
A 1 Gbit/s Partially Unrolled Architecture of Hash Functions  
SHA-1 and SHA-512 

Abstract. Hash functions are among the most widespread cryptographic primitives, and are 
currently used in multiple cryptographic schemes and security protocols, such as IPSec and 
SSL. In this paper, we investigate a new hardware architecture for a family of dedicated hash 
functions, including American standards, SHA-1 and SHA-512. Our architecture is based on 
unrolling several message digest steps and executing them in one clock cycle. This modification 
permits implementing majority of dedicated hash functions with the throughput exceeding 1 
Gbit/s using medium-size Xilinx Virtex FPGAs. In particular, our new architecture has enabled 
us to speed up the implementation of SHA-1 compared to the basic iterative architecture from 
544 Mbit/s to 1.1 Gbit/s using Xilinx XCV1000. The implementation of SHA-512 has been 
sped up from 717 to 929 Mbit/s for Virtex FPGAs, and exceeded 1 Gbit/s for Virtex-E Xilinx 
FPGAs. In this paper, we present the details of our designs for SHA-1 and SHA-512, our design 
methodology, results of static timing analysis and results of experimental testing based on the 
SLAAC-1V PCI FPGA board. 
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1. Introduction 
 
Hash functions are very common and important cryptographic primitives. Their primary application is their use for message 
authentication, integrity, and non-repudiation as a part of the Message Authentication Codes (MACs) and digital signatures 
[1-3]. 

The current American federal standard, FIPS 180-2, recommends the use of one of the four hash functions developed by 
National Security Agency (NSA) and approved by NIST [4, 5]. By far the most widely accepted of these four functions is 
SHA-1 (Secure Hash Algorithm-1), a revised version of the standard algorithm introduced in 1993. The best attack against 
this algorithm is in the range of 280 operations, which makes its security equivalent to the security of Skipjack [6] and the 
Digital Signature Standard (DSS) [7]. 

After introducing a new secret-key encryption standard, AES (Advanced Encryption Standard) [8], with three key sizes, 
128, 192, and 256 bits, the security of SHA-1 did not any longer match the security guaranteed by the encryption standard. 
Therefore, an effort was initiated by NSA to develop three new hash functions, with the security equivalent to the security of 
AES with 128, 192, and 256 bit key respectively. This effort resulted in the development and standardization of three new 
hash functions referred to as SHA-256, SHA-384, and SHA-512 [4, 5]. 

All four standardized algorithms have a similar internal structure and operation. All of them are based on sequential 
processing of consecutive blocks of data, and therefore cannot be easily sped up by using pipelining or parallel processing (at 
least when only one stream of data is being processed). 

The majority of reported implementations of SHA-1 based on the current generation of FPGA devices, such as Virtex [9], 
can only reach the throughputs up to 500 Mbit/s [10-16]. The higher speeds can only be accomplished by using more 
expensive FPGA devices, such as Virtex-E or Virtex II (see Table 1). Similarly, the FPGA implementations of SHA-512 
based on the medium cost Virtex devices reach the speeds in the range of 700 Mbit/s [11, 12]. 

Significantly higher speeds might be required for applications such as High Definition Television (HDTV), 
videoconferencing, Virtual Private Networks, etc. [17, 18]. Our goal was to propose, implement, and verify a new 
architecture of standard hash functions that would allow them to be executed with the throughputs in the range of 1 Gbit/s 
using medium cost FPGA devices, such as Xilinx Virtex 1000. 
 
2. Partially Unrolled vs. Basic Iterative Architecture of Hash Functions  
 
A general block diagram common for all four SHA standards and many other dedicated hash functions is shown in Fig. 1. An 
input message passes first through the preprocessing unit which performs padding and forms message blocks of the fixed 
length, 512 or 1024 bits, depending on the hash function. The preprocessing unit passes message blocks to the message 
scheduler unit. Message scheduler unit generates message dependent words, Wt, for each step of the message digest. The 
message digest unit performs actual hashing. In each step, it processes a new word generated by the message scheduler unit. 
The message digest is the most critical part of the implementation, as it determines both the speed and area of the circuit. 

