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Abstract 

 
Five leading Phase 2 Profile 2 eSTREAM candidates have been implemented in hardware, targeting two main 
semiconductor technologies, Field Programmable Gate Arrays (FPGAs) and Application Specific Integrated 
Circuits (ASICs). An old GSM encryption algorithm A5/1 has been included in the study as well. All six ciphers 
have been analyzed from the point of view of the hardware efficiency, and two hardware architectures have been 
developed for each of them. The first of these architectures has been optimized for the minimum area, and the 
second for the maximum throughput to area ratio. Our study has revealed very large differences among all 
eSTREAM candidates in terms of the hardware efficiency, and have demonstrated a relative superiority of 
Trivium and Grain over other analyzed ciphers. 
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1. Introduction 
 
Hardware implementation efficiency is one of the primary requirements for every cipher. This 
efficiency is particularly important in case of eSTREAM Profile 2 candidates which were designed 
with the special emphasis on their suitability for hardware implementations with limited number of 
gates, memory, and power supply [1].  

In this paper, we compare hardware efficiency of four Profile 2 eSTREAM candidates qualified to 
Phase 2 as focus candidates (Grain, Mickey-128, Phelix, and Trivium), one additional Phase 2 cipher, 
Salsa20, and an old (and insecure) GSM standard A5/1 [2-4]. The basic features of these six stream 
ciphers are summarized in Table 1. 

In Fall 2006, the first author was an instructor for a graduate course, ECE 545, Introduction to 
VHDL, focusing on designing digital systems with hardware description languages such as VHDL [5]. 
The third author was a teaching assistant for this course. As a primary project in this course, the 
students were given a task of implementing one of five selected eSTREAM candidates. Additionally, 
one student volunteered to implement an old standard, A5/1. Twenty students accepted the challenge 
and were asked to rank five eSTREAM ciphers in the order of their preference based exclusively on 
their first reading of the cipher specification. It is quite safe to assume that the students’ preference 
reflected their perceived difficulty of implementing a particular cipher in VHDL, with the highest 
ranking (five) given to the cipher perceived as the easiest to implement. The results of this ranking are 
presented in Table 2. 

Three ciphers, Trivium, Salsa20, and Mickey-128, were perceived by students as the easiest to 
implement. Grain was (surprisingly to the authors) ranked only as a fourth choice. Finally, Phelix was 
a far outsider, and was not a first choice of any of the twenty students. 

The student preferences were taken into account in the final assignments, but each cipher was 
assigned to four students working on their implementations independently. At the end of the semester, 
the best out of four independent implementations of each cipher was selected. These implementations 
were revised by the authors of this paper in order to assure a full uniformity of the coding style and the 
detailed design choices. These revised codes were used in order to generate unified results presented in 
Section 4 of this paper. 

This methodology led to six optimized implementations, of comparable quality, as the students 
taking the course had a similar background, were following the same design style (based on the use of  
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Table 1 Basic features of stream ciphers compared in this paper 
 

Name Authors Key size 
[bits] 

IV size 
[bits] 

Internal state 
size [bits] 

Basic 
components 

Grain M. Hall,  
T. Johansson, 

W. Meier 

80 64 160 LFSR, NFSR,  
output function 

Mickey-128 S. Babbage 
M. Dodd 

128 0..128 320 LFSR, NFSR 

Phelix D. Whiting,  
B. Schneier,  

S. Lucks,  
F. Muller 

�
 256 128 288 Block function based on 

adders, rotators, and 
xors 

Salsa20 D.J. Bernstein 256, 128 64 512 Hash function based on 
adders, rotators, and 

xors; used in the counter 
mode 

Trivium C. De 
Canniere,  
B. Preneel 

80 80 288 LFSR, NFSR 

A5/1 unknown 64 22 64 LFSR, clock control 
units 

 
 
 

Table 2 Perceived difficulty of a hardware implementation of selected eSTREAM ciphers based on the 
survey of 20 GMU ECE students 

 
Cipher Perceived ease of implementation 

(5 – very easy; 1 – very difficult) 
Trivium 3.36 
Salsa20 3.32 
Mickey-128 3.32 
Grain 3.00 
Phelix 2.00 

 
 
 

 
 

Fig. 1 Interface of a stream cipher used in our implementations 
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block diagrams and algorithmic state machine (ASM) charts, translated to VHDL), developed within 
the same amount of time (around 6 weeks). All designers used the same interface, shown in Fig. 1. 

