
Reconfigurable Hardware Implem
in Number Field Sieve

Sashisu Bajracharya1, Deapesh Misra1,
1ECE Department, George M

4400 University Drive, Fairfax
2ECE Department, The George W

801 22nd street NW, Washingto
 {sbajrach, dmisra, kgaj}@gmu.

Abstract

Factorization of large numbers has been a
constant source of interest in cryptanalysis. The
fastest known algorithm for factoring large numbers
is the Number Field Sieve (NFS). The two most time
consuming phases of NFS are Sieving and Matrix
Step. In this paper, we propose an efficient way of
implementing the Matrix step in reconfigurable
hardware. Our solution is based on the Mesh-
Routing method proposed by Lenstra et al. We
determine the practical size of a partial mesh that
can fit in one FPGA device, Xilinx Virtex II
XC2V6000. We further extrapolate the computation
time for the case of a square systolic array of
FPGAs for 512-bit and 1024-bit numbers'
factorization. We demonstrate that for practical
sizes of numbers used in cryptography, 1024 bits,
the Matrix Step of factorization can be performed
using 1024 Virtex II FPGAs in less than 40 days.

1. Introduction

Factoring a large integer into its prime factors is
one of the challenging tasks in cryptanalysis both in
terms of computational complexity and
implementation. The Number Field Sieve (NFS)
introduced by Pollard J M in 1988, is the
asymptotically fastest known algorithm for the
factorization of large numbers.

The NFS algorithm consists of the following
four steps:

1. Polynomial Selection
2. Sieving
3. Matrix Step
4. Square Root step

T
algor
paper
the m
vecto
depen
For
have
archi
archi
Stein
afore
an a
imple
recon

W
probl
offers
the p
comp
time,
progr
comp
Partic
recon
algor
seque
Matri
can b
any
better
hardw
recon
expec
next
scena
hardw

multi
reutil
entation of Mesh Routing
 Factorization

Kris Gaj1, Tarek El-Ghazawi2

ason University
, VA 22030, USA
ashington University
n DC 20052, USA

edu, tarek@gwu.edu

he two most time consuming steps of the NFS
ithm are the Sieving and the Matrix Step. This
focuses on the Matrix Step. This step involves
ultiplication of a large sparse matrix with

rs. The result is then used to identify a linear
dence between the entries in the sparse matrix.

the Matrix Step, two hardware architectures
been proposed in the literature: Mesh Sorting

tecture by Bernstein [8] and Mesh Routing
tecture by Lenstra et al [2]. Geiselmann and
wandt proposed a distributed variant of both
mentioned methods to be implemented using
rray of ASIC chips [12]. We propose an
mentation of the Mesh Routing architecture in
figurable hardware.

e believe that for a computationally intensive
em, such as factoring, reconfigurable hardware
 inherently better performance, scalability, and
rice-to-performance ratio than conventional
uters based on microprocessors. At the same
 FPGAs are much more flexible, easy to
am and experiment with, and reusable
ared to specialized hardware based on ASICs.
ularly in the field of factorization,
figuration is needed since the best factorization
ithms involve computationally intensive
ntially executed steps, such as Sieving and
x step. In reconfigurable hardware, these steps
e executed using the same hardware, without

additional cost. Additionally, when the new
algorithms for factorization are developed,

are architecture can be upgraded and
figurable devices re-utilized. It can also be
ted that once a certain number is factored, the

higher number would be targeted, and in such a
rio it would be easy to adapt the reconfigurable
are to factor a new larger number.

In this paper, we use the space-sharing time-
plexing approach by which we are able to
ize the FPGA devices in subsequent stages of

the computations. This overcomes the problem of
the need for a large number of FPGA devices, and
the need for a large budget. In order to evaluate
trade-offs between cost and performance, we report
all performance measures for a varying number of
FPGA devices. Our paper presents the first concrete
performance and resource measurements regarding
the reconfigurable hardware architecture for the
NFS Mesh Routing, as the reports to date were only
theoretical in nature.

