,

2. Demonstrate the superiority of the FPGA add-
on for encrypting data compared to the built-in
microcontroller.

Since an add-on board for a small wireless mote
powered by two AA batteries should be small and use
as little energy as possible, we want to create a cus-
tom PCB that includes only the essential components
and a connector that plugs directly into the mote.

We’ll demonstrate the superiority of the FPGA by
showing that it can encrypt more blocks of data per
unit of energy consumed than the microcontroller.
We’ll show this first by XPower simulation, and then
with physical measurements once the device is com-
pleted and working. To the extent we can, we’ll also
simulate the encryption core implemented as an ASIC
and try to produce reasonable projections about power
consumption and throughput for that configuration.

We think the project as we’ve described it is fairly
ambitious based on the skills of our group members,
but we’re ready for the challenge and looking forward
to all the things we’re going to learn.

1.1 Additional Notes

This is a preliminary document based around our cur-
rent understanding of the project and our goals. The
planning process is not complete and everything is
subject to change. Thanks for the comments on the
Activity Report, Dr. Kaps: we’ve integrated your
suggested changes and they were very helpful. Some
of your comments applied to sections that aren’t in-
cluded in this document, but they are still helpful for
future documents and our plans.

2 Problem Statement

Wireless sensor nodes are small devices equipped with
an RF transceiver, a battery, multiple sensors, and
typically a small microcontroller. The transceiver
enables communication with other (often identical)
nodes and a base station, while the microcontroller
controls the communication and gives the nodes local
data-processing ability.

Hundreds or thousands of these sensor nodes can
collectively form mesh networks to facilitate monitor-
ing, tracking, and surveillance applications in com-
mercial, industrial, and military environments. A
few specific applications include detection of gas leaks
and pollution levels at chemical plants, early detec-
tion of forest fires or volcanic activity, and position
tracking for the armed forces [1].

It’s desirable that each node use as little energy
as possible because this saves labor and enables the
nodes to be deployed in locations where its difficult to
change a battery. Remote wilderness locations, toxic
and extreme environments, and even human or ani-
mal bodies are examples of places where sensor nodes
could be useful but it would also be very challenging
to replace a battery.

To minimize power consumption, it’s necessary to
carefully budget microcontroller clock cycle use and
transceiver activity. These components can be pow-
ered nearly all the way off on most node platforms
when they’re not in use which means the primary de-
terminant of battery life is the percentage of time the
various components are active, or their “duty cycle.”
Naturally, effectively balancing the use of these com-
ponents in a wireless sensor application to achieve
minimum energy consumption is challenging.

For example, it’s obvious that in the vast major-
ity of cases it would be wasteful of both power and
bandwidth for a mote to transmit every bit of the
data recorded to every other mote and to a mains-
powered base station with no processing or local logic
at all. What’s less clear is exactly how much local
processing should be done on each mote to keep the
transmitter power consumption low without inadver-
tently wasting power by running the microcontroller
for too long. Like most engineering problems, there
are obvious tradeoffs involved: do you want to focus
on having a high frequency of updates, maximizing
battery life, or getting the software working as quickly
as possible?

When you add an FPGA (a device that can cal-
culate extremely quickly but also uses a large amount
of power) into the mix, things only get more complex.
It should be clear, though, that any device which
could potentially reduce the energy consumption of
a wireless mote for a particular application would be
a useful addition. We’ll examine the use of an FPGA
for an encryption applicaton and provide a detailed
analysis of the problem in the following section.
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3 Approach

This section provides a detailed analysis of the prob-
lem and our requirements and desirable features for
the final design.

3.1 Problem Analysis

For some applications, an FPGA may be a suitable
addition to the onboard microcontroller for local data
processing. The high power consumption of FPGAs
can often be mitigated by the fact that they run
many algorithms orders of magnitude more quickly
than microcontrollers, and thus may use less total en-
ergy than a microcontroller to perform similar tasks.
Some FPGAs even have a “suspend” mode that al-
lows them to retain their configuration while oper-
ating in a low-power state so they don’t need to be
reconfigured every time operation is resumed.

We propose an FPGA add-on module for the Cross-
bow MICA2 wireless sensor node platform that is
configured to handle encryption tasks in response to
requests from the microcontroller. Our primary goals
are to create the FPGA-to-mote interface and to demon-
strate the ability of the FPGA to encrypt data at a
higher speed and with higher energy efficiency. Al-
though for this project we will be focusing on a partic-
ular encryption algorithm (or perhaps several), there
are many types of algorithms that are particularly
suited to operation on FPGAs. Our implementation
will support reconfiguration by RS-232 or USB and
so other uses will simply require a new FPGA bitfile
and new code for the microcontroller.

We expect it will be easy to show that any FPGA
device is faster, but creating one that is also more
energy-efficient for heavy encryption loads could be
more challenging. The efficiency of FPGAs with re-
spect to total power consumption for encryption is
noted in [2], and we hope to reproduce their results,
but it’s worth noting that they used a customized
PCB with only related components and not a pre-
fabbed starter board. We haven’t yet measured how
much standby power the Digilent Spartan 3E Starter
Board (see figure 4) consumes, and so we’re unsure
whether it will be appropriate to use in a sitution
where power consumption must be minimized.

If we end up using a Spartan 3E like the one that’s
on the Digilent board, we also note the necessity of
completely powering down the FPGA every time it
is idle. On restart, it would have to be reconfigured
with the bitfile. Due to the lack of a suspend mode,
there may only be a net energy savings for constant,

heavy loads. On the other hand with a 3L or 3A there
is a good possibility that we’ll be able to suspend
the chip frequently and come out ahead on energy
consumption even for light or infrequent use of the
device. This is another reason developing a custom
board would be helpful: we could use the Spartan 3
size and model most ideally suited for the job.

3.2 Requirements Definition

The finished device must be functional. When data
is presented from the microcontroller to the FPGA,
it must encrypt it correctly according to a pre-shared
key and return it promptly to the microcontroller.

The finished FPGA with all its support compo-
nents must use less energy per unit of data encrypted
than the ATMega128L microcontroller would use for
the same task. Ideally it would be able to handle
small duty cycle loads (that is, perhaps 10 blocks of
data to encrypt, and then a 30 second pause, and then
10 more blocks...) while still consuming less energy
than the microcontroller, but we are willing to relax
this requirement if it turns out to be too difficult to
acheive in practice.

The total cost of the project should be kept un-
der $400. So far, we’ve budgeted about $200 worth
of parts and equipment. Hopefully none of our ex-
pensive stuff will break.

The finished device must be attractive and in a
similar form factor to the original wireless mote. It
should be roughly as rugged and resistant to shock
as the original sensor node. Constant vibration over
long periods must not cause the device to malfunc-
tion.

The finished device should be programmable us-
ing either a USB or serial interface. Although a USB
interface would certainly be more convenient, we are
already strapped for time and will prefer to imple-
ment a simpler RS-232 interface. Fast programming
speed is unimportant.

Plugging in the add-on FPGA board to the sensor
mote should not cause any of the features of the mote
to become disabled or to malfunction. Extreme care
must be taken to ensure that neither device’s absolute
maximum voltages are exceeded.

4 Preliminary Design

This section provides an overview of our current de-
sign proposals. We begin with our primary plan and
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then specify 2 backup plans to be used in the case of
critical failure or time constraint.

4.1 Primary Plan

Taking into consideration the nature of sensor nodes
and the specified constraints, we believe the best way
to implement the FPGA expansion board is to pur-
chase a low-power, discrete FPGA and design a PCB
for direct connection to the sensor nodes through
the Hirose 51-pin expansion connector on the motes.
Shown in figure 1 is a preliminary look at the func-
tional blocks we propose the PCB layout will consist
of. We are not showing more detail in this document
because we still need more time to understand the
many interconnections involved.

Texas Instruments has developed a triple voltage
regulator specifically for the Spartan 3 series which
supplies the correct voltages to the FPGA and takes
care of many complex regulation issues. Our pro-
posed PCB will also need a flash memory device, the
size depending on the FPGA model we use.

The benefits to designing a PCB for a discrete
FPGA are two-fold: first, the power consumption will
be much lower than using the Diligent Spartan 3E
demo board because there will no superfluous com-
ponents to power. It would also enable us to choose a
low-power FPGA model. This means, however, that
we would need to order an FPGA from the Spar-
tan 3A or 3L series, which would increase our bud-
get somewhat. Considering that we did not have to
pay for the motes as they were loaned to us by Dr.
Kaps, there is plenty of room in our budget for the
components we will need for this design. The second
benefit is size. The Diligent board is a large piece
of equipment, and given the nature of sensor nodes
and the constraints we have specified, size is a major
factor. Naturally, an expansion board designed with
a stand-alone FPGA would be much smaller.

Lastly, with a PCB we could order the 51-pin ex-
pansion connector from Digikey and affix it to the
PCB such that the finished product can be plugged
directly into the mote. This adds to the convenience,
appearance, and sturdiness of the device as there will
not be a lot of unsightly wires and volatile connec-
tions to constantly worry about. These features are
secondary concerns but they would make for a better
design.

There will be added difficulties in designing the
FPGA expansion in this way, as tasks which would
have already been done for us had we decided to use

the Diligent board will need to be addressed. Most
notably we will have to deal with power compatibility,
whether to use serial or USB ports, memory and ini-
tial configuration, and other interconnection issues.
A starter board or even a basic breakout board would
have taken care of much of this for us.

One last concern is whether we can fabricate the
PCB ourselves or whether we will need to send it to a
manufacturer, and then whether we would attach the
parts or pay for the fab to do it. Doing everything on
our own using board stock, etching solution, a laser
printer, an iron, and a drill would be interesting and
fun, but there are many potential pitfalls. Two major
issues are the size of the traces for the FPGA, and
the very small holes that would need to be drilled for
the expansion connector.

Despite the potential pitfalls, we believe that it’s
feasible for us to complete a custom PCB (certainly
at least the schematics) through careful planning and
prototyping. That’s why we have chosen this to be
our primary preliminary design.

4.2 Backup Plan B

If the primary design proves to be too difficult, we
have two “back-up” ideas that will still result in ac-
ceptable finished products. Figure 2 shows a bare-
minimum Spartan 3E breakout board from Sparkfun
Electronics. There are two ways we could use this
board. One way would be to break the partition, re-
moving the support module from the actual FPGA
and using it as a stand-alone FPGA. This does not
seem beneficial because we would be essentially re-
moving a triple voltage regulator that supplies the
correct voltage, a 16 Mbit PROM to store the bit-
files, and a serial port for programming. If we go this
route we will probably use the whole breakout board,
although we may still break it in half to make the
form factor more appealing.

To use this secondary design we would need to
develop an interface board that maps the pin connec-
tions of the Hirose 51-pin expansion connector such
that the components can be interfaced with the sen-
sor nodes. We want to meet the requirements that
the board be portable and easy to attach to the mote,
so we could still affix a purchased Hirose connector
to another board of similar size which would be at-
tached to the (broken apart) Sparkfun boards in per-
haps a triple-stacked arrangement. This board could
have traces which line up with those on the Sparkfun
board and be bridged to it by small pins. Of course
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Figure 1: Proposed PCB Components Block Diagram

Figure 2: The Sparkfun DEV-08458 Spartan 3E Breakout and Development Board ( c©2007 Sparkfun Elec-
tronics)

5



Project Proposal ECE 492

the breakout board would still store the bitfile in the
PROM on the support module.