All six ciphers were described in portable VHDL, and then implemented using Field Programmable 
Gate Arrays (FPGAs) from the Spartan 3 Xilinx family, and synthesized using Synopsys tools 
targeting a semicustom ASIC technology based on the TSMC user libraries. 

In Section 2, we describe the exact methodology and tools used by all designers. In Section 3, we 
present a few alternative hardware architectures and optimization options available for each cipher. In 
Section 4, we present and discuss major results. In Section 5, we compare these results to the results 
reported earlier in the literature. We summarize our findings and present conclusions in Section 6. 
 
2. Methodology 
 
All ciphers have been first designed using medium level block diagrams and algorithmic state machine 
(ASM) charts. These diagrams and charts have been then converted to synthesizable register-transfer 
level (RTL) VHDL code, without using any library components specific for a given technology or 
FPGA family. The code was debugged using either Aldec Active HDL or ModelSim Xilinx Edition 
VHDL simulators, depending on the student’s preference. After the code was functionally correct, it 
was first synthesized using Synplicity Synplify Pro for Xilinx FPGAs, and then using Synopsys 
Design Compiler for ASICs.  The choice of tools and their versions, affecting final results, is 
summarized in Table 3. 
 

Table 3 Tools used for the implementation of the selected stream ciphers in the FPGA and ASIC 
technologies 

 
Technology FPGA ASIC 

VHDL simulation and 
debugging 

Aldec Active HDL v. 7.1 
ModelSim Xilinx Edition II 

Logic Synthesis Synplicity Synplify Pro v. 8.5 Synopsys Design Analyzer 
X-2005.9 

Implementation  
(mapping, placing and routing) 

Xilinx ISE v. 8.1i  

 
 
In case of FPGAs, a low cost FPGA family, Spartan 3, fabricated in the 90 nm semiconductor 
technology was selected. For ASICs, the implementation is based on the standard-cell 90 nm library 
from TSMC, TCBN90G. Thus, both types of circuits use transistors of the same size. 

The back end design was performed only for FPGAs. It consists of mapping, placing and routing. 
For both technologies, the timing of the circuit was characterized using static timing analysis, which 
returns the critical path in the circuit and the minimum clock period. Based on this data, the 
throughput of the circuit in Mbits per second, and the key setup latency in nanoseconds were 
computed. 

All ciphers have been first optimized for minimum area. In most cases, the corresponding 
implementation was implied directly by the cipher specification. Then, an attempt was made to change 
the circuit structure in such a way to perform the same operation with the better ratio of the circuit 
throughput to the circuit area. Different parallelization methods were considered, wherever 
appropriate, in order to come up with an optimum design maximizing this ratio. The available design 
choices are described in more detail in the following chapter. 
 
3. Choice of hardware architecture 
 
Six selected ciphers represent three different types of stream ciphers, with different basic hardware 
architectures and optimization options in each case. 

The first class of ciphers are ciphers based on linear and non-linear feedback shift registers (LFSRs 
and NFSRs) with a serial input to each register. Often, both types of circular structures are included 
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within the same cipher and interact with each other. This class of stream ciphers includes Grain, 
Trivium, and A5/1. In the basic architecture, implied by the cipher specification, each shift register is 
shifted by only one position per each clock cycle, and only one bit of the keystream is produced at a 
time. As a result, the maximum circuit throughput is equal to one bit divided by the minimum clock 
period, and if expressed in Mbits/s is numerically equal to the maximum clock frequency in MHz. The 
key and the IV are loaded one bit per clock cycle, so the key setup latency, expressed in clock cycles, 
is equal to the combined length of the key and the IV, incremented with the number of clock cycles 
required for the initialization run of LFSRs and NFSRs. 