2. Mesh Routing Algorithm

The matrix step concerns with finding linear
dependencies in the matrix ‘A’ obtained from the
sieving step. The linear dependencies are found
using Block Wiedemann algorithm [7] [10] [9] by
doing multiple matrix-by-vector multiplications of
the form:

 A vi, A2 vi, …. , Ak vi (1)
where vi is one of the random vectors (1 i k) and
k 2D/K. D is the number of columns of matrix A,
K is the blocking factor where either K=1 or K 32
(and k different vectors vi are handled
simultaneously). Another random vectors ui are
selected and the sequences

 ui vi , ui A vi, ……. ui Ak vi (2)
(1 i K) are used to find the linear dependent
vectors in the Block Wiedemann algorithm [9].

Matrix vector multiplication is done using the
Mesh routing circuit. Referring to Fig. 1,
multiplication can be performed very efficiently by
considering only the non-zero entries in the columns
of the sparse matrix.

Each such column entry of the sparse matrix
can be viewed as a packet which needs to be routed
to its destination. The accumulation of the results
with the same positions will then provide the result
to the matrix multiplication. Thus, a mesh of cells is
created and these packets are routed in it to their
destination cells.

Figure 1. Matrix-vector
multiplication operation through
routing.

1

1

1

1

1

10

1

1

1

1

1

10

F
sp

F
c

L
routin
impro

T
imple
each
value

I
D*D
ones.
‘ones
The v
numb
Sj de

{1
destin
colum
colum
to be

0

0

0

0

0

0

1

0

0

0

0

1

0

0 00000

00000

10000

01000

00010

00010

00101

10 00101

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0 00000

00000

10000

01000

00010

00010

00101

10 00101

1

0

0

0

0

0

0

T
for
destin
the p
each
excha
neigh
of th
are e
short
packe
done
destin
cell(S0)

5

2

9

5

86

3

8

1

6

2 2

54

3

85

1

8

4

0 1

0 1 0

0 1 0

1

1

111

1

111

11

1

11

11

0100101

9

8

7

6

5

4

3

2

1

cell(S0)

5

2

9

5

86

3

8

1

6

2 2

54

3

85

1

8

4

0 1

0 1 0

0 1 0

1

1

111

1

111

11

1

11

11

0100101

9

8

7

6

5

4

3

2

1

9

8

7

6

5

4

3

2

1

igure 2. Mesh corresponding to the
arse matrix A.

5

2

9

5
86

3

8

1

6

2 2

54

3

85
1

8

4

0 1

0 1 0

0 1 0

1

5

2

9

5
86

3

8

1

6

2 2

54

3

85
1

8

4

0 1

0 1 0

0 1 0

1

igure 3. Routing of the packets to the
ell in the mesh.

enstra et al proposed two versions of the
g based circuit, a simpler version and an
ved routing version.
he improved version is what we have
mented in hardware, with a difference that
mesh cell holds the row indices of the non zero
s in one column of the sparse matrix.
t is assumed that each of the D columns of the
sparse matrix A, has a weight/density ‘h’ of

 The row and the column positions of the
’ in the columns are denoted by ‘r’ and ‘c’.
ectors are of length D. The mesh has an equal
er ‘m’ of columns and rows, where m= D.
notes the j-th cell in the row major order, j

,2…,(m*m)}. Each cell Sj is the target
ation of the packet whose destination row and
n indices match with the cell’s row and
n position. As shown in Fig. 3, all the packets

 routed to the fifth cell are routed to it.
he clockwise transposition algorithm is used
routing the individual packets to their
ations. This algorithm repeats four steps till all

ackets are routed to their destination cells. In
step of this algorithm the compare and

nge operation is done between two
boring row or column cells. The destinations

e packets in the cells are compared and packets
xchanged only if the exchange leads to the
ening of the distance of the farthest traveling
t. This compare and exchange operation is

 till all the packets are routed to their
ations.

