Reconfigurable Hardware Implementation of Mesh Routing
in Number Field Sieve Factorization

Sashisu Bajracharya', Deapesh Misra', Kris Gaj', Tarek El-Ghazawi’

'ECE Department, George Mason University
4400 University Drive, Fairfax, VA 22030, USA
*ECE Department, The George Washington University
801 22" street NW, Washington DC 20052, USA
{sbajrach, dmisra, kgaj } @gmu.edu, tarek@gwu.edu

Abstract

Factorization of large numbers has been a
constant source of interest in cryptanalysis. The
fastest known algorithm for factoring large numbers
is the Number Field Sieve (NFS). The two most time
consuming phases of NFS are Sieving and Matrix
Step. In this paper, we propose an efficient way of
implementing the Matrix step in reconfigurable
hardware. Our solution is based on the Mesh-
Routing method proposed by Lenstra et al. We
determine the practical size of a partial mesh that
can fit in one FPGA device, Xilinx Virtex II
XC2V6000. We further extrapolate the computation
time for the case of a square systolic array of
FPGAs for 512-bit and 1024-bit numbers’
factorization. We demonstrate that for practical
sizes of numbers used in cryptography, 1024 bits,
the Matrix Step of factorization can be performed
using 1024 Virtex Il FPGAs in less than 40 days.

1. Introduction

Factoring a large integer into its prime factors is
one of the challenging tasks in cryptanalysis both in
terms of computational complexity and
implementation. The Number Field Sieve (NFS)
introduced by Pollard J M in 1988, is the
asymptotically fastest known algorithm for the
factorization of large numbers.

The NFS algorithm consists of the following
four steps:

Polynomial Selection
Sieving

Matrix Step

Square Root step

bl

0-7803-8652-3/04/$20.00 © 2004 IEE

The two most time consuming steps of the NFS
algorithm are the Sieving and the Matrix Step. This
paper focuses on the Matrix Step. This step involves
the multiplication of a large sparse matrix with
vectors. The result is then used to identify a linear
dependence between the entries in the sparse matrix.
For the Matrix Step, two hardware architectures
have been proposed in the literature: Mesh Sorting
architecture by Bernstein [8] and Mesh Routing
architecture by Lenstra et al [2]. Geiselmann and
Steinwandt proposed a distributed variant of both
aforementioned methods to be implemented using
an array of ASIC chips [12]. We propose an
implementation of the Mesh Routing architecture in
reconfigurable hardware.

We believe that for a computationally intensive
problem, such as factoring, reconfigurable hardware
offers inherently better performance, scalability, and
the price-to-performance ratio than conventional
computers based on microprocessors. At the same
time, FPGAs are much more flexible, easy to
program and experiment with, and reusable
compared to specialized hardware based on ASICs.
Particularly in the field of factorization,
reconfiguration is needed since the best factorization
algorithms involve computationally intensive
sequentially executed steps, such as Sieving and
Matrix step. In reconfigurable hardware, these steps
can be executed using the same hardware, without
any additional cost. Additionally, when the new
better algorithms for factorization are developed,
hardware architecture can be upgraded and
reconfigurable devices re-utilized. It can also be
expected that once a certain number is factored, the
next higher number would be targeted, and in such a
scenario it would be easy to adapt the reconfigurable
hardware to factor a new larger number.

In this paper, we use the space-sharing time-
multiplexing approach by which we are able to
reutilize the FPGA devices in subsequent stages of

ICFPT 2004

the computations. This overcomes the problem of
the need for a large number of FPGA devices, and
the need for a large budget. In order to evaluate
trade-offs between cost and performance, we report
all performance measures for a varying number of
FPGA devices. Our paper presents the first concrete
performance and resource measurements regarding
the reconfigurable hardware architecture for the
NFS Mesh Routing, as the reports to date were only
theoretical in nature.

