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Abstract. Reconfigurable Computers are general-purpose high-end computers 
based on a hybrid architecture and close system-level integration of traditional 
microprocessors and Field Programmable Gate Arrays (FPGAs). In this paper, 
we present an application of reconfigurable computers to developing a low-
latency implementation of Elliptic Curve Cryptosystems, an emerging class of 
public key cryptosystems used in secure Internet protocols, such as IPSec. An 
issue of partitioning the description between C and VHDL, and the associated 
trade-offs are studied in detail. End-to-end speed-ups in the range of 895 to 
1300 compared to the pure microprocessor execution time are demonstrated. 

1   Introduction 

Reconfigurable Computers are high-end computers based on the close system-level 
integration of traditional microprocessors and Field Programmable Gate Arrays 
(FPGAs). Cryptography, and in particular public key cryptography, is particularly 
well suited for implementation on reconfigurable computers because of the need for 
computationally intensive arithmetic operations with unconventionally long operands 
sizes. 

As a platform for our experiments we have chosen one of the first general-purpose, 
stand-alone reconfigurable computers available on the market, the SRC-6E [1], 
shown in Fig. 1. The microprocessor subsystem of SRC-6E is based on commodity 
PC boards. The reconfigurable subsystem, referred to as MAP, is based on three Xil-
inx Virtex II FPGAs, XC2V6000.  

As shown in Fig. 2, each function executed on the SRC-6E reconfigurable com-
puter can be implemented using three different approaches: 1) as a High Level Lan-
guage (HLL) function running on a traditional microprocessor, 2) as an HLL function 
running  
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Fig. 1. Hardware architecture of the SRC-6E  
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Fig. 2. Three ways of implementing a function on a reconfigurable computer  
 
on an FPGA, and 3) as a Hardware Description Language (HDL) macro running on 
an FPGA. 

As a result, any program developed for execution on the SRC-6E needs to be parti-
tioned taking into account two independent boundaries, the first, between the execu-
tion on a microprocessor vs. execution on an FPGA system; and the second between 
the program entry in HLL vs. program entry in HDL. 

2   Elliptic Curve Cryptosystems 

Elliptic Curve Cryptosystems (ECCs) are a family of public key cryptosystems. 
The primary application of ECCs is secure key agreement and digital signature gen-
eration and verification [2]. In both of these applications the primary optimization 
criterion, from the implementation point of view, is the minimum latency for a single 
set of data (rather then the data throughput for a large set of data). The primary opera-
tion of ECCs is elliptic curve scalar multiplication (kP). In our implementation of 
scalar multiplication we adopted the optimized algorithm for computing scalar multi-
plication by Lopez and Dahab [3]. Our implementation supports elliptic curve opera-
tions over GF(2n) with optimal basis representation for n=233, which is one of the 
sizes recommended by NIST [2]. 
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Fig. 3. Hierarchy of the ECC operations 

3   Investigated partitioning schemes 

A hierarchy of operations involved in an elliptic curve scalar multiplication for the 
case of an elliptic curve over GF(2n) is given in Fig. 3. Four levels of operations are 
involved in this hierarchy: scalar multiplication (kP) at the high level (H), point addi-
tion (P+Q), point doubling (2P), and projective-to-affine conversion (P2A) at the 
medium level (M), inversion (INV) at the low level 2 (L2), and the GF(2n) multiplica-
tion (MUL), squaring (rotation) (ROT), and addition (XOR) at the lowest level (L1). 
Functions belonging to each of these four hierarchy levels (high, medium, low 2 and 
low 1) can be implemented using three different implementation approaches shown in 
Fig. 1. In this paper, each of these approaches is characterized by a three-letter code-
name, such as 0HM. The meaning of these codenames is explained in Fig. 4. 

We used as our reference case the complete ECC implementation running in the 
microprocessor and based on [4].  All other implementations ran entirely on the 
FPGA and were partitioned between C code that was automatically translated to 
VHDL and hand-coded VHDL. 