3. Implementation

3.1. Loading and Unloading

The row and column indices stored in the
circuit, correspond to the matrix entries which are
non-zero values. Along with this routing address the
loading address is also generated. These packets are
loaded from the memory to the mesh as shown in
Fig. 4. The loading of the vectors is done similarly,
entering the mesh through top-leftmost cell, shifting
from one cell to another.

Non Zero
Matrix
Entries

Vector

r c ri cist r c ri cist

Result
Vector

Figure 4. Loading and Unloading.

The result of the matrix and the vector
multiplication is the vector produced after
completing Mesh Routing. After the computation is
finished, and the result vector stored in each cell, the
result vector is unloaded from the rightmost bottom
cell. This is the basic approach of the design.
Another approach with maximum IO pins utilization
is considered for calculating the loading and
unloading time in Section 5.

3.2. Mesh Routing Operation

The matrix-vector multiplication operation is
done by routing each packet with the corresponding
vector bits of that packet to the destination cells
determined by the r and c address in the packet.
Whenever a packet reaches its destination, the
vector bits in the packet are xored to the
accumulating partial result in that destination cell.

The maximum number of non-zero entries in
each column of the original matrix A determines the
maximum number of packets each cell is holding at
the beginning. This determines the number of
iterations for which the routing operation has to be
repeated.

F
E

C
phase
in Fi
comp
In th
excha
phase
botto
colum
colum

I
comp
does
fashi
comp
in Fi

F
d

I
send
indep
its pa
repla
to ex
analy
comp
igure 5. Four iterations of Compare-
xchange.

lockwise transposition routing repeats four
s of compare-exchange operations. As shown

g. 5, in the first phase, the odd row does the
are-exchange operation with the top even row.

e second phase, the odd column does compare-
nge with the right even column. In the third
, the odd row does compare-exchange with the
m even row. In the fourth phase, the odd
n does compare exchange with the left even
n.

t is observed that the first cell does
arisons in the clockwise order. The second cell

compare-exchange in the anticlockwise
on. These clockwise and anticlockwise
are and exchange operations are as shown

g. 6.

igure 6. Compare- exchange
irection for each cell.

n each compare-exchange the two neighbors
their packet to the each other and each cell
endently compares the incoming packet with
cket and decides on whether to exchange by

cing its packet with the incoming packet or not
change by discarding the incoming packet. An
sis reveals that there are four cases of
are-exchanges, as follows:

2 1
2

1

N 1
N

1

N
N

N

NN
2

N

2

a

c d

b

2 1
2

1

2 1
2

1

N 1
N

1

N 1
N

1

N
N

N

NN
N

N

NN
2

N

2 N
2

N

2

a

c d

b

Figure 7. Compare-exchange cases.

a) Both packets are valid (Fig.7a). Thus, each cell
may need to exchange the packets. Each cell
decides independently by comparing the incoming
packet’s destination cell with the current packet’s
destination cell.
b) Current packet in the cell is invalid but the
incoming new packet is valid (Fig. 7b). The cell
may need to keep the new packet if it is traveling in
the right direction.
c) Current packet in the cell is valid and the
incoming new packet is invalid (Fig. 7c). The cell
may need to destroy (annihilate) its packet if the
other neighbor keeps its packet.
d) Current packet in the cell is invalid and the
incoming new packet is also invalid (Fig 7d). In this
case, nothing needs to be done.

oper

s1 row col s2 row colrow col

>

s1
s2

exchange annihilate eq_packet

cell’s coordinate current packet new packet

en_equal Control Signal Logic

=

oper

s1 row col s2 row colrow col

>

s1
s2

exchange annihilate eq_packet

cell’s coordinate current packet new packet

en_equal Control Signal Logic

=

Figure 8. Comparator Logic.

The comparison logic is implemented in each cell
in the comparator to account for all of these cases as
shown in Fig. 8. As shown in Fig. 8, the comparator
takes in three values, the current packet, the new
packet, and the cell’s coordinates. Based on the
phase of iteration, either row or column values have
to be compared. Then the status of the current
packet (s1) and the new incoming packet (s2) are
used to evaluate between which of the four cases to
decide the comparison upon.

