
 1

Comparison of hardware performance of selected
Phase II eSTREAM candidates

Kris Gaj, Gabriel Southern, and Ramakrishna Bachimanchi

ECE Department
George Mason University

Abstract

Five leading Phase 2 Profile 2 eSTREAM candidates have been implemented in hardware, targeting two main
semiconductor technologies, Field Programmable Gate Arrays (FPGAs) and Application Specific Integrated
Circuits (ASICs). An old GSM encryption algorithm A5/1 has been included in the study as well. All six ciphers
have been analyzed from the point of view of the hardware efficiency, and two hardware architectures have been
developed for each of them. The first of these architectures has been optimized for the minimum area, and the
second for the maximum throughput to area ratio. Our study has revealed very large differences among all
eSTREAM candidates in terms of the hardware efficiency, and have demonstrated a relative superiority of
Trivium and Grain over other analyzed ciphers.

Keywords: eSTREAM, stream cipher, hardware, FPGA, ASIC

1. Introduction

Hardware implementation efficiency is one of the primary requirements for every cipher. This
efficiency is particularly important in case of eSTREAM Profile 2 candidates which were designed
with the special emphasis on their suitability for hardware implementations with limited number of
gates, memory, and power supply [1].

In this paper, we compare hardware efficiency of four Profile 2 eSTREAM candidates qualified to
Phase 2 as focus candidates (Grain, Mickey-128, Phelix, and Trivium), one additional Phase 2 cipher,
Salsa20, and an old (and insecure) GSM standard A5/1 [2-4]. The basic features of these six stream
ciphers are summarized in Table 1.

In Fall 2006, the first author was an instructor for a graduate course, ECE 545, Introduction to
VHDL, focusing on designing digital systems with hardware description languages such as VHDL [5].
The third author was a teaching assistant for this course. As a primary project in this course, the
students were given a task of implementing one of five selected eSTREAM candidates. Additionally,
one student volunteered to implement an old standard, A5/1. Twenty students accepted the challenge
and were asked to rank five eSTREAM ciphers in the order of their preference based exclusively on
their first reading of the cipher specification. It is quite safe to assume that the students’ preference
reflected their perceived difficulty of implementing a particular cipher in VHDL, with the highest
ranking (five) given to the cipher perceived as the easiest to implement. The results of this ranking are
presented in Table 2.

Three ciphers, Trivium, Salsa20, and Mickey-128, were perceived by students as the easiest to
implement. Grain was (surprisingly to the authors) ranked only as a fourth choice. Finally, Phelix was
a far outsider, and was not a first choice of any of the twenty students.

The student preferences were taken into account in the final assignments, but each cipher was
assigned to four students working on their implementations independently. At the end of the semester,
the best out of four independent implementations of each cipher was selected. These implementations
were revised by the authors of this paper in order to assure a full uniformity of the coding style and the
detailed design choices. These revised codes were used in order to generate unified results presented in
Section 4 of this paper.

This methodology led to six optimized implementations, of comparable quality, as the students
taking the course had a similar background, were following the same design style (based on the use of

 2

Table 1 Basic features of stream ciphers compared in this paper

Name Authors Key size
[bits]

IV size
[bits]

Internal state
size [bits]

Basic
components

Grain M. Hall,
T. Johansson,

W. Meier

80 64 160 LFSR, NFSR,
output function

Mickey-128 S. Babbage
M. Dodd

128 0..128 320 LFSR, NFSR

Phelix D. Whiting,
B. Schneier,

S. Lucks,
F. Muller

�
 256 128 288 Block function based on

adders, rotators, and
xors

Salsa20 D.J. Bernstein 256, 128 64 512 Hash function based on
adders, rotators, and

xors; used in the counter
mode

Trivium C. De
Canniere,
B. Preneel

80 80 288 LFSR, NFSR

A5/1 unknown 64 22 64 LFSR, clock control
units

Table 2 Perceived difficulty of a hardware implementation of selected eSTREAM ciphers based on the
survey of 20 GMU ECE students

Cipher Perceived ease of implementation

(5 – very easy; 1 – very difficult)
Trivium 3.36
Salsa20 3.32
Mickey-128 3.32
Grain 3.00
Phelix 2.00

Fig. 1 Interface of a stream cipher used in our implementations

stream
cipher

clk
reset

data_in
data_in_ready
data_in_write

d

data_out

write
full

d

key_IV
key_IV_ready
key_IV_write

k

 3

block diagrams and algorithmic state machine (ASM) charts, translated to VHDL), developed within
the same amount of time (around 6 weeks). All designers used the same interface, shown in Fig. 1.

