
Effective Utilization and Reconfiguration of Distributed Hardware Resources
Using Job Management Systems

Kris Gaj1, Tarek El-Ghazawi2, Nikitas Alexandridis2,
Jacek R. Radzikowski1, Mohamed Taher2, and Frederic Vroman2

1 George Mason University,

2 The George Washington University
kgaj@gmu.edu, tarek@seas.gwu.edu, alexan@seas.gwu.edu,
jradziko@gmu.edu, mtaher@gwu.edu, f.vroman@ifrance.com

Abstract

Reconfigurable hardware resources are very expensive,
and yet can be underutilized. This paper describes a
middleware capable of discovering underutilized
computing nodes with FPGA-based accelerator boards in
a networked environment. Using an extended Job
management system (JMS), this middleware permits
sharing reconfigurable resources at least among the
members of the same organization. Traditional resources,
such as CPU time of loosely coupled workstations can be
shared using a variety of existing Job Management
Systems (JMSs). We analyzed four of these systems, LSF,
Sun Grid Engine / CODINE, PBS Pro, and Condor from
the point of view of their functional characteristics and
ease of extension to support reconfigurable hardware.
LSF was shown to efficiently address the majority of
identified requirements. The general architecture of the
extended system was developed, and the exact techniques
of extending LSF, CODINE, and PBS Pro to manage
FPGA-based accelerator boards were identified. The
system architecture was verified experimentally for the
specific case of LSF and three types of FPGA accelerator
boards. The utilization of FPGA boards was demonstrated
to reach up to 86% in our experimental setting consisting
of Linux and Windows NT workstations1.

1. Introduction

This paper reports on a research effort to create a
distributed computing system interface for the effective
utilization of networked reconfigurable computing
resources. The objective is to construct a system that can
leverage under-utilized resources at any given time to
serve users who currently have the needs, in a grid

1 This work has been partially supported by the Department of

Defence under the LUCITE contract no. MDA904-98-CA0810000.

computing like style. The targeted type of resources are
workstations and clusters that are equipped with Field
Programmable Arrays (FPGA) boards serving as
reconfigurable coprocessors, as one can find in academic
and government research labs. In order to take advantage
of previous related works, our strategy is to extend an
efficient Commercial Off the Shelf (COTS) Job
Management System (JMS) [1-5]. Such extensions should
provide the ability to recognize reconfigurable resources,
monitor and understand their current loading, and
effectively schedule them for the incoming remote user
requests, with little impact on local users. It also includes
providing local users with proper tools to control the
degree to which they wish to share their own resources
and how others may use such resources.

Our effort started with a study that aimed at the
comparative evaluation of currently available job
management systems and a conceptual design of how to
architect such a system for managing networked
reconfigurable resources [5-7]. After selecting one system
most suitable for the extension, the detailed architecture of
the extended system was developed and experimentally
tested.

This paper is organized as follows. In Section 2, we
present a general architecture of a JMS and compare
functional characteristics of four popular JMSs selected
for our study. In Section 3, we determine which JMS
features are most important from the point of view of
extension to reconfigurable hardware, and present general
architecture of the extended system. In Section 4, we
describe in detail an extended system based on LSF and
three types of the FPGA accelerator boards. We also
present an experimental setup used to verify the correct
behavior and to measure efficiency of the proposed
system. We follow in Section 5 with the description of the
system behavior and the analysis of the obtained results.

jobs &
their requirements

User
Server

Job Scheduler
Resource
Monitor

available
resources

resource
requirements

scheduling
policies

Job
Dispatcherresource allocation

and job execution

Resource Manager

User job

jobs &
their requirements

User
Server

Job Scheduler
Resource
Monitor

available
resources

resource
requirements

scheduling
policies

Job
Dispatcherresource allocation

and job execution

Resource Manager

User job

Figure 1. Major functional units of a Job
Management System

2. Job Management Systems

2.1. General architecture of a JMS

The objective of a JMS is to let users execute jobs in a
non-dedicated cluster of workstations with a minimum
impact on owners of these workstations by using
computational resources that can be spared by the owners.
The system should be able to perform at least the
following tasks:

a. monitor all available resources,
b. accept jobs submitted by users together with resource

requirements for each job,
c. perform centralized job scheduling that matches all

available resources with all submitted jobs according to
the predefined policies,

d. allocate resources and initiate job execution,
e. monitor all jobs and collect accounting information.
To perform these basic tasks, a JMS must include at

least the following major functional units shown in Fig. 1:
1. User server – which lets user submit jobs and their

requirements to a JMS (task b), and additionally may
allow the user to inquire about the status and change
the status of a job (e.g., to suspend or terminate it).