E
comp
in ea
with
cell
none

T
comp
opera
opera
clock
being
phase
whet
than

E
each
sends
The
desig
bits w
R[i]
the p
corre
in the
the a
and e

T
The
vecto
reach
xored
Chec
destin
the n
coord
of th
excha
the c
signa
new
cong

E
durin
Some
and o
mesh
the c
direc
(cloc
each
and
deter
comp
deter
iterat
cell
comp
ven though each cell is doing independent
arisons, the same logic of compare-exchange
ch cell ensures that both cells’ decisions match
each other. So if for both valid packets, if one
exchanges, the other one also exchanges or
 of them exchange.
he circuit for each cell is shown in Fig. 9. The
arator resides in each cell and does comparison
tion as described previously. The comparison
tion is dynamic as the cell compares in
wise or anticlockwise direction and its role of
 preceding or following neighbor changes per
 of clock. The oper control signal signifies

her to decide on less than comparison or greater
comparison.
ach cell is connected to its four neighbors. So
cell gets input from its four neighbors and
 its current packet value to its four neighbors.
P[i] registers store the input vector bits. The
n is scalable to handle any number of vector
ith a corresponding change in the area. The

is the local memory (LUT-RAM) storage for
ackets in each cell. Each cell keeps the packets
sponding to the non-zero entries of one column
 original matrix A. The decode unit decodes if
ddress of loading matches the cell’s address
nables the write operation to the memory.
he cell stores its coordinates in r, c format.
P’[i] registers store the intermediate result
r bits after each routing and when the packet
es the destination, the new vector bits are

with the intermediate result bits in it. The
k_Dest unit checks if the packet has reached its
ation by comparing the cell’s coordinates with
ew packet’s coordinates or its current packet
inates. The annihilate signal flips the status bit

e packet if annihilation needs to be done. The
nge signal enables loading to the register for

urrent packet register. The eq_packet control
l is utilized when the current packet and the
packet have the same destination to reduce

estion.
ach cell has status bits which are constants set

g synthesis based on the cell’s coordinates.
status bits signify odd or even row or column

thers signify whether the cell is at the end of
. Also, there are status bits to signify whether
omparison starts from top or bottom and

tion of compare-exchange for each cell
kwise/anticlockwise). The action performed by
cell depends on these status values of the cell
the particular phase of iteration. So, the
mination of which neighbor to compare, and to
are lesser than or greater than relation are
mined by these status bits and the phase of
ion. There are external control signals to each
to command on certain operation of loading,
uting and unloading.

Figure 9. Detailed architectur

3.3. Sub-Matrix Computation

Since the particular hardware device of fixed
size cannot perform the huge matrix-vector
multiplication, the computation has to be divided
into sub-computations of multiplication of smaller
sub-matrices with a part of the vector as proposed in
[12]. This way the same device can be utilized to do
sub-computations one after another depending on
how many devices are available and affordable. The
rectangular matrix A from the sieving step is
assumed to have been preprocessed to have a
uniform distribution of non-zero entries in each
column. The matrix A is split into s*s sub matrices
Ai,j of the same size as shown below.

A 1,1v1 + A1,2v2 + A1,3v3

A 2,1v1 + A2,2v2 + A2,3v3

A 3,1v1 + A3,2v2 + A3,3v3

A 1,1 A 1,2 A 1,3

A 2,1 A 2,2 A 2,3

A 3,1 A 3,2 A 3,3

v1

v2

v3

=

A 1,1v1 + A1,2v2 + A1,3v3

A 2,1v1 + A2,2v2 + A2,3v3

A 3,1v1 + A3,2v2 + A3,3v3

A 1,1 A 1,2 A 1,3

A 2,1 A 2,2 A 2,3

A 3,1 A 3,2 A 3,3

v1

v2

v3

=

A 1,1 A 1,2 A 1,3

A 2,1 A 2,2 A 2,3

A 3,1 A 3,2 A 3,3

v1

v2

v3

=

Similarly, the vector vj is also subdivided into r
sub-vectors. Then the final result A*v can be
obtained as shown in equation (3).