All six ciphers were described in portable VHDL, and then implemented using Field Programmable
Gate Arrays (FPGAs) from the Spartan 3 Xilinx family, and synthesized using Synopsys tools
targeting a semicustom ASIC technology based on the TSMC user libraries.

In Section 2, we describe the exact methodology and tools used by all designers. In Section 3, we
present a few alternative hardware architectures and optimization options available for each cipher. In
Section 4, we present and discuss major results. In Section 5, we compare these results to the results
reported earlier in the literature. We summarize our findings and present conclusions in Section 6.

2. Methodology

All ciphers have been first designed using medium level block diagrams and algorithmic state machine
(ASM) charts. These diagrams and charts have been then converted to synthesizable register-transfer
level (RTL) VHDL code, without using any library components specific for a given technology or
FPGA family. The code was debugged using either Aldec Active HDL or ModelSim Xilinx Edition
VHDL simulators, depending on the student’s preference. After the code was functionally correct, it
was first synthesized using Synplicity Synplify Pro for Xilinx FPGAs, and then using Synopsys
Design Compiler for ASICs. The choice of tools and their versions, affecting final results, is
summarized in Table 3.

Table 3 Tools used for the implementation of the selected stream ciphers in the FPGA and ASIC
technologies

Technology FPGA ASIC

VHDL simulation and
debugging

Aldec Active HDL v. 7.1
ModelSim Xilinx Edition II

Logic Synthesis Synplicity Synplify Pro v. 8.5 Synopsys Design Analyzer
X-2005.9

Implementation
(mapping, placing and routing)

Xilinx ISE v. 8.1i

In case of FPGAs, a low cost FPGA family, Spartan 3, fabricated in the 90 nm semiconductor
technology was selected. For ASICs, the implementation is based on the standard-cell 90 nm library
from TSMC, TCBN90G. Thus, both types of circuits use transistors of the same size.

The back end design was performed only for FPGAs. It consists of mapping, placing and routing.
For both technologies, the timing of the circuit was characterized using static timing analysis, which
returns the critical path in the circuit and the minimum clock period. Based on this data, the
throughput of the circuit in Mbits per second, and the key setup latency in nanoseconds were
computed.

All ciphers have been first optimized for minimum area. In most cases, the corresponding
implementation was implied directly by the cipher specification. Then, an attempt was made to change
the circuit structure in such a way to perform the same operation with the better ratio of the circuit
throughput to the circuit area. Different parallelization methods were considered, wherever
appropriate, in order to come up with an optimum design maximizing this ratio. The available design
choices are described in more detail in the following chapter.

3. Choice of hardware architecture

Six selected ciphers represent three different types of stream ciphers, with different basic hardware
architectures and optimization options in each case.

The first class of ciphers are ciphers based on linear and non-linear feedback shift registers (LFSRs
and NFSRs) with a serial input to each register. Often, both types of circular structures are included

 4

within the same cipher and interact with each other. This class of stream ciphers includes Grain,
Trivium, and A5/1. In the basic architecture, implied by the cipher specification, each shift register is
shifted by only one position per each clock cycle, and only one bit of the keystream is produced at a
time. As a result, the maximum circuit throughput is equal to one bit divided by the minimum clock
period, and if expressed in Mbits/s is numerically equal to the maximum clock frequency in MHz. The
key and the IV are loaded one bit per clock cycle, so the key setup latency, expressed in clock cycles,
is equal to the combined length of the key and the IV, incremented with the number of clock cycles
required for the initialization run of LFSRs and NFSRs.

In order to increase the throughput, LFSRs and NFSRs can be shifted by d positions at a time, and
the architecture produce d bits of the keystream per clock cycle. This d-parallel architecture increases
the throughput by a factor close to d, but at the same time may have a significantly larger area, because
the entire feedback logic must be repeated d times. Still, in majority of cases, the increase in the circuit
throughput is a stronger function of d than the increase in the circuit area, and thus the maximum
throughput to area ratio is achieved for the largest possible value of d supported by a given cipher.