The most straightforward implementation of the message digest, most often used in practice is shown in Fig. 2a. It is 
called  the  basic  iterative  architecture  (or just  basic architecture) . In  this architecture,  registers  R  and  H  are  first  both  
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Fig. 1. General block diagram of the hardware implementation of a dedicated hash function,  
such as SHA-1 and SHA-512 

 
initialized with a value of the constant initialization vector, IV. Subsequently, the architecture executes one step of the 
message digest per one clock period. In each step t, the message digest accepts a different message dependent word, Wt, and 
a different step dependent constant, Kt. After executing all steps, the result of the last step stored in the register R is added to 
the previous value of the register H. Then, the processing of the message digest resumes for a new set of the message 
dependent words, Wt, corresponding to the new block of the message. 

Two straightforward ways of speeding up hardware implementations of hash functions (and any other logic functions) are 
parallel processing using multiple instantiations of the basic iterative architecture, and pipelining. Out of these two methods, 
pipelining is more attractive, because of the smaller area penalty. Nevertheless, both of these architectures are able to 
improve an average circuit throughput only under the assumption that multiple independent streams of data are processed 
simultaneously. If a single long message needs to be hashed, none of these architectures offers any improvement in terms of 
an execution time. 

A new architecture of the dedicated hash functions investigated in this paper is shown in Fig. 2b. It is called partially 
unrolled architecture. In this architecture, k steps have been “unrolled” and are executed in the same clock cycle. As a result, 
the total number of clock cycles necessary to compute one iteration of the message digest has been reduced by a factor of k. 
At the same time, the critical path through k steps is likely to be significantly shorter than k times the path through a single 
step. This is because in hash functions, the critical path through a step of the message digest is different for each word of the 
step input (see Fig. 5ab). 
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Fig. 2. General diagrams of the message digest units for  
a) basic architecture, b) partially unrolled architecture with k steps unrolled 
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Fig. 3. Architectures of the encryption/decryption units of secret-key ciphers   
a) basic iterative architectures, b) partially unrolled architecture 
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Fig. 4. Typical dependence between throughput and area of the partially unrolled architecture for secret-key block ciphers as a function of 

the number of rounds unrolled, k 

research in this area has been inspired b rolled architecture of secret-key block ciphers, 
sho n in Fig. 3b [19, 20]. This architecture might be used as an alternative to the most popular basic iterative architecture of 
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nrolled architectures of dedicated hash functions have been investigated by several authors in the past, 
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single SHA-1 round involves the calculation of the chaining variable A at the moment t+1, 
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y a widely known partially unOur 

w
secret-key block ciphers shown in Fig. 3a. In the feedback block cipher modes, such as CBC and CFB, this architecture is the 
only architectural-level way of increasing encryption throughput of a single stream of data. Nevertheless, for majority of 
secret-key block ciphers with identical rounds, the throughput increases very slowly as a function of the number of unrolled 
rounds, k, while the circuit area grows almost proportionally to k. This dependence is shown in Fig. 4. We believe that this 
dependence does not apply to all dedicated hash functions because of the non-uniform way of processing data within message 
digest steps. 
 
3. Previous
 

Fully and partially u
b

ative architecture. Unrolling of all 64 rounds resulted in a throughput increase by a factor of 2.1, while at the same time 
the circuit area increased by a factor of 5.4.  In [22] a partially unrolled architecture of SHA-1, with the number of rounds 
unrolled k=5, has been investigated. A high level architecture presented in this paper was very similar to the one proposed in 
this paper. Nevertheless, the reported results were rather discouraging, with only 11% gain in the circuit throughput and a 
43% penalty in the circuit area for the partially unrolled architecture over the basic iterative architecture. 

All other hardware implementations of dedicated hash functions reported in the literature [23, 24] or available as 
commercial IP cores [10-16] have followed the basic iterative architecture with only one step of hash fu

h clock cycle. 
 