4   Results 

The results of the timing measurements for all investigated partitioning schemes are 
summarized in Table 1. The FPGA Computation Time, TFPGA, includes only the time 
spent performing computations using User FPGAs. The End-to-End time, TE2E, in-
cludes the FPGA Computation time and all overheads associated with the data and 
control transfers between the microprocessor board and the FPGA board. 

The Total Overhead, TOVH, is the difference between the End-to-End time and the 
FPGA Computation Time. Two specific components of the Total Overhead listed in 
Table 1 are DMA Data In Time, TDMA-IN, and DMA Data Out Time, TDMA-OUT.  They 
represent, respectively, the time spent to transfer inputs from the Microprocessor 
Memory to the On-board Memory, and the time spent to transfer outputs from the 
On-Board Memory to the Microprocessor Memory. 
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c) 0HM Partitioning              d) 00H Partitioning 
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Fig. 4. Four alternative program partitioning schemes  
 

The scheme that requires the smallest amount of hardware expertise and effort, 
0HL1, is 893 times faster than software and less than 50% slower than pure VHDL 
macro. Implementing inversion in VHDL, in the 0HL2 scheme, does not give any 
significant gain in performance and only small reduction in the resource usage. 

The 0HM scheme is more difficult to implement than 0HL1 and 0HL2 schemes, 
because of the additional operations that need to be expressed in VHDL Nevertheless, 
using this scheme gives substantial advantages in terms of both performance (about 
45% improvement) and resource usage (e.g., reduction in the number of CLB slices 
by 24% compared to the 0HL1 scheme). The most difficult to implement, the 00H 
scheme (the entire kP operation described in VHDL) appears to have the same speed 
as 0HM, but it provides an additional substantial reduction in terms of the amount of 
required FPGA resources. 

Table 1. Results of the timing measurements for several investigated partitioning schemes.  
Notation: SPSW – speed-up vs. software, SLVHDL – slow-down vs. VHDL macro. 

 TE2E  
(µs) 

TDMA-IN 
(µs) 

TFPGA 
(µs) 

TDMA-

OUT (µs) 
TOVH 
(µs) 

SPSW SLVHDL

Soft-
ware 772,519 N/A N/A N/A N/A 1 1,305 

0HL1 866 37 472 14 394 893 1.46 
0HL2 863 37 469 14 394 895 1.45 
0HM 592 37 201 12 391 1305 1.00 
00H 592 39 201 17 391 1305 1.00 



Table 2. Resource utilization for several investigated partitioning schemes 

 % of 
CLB 
slices 

CLB 
slices 

vs. 00H 

% of 
LUTs 

LUTs 
vs. 00H 

% of FFs FFs 
vs. 00H 

0HL1 99 1.68 57 1.30 68 2.61 
0HL2 92 1.56 52 1.18 62 2.38 
0HM 75 1.27 48 1.09 39 1.50 
00H 59 1.00 44 1.00 26 1.00 
 

The current version of the MAP compiler (SRC-6E Carte 1.4.1) optimizes per-
formance over resource utilization. As it matures the compiler should be expected to 
balance high performance, ease of coding, and resource utilization to yield a truly 
optimized logic. 

5   Conclusions 

While earlier publications (e.g., [5]) regarding implementations of cryptography on 
reconfigurable computers have already proven the capability of accomplishing a 
1000x speed-up compared to the microprocessor implementations in terms of the data 
throughput, this is a first publication that shows a comparable speed-up for data la-
tency. 

This speed-up is even more remarkable taking into account that the selected opera-
tion has only limited amount of intrinsic parallelism, and cannot be easily sped up by 
multiple instantiations of the same computational unit. In spite of these constraints, a 
speed-up in the range of 895-1300 has been demonstrated compared to the public 
domain microprocessor implementation using four different algorithm partitioning 
approaches. 
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