This maximum value of the parallelization factor d can be determined by the analysis of the cipher
structure, and in particular, the minimum distance between the serial entry of each shift register and
the first tap position used in the feedback logic. Additionally, the allowed values of d may be limited
to the proper divisors of the total length of each LFSR and NFSR. The parallelization factors d,
selected using this approach, are equal to the following integer values: d=2, 4, 8, 16 for Grain; d=2, 4,
8, 16, 32, 64 for Trivium; and d=3, 4 for A5/1. The larger parallelization factors, although possible, are
not likely to lead to the better throughput to area ratio.

The second type of a stream cipher represented in our group is a cipher that includes both LFSRs
and NFSRs, but each of these registers has a parallel rather than serial input from the feedback loop.
This parallel input combined with parallel output complicates the feedback loop, and makes its
parallelization expensive in terms of both the design time and the circuit area. This type of ciphers is
represented in our group by Mickey-128. The basic hardware architecture of Mickey-128, producing
one bit of the keystream per clock cycle, is implied by the cipher specification. A parallelization,
although likely possible, was not straightforward enough to be discovered by four graduate students
who have attempted to implement and optimize this cipher.

Both Salsa-20 and Phelix have a structure similar to the structure of modern hash functions, and use
similar internal operations: fixed-length rotations, additions mod 232, xor operations, etc. These
operations simplify and speed up software implementations of both ciphers, especially on 32-bit
platforms. It is worth noticing that both ciphers have been selected to Phase 2 as the Focus Profile 1
candidates, i.e., as the leading candidates optimized for high speed implementations in software.
From the hardware point of view, a wide data path, consisting of 5 x 32 = 160 bits in Phelix, and 16 x
32 = 512 bits in Salsa20, leads to a relatively large circuit area, especially in the basic iterative
architecture, known well from the hardware implementations of block ciphers and hash functions[7-9],
and implied by the cipher specification.

The similarity to hash functions is not accidental; actually Salsa20 is described in the specification
as a hash function used in the counter mode. The difference between the basic hardware architectures
of Phelix and Salsa20 is that Phelix produces one 32-bit block of the keystream every clock cycle,
while Salsa20, produces a large 512-block of the keystream every 10 clock cycles. This difference can
be made insignificant for an end user by implementing an output buffer in Salsa20, refreshed every 10
clock cycles with a new output from the hash function, and read serially, 64-bits of the keystream at a
time. In case this buffer is not emptied in time, the operation of the hash function is stalled.
The possible optimizations of the hardware implementations of Phelix and Salsa20 are aimed at
reducing the circuit area without considerably affecting the circuit throughput. In Phelix, the area can
be reduced by implementing a half-block function, instead of the block function, as a combinational
logic, and executing the block function in two consecutive clock cycles. Since the critical path through
the combinational logic is reduced by a factor close to two, and the number of clock cycles is
multiplied by two, the overall effect on the circuit throughput may be limited. At the same time, the
circuit area can be reduced considerably. This area could be further reduced by sharing a half-block
function between encryption and key-mixing.

In Salsa20, the internal structure permits folding the internal combinational logic by a factor of 2, 4,
or 8. The factor of two corresponds to executing the columnround and rowround using the same logic,

 5

consisting of four instantiations of quaterround. Therefore, we refer to this architecture as a 4 x
quaterround architecture. The factor of eight, corresponds to implementing only one instantiation of
the quaterround in combinational logic, and using eight clock cycles to implement the entire
doubleround. We refer to this architecture as a 1 x quaterround architecture.

Due to the time limitations, the optimized architectures of Salsa have not been fully implemented
within the duration of the students’ project, and as a result they are not explored in this version of the
paper.

4. Results

The results of our FPGA implementations are summarized in Tables 4-9. In all cases the devices from
the Xilinx Spartan 3 family are used. The devices from within a family are chosen in such a way that a
selected FPGA is capable of holding the most area-consuming and the most pin-consuming
architecture of the given cipher. In case of Trivium and Salsa20, the primary limitation comes from the
number of pins required by the fastest considered architectures. All timing results are based on the
minimum clock period after placing and routing obtained from the static timing analysis and verified
using timing simulation.

