
Comparative Analysis of Software Libraries for
Public Key Cryptography

Ashraf Abusharekh1 and Kris Kaj2

1 George Mason University, Fairfax VA 22030, USA,
aabushar@gmu.edu,

2 George Mason University, Fairfax VA 22030, USA,
kgaj@gmu.edu

Abstract. Software implementations of public key cryptosystems re-
quire efficient realization of operations on large integers and elements of
the Galois Field. Multiple libraries implementing such operations exist
both commercially and in the public domain, in this paper, we perform
comparison of eight libraries: CLN, CryptoPP, GNU MP, LiDIA, MIR-
ACL, NTL, OpenSSL and PIOLOGIE, using performance and support
of public key primitive operations. The performance of all libraries is
ranked based on the measurements performed according to a methodol-
ogy that takes into account the performance and relative use of primitive
cryptographic operations. The performance results shows that GNU MP
has the best performance for operations on large integers, OpenSSL has
the best performance for operations on elliptic curves over prime fields
and LiDIA and MIRACL have the best performance for operations on
elliptic curves over binary fields. CryptoPP leads in terms of support for
cryptographic primitives and schemes, but is the slowest of all investi-
gated libraries.

1 Introduction

In order to assure the required level of cryptographic strength, mathematical
functions used in public key schemes require operations on large integers of size
varying between 768 to 2048 bits, as well as elliptic curve operations over fields
with element size in the range of 140 to 240 bits. Software implementation of
such arithmetic operations is difficult since currently available processors have a
limited word-size up to 64 bit.

Multiple algorithms have been developed to perform these multi-precision
arithmetic operations efficiently, and several libraries implementing such algo-
rithms exist both commercially and in public domain. Nevertheless to our best
knowledge, no systematic study has been done to compare and contrast these
libraries against each other.

In our study, described in this paper eight libraries have been chosen from the
public domain to perform the comparison: CLN[3], CryptoPP[5], GNU MP[6],
LiDIA[14], MIRACL[20], NTL[17], OpenSSL[18] and PIOLOGIE[7]. The aim of
this study is to evaluate the suitability of using the aforementioned software



2

libraries for implementation on a wide range of public key cryptosystems by
using the performance of primitive operations as the main evaluation criterion,
then further introducing other secondary criteria such as support for public key
primitives and schemes, documentation, ease of use and portability.

Evaluation of software performance is not only considered difficult but also
complex due to the increasing number of variables such as, operating system,
processor, available memory and the choice of compiler and its optimization op-
tions. In order to achieve the performance evaluation, a methodology for ranking
the entire libraries is developed based on the performance of their primitive cryp-
tography related operations.

This study is intended to provide the developers of public key software im-
plementations with knowledge needed to make better choices regarding the use
of available libraries in their products based on the analysis of existing trade
offs.

2 Libraries and Test Platforms

The libraries used in the comparison are listed in Table 1. Majority of these
libraries can be described as multi-precision libraries or number theoretical li-
braries. The only exceptions are CryptoPP, MIRACL and OpenSSL which are
specifically targeting cryptographic schemes.

Table 1. Libraries

Library Category License Version
used

CLN Number theoretic GNU GPL 1.1.5

CryptoPP Cryptographic Copyrighted 5.1
as a compilation

GMP Multi-precision, Number theoretic GNU GPL 4.1.2

LiDIA Number theoretic LiDIA group 2.1pre7

MIRACL Cryptographic Shamus Software Ltd. 4.82

NTL Number theoretic GNU GPL 5.3.1

OpenSSL Cryptographic Apache-style license 0.9.7c

PIOLOGIE Multi-precision, Number theoretic www.hipilib.de 1.3.2

CLN, LiDIA and NTL were compiled using GMP as an underlying multi-
precision library as recommended by the library developers to achieve maximum
speed. The structure of GMP has six function categories; two of them are used
by the aforementioned libraries. These two are: mpz, high-level functions for
signed/unsigned integer arithmetic, and mpn, low-level functions that operate
on natural numbers. Most mpn functions contain machine-dependent code and
are used by other function categories including mpz. CLN and NTL use GMP



3

mpn functions to build a different user interface, while LiDIA uses mpz functions.
There are two different types of editions of PIOLOGIE; the normal editions, de-
pendent on specific processors, compilers and operating systems; and the special
editions, independent of these factors. A special scientific edition v1.3.2 was used
in this paper. This edition is distributed under the terms and conditions of the
GNU General Public License.