I
we n
the m
Maxi
is use
faster
the re

4. M

T
testin
The
platfo
from
circu
Xilin
devic
the h

5. R

T
imple
imple
maxi
Virte
e of each cell.

s

j
jjs

s

j
jj

vA

vA

vA

1
,

1
,1

.

.

 (3)

f only a certain number of chips are available,
eed to load the contents of sub-matrices Ai,j of
esh into the chip together with sub-vectors vj.
mum number of I/O pins available in the chip
d to load the inputs and unload the outputs for
processing time. After the computation is over
sults are unloaded.

ethodology and testing

he design is developed in VHDL code and the
g code is developed in C for the test vectors.
design is verified in Aldec-Active HDL
rm through simulation with the test vectors
the software written in C. The synthesis of the
it is done through Synplicity Synplify Pro and
x ISE Series to target the Virtex II XC2V6000
e. The test vectors and the inputs required by
ardware circuit are generated in C.

esults

he row and column indices for the mesh
mented are 4 bits long. This is because the
mented mesh size is 12x12 which is the

mum size of any mesh which can fit on the
x II FPGA device. The maximum size of K

(number of vectors multiplied simultaneously) for
which the mesh of 12x12 can fit on the Virtex II
FPGA device is obtained to be K=50. Thus this
mesh can perform matrix-vector multiplication of a
sparse matrix of size 144x144 with 50 vectors, each
of size 144x1 in one iteration of the Mesh Routing
algorithm. Each packet has 1 status bit, 4 bits for
representing the row coordinate and 4 bits for
representing the column coordinate. These packets
together with the vector bits need to be downloaded
to the circuit for each sub-computation.

The density in each column of the matrix A
(which is obtained after the sieving step for 512-bit
factorization) is about 63 when the matrix has 6.7 x
10 6 columns [2]. This matrix is preprocessed to
have uniform distribution of non-zero entries. The
matrix is divided into m2 sub-matrices. The
maximum density per column for each sub-matrix
thus turns out to be 1 as 63 ones need to be
uniformly distributed in m2 sub-matrices. Hence, d
(density) is equal to 1.

Table 1. Synthesis Results for Mesh
Routing Circuit in Virtex II FPGA.

The circuit was first synthesized for K=1 which
is the basic case for doing one vector multiplication
with the matrix, to find out the resource usage. The
circuit was slightly optimized for high fan-out of
control signals to all the mesh cells by replicating
control signals. After synthesis, the result for
maximum clock periods for different K values is as
shown in Table 1. Since for K>1, K multiple matrix-
vector multiplications are occurring at the same
time, larger K corresponds to more speedup
provided it can fit on one FPGA device. This limit
was obtained to be K=50 for Virtex II FPGA device
for the mesh size of 12x12. The area resources used
are shown in Table 1. Increase in K significantly
increases the area usage. Particularly comparing for
the cases K=1 and K=42, it can be noted that there is
an increase of less than 4 times for CLB and LUT
and a 6 times increase in FF resource usage. In this
case, the limiting factor is LUT which implements

the c
the L

E
cycle
multi
non-z
with
clock
Since
done
becom

T
the u
utiliz
comp
accou
area
in the

U
Geise
vecto
small
can b
But i
comp
meas
partic
chips
chips
IO p
conne
carrie
Virte
are p
speed
havin
in pa

Matrix
Size

K CLB LUT FF
Period

(ns)

Time
for

K mult
(ns)

Time
for 1
mult
(ns)

144x144
(Mesh
12x12)

1 7,989
(23%)

15,330
(23%)

5,255
(7%) 17.3 415 415.2

144x144
(Mesh
12x12)