Table 4 Performance of Grain for different values of the parallelization factor d
Xilinx Spartan 3, xc3s50pq208-5 [768 CLB slices]

Parallelization

factor d
Maximum

clock
frequency

Minimum key
setup time

for k=d

Maximum
throughput

Area Throughput
to area
ratio

 MHz cycles ns Mbit/s x
basic

CLB
slices

x basic Mbit/
s /

CLB
slices

x
basic

1 (basic) 193 304 1575 193 1.0 122 1.0 1.58 1.0
2 168 152 905 336 1.7 147 1.2 2.29 1.4
4 170 76 447 680 3.5 173 1.4 3.93 2.5
8 161 38 236 1288 6.7 244 2.0 5.28 3.3
16 155 19 123 2480 12.8 356 2.9 6.97 4.4

Table 5 Performance of Trivium for different values of the parallelization factor d

Xilinx Spartan 3, xc3s400fg320-5 [3584 CLB slices]

Parallelization
factor d

Maximum
clock

frequency

Minimum key
setup time

for k=d

Maximum
throughput

Area Throughput
to area
ratio

 MHz cycles ns Mbit/s x
basic

CLB
slices

x basic Mbit/
s /

CLB
slices

x
basic

1 (basic) 201 1312 6527 201 1.0 188 1.00 1.07 1.00
2 202 656 3248 404 2.0 189 1.01 2.14 2.00
4 203 328 1616 812 4.0 199 1.06 4.08 3.82
8 193 164 850 1544 7.7 199 1.06 7.76 7.26
16 191 82 429 3056 15.2 227 1.21 13.46 12.59
32 202 41 203 6464 32.2 264 1.40 24.48 22.90
64 190 21 108 12160 60.5 388 2.06 31.34 29.31

 6

Table 6 Performance of A5/1 for different values of the parallelization factor d
Xilinx Spartan 3, xc3s50pq208-5 [768 CLB slices]

Parallelization

factor d
Maximum

clock
frequency

Minimum key
setup time

for k=d

Maximum
throughput

Area Throughput
to area
ratio

 MHz cycles ns Mbit/s x
basic

CLB
slices

x basic Mbit/
s /

CLB
slices

x
basic

1 (basic) 174 186 1069 174 1.0 57 1.0 3.05 1.0
3 114 63 553 342 2.0 142 2.5 2.41 0.8
4 79 47 595 316 1.8 287 5.0 1.10 0.4

Table 7 Performance of Phelix for various architectures

Xilinx Spartan 3, xc3s200ft256-5 [1920 CLB slices]

Basic function
implemented

using
combinational

logic

Maximum
clock

frequency

Minimum key
setup time
for k=d=32

Maximum
throughput

Area Throughput
to area
ratio

 MHz cycles ns Mbit/s x
basic

CLB
slices

x basic Mbit/
s /

CLB
slices

x
basic

block 46 28 609 1472 1.00 1402 1.00 1.05 1.00
half-block 52 44 846 832 0.57 1197 0.85 0.70 0.66

For each cipher and the particular architecture we report maximum clock frequency in MHz,
maximum encryption/decryption throughput in Mbit/s, area in the number of CLB slices, and the
throughput to area ratio. Additionally, we report the minimum key setup time that includes the key and
the IV loading time and any additional initialization operations required by the cipher specification.

In Tables 4-6, we compare the basic minimum-area architectures of Grain, Trivium, and A5/1, with
the optimized d-parallel architectures discussed in Section 3. The parameter d is a parallelization factor
that determines the number of bits of the keystream produced per clock cycle. The parameter k, which
is the number of bits of the key and the IV loaded to the internal state per clock cycle, is selected to be
equal to the value of d. This way, the increase in the circuit throughput is accompanied by the
corresponding reduction in the key setup time.