2. Mesh Routing Algorithm

The matrix step concerns with finding linear
dependencies in the matrix ‘A’ obtained from the
sieving step. The linear dependencies are found
using Block Wiedemann algorithm [7] [10] [9] by
doing multiple matrix-by-vector multiplications of
the form:

A, A, , Ak, (1)
where v; is one of the random vectors (1 <i<k) and
k ~ 2D/K. D is the number of columns of matrix A,
K is the blocking factor where either K=1 or K > 32
(and k different vectors v; are handled
simultaneously). Another random vectors u; are
selected and the sequences

Ui Vi, U A Vi, vennnn U Ak' Vi (2)
(1 £1 <K) are used to find the linear dependent
vectors in the Block Wiedemann algorithm [9].

Matrix vector multiplication is done using the
Mesh routing circuit. Referring to Fig. 1,
multiplication can be performed very efficiently by
considering only the non-zero entries in the columns
of the sparse matrix.

Each such column entry of the sparse matrix
can be viewed as a packet which needs to be routed
to its destination. The accumulation of the results
with the same positions will then provide the result
to the matrix multiplication. Thus, a mesh of cells is
created and these packets are routed in it to their
destination cells.

N

=

N
\J
-

-
\

Figure 1. Matrix-vector
multiplication operation through
routing.

cell(S,)
\ 1 1] 1 }
1 111 2 \9)3@2\95
1 1 3 6185 9
T 1k W1 [W]2]0)]2
8 6
111] K z (O3 [V]1]0]4
4|5]5|8]|s
7
1 1 1018
[IBE 9

Figure 2. Mesh corresponding to the
sparse matrix A.

2512—5
9
0)12
©)

3
5

-b@oo@os@
1 w

m(~®®m©
1\3\

Figure 3. Routing of the packets to the
cell in the mesh.

Lenstra et al proposed two versions of the
routing based circuit, a simpler version and an
improved routing version.

The improved version is what we have
implemented in hardware, with a difference that
each mesh cell holds the row indices of the non zero
values in one column of the sparse matrix.

It is assumed that each of the D columns of the
D*D sparse matrix A, has a weight/density ‘h’ of
ones. The row and the column positions of the
‘ones’ in the columns are denoted by ‘r’ and ‘c’.
The vectors are of length D. The mesh has an equal
number ‘m’ of columns and rows, where m= V D.
Sj denotes the j-th cell in the row major order, j
e{l,2...,(m*m)}. Each cell Sj is the target
destination of the packet whose destination row and
column indices match with the cell’s row and
column position. As shown in Fig. 3, all the packets
to be routed to the fifth cell are routed to it.

The clockwise transposition algorithm is used
for routing the individual packets to their
destinations. This algorithm repeats four steps till all
the packets are routed to their destination cells. In
each step of this algorithm the compare and
exchange operation is done between two
neighboring row or column cells. The destinations
of the packets in the cells are compared and packets
are exchanged only if the exchange leads to the
shortening of the distance of the farthest traveling
packet. This compare and exchange operation is
done till all the packets are routed to their
destinations.

3. Implementation
3.1. Loading and Unloading

The row and column indices stored in the
circuit, correspond to the matrix entries which are
non-zero values. Along with this routing address the
loading address is also generated. These packets are
loaded from the memory to the mesh as shown in
Fig. 4. The loading of the vectors is done similarly,
entering the mesh through top-leftmost cell, shifting
from one cell to another.

Non Zero
Matrix Result
Vect
ector Entries Vector|
|st| r | c ri | cil

]

H—H

]

.
VAVAY

ool ool e
=

N N
) -
s | N -~

Figure 4. Loading and Unloading.

The result of the matrix and the vector
multiplication is the vector produced after
completing Mesh Routing. After the computation is
finished, and the result vector stored in each cell, the
result vector is unloaded from the rightmost bottom
cell. This is the basic approach of the design.
Another approach with maximum IO pins utilization
is considered for calculating the loading and
unloading time in Section 5.

3.2. Mesh Routing Operation

The matrix-vector multiplication operation is
done by routing each packet with the corresponding
vector bits of that packet to the destination cells
determined by the » and ¢ address in the packet.
Whenever a packet reaches its destination, the
vector bits in the packet are xored to the
accumulating partial result in that destination cell.

The maximum number of non-zero entries in
each column of the original matrix A determines the
maximum number of packets each cell is holding at
the beginning. This determines the number of
iterations for which the routing operation has to be
repeated.