42 29,325
(86%)

57,282
(84%)

29,417
(43%) 16.9 406 9.6

144x144
(Mesh
12x12)

50 33,280
(98%)

65,119
(96%)

33,280
(50%) 17.7 425 8.5 W

Table
the p
Virte
matri
facto
multi
repre
needs
comp
with
sievin
mxm
the to
is ca
needs
Wied
the m
comp

T
of a 5
ombinational logic of the circuit. With K=50,
UT consumption goes to about 96%.
ach routing needs an average of 2*m clock

s. Hence, for doing one round of matrix-vector
plication of 144x144 matrix (with maximum
ero entries being 1 and mesh dimension m=12)
the 50 vectors of 144x1 takes about 1*2*12

cycles, which translates to about 425 ns.
 multiple matrix-vector multiplications are
at the same time, time per multiplication
es 8.5 ns.

he practical implementation results provide
nderstanding of how the circuit resource will be
ed. The logic needed for control and the
lete circuit functioning has to be taken into
nt. Hence, these parts also contribute to the

resource usage and timing of the circuit as seen
 implementation results.
sing distributed approach as proposed by
lmann and Steinwandt [12], the larger matrix-
r multiplication can be broken down into
er matrix-vector multiplications and the results
e combined together to get the final results.

nstead of using all the chips and doing all the
utations at once, we obtain the performance
ures for limited resources of FPGA chips
ularly for the case of one chip , 102 chips, 162

, 322 chips connected in parallel. Multiple
 are connected together in two dimensions with
ins running at high frequency such that the
ction between mesh cells in two chips can be
d out through fewer pins. Particularly for
x II chip, there are 1104 IO pins in total. We
articularly interested in knowing how the
up behaves for multiple chips as opposed to
g multiple CPUs do the multiple computations
rallel.

e take the case for 512-bit factorization.
 2 shows the result of this calculation based on
ractical implementation results obtained for 1
x II chip. D is the number of columns in the
x obtained after the sieving step for the 512-bit
rization. The mesh dimension is m x m. Since
ple multiplications have to be done serially, n
sents the number of such multiplications that

to be done. Thus n is the number of sub-
utations of multiplications of sub-matrices
sub-vectors. The original matrix A from the
g step has size of D x D. The mesh of size

 will handle the sub-matrix of size m2 x m2. So,
tal number of sub-matrix computations needed

lculated as n = D2/ (m2)2 . The matrix step
about 3D/K multiplications for the block

emann algorithm [2]. Thus the total time for
atrix step is 3*D/K* n * Time for one mesh
utation & loading-unloading time.
he results reported in [1] for the factorization
12 bit number, are 224 CPU hours (9.3 days)

Table 2. Time estimates for matrix
step for factoring 512 bit numbers
with one Virtex II chip and multiple
Virtex II chips connected in a mesh
with K= number of vectors=50.

D = number of columns in matrix A
m = mesh dimension
n = number of times to repeat multiplications
TK = time for K multiplications in the mesh
TLoad = time for loading and unloading for K
multiplications
TTotal = total time for Matrix step = 3*D/K*n*(TK +TLoad)

Virtex
II

chips
D m n

TK

(ns)
TLoad

(ns)
TTotal

(days)

1
6.7
x

106
12 2.1 x

109 425 64 4928

102
6.7
x

106
120 2.1 x

105 4250 1815 6.1

162
6.7
x

106
192 33032 6797 2892 1.49

322
6.7
x

106
384 2064 13593 5773 0.19

of a Cray C916, using the block Lanczos algorithm
to achieve the same goal of finding linear
dependencies. It can be seen that for only 322

FPGA chips, this step can be done in 0.2 days from
Table 2 .

For multiple Virtex chips, the chips are
assumed to be connected in two dimensions. For
instance, for the case of 102 Virtex II chips, there is a
10x10 array of chips and the single mesh of size
120x120 is spread over these 100 Virtex chips. The
time estimation for this case is extrapolated from the
basic time for 1 Virtex II chip.

