
Implementation of Elliptic Curve Cryptosystems
over GF(2n) in Optimal Normal Basis

on a Reconfigurable Computer

Sashisu Bajracharya1, Chang Shu1, Kris Gaj1, Tarek El-Ghazawi2

1 ECE Department, George Mason University,
4400 University Drive, Fairfax, VA 22030, U.S.A.

{sbajrach, cshu, kgaj}@gmu.edu
2 ECE Department, The George Washington University,

801 22nd Street NW, Washington, D.C., U.S.A.
tarek@gwu.edu

Abstract. Reconfigurable Computers are general-purpose high-end computers
based on a hybrid architecture and close system-level integration of traditional
microprocessors and Field Programmable Gate Arrays (FPGAs). In this paper,
we present an application of reconfigurable computers to developing a low-
latency implementation of Elliptic Curve Cryptosystems, an emerging class of
public key cryptosystems used in secure Internet protocols, such as IPSec. An
issue of partitioning the description between C and VHDL, and the associated
trade-offs are studied in detail. End-to-end speed-ups in the range of 895 to
1300 compared to the pure microprocessor execution time are demonstrated.

1 Introduction

Reconfigurable Computers are high-end computers based on the close system-level
integration of traditional microprocessors and Field Programmable Gate Arrays
(FPGAs). Cryptography, and in particular public key cryptography, is particularly
well suited for implementation on reconfigurable computers because of the need for
computationally intensive arithmetic operations with unconventionally long operands
sizes.

As a platform for our experiments we have chosen one of the first general-purpose,
stand-alone reconfigurable computers available on the market, the SRC-6E [1],
shown in Fig. 1. The microprocessor subsystem of SRC-6E is based on commodity
PC boards. The reconfigurable subsystem, referred to as MAP, is based on three Xil-
inx Virtex II FPGAs, XC2V6000.

As shown in Fig. 2, each function executed on the SRC-6E reconfigurable com-
puter can be implemented using three different approaches: 1) as a High Level Lan-
guage (HLL) function running on a traditional microprocessor, 2) as an HLL function
running

SNAP

Computer
Memory
(1.5 GB)

P3
(1 GHz)

P3
(1 GHz)

/ /8000
MB/s

MIOC

L2L2

800 MB/s

// 800 MB/s528 MB/s

DDR
Interface

PCI-X

Control
FPGA

XC2V6000

800 MB/s

On-Board Memory
(24 MB)

/4800 MB/s
(6x64 bits)

FPGA 1
XC2V6000

FPGA 2
XC2V6000

/
4800 MB/s
(6x 64 bits)

/
4800 MB/s
(6x 64 bits)

2400 MB/s
(192 bits)

/

/ /

(108 bits)

Chain
Ports 2400 MB/s

(108 bits)

/

528 MB/s

½ MAP
Board

µP
Board

8000
MB/s

/ /

8
bits

flags

64
bits
data

Fig. 1. Hardware architecture of the SRC-6E

HLL function
for µP

HLL function
for FPGA

HDL macro
for FPGA

µP system

FPGA system

HLL

HDL

HLL function
for µP

HLL function
for FPGA

HDL macro
for FPGA

µP system

FPGA system

HLL

HDL

Fig. 2. Three ways of implementing a function on a reconfigurable computer

on an FPGA, and 3) as a Hardware Description Language (HDL) macro running on
an FPGA.

As a result, any program developed for execution on the SRC-6E needs to be parti-
tioned taking into account two independent boundaries, the first, between the execu-
tion on a microprocessor vs. execution on an FPGA system; and the second between
the program entry in HLL vs. program entry in HDL.

2 Elliptic Curve Cryptosystems

Elliptic Curve Cryptosystems (ECCs) are a family of public key cryptosystems.
The primary application of ECCs is secure key agreement and digital signature gen-
eration and verification [2]. In both of these applications the primary optimization
criterion, from the implementation point of view, is the minimum latency for a single
set of data (rather then the data throughput for a large set of data). The primary opera-
tion of ECCs is elliptic curve scalar multiplication (kP). In our implementation of
scalar multiplication we adopted the optimized algorithm for computing scalar multi-
plication by Lopez and Dahab [3]. Our implementation supports elliptic curve opera-
tions over GF(2n) with optimal basis representation for n=233, which is one of the
sizes recommended by NIST [2].

kP

P+Q 2P projective_to_affine
(P2A)

MUL

INV

High
level

Medium
level

Low
Level 1 ROTXOR

Low
Level 2

kP

P+Q 2P projective_to_affine
(P2A)

MUL

INV

High
level

Medium
level

Low
Level 1 ROTXOR

Low
Level 2

Fig. 3. Hierarchy of the ECC operations

3 Investigated partitioning schemes

A hierarchy of operations involved in an elliptic curve scalar multiplication for the
case of an elliptic curve over GF(2n) is given in Fig. 3. Four levels of operations are
involved in this hierarchy: scalar multiplication (kP) at the high level (H), point addi-
tion (P+Q), point doubling (2P), and projective-to-affine conversion (P2A) at the
medium level (M), inversion (INV) at the low level 2 (L2), and the GF(2n) multiplica-
tion (MUL), squaring (rotation) (ROT), and addition (XOR) at the lowest level (L1).
Functions belonging to each of these four hierarchy levels (high, medium, low 2 and
low 1) can be implemented using three different implementation approaches shown in
Fig. 1. In this paper, each of these approaches is characterized by a three-letter code-
name, such as 0HM. The meaning of these codenames is explained in Fig. 4.

We used as our reference case the complete ECC implementation running in the
microprocessor and based on [4]. All other implementations ran entirely on the
FPGA and were partitioned between C code that was automatically translated to
VHDL and hand-coded VHDL.