In order to increase the throughput, LFSRs and NFSRs can be shifted by d positions at a time, and 
the architecture produce d bits of the keystream per clock cycle. This d-parallel architecture increases 
the throughput by a factor close to d, but at the same time may have a significantly larger area, because 
the entire feedback logic must be repeated d times. Still, in majority of cases, the increase in the circuit 
throughput is a stronger function of d than the increase in the circuit area, and thus the maximum 
throughput to area ratio is achieved for the largest possible value of d supported by a given cipher.  

This maximum value of the parallelization factor d can be determined by the analysis of the cipher 
structure, and in particular, the minimum distance between the serial entry of each shift register and 
the first tap position used in the feedback logic. Additionally, the allowed values of d may be limited 
to the proper divisors of the total length of each LFSR and NFSR. The parallelization factors d, 
selected using this approach, are equal to the following integer values: d=2, 4, 8, 16 for Grain;  d=2, 4, 
8, 16, 32, 64 for Trivium; and d=3, 4 for A5/1. The larger parallelization factors, although possible, are 
not likely to lead to the better throughput to area ratio. 

The second type of a stream cipher represented in our group is a cipher that includes both LFSRs 
and NFSRs, but each of these registers has a parallel rather than serial input from the feedback loop. 
This parallel input combined with parallel output complicates the feedback loop, and makes its 
parallelization expensive in terms of both the design time and the circuit area. This type of ciphers is 
represented in our group by Mickey-128. The basic hardware architecture of Mickey-128, producing 
one bit of the keystream per clock cycle, is implied by the cipher specification. A parallelization, 
although likely possible, was not straightforward enough to be discovered by four graduate students 
who have attempted to implement and optimize this cipher. 

Both Salsa-20 and Phelix have a structure similar to the structure of modern hash functions, and use 
similar internal operations: fixed-length rotations, additions mod 232, xor operations, etc. These 
operations simplify and speed up software implementations of both ciphers, especially on 32-bit 
platforms. It is worth noticing that both ciphers have been selected to Phase 2 as the Focus Profile 1 
candidates, i.e., as the leading candidates optimized for high speed implementations in software. 
From the hardware point of view, a wide data path, consisting of 5 x 32 = 160 bits in Phelix, and 16 x 
32 = 512 bits in Salsa20, leads to a relatively large circuit area, especially in the basic iterative 
architecture, known well from the hardware implementations of block ciphers and hash functions[7-9], 
and implied by the cipher specification. 

The similarity to hash functions is not accidental; actually Salsa20 is described in the specification 
as a hash function used in the counter mode. The difference between the basic hardware architectures 
of Phelix and Salsa20 is that Phelix produces one 32-bit block of the keystream every clock cycle, 
while Salsa20, produces a large 512-block of the keystream every 10 clock cycles. This difference can 
be made insignificant for an end user by implementing an output buffer in Salsa20, refreshed every 10 
clock cycles with a new output from the hash function, and read serially, 64-bits of the keystream at a 
time. In case this buffer is not emptied in time, the operation of the hash function is stalled. 
The possible optimizations of the hardware implementations of Phelix and Salsa20 are aimed at 
reducing the circuit area without considerably affecting the circuit throughput. In Phelix, the area can 
be reduced by implementing a half-block function, instead of the block function, as a combinational 
logic, and executing the block function in two consecutive clock cycles. Since the critical path through 
the combinational logic is reduced by a factor close to two, and the number of clock cycles is 
multiplied by two, the overall effect on the circuit throughput may be limited. At the same time, the 
circuit area can be reduced considerably. This area could be further reduced by sharing a half-block 
function between encryption and key-mixing. 