. Details of th4
 

.1 Internal structure of the message digests of SH4
 
Internal structures of the message digests for SHA-1 and SHA-512 are s
a
five words (A, B, C, and D) remain almost unchanged by a single round. These words are only shifted by one position down. 
The last word, E, undergoes a complicated transformation  equivalent  to multioperand addition modulo 232, with five 32-bit 
operands dependent on all input words, the round-dependent constant Kt, and the message dependent word Wt. The internal 
structure of the message digest of SHA-512 is similar. The primary differences are as follows: The number of words 
processed by each round is 8, each word is 64 bits long,  and  the  longest  path  is  equivalent  to  addition  of  seven  64-bit  
operands  modulo 264. These operands depend on seven out of eight input words (all except D), the round-dependent constant 
Kt, and a message dependent word Wt. Six out of eight input words remain unchanged by a single round. 
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At+1 = At<<<5 + ft(Bt, Ct, Dt) + Et  + Kt + Wt + HA’t
where Xt is a value of the variabl t
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Fig. 5. Functional block diagrams of the message digest units 

a) SHA-1 in the terative architecture 

 
Additionally, we know that 

Bt, = At-1,   Ct= Bt-1<<<30,   Dt= Ct-1. 
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 the earliest possible stage, using either regular carry propagate adders (CPAs) or carry save adders (CSAs) (see Fig. 7). The 
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can be precomputed in the previous clock cycle, t-1, and will not contribut
∑ HA’ Kt Wt = Kt + Wt + HA t

can be precomputed by the message scheduler unit, because all values are known already in the previous clock cycl
r operands 

At+1 = At<<<5 + Et + ∑ HA’ Kt Wt + ft (At-1, Bt-1<<<30, Ct-1). 
All aforementioned optimizations lead to the schematic of the basic a

 vectors IV0 to IV4 only in the first clock cycle of computat
variables HB’.. HE’ are equal to HB..HE only in the last step of the message digest computations for a given message block, 
i.e., only when t=79; otherwise, they are equal to zero. 
 
4.3 Partially unrolled architecture of SHA-1 
 
The optimization of the unrolled message digest is straight
at
calculations in the critical path follow a sequence of computations described by the equations below: 
At+1 = At<<<5 + ft(Bt, Ct, Dt) + Et  + Kt + Wt = At<<<5 + ft(Bt, Ct, Dt) + Et  + ∑ Kt Wt
At+2 = At+1<<<5 + ft+1(Bt+1, Ct+1, Dt+1) + Et+1  + Kt+1 + Wt+1 = 
         = At+1<<<5 + [ ft+1(At, Bt<<<30, Ct) + Dt  + ∑ Kt+1 Wt+1 ] 
At+3 = At+2<<<5 + [ ft+2(At+1, At<<<30, Bt<<<30) + [Ct  + ∑ Kt+2

At+4 = At+3<<<5 + [ ft+3(At+2, At+1<<<30, At<<<30) + [Bt<<<30 t+3

At+5 = At+4<<<5 + [ ft+4(At+3, At+2<<<30, At+1<<<30) + [At<<<30  + ∑ Kt+4
At each stage two paths are critical. One is a calculation of the new value of A

positions and a single addition. The second is the precalculation of the value of  [ft+i + [Et+i t+i t+i

t stage. This precalculation involves the calculation of ft+i  and a single addition of a precalculated value [Et+i + ∑ 
Kt+iWt+i]. 

In the first stage of computations (computing At+1), precalculated values do not exist, so the computations must be 
performed t+i t+i t+i t+i

s the most time consuming operation. Finally, in every second stage starting from stage three, the only contribution to the 
critical path is a single addition. 