Two machines were used for the performance analysis, 2.0GHz Pentium IV
with 512 MB RAM and 2x 400MHz UltraSPARC-Solaris-II with 4-MB E-cache
and 2048 MB RAM. The Pentium IV machine is hosting two operating systems,
Windows XP (Cygwin) and RedHat Linux 9.0. The libraries were compiled using
GNU C/C++ compiler on all three operating systems using instructions pro-
vided by the libraries writers. Measurements were analyzed to obtain a general
overall ranking of the libraries with respect to one another on each platform
based on the overall rank of each operation.

3 Cryptographic Operations

The primitive cryptographic operations and sizes of operands were chosen based
on their use in practical cryptographic algorithms related to the three well-
known mathematical problems, integer factorization, discrete logarithm and el-
liptic curve discrete logarithm, such as RSA, DSA and ECDSA. The operations
are divided into two main sets according to the operand sizes and types. The
first set contains operations on large integers: multiplication, modular exponen-
tiation, greatest common divisor and multiplicative inverse (extended greatest
common divisor), with operands sizes 768, 1024 and 2048 bits.

The second set, contains operations on elliptic curve points; point addition
and scalar multiplication with base point order lengths 163, 233 and 409 bits
(equivalent to 1024, 2240 and 7680 bit RSA/DSA keys [21]) for elliptic curves
over binary fields (EC2) and 162, 226 and 386 bits (equivalent to 1024, 2048 and
7680 bit RSA/DSA keys[21]) for randomly generated elliptic curves over prime
fields (ECP).

3.1 Large Integer Operations

Multiplication: Multiplication Algorithms implemented in the libraries are
summarized in Table 2. The Karatsuba[1][11] algorithm has a running com-
plexity of O(nlog 3) which is an improvement over the classical multiplication
[11] algorithm at O(n2). Classical, Comba[4] and Karatsuba multiplication al-
gorithms are of practical importance for the operand sizes used in the per-
formance testing. The Toom-Cook (T-C) algorithm[11], with a running com-
plexity of O(n 2

√
2 log n log n) and Fast Fourier Transform (FFT) algorithm[11],

with running complexity of O(n log n log log n) are asymptotically superior to
Karatsuba algorithm. However these algorithms do not offer any speed im-
provements for the operand sizes currently used in public key cryptography.
Figure 1 shows the different operand sizes in bits and the algorithms used for



4

Table 2. Multiplication Algorithm Ranges

GMP GMP

CLN CryptoPP LiDIA LiDIA OpenSSL PIOLOGIE
NTL/PIV NTL/SPARC

Classical [0,1120) - [0,576) [0,1280) [0,512) [0,256]
Comba - [0,256] - - - -
Karatsuba [1120,80000) > 256 [576,4448) [1280,7104) ≥ 512 (256,160000)
T-C - - [4448,188416) [7104,122800) - -
FFT ≥ 80000 - ≥ 188416 ≥ 122800 - ≥ 160000

their multiplication. All libraries were compiled using default ranges and thresh-
olds, however these thresholds can be changed to best fit the underlying plat-
form/microprocessor. GMP is the only library that adjusts the threshold not
only depending on operand sizes, but also on the underlying microprocessor ar-
chitecture, a set of tune up programs are supplied with GMP that can be invoked
on the targeted machine to measure the timing of GMP routines and propose
thresholds that produce better results. The library must be recompiled in order
for the change to be effective. This directly affects LiDIA and NTL which use
GMP implementations of multiplication algorithms. On the other hand CLN
uses GMPs mpn functions to build its own multiplication algorithms as a result
is not directly affected. CryptoPPs implementation of the Karatsuba algorithms

Fig. 1. Multiplication Algorithms for Different Key

requires the input sizes to be powers of 2. In case they are not, they have to



5

be extended to the next power of 2 before applying the algorithm e.g. an input
of size 768 bit is extended to 1024 bits. Although, OpenSSLs implementation
of Karatsuba-Comba algorithm also requires the input sizes to be powers of
2, classical multiplication is used when this condition does not hold. MIRACL
implements classical multiplication for all sizes.