Alternatively we could use the MDA100CB in-
terface board (Figure 3) to connect to the sensor
node via the 51-pin expansion connector and stan-
dard wires to connect to the traces on the breakout
board, but we would need some other type of struc-
tural enforcement to keep the device small and held
together as one unit.

Figure 3: The Crossbow MDA100CB Expansion Con-
nector ( c©2006 Crossbow Technologies)

4.3 Backup Plan C and Initial Test

There is still one more back-up plan that could come
into effect if we do not make nearly as much progress
as we hoped to and time becomes a major issue.
For preliminary testing purposes, we are using the
Digilent Spartan 3E Starter board (provided by Dr.
Kaps), shown in figure 4.

Figure 4: The Digilent Spartan 3E Starter Board
( c©2007 Digilent)

We’ll be using this board to ensure our ideas about

interconnections work, that the software developed
for the motes is effective, and that the implemented
FPGA encrypts correctly.

Since we are going to be using this board anyway
to being with, we will always have it as a backup in
case our more ambitious plans for a final design don’t
quite work out. The board has a Hirose 100-pin ex-
pansion connector that we would need to interface
with the MDA100CB board shown in figure 3. Since
this demo board has all the bells and whistles, is no
need for external memory or voltage regulation and
the main design boils down to simply interfacing the
expansion connector on the demo board to the ex-
pansion connector on the sensor nodes. This design
will be more large and consume more energy than the
other designs which is why it is a back-up.

Admittedly as we delve deeper into the many com-
plexities of this project we are learning that there are
many difficult aspects which may force us to be sat-
isfied with this last design.

4.4 Device Communication and Band-
width

This section provides some details about our research
on the bus connections between the microcontroller
and the FPGA device. We don’t anticipate the 57.6K
baud USART implementation on the microcontroller
will be sufficient to saturate the FPGA with data for
encryption if it is running at full speed. Presumably
the FPGA will be expecting some input every clock
cycle or every few clock cycles, and at 48MHz that
adds up to a lot of bits per second.

It’s also worth noting that the maximum transmit
rate for the mote is only 38.4K baud and thus even
if the microcontroller can talk to the mote at the
higher rate it can’t actually send the data anywhere.
This means the FPGA is probably a lot faster than
is necessary for simple transmission of data with this
particular hardware.

Since demonstrating the high throughput of the
FPGA is an important part of the project, I think it
makes sense to try and get as high of a bandwidth
link between the FPGA and the microcontroller as
we can even if we can’t transmit the resulting data
from the microcontroller. To that end we plan to
implement a parallel data bus using 8 GPIO pins on
the microcontroller. We could use more, but we can
only write to a maximum of 8 in one clock cycle on the
ATMega128L and so 8 seems like the ideal number.

By keeping the “data generation” instructions on
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the microcontroller simple, we to be able to “feed”
the FPGA with fairly large amounts of data. Unfor-
tunately we don’t yet know how much overhead the
MoteWorks software will take up, or how often we’ll
be able to issue an interrupt to write to the pins. It
may turn out that this method doesn’t give us much
more usable bandwidth than a USART connection
would have, but at least it’ll be an interesting learn-
ing experience.

We’d like to have a second parallel data connec-
tion for returning the data to the microcontroller but
unfortunately there is not a second set of 8 GPIO pins
grouped together that we’ll be able to read from in
only one clock cycle. The only way to solve this prob-
lem may be to accept the use of GPIO pins on differ-
ent ports, but this will slow down the device since we
will need to use extra cycles on the microcontroller to
read multiple ports and then concatenate the results.
This is an outstanding issue we’ll need to think about
before we start making detailed schematics.

If we fail to get our parallel connection working
during the demo board testing stage, we’ll switch over
to the USART implementation and find a clever way
to work around the fact that we can’t actually satu-
rate the FPGA with data from the microcontroller.
We may run into the same problem with the parallel
connection anyway.

4.5 Voltages

The Digilent board cannot really be powered from
our two AA batteries due to the high current require-
ment. For our other 2 plans (PCB and Sparkfun) we
hope that using a DC-to-DC converter and the TI
voltage controller device will supply stable enough
voltages from 2 lithium AA batteries to power the
FPGA and other components.

Spartan-3 devices are designed and characterized
to support various I/O standards for VCCO values of
+1.2 V, +1.5 V, +1.8 V, +2.5 V, and +3.3 V. The
ATMega128L (Vcc = 3.0 V) supports an input low
voltage from -0.5 V to 0.2Vcc (0.6 V) and an input
high voltage from 0.6Vcc (1.8 V) to Vcc + 0.5 V (3.5
V). The output low voltage is 0.5 V and the output
high voltage is 2.2 V. Presumably if the FPGA is
configured for VCCO = 2.5 V on the connected pins
the devices will not have trouble communicating due
to out-of-range voltages (and at least will not damage
each other due to over-voltage, which is what we’re
really trying to avoid during early testing).

5 Preliminary Experimentation
Plan

Our experimentation plan will include the testing of
all the components as a system to verify that system
performs the required tasks. To acquire encrypted
data, the microcontroller on the mote attached to
the programmer and a personal computer will send
data to another mote connected with the FPGA (this
mote will simulate a sensor or other device and give us
the opportunity to become familar with computer-to-
mote communications). The microcontroller on the
mote with the FPGA will then transfer this data to
the FPGA, which will encrypt it and send the en-
crypted data back to the requesting microcontroller.
XServe and XSniffer will be used to monitor and doc-
ument the communication flow between the request-
ing mote and the FPGA mote during the encryp-
tion phase. The sensor nodes will be programmed
with TinyOS applications, using MoteWorks, to de-
tect and acknowledge the networking communication
between the microcontroller and the FPGA.

The hardware components will be tested to en-
sure proper functioning of the devices both individu-
ally and as a system. The devices themselves will be
tested as follows:

1. Programming board (MIB520): The MIB520
(see figure 5) will be used to install application pro-
grams onto the sensor nodes. We will use NesC to
code the programs and the tool Programmers Notepad
2 or a similar text editor to compile and download the
programs to the sensor nodes.

Figure 5: The MIB520 User Interface Board ( c©2006
Crossbow Technologies)

2. Sensor Nodes (MICA2): Each MICA2 mote
(see figure 6) will be first tested individually and
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then operating in tandem as a small point-to-point
network. For proper program installation and ac-
curate operation in accordance with the application
specifications, each node will be connected with the
programming board. The code will be compiled and
downloaded onto each node via the MIB520. The cor-
rect loading of the code can be verified by using the
three LEDs available on each sensor node. Once the
nodes are programmed, they will then be configured
to operate as a point-to-point network.

XSniffer and XServe will be used to test the com-
munication activity in the network. XServe provides
the platform to monitor the communication between
the base station and the wireless node in the mesh
network, while XSniffer allows monitoring of the multi-
hop communication between the nodes in the mesh
network.

Figure 6: The MICA2 916 Wireless Mote ( c©2006
Crossbow Technologies)

3. Sensor board (MDA100): The sensor board
(see figure 3) will provide the gateway between the
mote and the FPGA if we choose one of the applica-
tions that doesn’t involve building a custom PCB. In
this case the FPGA pins will be connected to the fifty-
one pins on the sensor board and one of the nodes
will be programmed to read the sensor board activ-
ity. The node can transmit samples of information
from the sensor board to another sensor node at the
base station or in the mesh network, although we will
not be testing this application.

5.1 Evaluation Criteria

The final system will be primarily evaluated on the
power consumption of the device. Considering the
future extension of this project to an implementation
using ASICs instead of FPGAs, the simulation re-
sults of the FPGA system will be compared to the
estimated results obtained from the ASIC simula-
tion. The results will be divided into three sections—
speed, number of resources on chip being used, and
the power consumption of the chip—and each will be
analyzed for compliance with the requirement speci-
fications provided earlier in this document.

The system will also be evaluated on the following
secondary criteria: reliability, accuracy, compatibil-
ity, and compactness.

Reliablilty: The code used for programming the
motes and encrypting data on the FPGA should be
reliable under all circumstances, including varying
speeds of transmission, varying levels of network traf-
fic, and different levels of load on the encryption unit.
For practical reasons we won’t be testing the equip-
ment to an extreme degree or specifying all possible
program states like NASA would, but these issues are
still of practical concern.

Accuracy: The FPGA will be used to run en-
cryption algorithms for a secure data transmission
between the sensor nodes. The VHDL code running
on the FPGA and the hardware itself must provide
accurate results every time a transmission is made.

Compatibility: Ideally, the code for programming
the FPGA should be simple in complexity and easily
transferred to another FPGA family. We don’t have
much control over Dr. Kaps’ code or anything we
download from www.opencores.org, but we will try
to ensure that our code meets these standards. Also,
since the future concept for this project is an imple-
mentation using an ASIC instead of FPGA, highly-
compatible code will provide the preliminary ground-
work for such an implementation.

Compactness: Since a fundamental characteris-
tic of sensor nodes is their small size, the add-on
module must have a similar form factor. A compact,
application-specific FPGA implementation is highly
desirable but considering the monetary and time con-
straints, it may not be achieved.

6 Preliminary List of Tasks

This is our preliminary list of tasks and goals. Many
tasks listed for this semester will be complete before
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the final document is submitted and will contribute to
the research and specifications in the other sections of
the final design document. We will use some type of
a progress-tracking Gantt chart to demonstrate our
progress now all of these tasks have been entered into
MS Project.

Preliminaries I thought we should get these tasks
done right away to help the team get familiar
with the project and the tools we’ll be working
with.

Toolchain setup and installation A lot of sup-
port software is required for this project.
We need the MoteWorks software distri-
bution, drivers for the mote programmers,
Xilinx ISE for the FPGA, EAGLE for the
PCB layout, and whatever software we’ll
be using for ASIC simulation. For the
most part this step is complete although
we all have different versions of the toolchain.

Hardware testing and verification Nothing
is worse than spending hours trying to fig-
ure out why your code doesn’t work and
then realizing that it’s because your hard-
ware platform is bad. As such, we’ll be
testing all of the hardware (motes, FPGA
starter board, any purchased hardware) be-
fore we try to use it. So far we’ve run sam-
ple programs on the motes, but we haven’t
had a chance to test the Digilent board
yet.

Demo Board Setup The first setup we’ll develop
will use the demo board as a target platform.
In the case that the power-efficient setup runs
into problems, we’ll also have this platform to
fall back to for demonstrations and testing.

Locate/Obtain FPGA encryption core For
the final part of the project we expect to
use a core supplied by Dr. Kaps, but in the
interim we may use an open-source core
from www.opencores.org.

Core synthesis/implementation We need to
make sure early that the core will synthe-
size on a Spartan 3 target. We should also
figure out the smallest chip that the core
will synthesize on.

Mote connections We need to connect the
demo board to the mote. These will be
temporary connections with probably an

IDE cable attached to one of the pin head-
ers on the demo board and as such shouldn’t
take very long.

Testing The fun part—making sure it works.
If everything goes fine this will take 5 min-
utes, but if it doesn’t we’ll have a lot of
work to do troubleshooting. That’s why I
allocated so much time for this.

Power consumption measurements Once ev-
erything is verified working, we can mea-
sure the power consumption for our re-
ports. This will be a combination of simu-
lation results and physical measurements.
It’ll be interesting to see how much power
the demoboard consumes and how much
we can potentially save with a custom PCB.
If the amount is small, perhaps we’ll re-
think our plan at this point. Or perhaps
we should find a way to measure it earlier.