In Salsa20, the internal structure permits folding the internal combinational logic by a factor of 2, 4, 
or 8. The factor of two corresponds to executing the columnround and rowround using the same logic, 
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consisting of four instantiations of quaterround. Therefore, we refer to this architecture as a 4 x 
quaterround architecture. The factor of eight, corresponds to implementing only one instantiation of 
the quaterround in combinational logic, and using eight clock cycles to implement the entire 
doubleround. We refer to this architecture as a 1 x quaterround architecture. 

Due to the time limitations, the optimized architectures of Salsa have not been fully implemented 
within the duration of the students’ project, and as a result they are not explored in this version of the 
paper.  
 
4. Results 
 
The results of our FPGA implementations are summarized in Tables 4-9. In all cases the devices from 
the Xilinx Spartan 3 family are used. The devices from within a family are chosen in such a way that a 
selected FPGA is capable of holding the most area-consuming and the most pin-consuming 
architecture of the given cipher. In case of Trivium and Salsa20, the primary limitation comes from the 
number of pins required by the fastest considered architectures. All timing results are based on the 
minimum clock period after placing and routing obtained from the static timing analysis and verified 
using timing simulation. 
 

Table 4 Performance of Grain for different values of the parallelization factor d 
Xilinx Spartan 3, xc3s50pq208-5 [768 CLB slices] 

 
Parallelization 

factor d 
Maximum 

clock 
frequency  

Minimum key 
setup time 

for k=d  

Maximum 
throughput 

Area Throughput 
to area 
ratio 

 MHz cycles ns Mbit/s x 
basic 

CLB 
slices 

x basic Mbit/
s / 

CLB 
slices 

x 
basic 

1 (basic) 193 304 1575 193 1.0 122 1.0 1.58 1.0 
2 168 152 905 336 1.7 147 1.2 2.29 1.4 
4 170 76 447 680 3.5 173 1.4 3.93 2.5 
8 161 38 236 1288 6.7 244 2.0 5.28 3.3 
16 155 19 123 2480 12.8 356 2.9 6.97 4.4 

 
Table 5 Performance of Trivium for different values of the parallelization factor d 

Xilinx Spartan 3, xc3s400fg320-5 [3584 CLB slices] 
 

Parallelization 
factor d 

Maximum 
clock 

frequency  

Minimum key 
setup time 

for k=d  

Maximum 
throughput 

Area Throughput 
to area 
ratio 

 MHz cycles ns Mbit/s x 
basic 

CLB 
slices 

x basic Mbit/
s / 

CLB 
slices 

x 
basic 

1 (basic) 201 1312 6527 201 1.0 188 1.00 1.07 1.00 
2 202 656 3248 404 2.0 189 1.01 2.14 2.00 
4 203 328 1616 812 4.0 199 1.06 4.08 3.82 
8 193 164 850 1544 7.7 199 1.06 7.76 7.26 
16 191 82 429 3056 15.2 227 1.21 13.46 12.59 
32 202 41 203 6464 32.2 264 1.40 24.48 22.90 
64 190 21 108 12160 60.5 388 2.06 31.34 29.31 
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Table 6 Performance of A5/1 for different values of the parallelization factor d 
Xilinx Spartan 3, xc3s50pq208-5 [768 CLB slices] 

 
Parallelization 

factor d 
Maximum 

clock 
frequency  

Minimum key 
setup time 

for k=d  

Maximum 
throughput 

Area Throughput 
to area 
ratio 

 MHz cycles ns Mbit/s x 
basic 

CLB 
slices 

x basic Mbit/
s / 

CLB 
slices 

x 
basic 

1 (basic) 174 186 1069 174 1.0 57 1.0 3.05 1.0 
3 114 63   553 342 2.0 142 2.5 2.41 0.8 
4 79 47 595 316 1.8 287 5.0 1.10 0.4 