Modular Exponentiation: Modular exponentiation algorithms implemented
in the libraries and their corresponding thresholds are summarized in Table
3. Left-to-right[15] (denoted as LR) and right-to-left[15] (denoted as RL) algo-
rithms require L(E) − 1 squarings, where L(E) is the bitlength of the expo-
nent, and W (E) − 1 multiplications, where W (E) is the Hamming weight of
the exponent. Both algorithms do not require precomputations. Left-to-right
k-ary[15](denoted as LR k-ary), simultaneous multiple exponentiation[15] (de-
noted as SME) and sliding window[12][15] (denoted as k-ary SW) algorithms
need precomputations. Figure 2 shows the algorithms used by the respective li-

Table 3. Modular Exponentiation Algorithm Ranges

Library CLN CryptoPP GMP LiDIA MIRACL NTL OpenSSL PIOLOGIE

LR [2,8] - [2,32] - - [2,512) - -
RL - - - ≥ 2 - - - ≥ 2
LR k-ary (8,) - - - - - - -
SME - ≥ 2 - - - - - -
k-ary SW - - > 32 - ≥ 2 ≥ 512 ≥ 2 -

braries for three different exponents, E = 3, E = 65537, and a random exponent
the same size as the size of the modulus N .

GCD and xGCD: Table 4 summarizes the libraries implementations for the
GCD and xGCD algorithms. Complete description and analysis of these algo-
rithms can be found in [11].

3.2 Elliptic Curve points

Operations on elliptic curves are limited to four libraries: CryptoPP, LiDIA,
MIRACL and OpenSSL. The used version of OpenSSL supports only ECP, and
does not suppoet EC2.

Scalar Multiplication: Table 5 summarizes the libraries implementations of
EC point scalar multiplication.



6

Fig. 2. Modular Exponentiation Algorithms for Different Exponent Sizes

Table 4. GCD and xGCD Algorithms

Library GCD xGCD

CLN Lehmer[13][11][15] Lehmer
CryptoPP Euclid[11][15] Binary[11][15]
GMP/LiDIA/NTL Generalized Binary[10][23] Lehmer
MIRACL Lehmer Lehmer
OpenSSL Binary Binary
PIOLOGIE Generalized binary Euclid

Table 5. Elliptic Curve Scalar Multiplication Algorithms

Library Scalar Multiplication

CryptoPP Simultaneous Sliding Window
LiDIA Left-to-Right
MIRACL wNAF-based interleaving [16]
OpenSSL wNAF-based interleaving

4 Methodology

Measurements were conducted in two different ways depending on the platform.
The first method of testing referred to as RDTSC method was used on Pen-
tium IV platforms. The RDTSC method uses the RDTSC[9][2] (read time-stamp
counter) instruction to access the time-stamp counter, a 64 bit model specific
register that is incremented every clock cycle, present on Intel processors begin-
ning with the Pentium processor. The CPUID instruction is used as a serializing
instruction to prevent out-of-order execution. The RDTSC method was used to
determine the number of clock cycles required to perform the given operation.



7

The overhead associated with the call of the instructions was calculated and sub-
tracted from the final result. Both instructions were called several times before
testing the given operation to flush the instruction cache.

The second method referred to as Timing method was used on the Ultra-
SPARC platform. The Timing method uses the function gettimeofday()[1] to
determine the amount of time in milliseconds consumed in the execution of the
given operation due to the lack of CPU cycle counter in the UltraSPARC plat-
form. The function gettimeofday() gives resolution in the range of microseconds.