For the maximum throughput, area, and the throughput to area ratio, we show the relative change
compared to the basic architecture. One can see that the largest improvement in the maximum
throughput and the maximum throughput to area ratio is possible in Trivium. In this cipher, for the
parallelization factor d=64, the throughput increases by a factor of 60, and the throughput to area ratio
by a factor of 29. These improvements are several times smaller in case of Grain, and in A5/1 they
concern only throughput, and not the throughput to area ratio.

In Table 7, the results for the basic and the optimized architectures of Phelix are presented. For this
cipher, the basic architecture is optimum from the point of view of the throughput and throughput to
area ratio. The optimization is aimed at reducing the circuit area, and succeeds by producing the
circuit smaller by 15% compared to the basic architecture.

In Tables 8 and 9, we characterize and compare the best architectures of all six ciphers, selected
from the point of view of minimum area (Table 8), and the maximum throughput to area ratio (Table
9). The ciphers are listed in the order of their performance, according to the given optimization
criterion. For the minimum area implementations, Grain is the best among the five considered

 7

eSTREAM candidates. It outperforms Trivium by 54%, Mickey-128 by a factor of over two, Phelix by
a factor of almost 10, and Salsa20 by a factor of over 12

Table 8 Comparison of architectures optimized for minimum area

Xilinx Spartan 3 family

Cipher Maximum
clock

frequency

Minimum key
setup time

Maximum
throughput

Area Throughput
to area
ratio

 MHz cycles ns Mbit/s /
Grain

CLB
slices

/ Grain Mbit/
s /

CLB
slices

/
Grain

A5/1
(d=1, k=1)

174 186 1069 174 0.90 57 0.47 3.05 1.93

Grain
(d=1, k=1)

193 304 1575 193 1.00 122 1.00 1.58 1.00

Trivium
(d=1, k=1)

201 1312 6527 201 1.04 188 1.54 1.07 0.68

Mickey-128
(d=1, k=1)

156 416 2667 156 0.81 261 2.14 0.60 0.38

Phelix
(d=32, k=32)

half-block

52 44 846 832 4.31 1197 9.81 0.70 0.44

Salsa20
(d=64, k=64)
doubleround

23.5 5 213 1203 6.23 1615 13.24 0.75 0.47

Table 9 Comparison of architectures optimized for the maximum throughput to area ratio

Xilinx Spartan 3 family

Cipher Maximum
clock

frequency

Minimum key
setup time

Maximum
throughput

Area Throughput
to area
ratio

 MHz cycles ns Mbit/
s

Trivium
/Cipher

CLB
slices

Cipher/
Trivium

Mbit/
s /

CLB
slices

Trivium
/Cipher

Trivium
(d=64, k=64)

190 21 108 12160 1.0 388 1.00 31.34 1.0

Grain
(d=16, k=16)

155 19 123 2480 4.9 356 0.92 6.97 4.5

A5/1
(d=1, k=1)

174 186 1069 174 69.9 57 0.15 3.05 10.3

Phelix
(d=32, k=32)

block

46 28 609 1472 8.3 1402 3.61 1.05 29.8

Salsa20
(d=64, k=64)
doubleround

23.5 5 213 1203 10.1 1615 4.16 0.74 42.1

Mickey-128
(d=1, k=1)

156 416 2667 156 77.9 261 0.67 0.60 52.4

 8

Table 10 Comparison of architectures optimized for minimum area
ASIC 90 nm TCBN90G TSMC library

Cipher Maximum

clock
frequency

Minimum key
setup time

Maximum
throughput

Area Throughput
to area
ratio

 MHz cycles ns Mbit/s /
Grain

µm2 /
Grain

Mbit/
s /

µm2

/
Grain

A5/1
(d=1, k=1)

685 186 272 685 1.21 1985 0.40 0.345 3.00

Grain
(d=1, k=1)

565 304 538 565 1.00 4911 1.00 0.115 1.00

Trivium
(d=1, k=1)

840 1312 1562 840 1.49 7428 1.51 0.113 0.98

Mickey-128
(d=1, k=1)

457 416 910 457 0.81 16232 3.31 0.028 0.24

Phelix
(d=32, k=32)

half-block

316 44 139 5056 8.95 53232 10.84 0.095 0.83

Table 11 Comparison of architectures optimized for the maximum throughput to area ratio
ASIC 90 nm TCBN90G TSMC library