Throughput analysis We’ll need to find out
how much data the core is passing when
it’s running at full speed. The throughput
could be limited by the speed of the com-
munication link between the FPGA and
the microcontroller, and we’ll need to fig-
ure out what to do about this issue if it is
(preferably before we get there).

Mote Software The software running on the mote
is a significant part of the project. We’ve al-
ready made some good progress understanding
the

Locate encryption implementation We want
to run an implementation of the same al-
gorithim that’s going to be used on the
FPGA on the microcontroller so that we
can compare power consumption and through-
put for both of the devices. The first step
is finding an implementation.

Throughput analysis After the implementa-
tion is compiled and running, we’ll see how
much data we can get through. From there
it’s a trivial step to determine how many
blocks of data per unit energy is being
used.

Communication software (for testing interface)
Although we could go directly to a device
driver, we thought it might be simpler for
development to get some code running on
the microcontroller that does something
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stupid like flip the output bits of the com-
munication interface every clock cycle. This
will probably make it easier to troubleshoot
the connections and we’ll also be able to
get it done earlier so work on these two
main tasks can proceed in parallel.

Device driver The device driver itself could
be a bit of a challenge. As we noted eariler,
a significant amount of information is avail-
able on creating device drivers for TinyOS
1.1 (which MoteWorks is derived from) and
2.0 but documentation for the MoteWorks
platform is scarcer. We’ve allocated a lot
of time for this task.

ASIC Simulation The purpose of doing an ASIC
simulation is for our learning experience and to
demonstrate the advantages of ASICs. Obvi-
ously we wouldn’t be developing one.

Synthesis We gather the first step is running
the VHDL through a synthesis tool, sim-
ilar to the VHDL workflow we’re already
familiar with. The impression I got from
Dr. Gaj’s slides was the GMU has one li-
censed, but if that’s not the case we’ll need
to reevaluate our options.

Projected power consumption This may in-
clude a serious amount of estimation. There
are tools available that automate this pro-
cess, but probably not student versions and
GMU probably doesn’t have them licensed.

Projected throughput analysis If the syn-
thesis tool works, hopefully it will provide
a maximum clock cycle and we’ll be able
to use that number to determine through-
put.

Power efficient setup For the final deliverable, we’d
really like to create an FPGA package that does
the job while using the minimum amount of
power possible. If it turns out to be impossi-
ble to get this done before the deadline, we’ll
get as far through the process as we can.

Build schematic We’ve tentatively decided to
use the EAGLE software for this part of
the project. The first step is creating a
schematic. Depending on whether we de-
cide to implement the power management
components on the chip or buy a premade
solution, we may simply copy significant

amounts of this from the TI datasheet (they
have a nice power controller IC for the
Spartan 3s, but it needs a lot of external
components)

Circuit layout Once the schematic is complete
we have to do layout. I’m not very famil-
iar with this process, but we’ll learn as we
go. It would be nice to use SMD com-
ponents (apparently it is possible to affix
them yourself if you have a steady hand),
but we’ll see as we go along.

Purchase board and components We’re still
a little shaky on whether we’ll have time
to implement the voltage controller on the
board and whether we’ll be able to sol-
der an FPGA with all those tiny pins our-
selves (others have done it, but we’re not
pros!) Thus, we don’t know exactly which
parts we need to buy yet. For the PCB,
we’ll send the schematic off to one of to
the cheapest Chinese supplier we can buy.
Will it work? Who knows, but it’ll be in-
teresting.

Assemble board Some PCB suppliers seem
willing to affix components they stock for
a low cost, but I suspect we’ll still end up
doing it ourselves. I’m more nervous about
doing SMD components than through-hole
ones, but we’ll see how it goes. The FPGA
will be the only really challenging one.

Testing Naturally there’s going to be a lot of
testing and this may well be the stage where
we get stuck. Ideally this stage will not
only check whether “it works,” but also
the many other constraints we specified in
the design requirements section.

Power consumption measurements After we’ve
ensured the board is working correctly we’ll
measure the power consumption of the FPGA
by putting an ammeter inline with the power
supply while the chip is operating. The re-
sult should be close to the simulation, plus
the inefficiencies in the voltage regulators.

Throughput analysis If everything’s working,
our final task is to ensure our throughput
results from simulation match what we’re
actually getting in the hardware.
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ID Task Name Start Slack Start Finish Resource Names
1 Toolchain setup and installation 14.75 days Sat 3/8/08 Mon 3/10/08 Tina,Faizul
2 Hardware testing and verification 14.75 days Wed 3/12/08 Sun 3/16/08 Tina,Faizul
3 Presentation preparation 29.25 days Wed 3/12/08 Sun 3/16/08 Brandon,Faizul,James,Tina
4 Demo board setup 16.75 days Sat 3/8/08 Fri 7/18/08
5 Locate/Obtain FPGA encryption

core
16.75 days Sat 3/8/08 Mon 3/10/08 Tina

6 Core synthesis/implementation 14.75 days Sun 3/16/08 Fri 3/28/08 Tina
7 Mote connections 15.75 days Fri 3/28/08 Fri 4/18/08 James
8 Testing 13.25 days Fri 5/16/08 Fri 6/13/08
9 Power consumption

measurements
13.25 days Fri 6/13/08 Fri 7/4/08 Faizul

10 Throughput analysis 13.25 days Fri 7/4/08 Fri 7/18/08 Faizul
11 Mote Software 7.75 days Sun 3/16/08 Fri 7/4/08
12 Locate encryption implementation 22.75 days Sun 3/16/08 Fri 3/28/08 Tina

13 Throughput analysis 22.75 days Fri 3/28/08 Fri 4/18/08 Tina
14 Communication software (for

testing interface)
6.25 days Fri 3/28/08 Fri 5/16/08 Tina

15 Device driver 6.25 days Fri 5/16/08 Fri 7/4/08 Tina,Brandon
16 ASIC Simulation 11.5 days Fri 5/2/08 Fri 8/8/08
17 Synthesis 11.5 days Fri 5/2/08 Fri 6/13/08 Faizul
18 Projected power consumption 11.5 days Fri 6/13/08 Fri 7/11/08 Faizul
19 Projected throughput analysis 11.5 days Fri 7/11/08 Fri 8/8/08 Faizul
20 Power efficient setup 5.75 days Fri 3/28/08 Fri 9/26/08
21 Build schematic 5.75 days Fri 3/28/08 Fri 4/18/08 James,Brandon
22 Circuit layout 5.75 days Fri 4/18/08 Fri 5/2/08 James,Brandon
23 Purchase board and components 5.75 days Fri 5/16/08 Fri 6/6/08 Faizul

24 Assemble board 5.75 days Fri 6/13/08 Fri 7/4/08 James,Brandon
25 Testing 5.75 days Fri 7/11/08 Fri 8/22/08 James,Tina
26 Power consumption

measurements
5.75 days Fri 8/22/08 Fri 9/12/08 Faizul

27 Throughput analysis 5.75 days Fri 9/12/08 Fri 9/26/08 Faizul
28 Draft proposal 1.25 days Sat 3/8/08 Fri 3/14/08
29 Schematic for FPGA/mote

configuration
1.25 days Sat 3/8/08 Wed 3/12/08 James

30 Experimentation Plan &
Evaluation Criteria

1.25 days Sat 3/8/08 Wed 3/12/08 Tina

31 Final editing 1 day Wed 3/12/08 Fri 3/14/08 Brandon
32 Draft Design Document 26 days Fri 3/21/08 Fri 4/11/08 Brandon,Faizul,James,Tina
33 Prototyping Progress Report 26.25 days Fri 3/28/08 Fri 4/11/08 Brandon,Faizul,James,Tina
34 Design Document 6.5 days Fri 4/18/08 Fri 4/25/08 Brandon,Faizul,James,Tina
35 Progress Report 1 0 days Fri 8/29/08 Tue 9/9/08 Brandon,Faizul,James,Tina
36 Progress Report 2 0 days Fri 10/3/08 Mon 10/13/08 Brandon,Faizul,James,Tina
37 Progress Report 3 0 days Fri 10/24/08 Mon 11/3/08 Brandon,Faizul,James,Tina
38 Draft Final Report 0 days Fri 11/14/08 Thu 11/27/08 Brandon,Faizul,James,Tina
39 Final Report 0 days Fri 11/21/08 Mon 12/1/08 Brandon,Faizul,James,Tina
40 Project Poster 0 days Fri 11/28/08 Mon 12/8/08 Brandon,Faizul,James,Tina
41 Presentation Prep 0 days Fri 12/5/08 Fri 12/19/08 Brandon,Faizul,James,Tina

Figure 7: Project responsibilities and other relevant data exported from our project management software
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6.1 Allocation of responsibilities

Although we’ve done our best to allocate responsi-
bilities according to the expertise, work habits, and
desires of the group members, at least some changes
will probably be necessary at some point. The re-
sponsibilities are shown in figure 7.

7 Preliminary Schedule and Mile-
stones

Our schedule includes everything from the date we
started tracking tasks, including project milestones
and deliverables for this semester and next semester.
The Gantt chart is shown in figure 8.

8 Outstanding Issues and Prob-
lems

This section provides a rough list of issues that we’ve
been discussing at the meetings but haven’t worked
out yet as of the printing of this document (15 MAR
2007). We are still trying to find solutions and any
comments are appreciated!

• Does GMU have any tools that can be used
for ASIC synthesis licensed? Are there any
student/research versions? How about ASIC
power analysis software? What do we do if we
can’t get access to this stuff?

• How do we clock the parallel bus(ses) between
the FPGA and the microcontroller? If we have
8 wires coming from the microcontroller, and we
use one pin as a “clock,” and we wait a couple
of FPGA clock cycles after the “clock” pin has
changed before latching the data pins into the
I/O blocks, is that going to work?
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1 Introduction

This design document specifies the details of our plan
to integrate a Field Programmable Gate Array (FPGA)
device with the Crossbow MICA2 wireless mote plat-
form. The FPGA will be used to host two encryption
cores that have been provided to us by Dr. Kaps in
VHDL. The project is scheduled for completion at
the end of 2008, but may become a continuation for
a group to work on next year depending on whether
we are able to carry out the full vision for the project.

The FPGA device is mainly intended for proto-
typing and experimentation. Ideally, this project will
lead to the development of an ASIC that could be
integrated with future mote devices to provide fast
encryption with maximal power efficiency. Since our
small, unfunded group will be unable to see any type
of ASIC project through to completion, though, we
aim to use various techniques to make the FPGA im-
plementation as power-efficient as possible.

We’ll begin with a gentle introduction to the var-
ious aspects of this project and then ease into the
details of our specific design.

1.1 Wireless Sensor Nodes

Wireless sensor nodes (WSNs) are small devices equipped
with an RF transceiver, a battery, multiple sensors,
and typically a small microcontroller. The transceiver
enables communication with other (often identical)
nodes and a base station, while the microcontroller
controls the communication and gives the nodes local
data-processing ability.

Hundreds or thousands of these sensor nodes can
collectively form mesh networks to facilitate monitor-
ing, tracking, and surveillance applications in com-
mercial, industrial, and military environments. A
few specific applications include detection of gas leaks
and pollution levels at chemical plants, early detec-
tion of forest fires or volcanic activity, and position
tracking for the armed forces [1].