The total combinational delay in the critical path is 5 carry propagate adders, and 6 slices of logic. Compared to the 
implementation of the basic itera

rage this corresponds to less than carry propagate adder, and one slice of logic per message digest step. Furthermore, 
unrolling 5 times reduces the combinational path by four setup times and four delays of the registers, as well as it is likely to 
minimize the total sum of interconnect delays. 
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Fig. 6. Our implementations of the message digest units in the basic iterative architecture a) SHA-1, b) SHA-512  
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Fig. 7. Our implementation of the message digest unit of SHA-1 in the partially unrolled architecture with 5 steps unrolled 
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Fig. 8. Using a 5-to-3 Parallel Counter. a) adding five w-bit numbers using a tree of 3-to-2 carry save adders, b) adding five w-bit numbers 
using 5-to-3 parallel counter followed by a 3-to-2 carry save adder, c) operation of the 5-to-3 parallel counter in the dot notation, d) 

example of the operation of the 5-to-3 parallel counter 
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Fig. 9.  Using internal structure of a single CLB slice of the Xilinx Virtex FPGA device to implement a bit-slice of a 5-to-3 Parallel 

Counter (PC) 
 
4.4 Basic architecture of SHA-512 
 
From Fig. 5b, the critical path of a single SHA-512 round involves the calculation of the chaining variable A at the moment 
t+1, given by the following formula: 

At+1 = S0(At) + Maj(At, Bt, Ct) + S1(Et) + Ch(Et, Ft, Gt) + Kt + Wt + Ht + HAt’ 
where Xt is a value of the variable X in the step t; S0, Maj, S1, Ch are the logic functions defined in the SHA-512 standard, 
and HA’t = HA when t=79, otherwise 0. 
Additionally, we know that 

Ht = Gt-1. 
The functions S0 and Maj execute in parallel in approximately the same amount of time. The same holds true for functions 
S1 and Ch.  
The sum 

KWHAt = Kt + Wt + Gt-1 + HA’t
can be precomputed in the previous clock cycle, t-1. 
As a result, the critical path reduces to the addition of five operands 

At+1 = S0(At) + Maj(At, Bt, Ct) + S1(Et) + Ch(Et, Ft, Gt) + KWHAt. 
The straightforward use of carry save adders in case of five operand addition would lead to three levels of 3-to-2 carry 

save adders, followed by a carry propagate adder as shown in Fig. 8a. Instead, we have decided to use a 5-to-3 parallel 
counter (see Fig. 8b) [25], which reduces the number of binary digits at each position in the sum of five operands from 5 to 3,  
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Fig. 10. Our implementation of the message digest unit of SHA-512 in the partially unrolled architecture with 5 steps unrolled 
 



and has approximately the same delay as a 3-to-2 carry save adder. The operation of the 5-to-3 parallel counter is shown in 
Fig. 8c, using the dot notation.  In this notation,  each  dot  represents  a  binary digit, 0 or 1 [25]. The 5-to-3 parallel counter 
adds five binary digits with the same weight, 2i, and represents the result using three binary digits with three subsequent 
weights, 2i, 2i+1, and 2i+2. An example of the operation of this counter is shown in Fig. 8d. The speed-up comes from the fact 
that the operation of the parallel counter can be realized in Virtex FPGAs using resources of a single CLB slice as shown in 
Fig. 9. 

All aforementioned optimizations lead to the schematic of the basic architecture of SHA-1 shown in Fig. 6b. The registers 
HA-HH are set to the initialization vectors IV0 to IV7 only in the first clock cycle of computations for any new message. The 
multiplexers selecting between HB and ‘0’, HC and ‘0’, etc.  choose non-zero values only in the last step of the message 
digest computations for a given message block, i.e., only when t=79. 
 
4.5 Unrolled architecture of SHA-512 
 
The unrolled architecture of SHA-512 is shown in Fig.10.  Because of the dependence of Et+1 on Et, and At+1 on At and Et 
(see Figs. 5b), three major critical paths (A0 to A0, E0 to A0 and E0 to E0) exist in the circuit. These paths are marked in Fig. 
10 with thicker lines. Values of variables At+i, and Et+i are denoted as “Ai” and “Ei” respectively, e.g., “E2” denotes Et+2. 
Precomputations in the previous clock cycle are used to reduce the number of operands in the first four stages of the unrolled 
architecture.  Recall that in the basic architecture, the KWHAt sum is computed based on the equation Ht = Gt-1.  In the 
unrolled architecture with k=5, t changes by 5 every clock cycle. As a result,  

Ht = Gt-1 = Ft-2 = Et-3 =  Et+2-5 = “E2” in the previous clock cycle. 
On the far left side of Fig. 10, “E2” is used to precompute KWH0 (notation for KWHAt+0) for the next clock cycle.   