Cipher Maximum

clock
frequency

Minimum
key setup

time

Maximum
throughput

Area Throughput
to area
ratio

 MHz cycles ns Mbit/s Trivium/
Cipher

µm2 Cipher/
Trivium

Mbit/
s /

µm2

Trivium
/Cipher

Trivium
(d=64, k=64)

800 21 26 51200 1.0 13440 1.00 3.810 1.0

Grain
(d=16, k=16)

495 19 38 7920 6.5 10548 0.78 0.751 5.1

A5/1
(d=4, k=4)

402 186 463 1606 31.9 3590 0.27 0.447 8.5

Phelix
(d=32, k=32)

half-block

316 44 139 5056 10.1 53232 3.96 0.095 40.1

Mickey-128
(d=1, k=1)

457 416 910 457 112.0 16232 1.21 0.028 135.3

Among the architectures optimized for the maximum throughput to area ratio, Trivium outperforms
all other ciphers by a wide margin. Its throughput to area ratio is about 4.5 times higher than in Grain,
30 times higher than in Phelix, 42 times higher than in Salsa20, and 52 times higher than in Mickey-
128. The advantage of Trivium is also very evident in terms of the throughput that reaches about 12
Gbit/s, and exceeds that of any other cipher by at least a factor of four.

 9

The old standard A5/1 wins with all new eSTREAM candidates in terms of the minimum area, but
it is worse than Trivium and Grain in terms of the throughput to area ratio. Additionally, it should be
remembered that this cipher is long broken, and considered highly insecure.

In Tables 10 and 11, we present the similar comparison with the same codes implemented using the
standard-cell ASIC approach. The TSMC 90 nm TCBN90G ASIC library is used for the synthesis and
timing analysis. All results are post-synthesis only, and could change if the full back-end design
(layout) was completed. The interconnect delays are estimated in the post-synthesis analysis using so
called wireload model, which predicts these delays based on the number of gate inputs driven by each
node, and statistical data concerning similar circuits implemented in the same technology [5].

The ranking of algorithms remains the same as in FPGA technology, with even larger differences
between the best ciphers in each category and the remaining candidates.

In Table 12, we summarize the speed-up of the ASIC implementations vs. the corresponding FPGA
implementations. In both cases the same underlying 90 nm semiconductor technology is used. The
speed-up ranges between about 3 for the optimized architecture of Grain and over 6 for the optimized
architecture of Phelix. This speed up is somewhat larger than the one earlier observed for equivalent
implementations of block ciphers, such as AES and DES, where it varied between 1.5 and 3 [6]. The
source of this speed up is the size overhead and extra delays introduced to the FPGA implementations
by the reconfigurable cells and interconnects.

Table 12 Speed-up of a 90 nm TSMC standard-cell ASIC implementation over the Spartan 3 FPGA

implementation

Cipher Clock frequency
in Spartan 3 FPGAs

Clock frequency
in ASICs

ASIC vs. FPGA
frequency ratio

 MHz MHz
Trivium

(d=64, k=64)
190 800 4.2

Grain
(d=16, k=16)

155 495 3.2

A5/1
(d=4, k=4)

79 402 5.1

Phelix
(d=32, k=32)

half-block

52 316 6.1

5. Comparison with previous work

In [10], eight eSTREAM candidates are compared in terms of their hardware efficiency based on the
results of the ASIC implementation in 0.25 µm 5-metal CMOS technology. Among these eight
candidates, three - Grain, Mickey, and Trivium - are the same as those in our study. The relative
performance of these three algorithms reported in [10] is very similar to their relative performance
described in this paper.

In [11], six eSTREAM candidates and AES, with several alternative architectures per each cipher,
are compared using Xilinx Spartan 2 FPGAs, Altera Cyclone FPGAs, and ASIC 0.13 µm standard cell
process. Among these ciphers, Grain, Trivium, and Phelix are the same as those in our group. The
relative performance of these algorithms reported in [11] is very close to their relative performance
described in our study.

 10

6. Summary and conclusions

In this paper, we compare and contrast five leading Phase 2 Profile 2 eSTRAM candidates from the
point of view of the hardware implementation efficiency. We also compare these ciphers vs. an old
GSM encryption algorithm A5/1.