TinyOS is a free and open source operating sys-
tem and support platform developed specifically for
wireless sensor networks. It’s written in the specially-
developed nesC programming language and provides
a common set of commands and libraries that can be
used on multiple hardware platforms. The wireless
motes we’ll be using for this project are supported
by TinyOS 2.x, and so we’ll be using it extensively.
Details about nesC are discussed in §3.5.
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1.2 Rationale for Encryption on WSNs

Many potential applications of wireless sensor nodes
can benefit from message authentication and confi-
dentiality. For instance, a sensor node deployed in
a critical military network with a remote command
interface should only accept commands from autho-
rized users. Likewise, it may be undesirable for unau-
thorized users to be able to view data the sensor
nodes are collecting. Encryption can assist with both
of these goals.

There are two major classes of encryption: sym-
metric and asymmetric. In general, symmetric-key
encryption is only effective if the symmetric key is
kept secret by both parties involved in a communica-
tion. For this reason, it is not ideal for deployment
in wireless sensor network scenarios where individual
motes may be compromised and a private key recov-
ered by an attacker.

Asymmetric (or public-key) encryption involves a
pair of keys, public and private. Each public key is
published while its corresponding private key is kept
secret. Asymmetric encryption allows parties to dis-
guise information they send to each other, to ensure
data has not been modified in transit, to confirm a
sender’s identity, and to prevents a sender of informa-
tion from claiming at a later date that the informa-
tion was never sent. An additional benefit for WSNs
is the fact that each mote need only contain the pub-
lic keys of other motes and any base stations, which
would limit security risks if some motes were collected
and their contents analyzed by an attacker [2][3].

This has been only a brief discussion of the rea-
sons for encryption and security in WSNs. A full
analysis of the benefits and drawbacks of symmetric
vs asymmetric cryptography and their applications
for WSNs are outside the scope of this document.
For more information about the implementations and
their implications, see [2] and [4].

2 Functional Design/Architecture

There are many functional design aspects to con-
sider for an encryption platform for WSNs. For in-
stance, it’s desirable that a sensor node use as little
energy as possible because this saves labor, enables
the nodes to be deployed in locations where its diffi-
cult to change a battery, and provides additional run-
time. Remote wilderness locations, toxic and extreme
environments, and even human or animal bodies are
examples of places where sensor nodes could be use-

ful but it would also be very challenging to replace a
battery.

To minimize power consumption, it’s necessary to
carefully budget microcontroller clock cycle use and
transceiver activity. These components can be pow-
ered nearly all the way off on most node platforms
when they’re not in use which means the primary de-
terminant of battery life is the percentage of time the
various components are active, or their “duty cycle.”
Naturally, effectively balancing the use of these com-
ponents in a wireless sensor application to achieve
minimum energy consumption is challenging [4].

For example, it’s obvious that in the vast major-
ity of cases it would be wasteful of both power and
bandwidth for a mote to transmit every bit of the
data recorded to every other mote and to a mains-
powered base station with no processing or local logic
at all. What’s less clear is exactly how much local
processing should be done on each mote to keep the
transmitter power consumption low without inadver-
tently wasting power by running the microcontroller
for too long. Like most engineering problems, there
are obvious tradeoffs involved: do you want to focus
on having a high frequency of updates, maximizing
battery life, or getting the software working as quickly
as possible?

When you add an FPGA (a device that can cal-
culate extremely quickly but also uses a large amount
of power) into the mix, things only get more complex.
It should be clear, though, that any device which
could potentially reduce the energy consumption of
a wireless mote for a particular application would be
a useful addition. We’ll examine the use of an FPGA
for an encryption application and provide a detailed
analysis of the problem in the following section.

2.1 Adding an FPGA

For some applications, an FPGA may be a suitable
addition to the onboard microcontroller for local data
processing. The high power consumption of FPGAs
can often be mitigated by the fact that they run
many algorithms orders of magnitude more quickly
than microcontrollers, and thus may use less total en-
ergy than a microcontroller to perform similar tasks.
Some FPGAs even have a “suspend” mode that al-
lows them to retain their configuration while oper-
ating in a low-power state so they don’t need to be
reconfigured every time operation is resumed.

We propose an FPGA add-on module for the Cross-
bow MICA2 wireless sensor node platform that is
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configured to handle encryption tasks in response to
requests from the microcontroller. On the FPGA will
be one public key algorithm and one private key algo-
rithm: AES/Rijndael as a private-key algorithm and
RSA/Rabin as a private key algorithim. Our primary
goals are to create the FPGA-to-mote interface and
to demonstrate the ability of the FPGA to encrypt
data at a higher speed and with higher energy effi-
ciency than the Atmega128L microcontroller on the
mote. Although for this project we will be focusing
on two particular encryption algorithms, there are
many other types of algorithms that are particularly
suited to operation on FPGAs. Our implementation
will support reconfiguration by either RS-232 or USB
and so other uses will simply require a new FPGA
bitfile and new code for the microcontroller.

We expect it will be easy to show that any FPGA
device is faster, but creating one that is also more
energy-efficient for heavy encryption loads could be
more challenging. The efficiency of FPGAs with re-
spect to total power consumption for encryption is
noted in [5], and we hope to reproduce their results,
but it’s worth noting that they used a customized
PCB with only related components and not a pre-
fabbed starter board. We haven’t yet measured how
much standby power the Digilent Spartan 3E Starter
Board (see figure 3) consumes, and so we’re unsure
whether it will be appropriate to use in a situation
where power consumption must be minimized.

If we end up using a Spartan 3E like the one that’s
on the Digilent board, we also note the necessity of
completely powering down the FPGA every time it
is idle. On restart, it would have to be reconfigured
with the bitfile. Due to the lack of a suspend mode,
there may only be a net energy savings for constant,
heavy loads. On the other hand with a 3L or 3A there
is a good possibility that we’ll be able to suspend
the chip frequently and come out ahead on energy
consumption even for light or infrequent use of the
device. This is another reason developing a custom
board would be helpful: we could use the Spartan 3
size and model most ideally suited for the job.

3 System Design/Architecture

Considering the nature of sensor nodes and the spec-
ified constraints, we believe the best way to imple-
ment the FPGA expansion board is to purchase a
low-power, discrete FPGA and design a PCB for di-
rect connection to the sensor nodes through the Hi-
rose 51-pin expansion connector on the motes. This is

quite an ambitious project, and admittedly the plan
may not come to fruition in the time we have avail-
able. Still, we’ve provided many details herein that
describe our vision for the platform. Even if we don’t
get to this part of the project, this documentation
may prove useful for any future groups who work on
it.

3.1 Device Communication Process

Initially we considered using Block RAMs on the FPGA
to buffer incoming data so it was available locally
when requested by the encryption code. After some
discussion we concluded that it would make sense to
send the data “just in time,” especially since for AES
the bytes for the key and the data are requested by
the core in the same order each time. In this case
discrete chunks of the data and the key will go across
the bus alternately until all of the data has been
transferred. We acknowledge that it is wasteful of
both power and transmission bandwidth to repeti-
tively send data over the serial bus in this way, but
since bandwidth will not be a constraint and this will
simply the overall design immensely it seems like a
worthwhile tradeoff. A total of 256 bits will be trans-
ferred for AES; 128 bits for the key, and 128 bits for
the data.

In figure 1, we show our anticipated path for a
chunk of data through the system. Initially data will
be sampled from a sensor to memory in the microcon-
troller. Next the data would pass over a USART link
from the microcontroller to the FPGA for encryp-
tion, and the encrypted data would pass back over
the USART to the microcontroller. The microcon-
troller would then send the data to the CC1000 for
transmission, and the data would be received by an
identical CC1000 on a base station mote. The data
would go through the mote’s microcontroller and out
over USB to a host PC where MoteView could be
used to access and decrypt the data.

As mentioned in [2], there is some concern to have
key data travelling over an open bus if the nodes are
to be deployed in an untrusted environment. Our de-
sign does not make any effort to protect the key data,
and so using a public-key core like Rabin would be
essential if good security were desired in this situa-
tion.

3.2 Power Consumption

To determine whether it was really feasible to power
an FPGA from two AA batteries, we examined the
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Figure 1: A representation of the dataflow during device operation.

power requirements of a Spartan 3AN and it’s neces-
sary support circuitry (a voltage regulator and per-
haps a DC–to–DC converter, depending on the num-
ber of battery cells used). Note that this is not meant
to be a highly accurate analysis, simply enough to de-
termine whether it is feasible to power an FPGA from
alkaline batteries.

Based on the smallest Spartan 3AN available, the
XC3S50AN, our order-of magnitude estimate is that
the device and its support circuitry will dissipate about
3W of power when operating in full active mode. To
make the math simple, let’s assume 3 battery cells in
series, which means 1W of power would need to be
provided by each cell.

Since Duracell alkaline AA batteries have char-
acteristics similar to other alkaline batteries, we’ve
used the Duracell AA alkaline datasheet to determine
some general performance characteristics for AA bat-
teries. Alkaline batteries operate over a fairly wide
voltage range from 0.8V to 1.5V. If we average it out
to assume that most of the time they are operating at
1.1V, then roughly 909mA of current will be needed
from each battery on average. A constant 1 A drain
would cause the batteries to be depleted extremely
quickly, in less than one hour (total) of operation.

It looks like 3 AA batteries are not an appropri-

ate power source for the FPGA, and that means the
2 that come with the mote are definitely not appro-
priate. We’ll need to use a separate, higher capacity
power supply for the FPGA. 3 D cell batteries would
last longer; roughly 8 hours for 1 A of constant drain.
We would not be honoring the requirements of keep-
ing the size of the mote device small if we used multi-
ple D cell batteries to power it, but this tradeoff may
be unavoidable. 3 D cells are not likely to save much
space vs 4 D cells, and including an extra cell would
increase runtime significantly, so 4 D cells is probably
the magic number.

Of course, the FPGA will not be operated at the
full power consumption level for 3 straight hours: the
idea is to only turn it on only very briefly when an
encryption operation is desired and then turn it off
again as quickly as possible. What follows then is
a short analysis of the throughput of the device for
AES and Rabin.

3.3 Throughput Analysis

Based on the numbers in [2], it seems likely that the
FPGA will offer significant throughput and power
consumption benefits for the more complex Rabin
scheme but fewer if any benefits for the simpler AES
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scheme. A major part of the project will be to test
these assumptions and report the results.

3.4 MICA2 Mote Pseudocode

What follows is a pseudocode-ish description of the
behavior of the motes in the final system. Alas, we
can’t find a good way to integrate the MS Word 2007
which Tina wrote into this LATEXdocument.
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The mote to be connected to the FPGA add‐on board will be programmed before it is connected to the FPGA 
module. This initial programming will allow the mote to communicate with another mote at the base station 
and also with the FPGA module. The mote to be connected to the base station will, then, be programmed to 
enable communication with other mote. 