2. Job scheduler – which performs job scheduling and
queuing based on the resource requirements, resource
availability, and scheduling policies (task c).

3. Resource manager, including
• Resource monitor – which collects information

about all available resources (tasks a and e), and
• Job dispatcher – which allocates resources and

initiates execution of jobs submitted to JMS (task
d).

2.2. Choice of a Job Management System

More than twenty JMS packages, both commercial and
public domain, are currently in use [1, 3, 5]. For the
interest of time, we selected four representative and
commonly used JMSs

• LSF – Load Sharing Facility
• PBS – Portable Batch System
• Sun Grid Engine / CODINE, and
• Condor.

The common feature of these JMSs is that all of them are
based on a central Job Scheduler running on a single
computational node.

LSF (Load Sharing Facility) is a commercial JMS from
Platform Computing Corp. It evolved from Utopia system
developed at the University of Toronto, and is currently
probably the most widely used JMS.

PBS (Portable Batch System) has both a public domain
and a commercial version. The commercial version called
PBS Pro is supported by Veridian Systems. This version
was used in our experiments. PBS was originally
developed to manage aerospace computing resources at
NASA Ames Research Center.

Sun Grid Engine/CODINE is an open source package
supported by Sun Inc. It evolved from DQS (Distributed
Queuing System) developed by Florida State University.
Its commercial version called CODINE was offered by
GENIAS Gmbh in Germany and became widely deployed
in Europe.

Condor is a public domain software package that was
started at University of Wisconsin. It was one of the first
systems that utilized idle workstation cycles and supported
checkpointing and process migration.

2.3. Functional comparison of selected Job
Management Systems

The main features of selected JMSs are compared and
contrasted in Table 1. These features are classified into the
following categories:

I – Availability and Operating System Support,
II – Scheduling and Resource Management,
III – Efficiency and Utilization,
IV – Fault Tolerance and Security, and
V – Documentation and Technical Support.
In summary, LSF outperforms all other JMSs in terms

of the operating system support, scalability,
documentation, and technical support. It is also one of
only two systems that fully support parallel jobs,
checkpointing, and offer strong resistance against the
master host failure.

CODINE performs extremely well in multiple
categories such as parallel job support, job migration, load
balancing, and resistance against the master host failure.

Table 1. Conceptual functional comparison of selected Job Management Systems

 LSF CODINE PBS Condor
Availability and Operating System Support

Distribution commercial public domain commercial and public
domain

public domain

Source code no yes public domain version
only

yes

Solaris, Linux yes yes yes yes
Tru64 yes yes yes no
Windows NT yes no no partial

Scheduling and Resource Management
Interactive jobs yes yes yes no
Parallel jobs yes yes partial limited to PVM

Efficiency and Utilization
Stage-in and
stage-out

yes no yes yes

Process migration yes yes no yes
Dynamic load
balancing

yes yes no no

Fault Tolerance and Security
Checkpointing yes using external libraries only kernel-level yes

Daemon fault
recovery

master and execution
hosts

master and execution
hosts

only for execution
hosts

only for execution
hosts

Documentation and Technical Support
Documentation excellent good good good
Technical Support excellent not tested good average

The major drawbacks of CODINE include the lack of

support for Windows NT, no support for stage-in and
stage-out, and only externally supported checkpointing.
The primary weaknesses of PBS include no support for
Windows NT, very limited checkpointing, no job
migration or load balancing, and limited parallel job
support. Condor distinguished itself from other systems in
terms of the strong checkpointing. It is also one of the
oldest and the best understood job management systems.
The main weaknesses of Condor include no support for
interactive jobs, limited support for parallel jobs, and
average technical support.