 
Table 7 Performance of Phelix for various architectures 

Xilinx Spartan 3, xc3s200ft256-5 [1920 CLB slices] 
 

Basic function 
implemented 

using  
combinational 

logic 

Maximum 
clock 

frequency  

Minimum key 
setup time 
for k=d=32  

Maximum 
throughput 

Area Throughput 
to area 
ratio 

 MHz cycles ns Mbit/s x 
basic 

CLB 
slices 

x basic Mbit/
s / 

CLB 
slices 

x 
basic 

block 46 28 609 1472 1.00 1402 1.00 1.05 1.00 
half-block 52 44 846 832 0.57 1197 0.85 0.70 0.66 

 
 

For each cipher and the particular architecture we report maximum clock frequency in MHz, 
maximum encryption/decryption throughput in Mbit/s, area in the number of CLB slices, and the 
throughput to area ratio. Additionally, we report the minimum key setup time that includes the key and 
the IV loading time and any additional initialization operations required by the cipher specification. 

In Tables 4-6, we compare the basic minimum-area architectures of Grain, Trivium, and A5/1, with 
the optimized d-parallel architectures discussed in Section 3. The parameter d is a parallelization factor 
that determines the number of bits of the keystream produced per clock cycle. The parameter k, which 
is the number of bits of the key and the IV loaded to the internal state per clock cycle, is selected to be 
equal to the value of d. This way, the increase in the circuit throughput is accompanied by the 
corresponding reduction in the key setup time. 

For the maximum throughput, area, and the throughput to area ratio, we show the relative change 
compared to the basic architecture. One can see that the largest improvement in the maximum 
throughput and the maximum throughput to area ratio is possible in Trivium. In this cipher, for the 
parallelization factor d=64, the throughput increases by a factor of 60, and the throughput to area ratio 
by a factor of 29. These improvements are several times smaller in case of Grain, and in A5/1 they 
concern only throughput, and not the throughput to area ratio. 

In Table 7, the results for the basic and the optimized architectures of Phelix are presented. For this 
cipher, the basic architecture is optimum from the point of view of the throughput and throughput to 
area ratio. The optimization is aimed at reducing the circuit area, and succeeds by producing  the 
circuit smaller by 15% compared to the basic architecture. 

In Tables 8 and 9, we characterize and compare the best architectures of all six ciphers, selected 
from the point of view of minimum area (Table 8), and the maximum throughput to area ratio (Table 
9). The ciphers are listed in the order of their performance, according to the given optimization 
criterion. For the minimum area implementations, Grain is the best among the five considered 
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eSTREAM candidates. It outperforms Trivium by 54%, Mickey-128 by a factor of over two, Phelix by 
a factor of almost 10, and Salsa20 by a factor of over 12 

 
Table 8 Comparison of architectures optimized for minimum area 

Xilinx Spartan 3 family 
 

Cipher Maximum 
clock 

frequency  

Minimum key 
setup time 

Maximum 
throughput 

Area Throughput 
to area 
ratio 

 MHz cycles ns Mbit/s / 
Grain 

CLB 
slices 

/ Grain Mbit/
s / 

CLB 
slices 

/ 
Grain 

A5/1 
(d=1, k=1) 

174 186 1069 174 0.90 57 0.47 3.05 1.93 

Grain  
(d=1, k=1) 

193 304 1575 193 1.00 122 1.00 1.58 1.00 

Trivium 
(d=1, k=1) 

201 1312 6527 201 1.04 188 1.54 1.07 0.68 

Mickey-128 
(d=1, k=1) 

156 416 2667 156 0.81 261 2.14 0.60 0.38 

Phelix 
(d=32, k=32) 

half-block 

52 44 846 832 4.31 1197 9.81 0.70 0.44 

Salsa20 
(d=64, k=64) 
doubleround 

23.5 5 213 1203 6.23 1615 13.24 0.75 0.47 

 
Table 9 Comparison of architectures optimized for the maximum throughput to area ratio 