1. Pseudo‐code for programming FPGA mote: 
1.1 Communication link with base station mote: 

 
 Initialize components 

o Leds: to signal stages of communication 
o PhotoControl: to sense Led toggles 
o Message Packet: data to be sent 

 Set Header information ‐  

• Sensor Board ID = MDA100 

• Packet ID = *any number 

• Node ID = TOS_LOCAL_ADDRESS 

• Rsvd = 0 
o Timer: repeating timer to signal start data sampling 

 Start Time 
 Timer Fired = TRUE 

o Data Receive Ready 

• Toggle Red Led 

• Start Photo Control 
o Sample Data from sensor board at PhotoADC 

• Data sample done = TRUE 
 Pass data to GenericComm.SendMsg 
 Toggle Yellow Led 

o Deliver Sampled Data 

• Stop PhotoControl 

• Prepare Message Packet 
 Pack message in packet 
 Pack Header information for 

 
 
 
 
 
 
 
 
 
 



1.2 Communication link with FPGA module: 
 

 INITIALIZE COMPONENTS 
o Leds: to signal stages of communication 
o PhotoControl: to sense Led toggles 
o Message Packet: data to be sent 

 Set Header information ‐  

• Sensor Board ID = MDA100 

• Packet ID = *any number 

• Node ID = TOS_LOCAL_ADDRESS 

• Rsvd = 0 
 

 START FPGA: 
o Data to be sent ready = TRUE 

 Send PowerOn signal to FPGA 
 Start timer for t = 10ns 
 Start PhotoControl 

• Timer expires 
o Check if micro‐controller received READY signal 

 FALSE 
 No LED toggle 

 TRUE 
 Toggle Yellow LED 

o Check if Yellow LED toggled 
 FALSE 

 Powering FPGA – FAILURE, system not ON 
 TRUE 
 

 TEST COMMUNICATION BUS: 
‘TEST SEND’ 

o Send test data sequence “0100..” on TX bus 
o Check if complete data sequence sent 

 FALSE 
 No LED toggle 

 TRUE 
 Toggle Green LED 

o Check if Green LED toggled 
 FALSE 

 ‘Send Stage’ of micro‐controller failed  
 TRUE 

 Move to ‘Test Receive’ 



‘TEST RECEIVE’ 
 Start timer for t = 10ns 

• Timer expires 
o Check if micro‐controller received same test sequence at RX bus  

 FALSE 
 No LED toggle 

 TRUE 
 Toggle Red LED 

o Check if Red LED toggled 
 FALSE 

 Communication Link setup – FAILURE 
 TRUE 

 Move to ‘ENCRYPTION’ stage 
 

 ENCRYPTION: 
o Send signal for algorithm selection on TX bus (AES or RSA Algorithm) 
o Send data and key on TX bus 
o Check if complete data sequence sent 

 FALSE 
 No LED toggle 

 TRUE 
 Toggle Green LED 

o Check if Green LED toggled 
 FALSE 

 Required data not sent yet  
 TRUE 

 Complete data sent, wait for encrypted data 
o Check if micro‐controller received DONE signal from FPGA 

 FALSE 
 Encrypted data not ready yet 

 TRUE 
 Encryption done – data ready to send back 

o Collect data at RX bus after receiving DONE signal  
o Check if more data available to be sent 

 TRUE 
 Repeat from ‘ENCRYPTION’ stage 

 FALSE 
 Move to ‘SUSPEND’ stage 

 SUSPEND: 
o More data available with mote = FALSE 

 Send ‘Suspend’ signal to FPGA 
 Start timer for t = 10ns 



 Start PhotoControl 

• Timer expires 
o Check if micro‐controller received OK signal 

 FALSE 
 No LED toggle 

 TRUE 
 Toggle Yellow LED 

o Check if Yellow LED toggled 
 FALSE 

 Suspending FPGA – FAILURE, FPGA still ON 
 TRUE 

 Start timer for time t for which mote waits for more data 
to be sent 

• Timer expires 
o Check if micro‐controller has more data 

available to be sent for encryption 

• FALSE 

    No data available – Move to  
       ‘POWER OFF’ stage 

 TRUE 

    Send WAKE UP signal to   
         FPGA 
              Check if micro‐controller  
               received OK signal 

 FALSE 
         No LED toggle 
 TRUE 

                                                                                                                                                                 Toggle Yellow LED 
               Check if Yellow LED  
                toggled 

 FALSE 
                Disconnecting  
                  FPGA – FAILURE,  
                  system not OFF 

 TRUE 

              Move to  
                    ‘ENCRYPTION’    

                                   Stage 
 

 



 POWER‐OFF FPGA: 
o (Data available = FALSE) & (Wait timer expired = TRUE) 

 Send PowerOff signal to FPGA 
 Start timer for t = 10ns 
 Start PhotoControl 

• Timer expires 
o Check if micro‐controller received OK signal 

 FALSE 
 No LED toggle 

 TRUE 
 Toggle Yellow LED 

o Check if Yellow LED toggled 
 FALSE 

 Disconnecting FPGA – FAILURE, system not OFF 
 TRUE 

 Move to ‘START FPGA’ stage 
 

2. Pseudo‐code for programming FPGA to communicate with the mote: Corresponding to the Finite 
State Machine diagram provided 

 POWER ON 
o Received voltage signal from voltage controller 

 Turn on FPGA 
 Read Flash memory 
 Return DONE signal to micro‐controller on mote 
 Transfer to TEST state 

 TEST 
o Received signal “010…” at TX bus  

 Repeat signal in response 
 Return same signal on RX bus to micro‐controller on mote 
 Transfer to READY state 

 READY 
o Detect Algorithm selection signal at TX bus 

 Transfer  to AES or RBN state according to selection signal 
 Start gathering data from TX bus 

 EXECUTION 
o Received required data at TX bus from micro‐controller 

 Execute encryption algorithm 
 Transfer to DONE state 

 DONE  
o Completed execution and transferred from EXECUTION state 

 Return output on RX bus to micro‐controller on mote 
 Return DONE signal to micro‐controller 



 SUSPEND 
o Received SUSPEND signal from micro‐controller 

 Return OK signal to micro‐controller 
 Turn on suspend mode of FPGA 
 Wait until receive wake up signal 

o Received WAKE UP signal from micro‐controller 
 Return OK signal to micro‐controller 
 Turn on FPGA power 
 Transfer to READY state 

 POWER OFF  
o Received POWER OFF signal from micro‐controller 

 Return OK signal to micro‐controller 
 Turn off FPGA power 
 Wait until receive wake up signal 
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3.5 nesC Program Structure

The nesC language is essentially C with some added
constructs for creating “components” and enabling
concurrency. All nesC applications consist of one or
more components assembled (or wired) together stat-
ically to form an executable image. The components
provide and use interfaces. “Provided” interfaces rep-
resent the functionality the component provides to its
user, while “used” interfaces represent the function-
ality the component needs to perform its job [6].

In figure 2 we show an automatically generated
flow diagram for our USART test code created using
the free GraphViz tool. Since large, well-designed
nesC applications tend to have a little bit of code
spread out over many small text files, it can some-
times be hard to grasp the purpose of the various
linkages all at once. The use of the GraphViz tool to
create these component maps makes the code layout
easier to understand.

3.6 Voltages

Spartan-3 devices are designed and characterized to
support various I/O standards for VCCO values of
+1.2 V, +1.5 V, +1.8 V, +2.5 V, and +3.3 V. The
ATMega128L (Vcc = 3.0 V) supports an input low
voltage from -0.5 V to 0.2Vcc (0.6 V) and an input
high voltage from 0.6Vcc (1.8 V) to Vcc + 0.5 V (3.5
V). The output low voltage is 0.5 V and the output
high voltage is 2.2 V. We anticipate that if the FPGA
IO pins that are used to connect to the mote are con-
figured in TTL logic mode, there will be no voltage-
related issues that hamper communication between
the devices [7],[8].

4 Detail Design

This section provides implementation details about
the designs.

4.1 Initial Testbed and Preliminary De-
sign

For preliminary testing purposes, we are using the
Digilent Spartan 3E Starter board (provided by Dr.
Kaps), shown in figure 3.

We’ll be using this board to ensure that our US-
ART interconnections work, that the software devel-
oped for the motes is effective, and that the cores

Figure 2: Automatically-generated flow diagram for
our USARTTest application.

Figure 3: The Digilent Spartan 3E Starter Board
( c©2007 Digilent)
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implemented on the FPGA return the expected re-
sults for the keys and data that are input.

Since we are going to be using this board anyway
to begin with, we will always have it as a backup
in case our more ambitious plans for a final design
don’t quite work out. The board has a Hirose 100-
pin expansion connector that we would need to in-
terface with the MDA100CB board shown in figure
12. Since this demo board has all the bells and whis-
tles, there is no need for us to add external memory
or voltage regulation and the main design boils down
to simply interfacing the expansion connector on the
demo board to the expansion connector on the sensor
nodes. This design will be larger and consume more
energy than a full-custom PCB design, and as such
it will not really be suitable for operation in a real
mesh network.

4.2 Custom PCB

Shown in figure 4 are the functional blocks the PCB
layout will consist of.

Texas Instruments has developed a triple voltage
regulator specifically for the Spartan 3 series which
supplies the correct voltages to the FPGA and takes
care of many complex regulation issues. Our pro-
posed PCB will not need a flash memory device be-
cause it is included on the 3AN FPGA.

The benefits to designing a PCB for a discrete
FPGA are two-fold: first, the power consumption
will be much lower than using the Diligent Spar-
tan 3E demo board because there will no superflu-
ous components to power, and second it enables us
to choose a small Spartan 3AN FPGA that supports
suspend mode and lower power operation. It would
also enable us to choose a low-power FPGA model.
This means, however, that we would need to order
an FPGA from the Spartan 3A or 3L series, which
would increase our budget somewhat. Considering
that we did not have to pay for the motes as they
were loaned to us by Dr. Kaps, there is plenty of
room in our budget for the components we will need
for this design. The second benefit is size. The Dili-
gent board is a large piece of equipment, and given
the nature of sensor nodes and the constraints we
have specified, size is a major factor. Naturally, an
expansion board designed with a stand-alone FPGA
would be much smaller.

Lastly, we will order the 51-pin expansion connec-
tor from Digikey and affix it to the PCB such that
the finished product can be plugged directly into the

mote. This adds to the convenience, appearance, and
sturdiness of the device as there will not be a lot of
unsightly wires and volatile connections to constantly
worry about. These features are secondary concerns
but they would make for a better design.

There will be added difficulties in designing the
FPGA expansion in this way, as tasks which would
have already been done for us had we decided to use
the Diligent board will need to be addressed. Most
notably we will have to deal with power compatibility,
whether to use serial or USB ports, memory and ini-
tial configuration, and other interconnection issues.
A starter board or even a basic breakout board would
have taken care of much of this for us.

One additional concern is whether we can fab-
ricate the PCB ourselves or whether we will need to
send it to a manufacturer, and then whether we would
attach the parts or pay for the fab to do it. Doing
everything on our own using board stock, etching so-
lution, a laser printer, an iron, and a drill would be
interesting and fun, but there are many potential pit-
falls. Two major issues are the size of the traces for
the FPGA, and the very small holes that would need
to be drilled for the expansion connector.

Choosing the best size for the FPGA is also chal-
lenging as well. Larger sizes offer more flexibility
for simulating larger cores (like the public-key Ra-
bin, and any others that Dr. Kaps might like to try)
but also consume significantly more power. Another
big issue is that most large FPGAs are only available
in a ball-grid array pattern which is impossible to sol-
der by hand. Some “breakout”–type boards for ball
grid array packages do exist, but they are large, un-
wieldy, and expensive. After much consideration we
have decided that any FPGA package that uses ball
grid array pins will not be acceptable for this project.

4.3 Device Communication Interface

After much investigation between possible communi-
cation methods, we concluded that a USART con-
nection operating in asynchronous mode would be
the ideal communication method, mostly because it
allows us to operate the mote and the FPGA from
unsynchronized clock sources. As long as the clocks
have sufficient accuracy and their speeds are integer
multiples of one another, the USART connection will
be highly accurate.