For doing sub-computations, the contents of the
submatrix have to be loaded on the chip together
with the sub-vectors. The modified approach for
loading and unloading bus sizes is taken into
consideration to calculate the loading and unloading
time with maximum possible IO pins that can be
utilized in the Virtex II chips. This analytical variant
to the original design is considered for analytical
extrapolation in calculating the loading and
unloading time. The partial result vectors are
unloaded infrequently, since the xor operations of
intermediate results can be done inside the circuit.
The loading and unloading time has to be taken into
account for the calculation of total time. The
frequency of loading circuit is assumed to be
clocked at 200 MHz since the loading shift circuit
has very few logic gates involved in the critical
path. The maximum pins of the Virtex II I/O pins
available at one side is taken into account to
calculate the total number of clock cycles to load the
matrix-bits and vector bits into the circuit and out of

the c
in tw
repre
packe
availa
vecto
stored
zero
cell
d*m2

of siz
clock
simul
loadi
TK is
the to
one c
obtai
other
comp
incre

T
comp
speed
the
Actua
chips
mesh
facto
of Vi

T
st
w
V
w

D = n
m = m
n = nu
TK = t
TLoad
multip
TTotal
TLoad)

Virt
II

chip

1

10

16

32
ircuit for the case of multiple chips connected
o dimensions. Let n be the bits for

senting row and column coordinates of the
t. The status bit requires one bit. Let b be the
ble I/O pin size. K is the number of multiple
rs handled. Each packet is of size (1+2*n)
 in memory. Since there are a total of d non-

entries in the column of sub-matrix and each
stores d non-zero packets, there are total of
 packets that needs to be loaded and K vectors
e m2. Thus it takes (1+2*n+K) * m2 * d / b
 cycles to load the packets and vector bits
taneously. TLoad represents the time for
ng and unloading for one mesh computation.
 the time for one mesh computation. From this
tal time for the matrix step is calculated. For
hip the number of IO pins available can be

ned from four sides as it is not connected to
chips. Thus the loading time is very less

ared to the computing time. The loading time
ases in the case of multiple FPGAs being used.
he speedup seen for 100 Virtex chips
ared to one Virtex chip is about 1000. This
up increases in more than linear fashion than
speedup expected with multiple devices.
lly, the speedup increases by about (number of

)3/2 because of the utilization of distributed
computation. The execution time estimates for

ring 1024 bit numbers using different number
rtex II chips are shown in Table 3.

able 3. Time estimates for matrix
ep of factoring 1024 bit numbers
ith one Virtex II chip and multiple
irtex II chips connected in a mesh
ith K=number of vectors=50.
umber of columns in matrix A
esh dimension
mber of times to repeat multiplications
ime for K multiplications in the mesh
 = time for loading and unloading for K
lication
 = total time for Matrix step = 3*D/K* n *(TK +

ex

s
D m n

TK

(ns)
TLoad

(ns)
TTotal

(days)

4
x

107
12 7.7 x

1010 425 64
1.05

x
106

2
4
x

107
120 7.7 x

106 4250 1815 1297

2
4
x

107
192 1.17

x 106 6797 2892 316

2
4
x

107
384

7.35
x

104
13593 5773 40

6. Conclusions

Factoring of large numbers is a problem of
great practical importance. The difficulty of this
problem determines the security of common public
key cryptosystems (such as RSA) which are used as
a basis for electronic commerce. Users of these
cryptosystems need accurate assessments of the cost
of integer factorization in order to select minimum
secure key sizes that guarantee computational
resistance against even the most powerful
adversaries. Since such powerful adversaries are
likely to employ hardware in their attacks, it is
misleading to merely assess the cost of factorization
in software using conventional general-purpose
computers. On the other hand, building specialized
hardware for the purpose of cost assessment is too
expensive and inflexible.