Xilinx Spartan 3 family 
 

Cipher Maximum 
clock 

frequency  

Minimum key 
setup time 

Maximum 
throughput 

Area Throughput 
to area 
ratio 

 MHz cycles ns Mbit/
s 

Trivium
/Cipher 

CLB 
slices 

Cipher/ 
Trivium 

Mbit/
s / 

CLB 
slices 

Trivium
/Cipher 

Trivium 
(d=64, k=64) 

190 21 108 12160 1.0 388 1.00 31.34 1.0 

Grain  
(d=16, k=16) 

155 19 123 2480 4.9 356 0.92 6.97 4.5 

A5/1 
(d=1, k=1) 

174 186 1069 174 69.9 57 0.15 3.05 10.3 

Phelix 
(d=32, k=32) 

block 

46 28 609 1472 8.3 1402 3.61 1.05 29.8 

Salsa20 
(d=64, k=64) 
doubleround 

23.5 5 213 1203 10.1 1615 4.16 0.74 42.1 

Mickey-128 
(d=1, k=1) 

156 416 2667 156 77.9 261 0.67 0.60 52.4 
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Table 10 Comparison of architectures optimized for minimum area 
ASIC 90 nm TCBN90G TSMC library 

 
Cipher Maximum 

clock 
frequency  

Minimum key 
setup time 

Maximum 
throughput 

Area Throughput 
to area 
ratio 

 MHz cycles ns Mbit/s / 
Grain 

µm2 / 
Grain 

Mbit/
s / 

µm2 

/ 
Grain 

A5/1 
(d=1, k=1) 

685 186 272 685 1.21 1985 0.40 0.345 3.00 

Grain  
(d=1, k=1) 

565 304 538 565 1.00 4911 1.00 0.115 1.00 

Trivium 
(d=1, k=1) 

840 1312 1562 840 1.49 7428 1.51 0.113 0.98 

Mickey-128 
(d=1, k=1) 

457 416 910 457 0.81 16232 3.31 0.028 0.24 

Phelix 
(d=32, k=32) 

half-block 

316 44 139 5056 8.95 53232 10.84 0.095 0.83 

 
 

Table 11 Comparison of architectures optimized for the maximum throughput to area ratio 
ASIC 90 nm TCBN90G TSMC library 

 
Cipher Maximum 

clock 
frequency  

Minimum 
key setup 

time 

Maximum 
throughput 

Area Throughput 
to area 
ratio 

 MHz cycles ns Mbit/s Trivium/
Cipher 

µm2 Cipher/ 
Trivium 

Mbit/
s / 

µm2 

Trivium
/Cipher 

Trivium 
(d=64, k=64) 

800 21 26 51200 1.0 13440 1.00 3.810 1.0 

Grain  
(d=16, k=16) 

495 19 38 7920 6.5 10548 0.78 0.751 5.1 

A5/1 
(d=4, k=4) 

402 186 463 1606 31.9 3590 0.27 0.447 8.5 

Phelix 
(d=32, k=32) 

half-block 

316 44 139 5056 10.1 53232 3.96 0.095 40.1 

Mickey-128 
(d=1, k=1) 

457 416 910 457 112.0 16232 1.21 0.028 135.3 

 
 

Among the architectures optimized for the maximum throughput to area ratio, Trivium outperforms 
all other ciphers by a wide margin. Its throughput to area ratio is about 4.5 times higher than in Grain, 
30 times higher than in Phelix, 42 times higher than in Salsa20, and 52 times higher than in Mickey-
128. The advantage of Trivium is also very evident in terms of the throughput that reaches about 12 
Gbit/s, and exceeds that of any other cipher by at least a factor of four. 
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The old standard A5/1 wins with all new eSTREAM candidates in terms of the minimum area, but 
it is worse than Trivium and Grain in terms of the throughput to area ratio. Additionally, it should be 
remembered that this cipher is long broken, and considered highly insecure. 