Being able to use unsynchronized clock sources is
a huge advantage because we are then able to use
the 8MHz clock provided by the ATMega128’s inter-
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Figure 4: Proposed PCB Components Block Diagram

Figure 5: Schematic of the triple voltage regulator circuit.
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Figure 6: FPGA Schematic

nal oscillator rather than the 7̃MHz external oscil-
lator provided by the mote (which is the only clock
available on the data bus). The 8MHz oscillator con-
sumes less power and is recommended by Crossbow
for battery-powered operation.

A USART device’s maximum possible data rate
is based on its input clock rate: the input clock rate
divided by 16 gives the maximum data rate (or di-
vided by 8 for DDR). On the FPGA we are limited
by the maximum speed of the cores (slightly less than
80MHz) and the available oscillator (can be changed),
while on the mote we are limited by the maximum
speed of the microcontroller oscillator (8 MHz). A
64 MHz oscillator for the Spartan 3e starter board
would probably be ideal because it divides evenly to
8MHz for higher rate UART communication, allows
a higher FPGA calculation rate, and costs only $3
from DigiKey (SG531). As an alternative to using an
external oscillator, we could consider simply using a
DCM on one of the FPGAs to create a modified clock
signal at the appropriate frequency.

A very high data rate is probably unnecessary;
based on our calculations only about 100kbit/s are
required for the AES core, and less would be required
for the Rabin core. It’s also worth noting that the
maximum transmit rate for the mote is only 38.4K
baud and thus even if the microcontroller can talk
to the mote at the higher rate it can’t actually send
the data anywhere. Clearly then the FPGA can be

run at a somewhat higher speed than is necessary for
continuous transmission of data with this particular
hardware.

On the other hand, since demonstrating the high
throughput of the FPGA is an important part of the
project, it makes sense to try and get as high of a
bandwidth link between the FPGA and the micro-
controller as we can even if we can’t transmit the
resulting data in realtime from the microcontroller.

To implement the UART, we will use (and mod-
ify if necessary) code written by someone else and
made available as open-source on www.opencores.
org. The license for the code is compatible with our
project. It will be necessary to synchronize the UART
settings between the ATmega and the VHDL code.
For instance, the VHDL code is currently configured
to use 1 start bit, eight data bits, and one stop bit.
The ATmega supports this configuration, but it will
need to be told that this format is going to be used
during the initialization process.

4.4 Pin Functions

This section lists the functions of and our purposes
for the specific FPGA pins we’ll be using.

PROG B When pulsed low, this pin causes the FPGA
to reprogram from one of multiple sources. With
the Spartan 3AN, it can be used to configure the
device from an internal flash memory source.
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Figure 7: Schematic of the Microcontroller.
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Figure 8: State diagram for the control on the mote.
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Figure 9: FPGA State diagram.
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With the Spartan 3E starter board, it can be
used to configure the device from an on-board
Xilinx platform PROM which can be preconfig-
ured via USB. We can connect to to the pin on
the Digilent board using the JP8 header.

DONE This signal is asserted when the FPGA has
finished configuration.

AWAKE This signal is deasserted when the FPGA
enters suspend mode.

SUSPEND This pin can be driven high to put the
FPGA into a low power state.

Two general (non-differential I/O) pins will also
be used for the Tx and Rx connections of the USART.
Differential I/O should be unnecessary at the speed
we plan to use the USART.

5 Experimentation Plan

Our experimentation plan involves testing all the com-
ponents as a system to verify that it performs the
required tasks. We begin with a description of the
dataflow and then move on to the details of how we’ll
verify correct operation.

The mote connected with the FPGA will be a re-
mote, battery-powered device. This mote will also
be connected with the sensor board and will be pro-
grammed to sense some physical stimulation like tem-
perature, pressure, humidity, or other physical val-
ues at specific time intervals. The sensor board will
gather data and pass it to the microcontroller of the
mote. To acquire encrypted data for transmission,
the microcontroller on the FPGA mote will trans-
fer data to the FPGA, which will encrypt it and then
send the encrypted data back to the mote. This mote
will next transmit the encrypted data to the mote
attached to the programmer and a personal com-
puter. XServe and XSniffer will be used to monitor
and document the communication flow between the
two motes. The sensor nodes will be programmed
with TinyOS applications, using MoteWorks, to de-
tect and acknowledge the networking communication
between the microcontroller and the FPGA.

5.1 Hardware Components

The hardware components will be tested to ensure
proper functioning of the devices both individually
and as a system. The devices themselves will be
tested as follows:

1. Programming board (MIB520): The MIB520
(see figure 10) will be used to install application pro-
grams onto the sensor nodes. We will use NesC to
code the programs and the tool Programmers Notepad
2 or a similar text editor to compile and download the
programs to the sensor nodes.

Figure 10: The MIB520 User Interface Board
( c©2006 Crossbow Technologies)

2. Sensor Nodes (MICA2): Each MICA2 mote
(see figure 11) will be first tested individually and
then operating in tandem as a small point-to-point
network. For proper program installation and ac-
curate operation in accordance with the application
specifications, each node will be connected with the
programming board. The code will be compiled and
downloaded onto each node via the MIB520. The cor-
rect loading of the code can be verified by using the
three LEDs available on each sensor node. Once the
nodes are programmed, they will then be configured
to operate as a point-to-point network.

XSniffer and XServe will be used to test the com-
munication activity in the network. XServe provides
the platform to monitor the communication between
the base station and the wireless node in the mesh
network, while XSniffer allows monitoring of the multi-
hop communication between the nodes in the mesh
network.

3. Sensor board (MDA100): The sensor board
(see figure 12) will provide the gateway between the
mote and the FPGA if we choose one of the applica-
tions that doesn’t involve building a custom PCB. In
this case the FPGA pins will be connected to the fifty-
one pins on the sensor board and one of the nodes
will be programmed to read the sensor board activ-
ity. The node can transmit samples of information
from the sensor board to another sensor node at the
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Figure 11: The MICA2 916 Wireless Mote ( c©2006
Crossbow Technologies)

base station or in the mesh network, although we will
not be testing this application.

Figure 12: The MICA2 MDA100 Sensor Board
( c©2006 Crossbow Technologies)

5.2 Evaluation Criteria

The final system will be primarily evaluated on the
power consumption of the device. Considering the
future extension of this project to an implementation
using ASICs instead of FPGAs, the simulation re-
sults of the FPGA system will be compared to the
estimated results obtained from the ASIC simula-
tion. The results will be divided into three sections—
speed, number of resources on chip being used, and
the power consumption of the chip—and each will be
analyzed for compliance with the requirement speci-
fications provided earlier in this document.

The system will also be evaluated on the following
secondary criteria: reliability, accuracy, compatibil-
ity, and compactness.

Reliability: The code used for programming the
motes and encrypting data on the FPGA should be
reliable under all circumstances, including varying
speeds of transmission, varying levels of network traf-
fic, and different levels of load on the encryption unit.
For practical reasons we won’t be testing the equip-
ment to an extreme degree or specifying all possible
program states like NASA would, but these issues are
still of practical concern.

Accuracy: The FPGA will be used to run en-
cryption algorithms for a secure data transmission
between the sensor nodes. The VHDL code running
on the FPGA and the hardware itself must provide
accurate results every time a transmission is made.

Compatibility: Ideally, the code for programming
the FPGA should be simple in complexity and easily
transferred to another FPGA family. We don’t have
much control over Dr. Kaps’ code or anything we
download from www.opencores.org, but we will try
to ensure that our code meets these standards. Also,
since the future concept for this project is an imple-
mentation using an ASIC instead of FPGA, highly-
compatible code will provide the preliminary ground-
work for such an implementation.

Compactness: Since a fundamental characteris-
tic of sensor nodes is their small size, the add-on
module must have a similar form factor. A compact,
application-specific FPGA implementation is highly
desirable but considering the monetary and time con-
straints, it may not be achieved.

6 List of Tasks

This is the list of tasks for the project. Many proto-
typing tasks listed have already been completed and
contribute to the research and specifications in the
other sections of this design document. All the tasks
are listed for completeness’ sake.

Preliminaries I thought we should get these tasks
done right away to help the team get familiar
with the project and the tools we’ll be working
with.

Toolchain setup and installation A lot of sup-
port software is required for this project.
We need the MoteWorks software distri-
bution, drivers for the mote programmers,
Xilinx ISE for the FPGA, EAGLE for the
PCB layout, and whatever software we’ll
be using for ASIC simulation. For the
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most part this step is complete although
we all have different versions of the toolchain.

Hardware testing and verification Nothing
is worse than spending hours trying to fig-
ure out why your code doesn’t work and
then realizing that it’s because your hard-
ware platform is bad. As such, we’ll be
testing all of the hardware (motes, FPGA
starter board, any purchased hardware) be-
fore we try to use it. So far we’ve run sam-
ple programs on the motes, but we haven’t
had a chance to test the Digilent board
yet.

Demo Board Setup The first setup we’ll develop
will use the demo board as a target platform.
In the case that the power-efficient setup runs
into problems, we’ll also have this platform to
fall back to for demonstrations and testing.

Locate/Obtain FPGA encryption core For
the final part of the project we expect to
use a core supplied by Dr. Kaps, but in the
interim we may use an open-source core
from www.opencores.org.

Core synthesis/implementation We need to
make sure early that the core will synthe-
size on a Spartan 3 target. We should also
figure out the smallest chip that the core
will synthesize on.

Mote connections We need to connect the
demo board to the mote. These will be
temporary connections with probably an
IDE cable attached to one of the pin head-
ers on the demo board and as such shouldn’t
take very long.

Testing The fun part—making sure it works.
If everything goes fine this will take 5 min-
utes, but if it doesn’t we’ll have a lot of
work to do troubleshooting. That’s why I
allocated so much time for this.

Power consumption measurements Once ev-
erything is verified working, we can mea-
sure the power consumption for our re-
ports. This will be a combination of simu-
lation results and physical measurements.
It’ll be interesting to see how much power
the demoboard consumes and how much
we can potentially save with a custom PCB.
If the amount is small, perhaps we’ll re-

think our plan at this point. Or perhaps
we should find a way to measure it earlier.

Throughput analysis We’ll need to find out
how much data the core is passing when
it’s running at full speed. The throughput
could be limited by the speed of the com-
munication link between the FPGA and
the microcontroller, and we’ll need to fig-
ure out what to do about this issue if it is
(preferably before we get there).

Mote Software The software running on the mote
is a significant part of the project. We’ve al-
ready made some good progress understanding
the

Locate encryption implementation We want
to run an implementation of the same algo-
rithm that’s going to be used on the FPGA
on the microcontroller so that we can com-
pare power consumption and throughput
for both of the devices. The first step is
finding an implementation.

Throughput analysis After the implementa-
tion is compiled and running, we’ll see how
much data we can get through. From there
it’s a trivial step to determine how many
blocks of data per unit energy is being
used.

Communication software (for testing interface)
Although we could go directly to a device
driver, we thought it might be simpler for
development to get some code running on
the microcontroller that does something
stupid like flip the output bits of the com-
munication interface every clock cycle. This
will probably make it easier to troubleshoot
the connections and we’ll also be able to
get it done earlier so work on these two
main tasks can proceed in parallel.

Device driver The device driver itself could
be a bit of a challenge. As we noted ear-
lier, a significant amount of information
is available on creating device drivers for
TinyOS 1.1 (which MoteWorks is derived
from) and 2.0 but documentation for the
MoteWorks platform is scarcer. We’ve al-
located a lot of time for this task.