One of the most important findings of our study is that the relative differences between eSTREAM
candidates in terms of all hardware performance measures are huge, much bigger than it was the case
for block ciphers competing in the second round of the AES contest [7, 8].

Trivium and Grain outperform all other considered eSTREAM candidates in terms of the two most
important optimization criteria, minimum area and maximum throughput to area ratio, by a factor of at
least two. The only exception is a relatively smaller advantage of Trivium over Mickey-128 in terms
of the area in the FPGA implementation.

In general, stream ciphers based on linear and non-linear shift registers once again show their
advantage in terms of hardware efficiency over newer more complex designs intended to be efficient
in both software and hardware.

Assuming no progress in the cryptanalysis of Trivium or Grain, one or both of these ciphers should
be declared the winners of the eSTREAM competition.

Acknowledgments

The authors would like to thank all students in the Fall 2006 GMU ECE 545 Introduction to VHDL
class for their effort on the development of hardware implementations of eSTREAM candidates, and
in particular we would like to thank students who contributed their codes to this project: Son T.
Nguyen (Grain), Lalitha Chikkam (Mickey-128), Chethan Ananth and Bhupathi Venkata N.
Kakarlapudi (Phelix), Marcello Brito (Salsa20), and Sterling Brandon Stewart (A5/1).

References

[1] eSTREAM Phase 2 webpage, available at http://www.ecrypt.eu.org/stream/index.html
[2] Mark Briceno, “A pedagogical Implementation of A5/1,” available at

http://jya.com/a51-pi.htm
[3] G. Kostopoulos, N. Sklavos, M.D. Galanis, and O. Koufopavlou, “VLSI Implementation of GSM

Security: A5/1 and W7 Ciphers,” available at
http://www.vlsi.ee.upatras.gr/~gkostop/Giorgos_WoWCAS.pdf

[4] M. D. Galanis, P. Kitsos, G. Kostopoulos, N. Sklavos, O. Koufopavlou, and C.E. Goutis,
“Comparison of the Hardware Architectures and FPGA Implementations of Stream Ciphers,”
available at http://www.vlsi.ee.upatras.gr/~mgalanis/pubs/icecs04_stream.pdf

[5] Webpage of ECE 545, Introduction to VHDL, Fall 2006, available at
 http://ece.gmu.edu/courses/ECE545/index.htm
[6] K. Gaj, “FPGA and cryptography: Is marriage in the cards?”, Proc. 2nd International Workshop on

Cryptographic Architectures Embedded in Reconfigurable Devices - CryptArchi 2004, Abbey La
Bussiere near Dijon, June 16 – 18, 2004.

[7] K. Gaj and P. Chodowiec, "Comparison of the hardware performance of the AES candidates using
reconfigurable hardware," Third Advanced Encryption Standard (AES) Candidate Conference,
New York, April 13-14, 2000.

[8] K. Gaj and P. Chodowiec, "Fast implementation and fair comparison of the final candidates for
Advanced Encryption Standard using Field Programmable Gate Arrays," Proc. RSA Security Conf.
- Cryptographer's Track, San Francisco, CA, April 8-12, 2001, pp. 84-99.

 Available at http://ece.gmu.edu/crypto/publications.htm
[9] R. Lien, T. Grembowski, K. Gaj, “A 1 Gbit/s Partially Unrolled Architecture of Hash Functions

SHA-1 and SHA-512,” LNCS 2964, RSA Conference 2004, Cryptographers' Track, CT-RSA 2004,
San Francisco, CA, Feb. 2004, pp. 324-338.

 11

[10] F.K. Gürkaynak, P. Luethi, N. Bernold, R. Blattmann, V. Goode, M. Marghitola, H. Kaeslin, N.
Felber and W. Fichtner, "Hardware Evaluation of eSTREAM Candidates: Achterbahn, Grain,
MICKEY, MOSQUITO, SFINKS, Trivium, VEST, ZK-Crypt", available at
http://www.ecrypt.eu.org/stream/hw.html

[11] T. Good, W. Chelton and M. Benaissa, "Review of stream cipher candidates from a low resource
hardware perspective", available at http://www.ecrypt.eu.org/stream/hw.html