4.1 Operands

For large Integer Operations, two groups of operands were used: Group A, a
group of randomly generated integers containing three sets of numbers with
sizes 768, 1024 and 2048 bits respectively. Each set contains three large inte-
gers denoted as Ii, Ji and Ki, where i is the size of the integer in bits, e.g.
the first set contains I768, J768, K768 . The values of Ii, Ji and Ki are listed
in Appendix A to [24]. Group B, a group of randomly generated large prime
numbers contains three sets of numbers with sizes 768, 1024 and 2048 bits re-
spectively. Each set contains ten large prime integers denoted as P j

i , where i
is the size of an integer in bits and j is the index of a given prime in the set.
For example, the first set, contains P 0

768, P 1
768, ... P 9

768. Table 6 summarizes the
operations tested and the corresponding groups of operands. With respect to

Table 6. Large Integer Operations

Operation OP Group Comments

Multiplication MUL A Ii × Ji

MOD Exp E = 3 E3 A I3
i MOD Ki

MOD Exp E = 65537 E65537 A I65537
i MOD Ki

MOD Exp E, size of modulus E A IJi
i MOD Ki

Greatest Common Divisor GCD B, A GCD(P j
i , Ki)

Extended GCD xGCD B, A xGCD(P j
i , Ki)

a particular library under a particular operating system, each operation using
group A of operands is tested using either RDTSC or Timing method. All op-
erations are tested using three operand sizes. Thus, each experiment on a given
operation produces three sets of 100 execution times. Each value represents one
iteration while each set represents one operand size. The three sets of 100 ex-
ecution times are sorted and the minimum value for each set is recorded and
denoted as LIBOP

AMIN768
, LIBOP

AMIN1024
, LIBOP

AMIN2048
. The final set of raw re-

sults for each operation tested on a particular library under a certain operating
system OS is denoted by LIBOP

OS = { LIBOP
AMIN768

, LIBOP
AMIN1024

, LIBOP
AMIN2048

}. The same approach was used with operations using group B, except that each



8

operation is tested using 10 different operands P j
i of the same size e.g. there are

10 different operands for 768 bits P j
768, 0 ≤ j ≤ 9 so for each j there will be

100 different values. For each P j
i the 100 values are sorted and the minimum

recorded and denoted as LIBOP
BMINj

i

. The 10 minimum values for each operand

size (LIBOP
BMINj

768
, LIBOP

BMINj
1024

, LIBOP
BMINj

2048
),0 ≤ j ≤ 9 are then averaged,

the result is denoted as LIBOP
BAV Gi

.

LIBOP
BAV Gi

=
1
10

9∑
j=0

LIBOP
BMINj

i

(1)

The final set of raw results for each operation in a particular library under a
certain operating system is denoted by LIBOP

OS = { LIBOP
BAV G768

, LIBOP
BAV G1024

,
LIBOP

BAV G2048
}.

Elliptic curve point operations tested are Point Addition and Scalar Multi-
plication with input sizes of 163, 233 and 409 bits for EC2 and 162, 226 and 386
bits for ECP. For each elliptic curve, two randomly generated points Ti and Si

(i = 163, 233, 409 for EC2, i = 162, 226, 386 for ECP) were used as operands.
Addition: Ti + Si. Scalar Multiplication: (r - 2) Ti were r is the order of the base
point. The final raw results are collected as described for large integer operations
using group A of operands. The elliptic curves and points are listed in Appendix
A to [24].

4.2 Operation Ranking

After obtaining all values of execution times for all operations of the eight li-
braries under the three operating systems, rankings of the operations were calcu-
lated as follows: With respect to an operation OP tested on eight libraries under
a particular operating system OS, execution times of OP are rearranged into
three sets of eight values such that each set contains the results for a particular
operand size under the eight libraries (one value for each execution time under a
particular library i.e. LIBOP

AMINi
or LIBOP

BAV Gi
according to the operand group).