3. Extending a JMS to support reconfigurable
hardware

3.1. JMS features supporting extension

The specific features of Job Management Systems that
support extension to reconfigurable hardware include

o capability to define new dynamic resources,
o strong support for stage-in and stage-out in order to

allow an easy transfer of the FPGA configuration

bitstreams, data inputs, and results between the
submission host and the execution host with
reconfigurable hardware;

o support for Windows NT and Linux, which are two
primary operating systems running on PCs that can be
extended with commercially available FPGA-based
accelerator boards with the PCI interface.

An ease of defining new dynamic resources appears to
be a minor factor in comparison. Three out of four
systems, LSF, CODINE, and PBS Pro, seem to be easily
extendable with new dynamic resources without the need
for any changes in their source code. Condor can also be
relatively easily extended, taken into account the full
access to its source code. Stage-in and stage-out are
supported by all systems except CODINE. LSF is the only
JMS that fully supports Windows NT. In Condor, jobs
submitted from Windows NT can only be executed on
machines running Windows NT.

Taking into account the combined results of our study
we consider LSF the best candidate for use with the
FPGA-based accelerator boards.

jobs &
their requirements

User
Server

Job Scheduler
Resource
Monitor

available
resources

resource
requirements

scheduling
policies

Job
Dispatcherresource allocation

and job execution

Resource Manager

External
Resource
Monitor

FPGA
board

User job

FPGA Board APIs

Status of
the FPGA
board

jobs &
their requirements

User
Server

Job Scheduler
Resource
Monitor

available
resources

resource
requirements

scheduling
policies

Job
Dispatcherresource allocation

and job execution

Resource Manager

External
Resource
Monitor

FPGA
board

User job

FPGA Board APIs

Status of
the FPGA
board

Figure 2. Extension of a JMS to recognize, monitor, and schedule reconfigurable resources

3.2. General architecture of the extended system

General architecture of the extended system is shown in
Fig. 2. The primary component of this extension is an
external resource monitor that controls the status of an
accelerator board, and periodically communicates this
status to a resource monitor. The resource monitor
transfers this information periodically or by request to a
Job scheduler, which uses this information to match each
job that requires acceleration with an appropriate host. Job
requirements regarding the new reconfigurable resource
are specified during a job submission to a user server, and
are enforced by a job scheduler the same way as
requirements regarding default built-in resources.

3.3. Extending LSF, PBS, and CODINE

Capability of defining new dynamic resources can be
used to extend LSF, PBS, and CODINE to manage FPGA-
based accelerator boards. The new resource that needs to
be added to a given JMS represents the availability of the
accelerator board for JMS users.

An external resource monitor needs to be written
according to the specification for

o ELIM, External Load Information Manager in
LSF

o Load sensor in CODINE, and
o Shell escape to the MOM configuration file in

PBS.
This daemon is started by a local resource manager (LIM
in LSF, cod_execd in CODINE, and MOM in PBS), and
communicates with the resource monitor using standard
output. Extending Condor to provide the similar
functionality would require changes in the source code of
this system.

4. LSF Experimental Case Study

4.1. Extending LSF to support reconfigurable
hardware

The general architecture of LSF is shown in Fig. 3.
Load Information Monitors (LIMs), running on all
execution hosts in the system, monitor and collect
information about the current status of all static and
dynamic resources available on the execution hosts. This
information is periodically forwarded from every LIM to a
single Master Load Information Monitor (MLIM) residing
on the master host. The combined report about the current
status of all system resources, collected by MLIM, is used
by the Master Batch Daemon (MBD) to match available
resources with resource requirements specified during the
job submission. When a job waiting in the queue is