KWH0 = KWHAt = Kt + Wt + Ht + HA’t
This method is repeated in stages two to four in order to compute KWHAt+i .(denoted in Fig. 10 as KWHi, i=1..3)  In stage 5, 
Ht+4 = Et+1 = “E1” , so this value is computed in the same clock cycle, and as a result is not included in the earlier 
precomputed KWH4 = KWHAt+4, which reduces to KWHAt+4 = Kt+4 + Wt+4. Please, note that in Fig. 10, the sum Kt+i + Wt+i 
is denoted as KWi. 

Further reductions in critical paths were accomplished in each stage by adding values of logic functions S1 and Ch as 
early as possible, reusing values of S1 + Ch, and by selective routing to balance the number of slices in various critical paths.  
In Table 1, we give the lengths of each of the five most critical paths expressed in the number of CLB slices, as well as 
absolute delays of each path with the division between logic and routing. All of these paths were well-balanced in slice count, 
total propagation time, and logic to routing ratio.  For comparison, the basic architecture required 4 levels of CLB slices, 
which would result in 20 levels of CLB slices if unrolled directly.  

 
Table 1  Delays of the five most critical paths in the unrolled architecture of SHA-512 

 
Output to Input Slices in Path Delay Logic  Route % Logic % Route

 
E0 to A0         16  62.25  29.56 32.69    47.5%    52.5% 
E0 to KWH3         16  61.86 30.22 31.63    48.9%    51.1% 
F0 to A0          16  61.06 30.48 30.57    49.9%    50.1% 
A0 to A0         16  60.83 30.17 30.66    49.6%    50.4% 
E0 to E0          15  60.17 28.46 31.71    47.3%    52.7% 

 
5. Design Methodology 
 
Our target FPGA device was the Xilinx Virtex XCV-1000-6. This device is composed of 12,288 basic logic cells referred to 
as CLB (Configurable Logic Block) slices, includes 32 4-kbit blocks of synchronous dual-ported RAM, and can achieve 
synchronous system clock rates up to 200 MHz [9]. This device was chosen because of the availability of a general purpose 
PCI board, SLAAC-1V, based on three FPGA devices of this type [18]. Additionally, a new family of Virtex-E Xilinx 
devices was targeted as well. 

All hardware architectures were first described in VHDL, and their operation verified through functional simulation using 
Active HDL, from Aldec, Inc. Test vectors  and intermediate results from the reference software implementations based on 
the Crypto++ library [26] were used  for debugging and verification of VHDL codes. The revised VHDL code became an 
input to logic synthesis performed using FPGA Compiler II from Synopsys. Tools from Xilinx ISE 4.2 were used for 
mapping, placing, and routing. These tools generated reports describing area and speed of implementation, a netlist used for 
timing simulation, and a bitstream used to configure an actual FPGA device. All designs were fully verified through 
behavioral, post-synthesis, and timing simulations, and experimentally tested using procedure described in Section 6. 
 



6. Testing Procedure 
 
The experimental testing of our cryptographic modules was performed using the SLAAC-1V hardware accelerator board, 
including three Virtex 1000 FPGAs as the primary processing elements [9]. Only one of the three FPGA devices was used to 
implement hash core. 

Test program written in C used the SLAAC-1V APIs and the SLAAC-1V driver to communicate with the board. Our 
testing procedure is composed of three groups of tests. The first group verifies the circuit functionality at a single clock 
frequency. The goal of the second group is to determine the maximum clock frequency at which the circuit operates correctly. 
Finally, the purpose of the third group is to determine the limit on the maximum encryption and decryption throughput, 
taking into account the limitations of the PCI interface. 