[L)

(£ £ £
FE
il
HEEE
s

Figure 5. Four iterations of Compare-
Exchange.

[OEE

mimImm
Rl

3 GG
[0
)

@Q@
4 f

Clockwise transposition routing repeats four
phases of compare-exchange operations. As shown
in Fig. 5, in the first phase, the odd row does the
compare-exchange operation with the top even row.
In the second phase, the odd column does compare-
exchange with the right even column. In the third
phase, the odd row does compare-exchange with the
bottom even row. In the fourth phase, the odd
column does compare exchange with the left even
column.

It is observed that the first cell does
comparisons in the clockwise order. The second cell
does compare-exchange in the anticlockwise
fashion. These clockwise and anticlockwise
compare and exchange operations are as shown
in Fig. 6.

v

3
Y
LA I AN

v

Vo W LY W

v

W ol IR VY PO B 7

v
v

A
v
A\

—»

<

v
v
v

W)

N IE () IR QY

Figure 6. Compare- exchange
direction for each cell.

In each compare-exchange the two neighbors
send their packet to the each other and each cell
independently compares the incoming packet with
its packet and decides on whether to exchange by
replacing its packet with the incoming packet or not
to exchange by discarding the incoming packet. An
analysis reveals that there are four cases of
compare-exchanges, as follows:

c d
Figure 7. Compare-exchange cases.

a) Both packets are valid (Fig.7a). Thus, each cell
may need to exchange the packets. Each cell
decides independently by comparing the incoming
packet’s destination cell with the current packet’s
destination cell.

b) Current packet in the cell is invalid but the
incoming new packet is valid (Fig. 7b). The cell
may need to keep the new packet if it is traveling in
the right direction.

¢) Current packet in the cell is valid and the
incoming new packet is invalid (Fig. 7c). The cell
may need to destroy (annihilate) its packet if the
other neighbor keeps its packet.

d) Current packet in the cell is invalid and the
incoming new packet is also invalid (Fig 7d). In this
case, nothing needs to be done.

cell’s coordinate current packet new packet
1 row| col | [s3 rowl col
| T S — |
} IR
l
i
> =
)]
«— [oper
en equal | Control Signal Logic ~ fe—sl

l— 82

ol

exchange annihilate eq_packet

Figure 8. Comparator Logic.

The comparison logic is implemented in each cell
in the comparator to account for all of these cases as
shown in Fig. 8. As shown in Fig. 8, the comparator
takes in three values, the current packet, the new
packet, and the cell’s coordinates. Based on the
phase of iteration, either row or column values have
to be compared. Then the status of the current
packet (s1) and the new incoming packet (s2) are
used to evaluate between which of the four cases to
decide the comparison upon.

Even though each cell is doing independent
comparisons, the same logic of compare-exchange
in each cell ensures that both cells’ decisions match
with each other. So if for both valid packets, if one
cell exchanges, the other one also exchanges or
none of them exchange.

The circuit for each cell is shown in Fig. 9. The
comparator resides in each cell and does comparison
operation as described previously. The comparison
operation is dynamic as the cell compares in
clockwise or anticlockwise direction and its role of
being preceding or following neighbor changes per
phase of clock. The oper control signal signifies
whether to decide on less than comparison or greater
than comparison.

Each cell is connected to its four neighbors. So
each cell gets input from its four neighbors and
sends its current packet value to its four neighbors.
The P[i] registers store the input vector bits. The
design is scalable to handle any number of vector
bits with a corresponding change in the area. The
R[i] is the local memory (LUT-RAM) storage for
the packets in each cell. Each cell keeps the packets
corresponding to the non-zero entries of one column
in the original matrix A. The decode unit decodes if
the address of loading matches the cell’s address
and enables the write operation to the memory.

The cell stores its coordinates in r, ¢ format.
The P’[i] registers store the intermediate result
vector bits after each routing and when the packet
reaches the destination, the new vector bits are
xored with the intermediate result bits in it. The
Check_Dest unit checks if the packet has reached its
destination by comparing the cell’s coordinates with
the new packet’s coordinates or its current packet
coordinates. The annihilate signal flips the status bit
of the packet if annihilation needs to be done. The
exchange signal enables loading to the register for
the current packet register. The eq_packet control
signal is utilized when the current packet and the
new packet have the same destination to reduce
congestion.