Submission host

Batch API

Master host

MLIM

MBD

Execution host

SBD

Child SBD

LIM

RES

User job

LIM – Load Information Manager
MLIM – Master LIM
MBD – Master Batch Daemon
SBD – Slave Batch Daemon
RES – Remote Execution Server

queue

Load
information

other
hosts

other
hosts

bsub app

Submission host

Batch API

Master host

MLIM

MBD

Execution host

SBD

Child SBD

LIM

RES

User job

LIM – Load Information Manager
MLIM – Master LIM
MBD – Master Batch Daemon
SBD – Slave Batch Daemon
RES – Remote Execution Server

queue

Load
information

other
hosts

other
hosts

bsub app

Figure 3. General architecture of LSF

Submission host

Batch API

Master host

MLIM

MBD

Execution host

SBD

Child SBD

LIM

RES

User job
ELIM – External Load

Information Manager
FPGA API – FPGA Application

Programming
Interface

queue

Load
information

other
hosts

other
hosts

bsub app

ELIM

FPGA API

FPGA
board

Status
of the
board

Submission host

Batch API

Master host

MLIM

MBD

Execution host

SBD

Child SBD

LIM

RES

User job
ELIM – External Load

Information Manager
FPGA API – FPGA Application

Programming
Interface

queue

Load
information

other
hosts

other
hosts

bsub app

ELIM

FPGA API

FPGA
board

Status
of the
board

Figure 4. General architecture of LSF after
extension to support reconfigurable hardware

matched with an execution host containing the required
resources, this job is being dispatched by MBD to the
appropriate execution host. The job is prepared for
execution by the Slave Batch Daemon (SBD), and started
by the Remote Execution Server (RES). SBD is
responsible for enforcing local LSF policies and
maintaining the status of the job.

To support reconfigurable resources, such as FPGA-
based accelerator boards, the LSF system needs to be
extended with two extra components: External Load
Information Monitor (ELIM) and an FPGA Board
Application Programming Interface (API), as shown in

Fig. 4. ELIM is a program or script that must be run on
each execution host that contains a non-standard dynamic
resource, such as an FPGA board. The task of ELIM is to
monitor the availability of the FPGA board and to report
this availability in the predefined format to LIM. To
perform this task, ELIM uses functions of the FPGA
Board API. These functions communicate with the FPGA
board driver in order to determine whether the board is
currently occupied by any job. If this is the case, ELIM
reports through LIM to Master LIM (MLIM) that the
FPGA board is temporarily unavailable. Otherwise, the
information about the availability of the FPGA board is
passed to MLIM.

Each user job that makes use of reconfigurable
resources needs at the beginning of its execution check the
availability of the board. If the board is unavailable, the
job exits with an error code, and is resubmitted by LSF at
a later time. If the board is available, the job reserves the
board for exclusive use, and then configures the board
using the configuration bitstream residing on the execution
host or downloaded from the submission host using the
stage-in capability of LSF. As soon as the board is
configured, its clock is started and the FPGA circuit starts
communicating with the job running on the execution host.
Inputs are sent to the board, and outputs generated by the
FPGA circuit are sent back to the job. After the FPGA
circuit completes execution, it communicates this fact
to

Linux RH7.0 – PIII
450 MHz, 512 MB RAM

Execution Host 1

Submission & Master Host

Windows XP – PIV 1.3 GHz, 256 MB RAM

SLAAC-1V

FIREBIRD V1000

Windows 2000 – PII 400 MHz, 128 MB RAM

SLAAC-1V

Windows 2000 – PIV 1.3 GHz, 256 MB RAM

Execution Host 2

Execution Host 3

HPCL 2

HPCL 5

HPCL 6 FIREBIRD V2000

Linux RH7.0 – PIII
450 MHz, 512 MB RAM

Execution Host 1

Submission & Master Host

Windows XP – PIV 1.3 GHz, 256 MB RAM

SLAAC-1V

FIREBIRD V1000

Windows 2000 – PII 400 MHz, 128 MB RAM

SLAAC-1V

Windows 2000 – PIV 1.3 GHz, 256 MB RAM

Execution Host 2

Execution Host 3

HPCL 2

HPCL 5

HPCL 6 FIREBIRD V2000

Figure 5. Experimental testbed

the job, which makes final postcomputations, frees the
board for use by other jobs, and finishes execution. All
described above operations are facilitated by the FPGA
board APIs.