ASIC Simulation The purpose of doing an ASIC
simulation is for our learning experience and to
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demonstrate the advantages of ASICs. Obvi-
ously we wouldn’t be developing one.

Synthesis We gather the first step is running
the VHDL through a synthesis tool, sim-
ilar to the VHDL workflow we’re already
familiar with. The impression I got from
Dr. Gaj’s slides was the GMU has one li-
censed, but if that’s not the case we’ll need
to reevaluate our options.

Projected power consumption This may in-
clude a serious amount of estimation. There
are tools available that automate this pro-
cess, but probably not student versions and
GMU probably doesn’t have them licensed.

Projected throughput analysis If the syn-
thesis tool works, hopefully it will provide
a maximum clock cycle and we’ll be able
to use that number to determine through-
put.

Power efficient setup For the final deliverable, we’d
really like to create an FPGA package that does
the job while using the minimum amount of
power possible. If it turns out to be impossi-
ble to get this done before the deadline, we’ll
get as far through the process as we can.

Build schematic We’ve tentatively decided to
use the EAGLE software for this part of
the project. The first step is creating a
schematic. Depending on whether we de-
cide to implement the power management
components on the chip or buy a premade
solution, we may simply copy significant
amounts of this from the TI datasheet (they
have a nice power controller IC for the
Spartan 3s, but it needs a lot of external
components)

Circuit layout Once the schematic is complete
we have to do layout. I’m not very famil-
iar with this process, but we’ll learn as we
go. It would be nice to use SMD com-
ponents (apparently it is possible to affix
them yourself if you have a steady hand),
but we’ll see as we go along.

Purchase board and components We’re still
a little shaky on whether we’ll have time
to implement the voltage controller on the
board and whether we’ll be able to sol-
der an FPGA with all those tiny pins our-
selves (others have done it, but we’re not

pros!) Thus, we don’t know exactly which
parts we need to buy yet. For the PCB,
we’ll send the schematic off to one of to
the cheapest Chinese supplier we can buy.
Will it work? Who knows, but it’ll be in-
teresting.

Assemble board Some PCB suppliers seem
willing to affix components they stock for
a low cost, but I suspect we’ll still end up
doing it ourselves. I’m more nervous about
doing SMD components than through-hole
ones, but we’ll see how it goes. The FPGA
will be the only really challenging one.

Testing Naturally there’s going to be a lot of
testing and this may well be the stage where
we get stuck. Ideally this stage will not
only check whether “it works,” but also
the many other constraints we specified in
the design requirements section.

Power consumption measurements After we’ve
ensured the board is working correctly we’ll
measure the power consumption of the FPGA
by putting an ammeter inline with the power
supply while the chip is operating. The re-
sult should be close to the simulation, plus
the inefficiencies in the voltage regulators.

Throughput analysis If everything’s working,
our final task is to ensure our throughput
results from simulation match what we’re
actually getting in the hardware.

6.1 Allocation of responsibilities

We are no longer using project management software
to allocate responsibilities to our team members. In-
stead, this simple list outlines the tasks each member
will ultimately be held responsible for:

• Faizul

– PCB Layout

• Tina

– Mote software design and implementation

• James

– VHDL code and core glue logic

• Brandon

– LATEXdocumentation
– Technical assistance with all other areas
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7 Schedule and Milestones

Our schedule includes everything from the date we
started tracking tasks, including project milestones
and deliverables for this semester and next semester.
The Gantt chart is shown in figure 13.

8 Appendix A: Parts List and
Estimated Project Cost

In table 1 we provide a preliminary estimate of the
costs for both the basic design and the PCB layout.
Many of the costs for components used in the basic
design are listed as zero because Dr. Kaps has gra-
ciously provided the equipment. This does not imply
they have no cash value!

All estimated costs do not include shipping and
handling, which is included as a separate line item
and is somewhat unpredictable. Although we have
done research to ensure that we can obtain all the
parts listed in quantities of one at these prices, the
most unpredictable factor in the total cost of the
project will be unanticipated purchases.
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Part Description Specification Quantity Cost
MICA 2 916 Wireless Motes - 2 $0.00

Programming board (MIB520) - 1 $0.00
Sensor board (MDA100) - 1 $0.00

Digilent Spartan 3 Starter Board - 1 $0.00
Oscillators 56 MHz 1 $3.00

64 MHz 1 $3.00
72 MHz 1 $3.00

Hirose 100-pin female and cable FX2B-100SA-1.27R 1 $9.50
Hirose 51-pin connector DF9B-51S-1V 1 $3.13

Spartan X3S50AN FPGA 4TQG144C 2 $25.00
Triple-voltage Regulator TPS75003-EP 1 $4.00

PCB printing fees Site not determined 1 $75.00
USB Header URB-1001B 1 $3.00

Dual USB UART/FIFO IC FD2232D 1 $6.99
Diodes Vishay SS32 1 $0.32

On-semi MBRM120 1 $0.49
MOSFET Siliconix Si232BDS 2 $2.66
Inductors Sumida CDRH6D38-5R0 1 $1.10

Sumida CDRH8D43-150 1 $1.10
Capacitors 10 pF 1 $0.30

1.5 nF 2 $0.60
0.01 uF 1 $0.30
0.1 uF 2 $0.60
1 uF 1 $0.30
10 uF 1 $0.30
100 uF 3 $0.90

Resistors 0.033 2 $0.60
15.4 k 1 $0.30
36.5 k 1 $0.30
61.9 k 2 $0.60

Shipping and Handling - - $40.00
Grand Total $146.39

Table 1: List of parts, details, and their anticipated costs.
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ID Task Name
1 Toolchain setup and installation

2 Hardware testing and verification

3 Presentation preparation

4 Demo board setup

5 Locate/Obtain FPGA encryption
core

6 Core synthesis/implementation

7 Mote connections

8 Testing

9 Power consumption
measurements

10 Throughput analysis

11 Mote Software

12 Locate encryption implementation

13 Throughput analysis

14 Communication software (for
testing interface)

15 Device driver

16 ASIC Simulation

17 Synthesis

18 Projected power consumption

19 Projected throughput analysis

20 Power efficient setup

21 Build schematic

22 Circuit layout

23 Purchase board and components

24 Assemble board

25 Testing

26 Power consumption
measurements

27 Throughput analysis

28 Draft proposal

32 Draft Design Document

33 Prototyping Progress Report

34 Design Document

35 Progress Report 1

36 Progress Report 2

37 Progress Report 3

38 Draft Final Report

39 Final Report

40 Project Poster

41 Presentation Prep
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9/12 9/26

3/21 4/11
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Figure 13: Project Gantt Chart.
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9 Appendix B: Source Code

Although we are just getting started with this project, we’ve already written some source code to test out the
various hardware components (especially the USARTS) that will be essential during the hardcore prototyping
period. We don’t want to run into any unanticipated problems, and the best way to avoid them is to test
early and test often. Also be sure to see Figure 2 for the flow of the nesC test component.

Regrettably syntax highlighting is unavailable due to relative obscurity of nesC. For the sake of brevity,
we’re only including the code that we as a team have actually written; the UART implementation that we
are using is not included, for instance, because the code was obtained from www.opencores.org.

9.1 USART Test NesC Code (for the Motes)

This section contains the nesC source code for the TinyOS 2.x toolchain that is compiled onto the motes.

9.1.1 USARTTestAppC.nc

1 configuration USARTTestAppC

2 {

3 }

4 implementation

5 {

6 components MainC, USARTTestC, LedsC, HplAtm128UartC, HplAtm128GeneralIOC;

7 components new TimerMilliC() as Timer0;

8 components new TimerMilliC() as Timer1;

9

10 USARTTestC -> MainC.Boot;

11 USARTTestC.Timer0 -> Timer0;

12 USARTTestC.Timer1 -> Timer1;

13 USARTTestC.Leds -> LedsC;
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14 USARTTestC.HplAtm128Uart -> HplAtm128UartC.HplUart0;

15 USARTTestC.Uart0TxControl -> HplAtm128UartC.Uart0TxControl;

16 USARTTestC.Uart0RxControl -> HplAtm128UartC.Uart0RxControl;

17

18 USARTTestC.PWPin0 -> HplAtm128GeneralIOC.PortC0;

19 USARTTestC.PWPin1 -> HplAtm128GeneralIOC.PortC1;

20 USARTTestC.PWPin2 -> HplAtm128GeneralIOC.PortC2;

21 USARTTestC.PWPin3 -> HplAtm128GeneralIOC.PortC3;

22 USARTTestC.PWPin4 -> HplAtm128GeneralIOC.PortC4; // in use

23 USARTTestC.PWPin5 -> HplAtm128GeneralIOC.PortC5; // in use

24 USARTTestC.PWPin6 -> HplAtm128GeneralIOC.PortC6; // in use

25 USARTTestC.PWPin7 -> HplAtm128GeneralIOC.PortC7;

26

27 USARTTestC.INTPin0 -> HplAtm128GeneralIOC.PortE4;

28 USARTTestC.INTPin1 -> HplAtm128GeneralIOC.PortE5;

29 USARTTestC.INTPin2 -> HplAtm128GeneralIOC.PortE6;

30 USARTTestC.INTPin3 -> HplAtm128GeneralIOC.PortE7;

31 }

32

9.1.2 USARTTestC.nc

1 /**

2 * Test module for the USART

3 *

4 * More text goes here, to give more details to the description.

5 *

6 * @author Brandon

7 * @created 4/11/2008 First version! Huzzah!

8 * @modified 5/31/2008 Added meaningful documentation.

9 * @modified 6/7/2008 Debugging outputs for USART.

10 *

11 **/

12

13

14 #include "Timer.h"

15

16 module USARTTestC

17 {

18 uses interface Timer<TMilli> as Timer0;

19 uses interface Timer<TMilli> as Timer1;

20 uses interface Leds;

21 uses interface HplAtm128Uart;

22 uses interface StdControl as Uart0RxControl;

23 uses interface StdControl as Uart0TxControl;

24 uses interface Boot;

25 uses interface GeneralIO as PWPin0;

26 uses interface GeneralIO as PWPin1;

27 uses interface GeneralIO as PWPin2;

28 uses interface GeneralIO as PWPin3;

29 uses interface GeneralIO as PWPin4;

30 uses interface GeneralIO as PWPin5;

31 uses interface GeneralIO as PWPin6;

32 uses interface GeneralIO as PWPin7;

33
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34 uses interface GeneralIO as INTPin0;

35 uses interface GeneralIO as INTPin1;

36 uses interface GeneralIO as INTPin2;

37 uses interface GeneralIO as INTPin3;

38 }

39

40 implementation

41 {

42 uint8_t blinkcounter = 0;

43 uint8_t receivedData = 0;

44

45 task void USARTbyteReceivedTask();

46 task void bootTask();

47

48 task void timer0task() {

49 call HplAtm128Uart.tx(170);

50 }

51

52 // This task is used to blink the green LED twice at startup to verify

53 // successful power on or programming

54 task void timer1task() {

55 call Leds.led1Toggle(); // green

56 blinkcounter = blinkcounter + 1;

57 if (blinkcounter != 4)

58 call Timer1.startOneShot(500); //500 ms between toggles

59 }

60

61 // This event is called at boot-time

62 event void Boot.booted() {

63 post bootTask();

64 }

65

66 task void bootTask() {

67 error_t result;

68

69 call Timer0.startPeriodic(5000); // USART send timer

70 call Timer1.startOneShot(500); // initial blink LED timer

71 result = call HplAtm128Uart.enableTxIntr();

72

73 if (result == FAIL)

74 call Leds.led0On(); // red

75

76 // Appears these pins are outputs by default but we’ll leave

77 // this in there.