Our first group of tests is based on the NIST recommendations provided in [27]. These recommendations describe the 
comprehensive suite of three functional tests for SHA-1. The second test is aimed at determining the maximum clock 
frequency of the hash function modules. Three megabytes of pseudorandomly generated data are sent to the board for 
hashing, the result is transferred back to the host and compared with the corresponding output obtained using software 
implementation of the given hash function based on the Crypto++ library [26]. This procedure is repeated 30 times using the 
same clock frequency to minimize the effect of input data values on the results of analysis. The next clock frequency is 
chosen based on the rules of the binary search, i.e., in the middle between two closest earlier identified frequencies giving 
different test results. The test is repeated until the difference between these two frequencies is smaller than the required 
accuracy of the measurement (< 0.1 MHz in our tests). The highest investigated clock frequency at which no single 
processing error is detected is considered the maximum clock frequency. In our experiments, this test was automatically 
repeated 10 times with consistent results in all iterations.  

The third group of tests is an extension of the second group. After determining the maximum clock frequency, we 
measure multiple times and average the amount of time necessary to process 3 MB of data, taking into account the delay 
contribution and the bandwidth limit of the 32 bit/33 MHz PCI interface. The experimentally confirmed limit of this interface 
was about 1 Gbit/s. 
 
7. Results 
 
In Fig. 11, the minimum clock periods of SHA-1 and SHA-512 obtained using static timing analysis and the experiment are 
given. For the unrolled architecture, the effective clock period is the minimum time necessary for the data signals to pass the 
critical path. Since in both our unrolled designs, the data signal is traveling through the critical path over multiple clock 
periods, the effective clock period is a multiple of the actual clock period. In case of the unrolled architecture for SHA-1 the 
multiplication factor is 2, in case of the SHA-512 architecture, the multiplication factor is 5. 

Based on the knowledge of the minimum clock period, the maximum data throughput has been computed according to the 
equation: 

 
Throughput = Message_block_size / (Effective_clock_period * Number_of_rounds/k) 

 

                

0

10

20

30

40

50

60

70

80
Static timing analysis

Experiment

SHA-1 SHA-512

actual effective
Basic
architecture Unrolled

architecture

actual effective
Basic
architecture Unrolled

architecture

11.6
10.0

15.5
13.3

31.0
26.6

17.8 17.5
13.8 12.3

61.7

68.9

0

10

20

30

40

50

60

70

80
Static timing analysis

Experiment

SHA-1 SHA-512

actual effective
Basic
architecture Unrolled

architecture

actual effective
Basic
architecture Unrolled

architecture

11.6
10.0

15.5
13.3

31.0
26.6

17.8 17.5
13.8 12.3

61.7

68.9

                              

0

200

400

600

800

1000

1200

1400

SHA-1 SHA-512

Basic
architecture

Unrolled
architecture

Basic
architecture

Unrolled
architecture

Throughput [Mbit/s]

544

640 634

1024

1200

988

717
732 723

929

1037
959

Based on 
static timing 
analysis

Based on max.
experimental
frequency

Experimentally
measured

0

200

400

600

800

1000

1200

1400

SHA-1 SHA-512

Basic
architecture

Unrolled
architecture

Basic
architecture

Unrolled
architecture

Throughput [Mbit/s]

544

640 634

1024

1200

988

717
732 723

929

1037
959

Based on 
static timing 
analysis

Based on max.
experimental
frequency

Experimentally
measured

 
 
Fig. 11. Minimum clock periods of SHA-1 and SHA-512 in the 
basic iterative architecture and partially unrolled architecture 
obtained using static timing analysis and determined 
experimentally. For the unrolled architecture, an effective clock 
period is given describing a multicycle critical path through the 
message digest.                               
 