Each cell has status bits which are constants set
during synthesis based on the cell’s coordinates.
Some status bits signify odd or even row or column
and others signify whether the cell is at the end of
mesh. Also, there are status bits to signify whether
the comparison starts from top or bottom and
direction of compare-exchange for each cell
(clockwise/anticlockwise). The action performed by
each cell depends on these status values of the cell
and the particular phase of iteration. So, the
determination of which neighbor to compare, and to
compare lesser than or greater than relation are
determined by these status bits and the phase of
iteration. There are external control signals to each
cell to command on certain operation of loading,
computing and unloading.

state

_4—:[] D P[i]
R[i address L
LUT-RAM ‘éITdecode'—‘ CU
> i AL,
annihilatg ¢ | emal g pack) .
[P
=N |
_cur LG(J Cl:eq__pa(:(et
exchan
pfi] T3 —
Check Dest exchapge*—
en_equa s e annihilate« | Comparator |, P9
coordinate —
_en_equal l
Status éts ¢q_packet

¥

Figure 9. Detailed architecture of each cell.

3.3.Sub-Matrix Computation

Since the particular hardware device of fixed
size cannot perform the huge matrix-vector
multiplication, the computation has to be divided
into sub-computations of multiplication of smaller
sub-matrices with a part of the vector as proposed in
[12]. This way the same device can be utilized to do
sub-computations one after another depending on
how many devices are available and affordable. The
rectangular matrix A from the sieving step is
assumed to have been preprocessed to have a
uniform distribution of non-zero entries in each
column. The matrix A is split into s*s sub matrices
A;; of the same size as shown below.

] s
A [Ap Az Vi ALvitAN, AV
Az |Aga | Az V2l = | AitAN, ALY
A A A V.
31 32| 733 3 As v +ALY, +HAGY

— \

Similarly, the vector v; is also subdivided into r
sub-vectors. Then the final result A*v can be
obtained as shown in equation (3).

s
Z Al,/ "V
j=1

3)

If only a certain number of chips are available,
we need to load the contents of sub-matrices A;; of
the mesh into the chip together with sub-vectors v;.
Maximum number of I/O pins available in the chip
is used to load the inputs and unload the outputs for
faster processing time. After the computation is over
the results are unloaded.

4. Methodology and testing

The design is developed in VHDL code and the
testing code is developed in C for the test vectors.
The design is verified in Aldec-Active HDL
platform through simulation with the test vectors
from the software written in C. The synthesis of the
circuit is done through Synplicity Synplify Pro and
Xilinx ISE Series to target the Virtex II XC2V6000
device. The test vectors and the inputs required by
the hardware circuit are generated in C.

5. Results

The row and column indices for the mesh
implemented are 4 bits long. This is because the
implemented mesh size is 12x12 which is the
maximum size of any mesh which can fit on the
Virtex II FPGA device. The maximum size of K

(number of vectors multiplied simultaneously) for
which the mesh of 12x12 can fit on the Virtex II
FPGA device is obtained to be K=50. Thus this
mesh can perform matrix-vector multiplication of a
sparse matrix of size 144x144 with 50 vectors, each
of size 144x1 in one iteration of the Mesh Routing
algorithm. Each packet has 1 status bit, 4 bits for
representing the row coordinate and 4 bits for
representing the column coordinate. These packets
together with the vector bits need to be downloaded
to the circuit for each sub-computation.

The density in each column of the matrix A
(which is obtained after the sieving step for 512-bit
factorization) is about 63 when the matrix has 6.7 x
10 ® columns [2]. This matrix is preprocessed to
have uniform distribution of non-zero entries. The
matrix is divided into m? sub-matrices. The
maximum density per column for each sub-matrix
thus turns out to be 1 as 63 ones need to be
uniformly distributed in m” sub-matrices. Hence, d
(density) is equal to 1.

Table 1. Synthesis Results for Mesh
Routing Circuit in Virtex Il FPGA.