In this paper, we move a step closer to a
realistic estimate of the difficulty of factoring in
hardware for practical sizes of numbers used in
cryptography. One of the two most time consuming
steps of the factoring algorithm, Matrix Step, has
been practically implemented for the first time. A
Mesh Routing architecture proposed by Lenstra et
al. has been analyzed, designed, and implemented in
reconfigurable hardware, using a scalable approach.
The area and timing of the implementation has been
determined for the state-of-the-art Xilinx Virtex II
XC2V6000 FPGA devices. The applicability of the
circuit for factoring 512-bit and 1024-bit numbers
using an array of FPGA devices has been
demonstrated.. With only 322 (1024) Virtex II
chips, the Matrix Step of factorization of 1024 bit
numbers can be performed in 40 days.

7. References

[1] A. K. Lenstra et al., “Factorization of a 512-bit RSA
Modulus”, Advances in Cryptology, Eurocrypt 2000,
LNCS 1807, Springer-Verlag, 2000, pp. 1-17.

[2] A. K. Lenstra, A. Shamir, J. Tomlinson, E. Tromer,
“Analysis of Bernstein's Factorization Circuit,” Proc.
Asiacrypt 2002, LNCS 2501, Springer-Verlag, 2002,
pp. 1-26.

[3] A. K. Lenstra, E. Tromer, A. Shamir, W. Kortsmit, B.
Dodson, J. Hughes, P. Leyland, “Factoring estimates
for a 1024-bit RSA modulus”, Proc. Asiacrypt 2003,
LNCS 2894, Springer-Verlag, 2003, pp. 55-74.

[4] A.K. Lenstra, H.W. Lenstra, Jr., (eds.), The
development of the number field sieve, Lecture Notes
in Math. 1554, Springer-Verlag, 1993.

[5] A.K. Lenstra, H.W. Lenstra, Jr., Algorithms in
number theory, chapter 12 in Handbook of
theoretical computer science, Volume A, algorithms
and complexity (J. van Leeuwen, ed.), Elsevier,
Amsterdam (1990).

[6] A. Shamir, E. Tromer, “On the cost of factoring RSA-
1024”, RSA CryptoBytes, vol. 6 no. 2, 2003, pp. 10-
19.

[7] D
e
a

[8] D
p

[9] D
f
T

[10] G
W
l
I
C

[11] H
L
U
h
i

[12] W
s
C
5

. Coppersmith, “Solving homogeneous linear
quations over GF(2) via block Wiedemann
lgorithm”, Math. Comp. bf 62 (1994), pp. 333-350.
. J. Bernstein, “Circuits for integer factorization: a

roposal”, http://cr.yp.to/papers/nfscircuit.pdf.
. Wiedemann, “Solving sparse linear equations over

inite fields”, IEEE Transactions on Information
heory, IT-32 (1986), pp. 54-62 .
. Villard, “Further analysis of Coppersmith's block
iedemann algorithm for the solution of sparse

inear systems” (extended abstract), Proc. 1997
nternational Symposium on Symbolic and Algebraic
omputation, ACM Press, 1997, pp. 32-39.
. J. Kim and W. H. Mangione-Smith, Factoring
arge Numbers with Programmable Hardware
CLA Electrical Engineering Dept.
ttp://klabs.org/richcontent/MAPLDCon99/Presentat
ons/D5A_Kim_S.PDF.

. Geiselmann, R. Steinwandt, “Hardware to solve
parse systems of linear equations over GF(2)”, Proc.
HES 2003, LNCS 2779, Springer-Verlag, 2003, pp.
1-61.

	Welcome Page
	List of Sessions
	Table of Contents Entry of this Manuscript
	Brief Author Index
	Detailed Author Index

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Author

	footerL1: 0-7803-8652-3/04/$20.00 © 2004 IEEE
	pagenumber1: 1
	footerR1: ICFPT 2004
	pagenumber2: 2
	pagenumber3: 3
	pagenumber4: 4
	pagenumber5: 5
	pagenumber6: 6
	pagenumber7: 7
	pagenumber8: 8