Fig. 12. Maximum throughputs of SHA-1 and SHA-512 in the 
basic iterative architecture and partially unrolled architecture: a) 
obtained using static timing analysis, b) calculated based on the 
maximum experimentally measured clock frequency, c) 
experimentally measured, including the contributions of the PCI 
interface.
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Fig. 13. Number of CLB slices used by the implementations of SHA-1 and SHA-512 in the basic iterative architecture and partially 

unrolled architecture 
 
The maximum throughput values calculated based on the minimum clock periods obtained using static timing analysis and 
experiment are shown in Fig. 12. In the same figure, these results are compared with the experimentally measured data 
throughputs that take into account the delay contributions and the bandwidth limit of the PCI interface. This comparison 
demonstrates that the PCI interface is capable of operating with a constant uninterrupted data flow up to about 960-990 
Mbit/s, and has a negligible influence on the data throughput below this communication rate.  

The number of CLB Slices used by both implementations of SHA-1 and SHA-512 are shown in Fig. 13. The difference in 
the number of CLB slices is primarily caused by the difference in the size of input and output registers in the message digest 
units of both functions (512 bits vs. 160 bits), and the width of the multioperand adders in the critical path of these units (64 
bits vs. 32 bits). In SHA-512, four 4 kbit block RAMs are used to store 80 64-bit constants Kt. 

Out of the two analyzed hash standards, SHA-1 offers much better potential for loop unrolling. As a result of loop 
unrolling, the throughput of SHA-1 increased by a factor of almost two (1.9 times), while at the same time its area grew only 
by a factor of three. SHA-512 is much less suitable for loop unrolling, as its observed speed-up was only 30%, and the area 
increase 48%. 
 
8. Comparison with other hash cores 
 
There exist multiple commercial IP cores implementing SHA-1 [10-16]. In Table 2, we present the comparison of our designs 
for SHA-1 with the most representative IP cores with equivalent functionality. For the Xilinx Virtex family of FPGA devices, 
our core for SHA-1 in the basic iterative architecture outperforms the second best core (from Helion Technology Ltd) by 
13%, using 30% less CLB slices. Our core for the partially unrolled architecture of SHA-1 with 5 rounds unrolled, 
outperforms all reported Virtex cores by a factor of at least two in terms of throughput, and uses about two times more area. 
The similar advantages exist for the implementations using Virtex-E devices, where our core for the unrolled architecture 
approaches the throughput of 1.2 Gbit/s.  

At this point, there are relatively few cores available for the new standard, SHA-512 (see Table 3) [11, 12]. Our 
implementation of the basic iterative architecture slightly outperforms the equivalent core from ALMA Technologies in 
terms of throughput, using a smaller amount of FPGA resources. Our partially unrolled architecture is the fastest core for the 
Virtex family of FPGA devices outperforming the second best core by 30% at the cost of only 31% increase in the circuit 
area. For the Virtex-E family of FPGA devices our core is the only currently available SHA-512 core that exceeds the 
throughput of 1 Gbit/s. 

 
9. Comparison with software implementations 
 

Efficient software implementations of hash functions have been extensively studied in the literature [28-31]. In [28], basic 
recommendations on developing an efficient and portable implementation of SHA-1 in C have been formulated. In [29], a 
close to optimum implementations of dedicated hash functions using Pentium’s superscalar architecture have been presented. 
In [30], software parallelism of all major dedicated hash functions have been studied. Finally, in [31], optimizations targeting 
Pentium III have been investigated. These optimizations made use of MMX registers and instructions available in Pentium 
III.  

In this paper, we used for comparison, software implementations of SHA-1 and SHA-512, available as a part of the 
Crypto++ library [26]. Although Crypto++ is not the fastest of the reported software implementations, the reason for using 
this library was its portability, availability in public domain, and wide practical deployment. 
   A PC with 2.2 GHz clock, 1 GByte RAM, and cache size 512KB, running Windows XP was used in our measurements. 
The Crypto++ implementation of hash functions written in C++ was compiled using MS Visual Studio with Service Pack 5. 



The obtained throughput was 40.5 Mbit/s for SHA-1 and 30.4 Mbit/s for SHA-512. These throughputs were respectively 25 
times and 31 times smaller than the throughputs of our partially unrolled hardware implementations of SHA-1 and SHA-512 
for Xilinx Virtex 1000-6 FPGAs. 
 