Time | Time

Matrix Period| for |forl
Size K| CLB | LUT ¥k (ns) |K mult| mult
(ns) | (ns)
144x144
7,989 | 15,330 | 5,255
1(1;/)1::15211) 1 @3%) | @23%) | (1%) 17.3 415 |415.2
144x144
29,325 57,282 29,417
fl;/)l(elszh) 42 (86%) | (84%) | (43%) 16.9 406 | 9.6
144x144
33,280 65,119 |33,280
fl;/)l(elszh) 50 98%) | (96%) | (50%) 17.7 425 8.5

The circuit was first synthesized for K=1 which
is the basic case for doing one vector multiplication
with the matrix, to find out the resource usage. The
circuit was slightly optimized for high fan-out of
control signals to all the mesh cells by replicating
control signals. After synthesis, the result for
maximum clock periods for different K values is as
shown in Table 1. Since for K>1, K multiple matrix-
vector multiplications are occurring at the same
time, larger K corresponds to more speedup
provided it can fit on one FPGA device. This limit
was obtained to be K=50 for Virtex II FPGA device
for the mesh size of 12x12. The area resources used
are shown in Table 1. Increase in K significantly
increases the area usage. Particularly comparing for
the cases K=1 and K=42, it can be noted that there is
an increase of less than 4 times for CLB and LUT
and a 6 times increase in FF resource usage. In this
case, the limiting factor is LUT which implements

the combinational logic of the circuit. With K=50,
the LUT consumption goes to about 96%.

Each routing needs an average of 2*m clock
cycles. Hence, for doing one round of matrix-vector
multiplication of 144x144 matrix (with maximum
non-zero entries being 1 and mesh dimension m=12)
with the 50 vectors of 144x1 takes about 1*2*12
clock cycles, which translates to about 425 ns.
Since multiple matrix-vector multiplications are
done at the same time, time per multiplication
becomes 8.5 ns.

The practical implementation results provide
the understanding of how the circuit resource will be
utilized. The logic needed for control and the
complete circuit functioning has to be taken into
account. Hence, these parts also contribute to the
area resource usage and timing of the circuit as seen
in the implementation results.

Using distributed approach as proposed by
Geiselmann and Steinwandt [12], the larger matrix-
vector multiplication can be broken down into
smaller matrix-vector multiplications and the results
can be combined together to get the final results.
But instead of using all the chips and doing all the
computations at once, we obtain the performance
measures for limited resources of FPGA chips
particularly for the case of one chip , 10* chips, 16
chips, 32” chips connected in parallel. Multiple
chips are connected together in two dimensions with
IO pins running at high frequency such that the
connection between mesh cells in two chips can be
carried out through fewer pins. Particularly for
Virtex II chip, there are 1104 IO pins in total. We
are particularly interested in knowing how the
speedup behaves for multiple chips as opposed to
having multiple CPUs do the multiple computations
in parallel.

We take the case for 512-bit factorization.
Table 2 shows the result of this calculation based on
the practical implementation results obtained for 1
Virtex II chip. D is the number of columns in the
matrix obtained after the sieving step for the 512-bit
factorization. The mesh dimension is m x m. Since
multiple multiplications have to be done serially, n
represents the number of such multiplications that
needs to be done. Thus n is the number of sub-
computations of multiplications of sub-matrices
with sub-vectors. The original matrix A from the
sieving step has size of D x D. The mesh of size
mxm will handle the sub-matrix of size m* x m>. So,
the total number of sub-matrix computations needed
is calculated as n = D% (m?? . The matrix step
needs about 3D/K multiplications for the block
Wiedemann algorithm [2]. Thus the total time for
the matrix step is 3*D/K* n * Time for one mesh
computation & loading-unloading time.

The results reported in [1] for the factorization
of a 512 bit number, are 224 CPU hours (9.3 days)

Table 2. Time estimates for matrix
step for factoring 512 bit numbers
with one Virtex Il chip and multiple
Virtex Il chips connected in a mesh
with K= number of vectors=50.