78 call PWPin0.makeOutput();

79 call PWPin1.makeOutput();

80 call PWPin2.makeOutput();

81 call PWPin3.makeOutput();

82 call PWPin4.makeOutput();

83 call PWPin5.makeOutput();

84 call PWPin6.makeOutput();

85 call PWPin7.makeOutput();

86

87 call INTPin0.makeOutput();

88 call INTPin1.makeOutput();

89 call INTPin2.makeOutput();
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90 call INTPin3.makeOutput();

91

92 // fire up the UARTS (consumes additional power)

93 result = call Uart0RxControl.start();

94 result = call Uart0TxControl.start();

95 }

96

97 event void Timer0.fired() {

98 post timer0task();

99 }

100

101 event void Timer1.fired() {

102 post timer1task();

103 }

104

105 /**

106 * USART Byte received handler. Call a task to handle the data.

107 *

108 * @param data The received byte.

109 *

110 * @return none.

111 **/

112 async event void HplAtm128Uart.rxDone( uint8_t data ) {

113 receivedData = data;

114 post USARTbyteReceivedTask();

115 }

116

117 /**

118 * if correct data received, toggle green LED. If incorrect data

119 * received, toggle amber LED. Also output the value of the received

120 * byte on some GPIO pins (PW0..7).

121 *

122 * @return none.

123 **/

124 task void USARTbyteReceivedTask() {

125 uint8_t capturedData;

126

127 atomic capturedData = receivedData;

128

129 if (capturedData == 170)

130 call Leds.led1Toggle(); // green

131 else

132 call Leds.led2Toggle(); // orange

133

134 // clear all debugging pins

135 call PWPin0.clr();

136 call PWPin1.clr();

137 call PWPin2.clr();

138 call PWPin3.clr();

139 call INTPin0.clr();

140 call INTPin1.clr();

141 call INTPin2.clr();

142 call INTPin3.clr();

143

144 // set debugging pins based on the data value

145 if (capturedData & 1)
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146 call PWPin0.set(); // F2

147 if (capturedData & 2)

148 call PWPin1.set(); // F3

149 if (capturedData & 4)

150 call PWPin2.set(); // F4

151 if (capturedData & 8)

152 call PWPin3.set(); // F5

153 if (capturedData & 16)

154 call INTPin0.set(); // D5

155 if (capturedData & 32)

156 call INTPin1.set(); // D4

157 if (capturedData & 64)

158 call INTPin2.set(); // D3

159 if (capturedData & 128)

160 call INTPin3.set(); // D2

161 }

162

163 // do nothing when tx is done, but event needs to be specified anyway!

164 async event void HplAtm128Uart.txDone() {

165

166 }

167 }

9.2 USART Test VHDL Code (for the FPGA)

This section contains the VHDL code for the USART test that we synthesize onto the FPGA. The critical
path delay after synthesis was 6.538 ns, which would enable a clock speed near 150 MHz. This bodes well
for the maximum speed of the USART, indicating that at least this component of the FPGA will not be the
speed bottleneck. We also include a testbench and our custom UCF file.

The code for the UART itself is available online from http://opencores.org/cvsweb.shtml/miniuart/.
We have not modified this code for this application and do not anticipate any changes will be necessary.

9.2.1 topLevel.vhd

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 use IEEE.STD_LOGIC_ARITH.ALL;

4 use IEEE.STD_LOGIC_UNSIGNED.ALL;

5 use work.UART_Def.all;

6

7 ---- Uncomment the following library declaration if instantiating

8 ---- any Xilinx primitives in this code.

9 --library UNISIM;

10 --use UNISIM.VComponents.all;

11

12 entity top_level is

13 Port ( clk_50mhz : in STD_LOGIC;

14 reset : in STD_LOGIC;

15 rxd : in STD_LOGIC;

16 txd : out STD_LOGIC;

17 LED : out STD_LOGIC_VECTOR (7 downto 0));

18

19 end top_level;

20

21 architecture Behavioral of top_level is
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22

23 component miniUART is

24 port (

25 sysclk : in Std_Logic; -- System Clock

26 Reset : in Std_Logic; -- Reset input

27 CS_N : in Std_Logic;

28 RD_N : in Std_Logic;

29 WR_N : in Std_Logic;

30 RxD : in Std_Logic;

31 TxD : out Std_Logic;

32 IntRx_N : out Std_Logic; -- Receive interrupt

33 IntTx_N : out Std_Logic; -- Transmit interrupt

34 Addr : in Std_Logic_Vector(1 downto 0); --

35 DataIn : in Std_Logic_Vector(7 downto 0); --

36 DataOut : out Std_Logic_Vector(7 downto 0)); --

37 end component;

38

39 signal reset_l : std_logic;

40 signal cs_n, rd_n, wr_n : std_logic;

41 signal intrx_n, inttx_n : std_logic;

42 signal addr : std_logic_vector(1 downto 0);

43 signal datain : std_logic_vector(7 downto 0);

44 signal dataout: std_logic_vector(7 downto 0);

45 signal counter: std_logic_vector(3 downto 0);

46 signal temp: std_logic;

47

48 begin

49

50 reset_l <= not reset;

51 addr <= "00";

52 awesome_process: process(clk_50mhz)

53 begin

54 if rising_edge(clk_50mhz) then

55 if reset = ’1’ then

56 temp <= ’0’;

57 wr_n <= ’1’;

58 rd_n <= ’1’;

59 cs_n <= ’1’;

60 elsif intTx_n = ’0’ then

61 if temp = ’0’ then

62 temp <= ’1’;

63 datain <= X"AA";

64 wr_n <= ’0’;

65 cs_n <= ’0’;

66 elsif temp = ’1’ then

67 temp <= ’0’;

68 end if;

69 elsif intRx_n = ’0’ then

70 RD_N <= ’0’;

71 CS_N <= ’0’;

72 else

73 RD_N <= ’1’;

74 CS_N <= ’1’;

75 WR_N <= ’1’;

76 DataIn <= "ZZZZZZZZ";

77 end if;
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78 end if;

79 end process;

80

81 process(clk_50mhz)

82 begin

83 if rising_edge(clk_50mhz) then

84 if reset = ’1’ then

85 led <= X"00";

86 else

87 if rd_n = ’0’ then

88 if dataout = X"AA" then

89 led(0) <= ’1’;

90 led(1) <= ’0’;

91 else

92 led(0) <= ’0’;

93 led(1) <= ’1’;

94 end if;

95 end if;

96 end if;

97 end if;

98 end process;

99

100 comp: miniuart port map ( sysclk => clk_50mhz,

101 reset => reset_l,

102 cs_n => cs_n,

103 rd_n => rd_n,

104 wr_n => wr_n,

105 rxd => rxd,

106 txd => txd,

107 intrx_n => intrx_n,

108 inttx_n => inttx_n,

109 addr => addr,

110 datain => datain,

111 dataout => dataout);

112

113 end Behavioral;

9.2.2 topLevelTB.vhd

1

2 --------------------------------------------------------------------------------

3 -- Company:

4 -- Engineer:

5 --

6 -- Create Date: 16:54:15 04/18/2008

7 -- Design Name: top_level

8 -- Module Name: C:/Xilinx91i/uart_code2/top_level_tb.vhd

9 -- Project Name: uart_code2

10 -- Target Device:

11 -- Tool versions:

12 -- Description:

13 --

14 -- VHDL Test Bench Created by ISE for module: top_level

15 --

16 -- Dependencies:

34



Design Document ECE 492

17 --

18 -- Revision:

19 -- Revision 0.01 - File Created

20 -- Additional Comments:

21 --

22 -- Notes:

23 -- This testbench has been automatically generated using types std_logic and

24 -- std_logic_vector for the ports of the unit under test. Xilinx recommends

25 -- that these types always be used for the top-level I/O of a design in order

26 -- to guarantee that the testbench will bind correctly to the post-implementation

27 -- simulation model.

28 --------------------------------------------------------------------------------

29 LIBRARY ieee;

30 USE ieee.std_logic_1164.ALL;

31 USE ieee.std_logic_unsigned.all;

32 USE ieee.numeric_std.ALL;

33

34 ENTITY top_level_tb_vhd IS

35 END top_level_tb_vhd;

36

37 ARCHITECTURE behavior OF top_level_tb_vhd IS

38

39 -- Component Declaration for the Unit Under Test (UUT)

40 COMPONENT top_level

41 PORT(

42 clk_50mhz : IN std_logic;

43 reset : IN std_logic;

44 rxd : IN std_logic;

45 txd : OUT std_logic;

46 LED : OUT std_logic_vector(7 downto 0)

47 );

48 END COMPONENT;

49

50 --Inputs

51 SIGNAL clk_50mhz : std_logic := ’0’;

52 SIGNAL reset : std_logic := ’1’;

53 SIGNAL rxd : std_logic := ’0’;

54

55 --Outputs

56 SIGNAL txd : std_logic;

57 SIGNAL LED : std_logic_vector(7 downto 0);

58

59 signal rxd_sel : std_logic := ’0’;

60

61 BEGIN

62

63 -- Instantiate the Unit Under Test (UUT)

64 uut: top_level PORT MAP(

65 clk_50mhz => clk_50mhz,

66 reset => reset,

67 rxd => rxd,

68 txd => txd,

69 LED => LED

70 );

71 clk_50mhz <= not clk_50mhz after 10 ns;

72
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73 tb : PROCESS

74 BEGIN

75 wait for 100 ns;

76 reset <= ’0’;

77

78 wait;

79 end process;

80

81 rxd_sel_proc : process(rxd_sel)

82 begin

83 if rxd_sel = ’1’ then

84 rxd <= txd;

85 else

86 rxd <= ’0’;

87 end if;

88 end process;

89

90 rxdproc : process

91 begin

92 rxd_sel <= ’0’;

93 wait for 5 ms;

94 rxd_sel <= ’1’;

95 wait for 5 ms;

96 rxd_sel <= ’0’;

97 wait for 5 ms;

98 rxd_sel <= ’1’;

99 wait;

100 end process;

101 END;

9.2.3 uartTest.ucf

1 NET "LED<7>" LOC = "F9" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;

2 NET "LED<6>" LOC = "E9" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;

3 NET "LED<5>" LOC = "D11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;

4 NET "LED<4>" LOC = "C11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;

5 NET "LED<3>" LOC = "F11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;

6 NET "LED<2>" LOC = "E11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;

7 NET "LED<1>" LOC = "E12" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;

8 NET "LED<0>" LOC = "F12" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;

9

10 NET "RESET" LOC = "H13" | IOSTANDARD = LVTTL | PULLDOWN;

11

12 # ==== Clock inputs (CLK) ====

13 NET "CLK_50MHZ" LOC = "C9" | IOSTANDARD = LVCMOS33 ;

14 # Define clock period for 50 MHz oscillator (40%/60% duty-cycle)

15 NET "CLK_50MHZ" PERIOD = 20.0ns HIGH 40%;

16 #NET "CLK_AUX" LOC = "B8" | IOSTANDARD = LVCMOS33 ;

17 #NET "CLK_SMA" LOC = "A10" | IOSTANDARD = LVCMOS33 ;

18

19 NET "Txd" LOC = "D7" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ;

20 NET "Rxd" LOC = "C7" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ;
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