In Tables 10 and 11, we present the similar comparison with the same codes implemented using the 
standard-cell ASIC approach. The TSMC 90 nm TCBN90G ASIC library is used for the synthesis and 
timing analysis. All results are post-synthesis only, and could change if the full back-end design 
(layout) was completed. The interconnect delays are estimated in the post-synthesis analysis using so 
called wireload model, which predicts these delays based on the number of gate inputs driven by each 
node, and statistical data concerning similar circuits implemented in the same technology [5]. 

The ranking of algorithms remains the same as in FPGA technology, with even larger differences 
between the best ciphers in each category and the remaining candidates.  

In Table 12, we summarize the speed-up of the ASIC implementations vs. the corresponding FPGA 
implementations. In both cases the same underlying 90 nm semiconductor technology is used. The 
speed-up ranges between about 3 for the optimized architecture of Grain and over 6 for the optimized 
architecture of Phelix. This speed up is somewhat larger than the one earlier observed for equivalent 
implementations of block ciphers, such as AES and DES, where it varied between 1.5 and 3 [6]. The 
source of this speed up is the size overhead and extra delays introduced to the FPGA implementations 
by the reconfigurable cells and interconnects. 

 
Table 12 Speed-up of a 90 nm TSMC standard-cell ASIC implementation over the Spartan 3 FPGA 

implementation 
 

Cipher Clock frequency 
in Spartan 3 FPGAs 

Clock frequency 
in ASICs 

ASIC vs. FPGA  
frequency ratio 

 MHz MHz  
Trivium 

(d=64, k=64) 
190 800 4.2 

Grain  
(d=16, k=16) 

155 495 3.2 

A5/1 
(d=4, k=4) 

79 402 5.1 

Phelix 
(d=32, k=32) 

half-block 

52 316 6.1 

 
 
5. Comparison with previous work 
 
In [10], eight eSTREAM candidates are compared in terms of their hardware efficiency based on the 
results of the ASIC implementation in 0.25 µm 5-metal CMOS technology. Among these eight 
candidates, three - Grain,  Mickey, and Trivium - are the same as those in our study. The relative 
performance of these three algorithms reported in [10] is very similar to their relative performance 
described in this paper. 

In [11], six eSTREAM candidates and AES, with several alternative architectures per each cipher, 
are compared using Xilinx Spartan 2 FPGAs, Altera Cyclone FPGAs, and ASIC 0.13 µm standard cell 
process.  Among these ciphers, Grain, Trivium, and Phelix are the same as those in our group. The 
relative performance of these algorithms reported in [11] is very close to their relative performance 
described in our study. 
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6. Summary and conclusions 
 
In this paper, we compare and contrast five leading Phase 2 Profile 2 eSTRAM candidates from the 
point of view of the hardware implementation efficiency. We also compare these ciphers vs. an old 
GSM encryption algorithm A5/1.   

One of the most important findings of our study is that the relative differences between eSTREAM 
candidates in terms of all hardware performance measures are huge, much bigger than it was the case 
for block ciphers competing  in the second round of the AES contest [7, 8].  

Trivium and Grain outperform all other considered eSTREAM candidates in terms of the two most 
important optimization criteria, minimum area and maximum throughput to area ratio, by a factor of at 
least two. The only exception is a relatively smaller advantage of Trivium over Mickey-128 in terms 
of the area in the FPGA implementation. 

In general, stream ciphers based on linear and non-linear shift registers once again show their 
advantage in terms of hardware efficiency over newer more complex designs intended to be efficient 
in both software and hardware. 

Assuming no progress in the cryptanalysis of Trivium or Grain, one or both of these ciphers should 
be declared the winners of the eSTREAM competition. 
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