D = number of columns in matrix A

m = mesh dimension

n = number of times to repeat multiplications

Ty = time for K multiplications in the mesh

Troad = time for loading and unloading for K

multiplications

Trow = total time for Matrix step = 3*D/K*n*(Tx +Taq)

Virt

IIIeX D m n TK TLoad TTotal

chips (ns) (ns) (days)
6.7

1 X 12 | ZX] 4 64 4928
Lof 10
6.7 2.1x

102 x | 120 X1 4250 | 1815 6.1
0" 10
6.7

162 x | 192 | 33032 | 6797 | 2892 1.49
10°
6.7

322 x | 384 | 2064 | 13593 | 5773 0.19
10°

of a Cray C916, using the block Lanczos algorithm
to achieve the same goal of finding linear
dependencies. It can be seen that for only 327
FPGA chips, this step can be done in 0.2 days from
Table 2.

For multiple Virtex chips, the chips are
assumed to be connected in two dimensions. For
instance, for the case of 10* Virtex II chips, there is a
10x10 array of chips and the single mesh of size
120x120 is spread over these 100 Virtex chips. The
time estimation for this case is extrapolated from the
basic time for 1 Virtex II chip.

For doing sub-computations, the contents of the
submatrix have to be loaded on the chip together
with the sub-vectors. The modified approach for
loading and unloading bus sizes is taken into
consideration to calculate the loading and unloading
time with maximum possible 10 pins that can be
utilized in the Virtex II chips. This analytical variant
to the original design is considered for analytical
extrapolation in calculating the loading and
unloading time. The partial result vectors are
unloaded infrequently, since the xor operations of
intermediate results can be done inside the circuit.
The loading and unloading time has to be taken into
account for the calculation of total time. The
frequency of loading circuit is assumed to be
clocked at 200 MHz since the loading shift circuit
has very few logic gates involved in the critical
path. The maximum pins of the Virtex II I/O pins
available at one side is taken into account to
calculate the total number of clock cycles to load the
matrix-bits and vector bits into the circuit and out of

the circuit for the case of multiple chips connected
in two dimensions. Let n be the bits for
representing row and column coordinates of the
packet. The status bit requires one bit. Let b be the
available I/O pin size. K is the number of multiple
vectors handled. Each packet is of size (1+2*n)
stored in memory. Since there are a total of d non-
zero entries in the column of sub-matrix and each
cell stores d non-zero packets, there are total of
d*m’ packets that needs to be loaded and K vectors
of size m”. Thus it takes (1+2*n+K) * m* * d /b
clock cycles to load the packets and vector bits
simultaneously. Tp,g represents the time for
loading and unloading for one mesh computation.
Tk is the time for one mesh computation. From this
the total time for the matrix step is calculated. For
one chip the number of 10 pins available can be
obtained from four sides as it is not connected to
other chips. Thus the loading time is very less
compared to the computing time. The loading time
increases in the case of multiple FPGAs being used.

The speedup seen for 100 Virtex chips
compared to one Virtex chip is about 1000. This
speedup increases in more than linear fashion than
the speedup expected with multiple devices.
Actually, the speedup increases by about (number of
chips)®® because of the utilization of distributed
mesh computation. The execution time estimates for
factoring 1024 bit numbers using different number
of Virtex II chips are shown in Table 3.

Table 3. Time estimates for matrix
step of factoring 1024 bit numbers
with one Virtex Il chip and multiple
Virtex Il chips connected in a mesh
with K=number of vectors=50.

D = number of columns in matrix A

m = mesh dimension

n = number of times to repeat multiplications

Tx = time for K multiplications in the mesh

Troaa = time for loading and unloading for K

multiplication

Trow = total time for Matrix step = 3*D/K* n *(T +

TLoad)

Vl;;ex D TK TLoad TTotal
m n
chips (ns) (ns) (days)
4 1.05
1 X 12 71'31?,‘ 425 64 X
107 10°
4
10? X 120 %Z‘ 4250 1815 1297
107
4 1.17
16 X 192 | e | 6797 2892 316
107
4 7.35
322 x | 384 X 13593 | 5773 40
107 10*

6. Conclusions

Factoring of large numbers is a problem of
great practical importance. The difficulty of this
problem determines the security of common public
key cryptosystems (such as RSA) which are used as
a basis for electronic commerce. Users of these
cryptosystems need accurate assessments of the cost
of integer factorization in order to select minimum
secure key sizes that guarantee computational
resistance against even the most powerful
adversaries. Since such powerful adversaries are
likely to employ hardware in their attacks, it is
misleading to merely assess the cost of factorization
in software using conventional general-purpose
computers. On the other hand, building specialized
hardware for the purpose of cost assessment is too
expensive and inflexible.