4 Results

The results of the timing measurements for all investigated partitioning schemes are
summarized in Table 1. The FPGA Computation Time, TFPGA, includes only the time
spent performing computations using User FPGAs. The End-to-End time, TE2E, in-
cludes the FPGA Computation time and all overheads associated with the data and
control transfers between the microprocessor board and the FPGA board.

The Total Overhead, TOVH, is the difference between the End-to-End time and the
FPGA Computation Time. Two specific components of the Total Overhead listed in
Table 1 are DMA Data In Time, TDMA-IN, and DMA Data Out Time, TDMA-OUT. They
represent, respectively, the time spent to transfer inputs from the Microprocessor
Memory to the On-board Memory, and the time spent to transfer outputs from the
On-Board Memory to the Microprocessor Memory.

a) 0HL1 Partitioning b) 0HL2 Partitioning

H

L1

0C function
for µP

C function
for MAP

VHDL
macro

MUL4 ROT XOR V_ROT

kP

INV

P2A
P+Q 2P

MUL2 MUL

H

L1

0C function
for µP

C function
for MAP

VHDL
macro

MUL4 ROT XOR V_ROT

kP

INV

P2A
P+Q 2P

kP

INV

P2A
P+QP+Q 2P2P

MUL2MUL2 MULMUL

C function
for µP

C function
for MAP

VHDL
macro

0

H

L2
INVROT XOR

kP
P2AP+Q 2P

MUL4 MUL2

C function
for µP

C function
for MAP

VHDL
macro

0

H

L2
INVROT XOR

kP
P2AP+QP+Q 2P2P

MUL4 MUL2MUL2

c) 0HM Partitioning d) 00H Partitioning

0

H

M

C function
for µP

C function
for MAP

VHDL
macro P+Q 2P P2A

kPkP

0

H

M

C function
for µP

C function
for MAP

VHDL
macro P+Q 2P P2A

kPkP

kP

0

0

H

C function
for µP

C function
for MAP

VHDL
macro kP

0

0

H

C function
for µP

C function
for MAP

VHDL
macro

Fig. 4. Four alternative program partitioning schemes

The scheme that requires the smallest amount of hardware expertise and effort,
0HL1, is 893 times faster than software and less than 50% slower than pure VHDL
macro. Implementing inversion in VHDL, in the 0HL2 scheme, does not give any
significant gain in performance and only small reduction in the resource usage.

The 0HM scheme is more difficult to implement than 0HL1 and 0HL2 schemes,
because of the additional operations that need to be expressed in VHDL Nevertheless,
using this scheme gives substantial advantages in terms of both performance (about
45% improvement) and resource usage (e.g., reduction in the number of CLB slices
by 24% compared to the 0HL1 scheme). The most difficult to implement, the 00H
scheme (the entire kP operation described in VHDL) appears to have the same speed
as 0HM, but it provides an additional substantial reduction in terms of the amount of
required FPGA resources.

Table 1. Results of the timing measurements for several investigated partitioning schemes.
Notation: SPSW – speed-up vs. software, SLVHDL – slow-down vs. VHDL macro.

 TE2E
(µs)

TDMA-IN
(µs)

TFPGA
(µs)

TDMA-

OUT (µs)
TOVH
(µs)

SPSW SLVHDL

Soft-
ware 772,519 N/A N/A N/A N/A 1 1,305

0HL1 866 37 472 14 394 893 1.46
0HL2 863 37 469 14 394 895 1.45
0HM 592 37 201 12 391 1305 1.00
00H 592 39 201 17 391 1305 1.00

Table 2. Resource utilization for several investigated partitioning schemes

 % of
CLB
slices

CLB
slices

vs. 00H

% of
LUTs

LUTs
vs. 00H

% of FFs FFs
vs. 00H

0HL1 99 1.68 57 1.30 68 2.61
0HL2 92 1.56 52 1.18 62 2.38
0HM 75 1.27 48 1.09 39 1.50
00H 59 1.00 44 1.00 26 1.00

The current version of the MAP compiler (SRC-6E Carte 1.4.1) optimizes per-
formance over resource utilization. As it matures the compiler should be expected to
balance high performance, ease of coding, and resource utilization to yield a truly
optimized logic.

5 Conclusions

While earlier publications (e.g., [5]) regarding implementations of cryptography on
reconfigurable computers have already proven the capability of accomplishing a
1000x speed-up compared to the microprocessor implementations in terms of the data
throughput, this is a first publication that shows a comparable speed-up for data la-
tency.

This speed-up is even more remarkable taking into account that the selected opera-
tion has only limited amount of intrinsic parallelism, and cannot be easily sped up by
multiple instantiations of the same computational unit. In spite of these constraints, a
speed-up in the range of 895-1300 has been demonstrated compared to the public
domain microprocessor implementation using four different algorithm partitioning
approaches.

References

1. SRC Inc. Web Page, http://www.srccomp.com/
2. FIPS 186-2, Digital Signature Standard (DSS), pp. 34-39, 2000, Jan. 27,

http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf
3. López, J., and Dahab, R.: Fast Multiplication on Elliptic Curves over GF(2m) without

precomputation. CHES’99, LNCS 1717, (1999)
4. Rosing, M., Implementing Elliptic Curve Cryptography, Manning, 1999
5. Fidanci O. D., Poznanovic D., Gaj K., El-Ghazawi K., and Alexandridis N.,

"Performance and Overhead in a Hybrid Reconfigurable Computer," Reconfigur-
able Architecture Workshop, RAW 2003, Nice, France, Apr. 2003