4.2 Experimental setup

Our testbed consists of three machines configured as
execution hosts, and one machine configured as a
submission and master host as shown in Fig. 5. All
execution hosts contain one or two FPGA boards,
including the SLAAC1-V FPGA accelerator board from
the USC-Information Sciences Institute [8, 9], and Firebird
V1000, and Firebird V2000 from Annapolis
Microsystems, Inc. [10].

 The benchmark used in our experiments is a hardware
implementation of an exhaustive key search attack against
Data Encryption Standard (DES). Exhaustive key search
is an attack aimed at breaking a cipher by checking all
possible keys one by one. To be able to perform this
attack, an opponent must know a short fragment of the
message and a corresponding fragment of the ciphertext
(encrypted message). By decrypting a fragment of the
ciphertext with a given key, and comparing the result with
a known fragment of the message, a single key can be
verified. By repeating the same operation with all possible
key values, one is guaranteed to find the correct key. The
number of all possible keys in DES is 256 ≈ 7.2 ⋅ 1016. This
large number of repetitions calls for parallelization of
computations. Additionally, since DES was designed to be
efficient in hardware rather than in software, an FPGA
based hardware accelerator can speed up the required
computations by orders of magnitude compared to the
purely software parallel implementation.

The inputs to each benchmark are the message block,
the ciphertext block, the beginning of the key range, and
the key range size. The output is the number and the list of
matching keys. The time of the benchmark execution can
be set to an arbitrary value, since it is directly proportional
to the key range size, and almost independent of other
parameters. In our experiments, key range was set to
values that guaranteed the execution time of single jobs
equal to 120 s.

Our implementation consists of two parts. Hardware
part was written in VHDL, and was transformed into the
FPGA configuration bitstream using Xilinx tools.
Software part is responsible for reserving an FPGA board
for an exclusive use, downloading the configuration
bitstream to the board, transferring input parameters to the
hardware part, collecting results generated by the board,
and releasing the board. During the majority of the time,
the program is idle and its only function is to wait for a
board to complete execution. This way, the only resource
of the execution hosts which is fully utilized during the

benchmark execution is the time of the FPGA-based
accelerator.

Each experiment consisted of running 100 jobs
submitted to LSF one at a time in the pseudorandom time
intervals. All jobs were submitted from the same Linux
machine, and belonged to a single user of the system. The
rate of the job submissions was chosen to have a Poisson
distribution. The submission rate was relatively high with
an average interval between consecutive job submissions
equal to 5 seconds.

All jobs were the instances of the exhaustive key
search benchmark, and differed only with values of input
parameters. All these jobs required acceleration by the
FPGA boards. The same Linux machine was used as the
submission host and the master host. The primary job
requirement specified during the job submission was an
availability of the specific type of the FPGA board. The
second parameter specified during the job submission was
the estimated execution time of the job.

In all experiments, LSF was configured as follows: A
maximum number of LSF jobs that can be dispatched to a
single CPU was set to one. The scheduling policy was
"first come first served". The configuration bitstreams used
to reconfigure FPGA boards were transferred to the
execution hosts using the stage-in/stage-out capabilities of
LSF. The dispatching interval, which determines how
often the LSF scheduler attempts to dispatch pending jobs,
MBD_SLEEP_TIME, was set to 2 seconds. The FPGA
board availability was declared as a new dynamic
resource. A value of this resource was separate for each
execution host and was updated by ELIM every second.

5. Experimental Results

The behavior and performance of the extended Job
Management System is shown in Fig. 6. For each FPGA
board, two timing traces are presented. The bottom trace
shows timing intervals when jobs dispatched to the given
execution host are executed. The numbers above these
intervals are the numbers of jobs in the order of their
submission. The top trace shows time intervals when
ELIM reports to LIM that the FPGA board is free for use
by another job. The very bottom trace in Fig. 6 is common
for the entire system, and shows points in time when jobs
are being submitted to LSF from the submission host.