 
Table 2. Comparison of our designs for SHA-1 with the representative commercial IP cores with equivalent functionality 

 
Source Clock frequency 

[MHz] 
Throughput 

[Mbit/s] 
Area 

[CLB Slices] 
Xilinx Virtex 

Our, basic 85 544 480 
Our, unrolled (k=5) 641 1024 1480 
ALMA Technologies 70 442 686 
Helion Technology Limited 76 480 689 
Ocean Logic Pty Ltd 56 352 612 

Xilinx Virtex-E 
Our, basic 103 659 484 
Our, unrolled (k=5) 72.5 1160 1484 
ALMA Technologies 87 549 686 
Bisquare Systems Private 
Limited 

66 422 579 

Helion Technology Limited 95 600 689 
Intron, Ltd. 71 449 716 
Ocean Logic Pty Ltd 71.5 452 612 

Xilinx Virtex-II 
ALMA Technologies 102 644 686 
Amphion Semiconductor 99 626 854 
Helion Technology Limited 103.5 654 569 
Ocean Logic Pty Ltd 79 498 612 

 

1 multi-cycle clock used in the critical path, critical path ≤ 2 TCLK = 2/fCLK, 5 steps executed in 2 clock cycles 
 

 
Table 3. Comparison of our designs for SHA-512 with the representative commercial IP cores with equivalent functionality 

 
Source Clock frequency 

[MHz] 
Throughput 

[Mbit/s] 
Area 

Xilinx Virtex 
Our, basic 56 717 2384 Slices 

4 Block RAMs 
Our, unrolled (k=5) 671 929 3521 Slices 

4 Block RAMs 
ALMA Technologies 56 707 2690 Slices 

4 Block RAMs 
Xilinx Virtex-E 

Our, unrolled (k=5) 721 1034 3517 Slices 
4 Block RAMs 

ALMA Technologies 68 859 2690 Slices 
4 Block RAMs 

Xilinx Virtex-II 
ALMA Technologies 72 910 2507 Slices 

4 Block RAMs 
Amphion Semiconductor 50 626 2403 Slices 

4 Block RAMs 
 

1 multi-cycle clock used in the critical path, critical path ≤ 5 TCLK = 5/fCLK, 5 steps executed in 5 clock cycles 
 



10. Summary 
 
A new partially unrolled architecture has been proposed for a family of dedicated hash functions, including four American 
standard algorithms SHA-1, SHA-256, SHA-384, and SHA-512. This architecture has been inspired by a similar architecture 
used in implementations of secret-key block ciphers. The unrolled architecture has been designed, optimized, and 
experimentally verified for the most widely used hash algorithm, SHA-1, and one of the new hash standard algorithms SHA-
512. For the purpose of comparison, the basic iterative architecture has been implemented for both functions as well.  

The new architecture appeared to be particularly suitable for the implementation of SHA-1. For the number of rounds 
unrolled equal to k=5, it allowed to almost double the throughput of SHA-1 compared to the basic iterative architecture, at 
the cost of increasing circuit area by a factor of three. The similar design for SHA-512 appeared to have much less benefit; 
the increase in the circuit throughput was only 30%, and the area of the circuit increased by 48%.  

This different behavior of two hash algorithms could be easily explained by analyzing the structure of both algorithms. In 
the unrolled architecture of SHA-1, many message digest steps could be substantially sped up by preprocessing partial results 
of a given step in the previous steps. The same optimization was not possible in SHA-512 due to sequential dependencies 
present in the algorithm. 

Our partially unrolled implementation of SHA-1 reached the target throughput of 1 Gbit/s in Virtex XCV 1000, and 
outperformed all known to the authors commercial IP cores with equivalent functionality by at least a factor of two. Our 
implementation of SHA-512 also compared favorably with commercial IP cores, and reached a target throughput of 1 Gbit/s 
using Virtex-E family of Xilinx FPGAs. To our best knowledge, our implementations of SHA-1 and SHA-512 are the only 
FPGA implementations of these hash functions available to date that can sustain a throughput over 1 Gbit/s for a single 
stream of data. 
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