In this paper, we move a step closer to a
realistic estimate of the difficulty of factoring in
hardware for practical sizes of numbers used in
cryptography. One of the two most time consuming
steps of the factoring algorithm, Matrix Step, has
been practically implemented for the first time. A
Mesh Routing architecture proposed by Lenstra et
al. has been analyzed, designed, and implemented in
reconfigurable hardware, using a scalable approach.
The area and timing of the implementation has been
determined for the state-of-the-art Xilinx Virtex II
XC2V6000 FPGA devices. The applicability of the
circuit for factoring 512-bit and 1024-bit numbers
using an array of FPGA devices has been
demonstrated.. With only 32* (1024) Virtex II
chips, the Matrix Step of factorization of 1024 bit
numbers can be performed in 40 days.

7. References

[1] A. K. Lenstra et al., “Factorization of a 512-bit RSA
Modulus”, Advances in Cryptology, Eurocrypt 2000,
LNCS 1807, Springer-Verlag, 2000, pp. 1-17.

[2] A. K. Lenstra, A. Shamir, J. Tomlinson, E. Tromer,
“Analysis of Bernstein's Factorization Circuit,” Proc.
Asiacrypt 2002, LNCS 2501, Springer-Verlag, 2002,
pp- 1-26.

[3] A.K. Lenstra, E. Tromer, A. Shamir, W. Kortsmit, B.
Dodson, J. Hughes, P. Leyland, “Factoring estimates
for a 1024-bit RSA modulus”, Proc. Asiacrypt 2003,
LNCS 2894, Springer-Verlag, 2003, pp. 55-74.

[4] A.K. Lenstra, H.W. Lenstra, Jr., (eds.), The
development of the number field sieve, Lecture Notes
in Math. 1554, Springer-Verlag, 1993.

[5] AK. Lenstra, HW. Lenstra, Jr., Algorithms in
number theory, chapter 12 in Handbook of
theoretical computer science, Volume A, algorithms
and complexity (J. van Leeuwen, ed.), Elsevier,
Amsterdam (1990).

[6] A. Shamir, E. Tromer, “On the cost of factoring RSA-
10247, RSA CryptoBytes, vol. 6 no. 2, 2003, pp. 10-
19.

[7T D. Coppersmith, “Solving homogeneous linear
equations over GF(2) via block Wiedemann
algorithm”, Math. Comp. bf 62 (1994), pp. 333-350.

[8] D.J. Bernstein, “Circuits for integer factorization: a
proposal”, http://cr.yp.to/papers/nfscircuit.pdf.

[9] D. Wiedemann, “Solving sparse linear equations over
finite fields”, IEEE Transactions on Information
Theory, IT-32 (1986), pp. 54-62 .

[10] G. Villard, “Further analysis of Coppersmith's block
Wiedemann algorithm for the solution of sparse
linear systems” (extended abstract), Proc. 1997
International Symposium on Symbolic and Algebraic
Computation, ACM Press, 1997, pp. 32-39.

[11] H. J. Kim and W. H. Mangione-Smith, Factoring
Large Numbers with Programmable Hardware
UCLA Electrical Engineering Dept.
http://klabs.org/richcontent/ MAPLDCon99/Presentat
ions/D5SA_Kim_S.PDF.

[12] W. Geiselmann, R. Steinwandt, “Hardware to solve
sparse systems of linear equations over GF(2)”, Proc.
CHES 2003, LNCS 2779, Springer-Verlag, 2003, pp.
51-61.

	Welcome Page
	List of Sessions
	Table of Contents Entry of this Manuscript
	Brief Author Index
	Detailed Author Index

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Author

	footerL1: 0-7803-8652-3/04/$20.00 © 2004 IEEE
	pagenumber1: 1
	footerR1: ICFPT 2004
	pagenumber2: 2
	pagenumber3: 3
	pagenumber4: 4
	pagenumber5: 5
	pagenumber6: 6
	pagenumber7: 7
	pagenumber8: 8