In all experiments, all jobs are being submitted to JMS
shortly after the beginning of the experiment, and as a
result spend most of the time waiting in the queue for their
turn to execute. At the beginning of every experiment
ELIM daemons running on each execution host report to
LSF that all FPGA-boards are available for scheduling. As
soon as a job is dispatched to the given machine for

.
Figure 6. Behavior, performance, and utilization of the extended Job Management System

execution, ELIM running on the same machine becomes
aware that the FPGA board is not any longer available.
Similarly, as soon as any job completes its execution,
ELIM reports to LIM that the board is available for use by
another job. We have performed five iterations of the
described above experiment, and computed average board
utilization during the experiment. This FPGA board
utilization varied between 81 and 86% as shown in Table
2.

Table 2. Utilization of the FPGA boards during
five iterations of the exhaustive key search

experiment

Experiment iteration Utilization of FPGA boards
1 86%
2 82%
3 82%
4 81%
5 83%

6. Conclusions

Four popular Job Management Systems − LSF, PBS
Pro, Sun Grid Engine / CODINE, and Condor − were
compared and evaluated with respect to their suitability for
being extended to support reconfigurable computing

resources and tasks. The general architecture of the
extended system was developed. LSF, PBS Pro, Sun Grid
Engine / CODINE were shown to be easily extendable
without any need for changes in the source code of these
systems. An extension of LSF, supporting several popular
FPGA accelerator boards was developed and
experimentally tested in a testbed consisting of Windows
and Linux workstations. Our experiments have proven the
correctness of our concept and the feasibility of its
implementation using COTS components. The efficiency
of the extended system measured in terms of the average
utilization of reconfigurable resources appeared to reach
86% for our benchmark based on the exhaustive key
search for the DES cipher.

Acknowledgments

The authors would like to acknowledge and thank
Pawel Chodowiec and Preeyapong Samipagdi for their
contribution to the study described in this paper.

References

[1] M. A. Baker, G. C. Fox, and H. W. Yau, “Cluster Computing

Review,” Northeast Parallel Architectures Center, Syracuse
University, Nov. 1995.

[2] J. P. Jones, “Evaluation of Job Queuing/Scheduling
Software: Phase 1 Report,” NAS Technical Report, NAS-
96-009, September 1996, available at

http://www.nas.nasa.gov/Research/Reports/Techreports/199
6/nas-96-009-abstract.html

[3] K. Hwang, Z. Xu, Scalable Parallel Computing:
Technology, Architecture, Programming, McGraw-Hill
1998.

[4] O. Hassaine, "Issues in Selecting a Job Management
Systems (JMS)," Proc. SUPerG, Tokyo, April 2001.

[5] T. El-Ghazawi, et al., Conceptual Comparative Study of Job
Management Systems, Technical Report, February 2001,
available at http://ece.gmu.edu/lucite/reports.html.

[6] T. El-Ghazawi, et al., Experimental Comparative Study of
Job Management Systems, Technical Report, July 2001,
available at http://ece.gmu.edu/lucite/reports.html.

[7] A. V. Staicu, J. R. Radzikowski, K Gaj, N. Alexandridis,
and T. El-Ghazawi, "Effective Use of Networked
Reconfigurable Resources," Proc. 2001 MAPLD Int. Conf.,
Laurel, Maryland, Sep. 2001

[8] M. Jones, P. Athanas et al. "Implementing an API for
Distributed Adaptive Computing Systems," in IEEE
Workshop on Field-Programmable Custom Computing
Machines, pages 222-230, Napa Valley, CA, April 1999.

[9] B. Schott, S. Crago, et al. "Reconfigurable Architectures for
System-Level Applications of Adaptive Computing," In
VLSI Design: Special Issue on Reconfigurable Computing,
pages 265-280, Volume 10, Number 3, 2000.

[10] Annapolis Microsystems, Inc., http://www.annapmicro.com/

	Abstract
	Table 1. Conceptual functional comparison of selected Job Ma
	Availability and Operating System Support
	Solaris, Linux
	Scheduling and Resource Management
	Efficiency and Utilization
	Fault Tolerance and Security
	Checkpointing

	Documentation and Technical Support
	Figure 2. Extension of a JMS to recognize, monitor, and sche

	Figure 5. Experimental testbed