The minimum value in each set, denoted by MINi, where i = 768, 1024, 2048,
is determined and all values in a given set are divided by that value. The result-
ing values, denoted by LIBir

OS
OP represent operation OP ranks with operands

of size i on library LIB. For an operation OP, LIBir
OS
OP = 1.00 corresponds to

the fastest library. A rank equal to r means that an operation under a given
library is r times slower than the same operation under the fastest library for a
given operand size i. Operation OP overall rank under a library LIB denoted
by LIBROS

OP is the geometric mean of its ranks for the three operand sizes 768,
1024 and 2048. Figure 3 shows the raw results and ranks for multiplication under
Pentium IV-Windows XP for all libraries. The final rank of CLN multiplication
is calculated as follows:

CLN768r
WinXP
MUL =

CLNMUL
AMIN768

MIN768
=

8, 940
3, 381

= 2.64 (2)



9

Fig. 3. CLN Multiplication Rank

CLN1024r
WinXP
MUL =

CLNMUL
AMIN1024

MIN1024
=

11, 763
5, 364

= 2.19 (3)

CLN2048r
WinXP
MUL =

CLNMUL
AMIN2048

MIN2048
=

29, 133
17, 605

= 1.65 (4)

CLNRWinXP
MUL = 3

√∏
i

CLNirWinXP
MUL = 3

√
2.64× 2.19× 1.65 = 2.1208 (5)

4.3 Library Ranking

As a result we will have a set of operation rankings for each library on each
operating system; the overall rank of the library denoted by LIBROS on a
particular operating system OS is determined by calculating the geometric mean
of its individual operation ranks.

LIBROS = N

√∏
OP

LIBROS
OP (6)

N is the number of operations considered. N = 6 for large integer operations and
N=2 for EC point operations. The two sets of rankings are considered separately
because EC point operations are not supported by all libraries.

5 Performance Results

As discussed in the previous sections, the following tables show the individual
operations, their ranks and the overall rankings of the libraries on the three
platforms used for performance testing. Each table lists the individual operation
ranking of each library and the overall ranking of the library (Geometric Mean
of individual operation rankings).



10

5.1 Operations On Large Integers

The tables presented in this section show the overall ranking of the libraries
for operations on large integers. The operations rankings are, MUL: Multiplica-
tion ranking, E3: Modular Exponentiation Ranking with exponent = 3, E65537:
Modular Exponentiation Ranking with exponent = 65537, E: Modular Expo-
nentiation Ranking with exponent of the same size as the modulus, GCD: Great-
est Common Divisor ranking, and xGCD: Extended Greatest Common Divisor
ranking.

Table 7 lists the performance results under Pentium IV, Windows XP. In
terms of the overall rank LIBRWinXP , GMP has the best rank and PIOLOGIE
the worst. MIRACL and OpenSSL are very close. OpenSSL Multiplication and
Modular Exponentiation are higher in rank than MIRACL; while MIRACL GCD
and xGCD rank higher than OpenSSL. CryptoPP GCDs rank is higher than
xGCDs rank unlike all other libraries while it is completely the opposite for
PIOLOGIE; in both cases the reason behind that is the choice of algorithms (see
Table 4). Table 8 lists the performance results under Pentium IV, RedHat 9.0. In
terms of the overall rank LIBRRH , GMP has the best rank and CryptoPP the
worst. CryptoPP and PIOLOGIE are slower under RedHat than under Windows
XP; the order of GMP, NTL, LiDIA and CLN is the same as for Pentium IV-
Windows XP. MIRACLs rank is now slightly better than OpenSSLs due to
rankings of GCD and xGCD. PIOLOGIE rank is slightly better than CryptoPP
due to Modular Exponentiations rank with E = 3 and GCDs rank. Table 9 lists
the performance results under Ultra-SPARC, Solaris. In terms of the overall rank
(LIB-R)SPARC, GMP has the best rank and CryptoPP the worst. GMP, NTL,
LiDIA and CLN have the same order. PIOLOGIE has a better ranking than
Pentium IV, while OpenSSLs rank remains the same.

Under all operating systems, LiDIA and NTL use GMP functions for Multi-
plication, GCD and xGCD. This makes their rankings according to these oper-
ations very much close to GMP. For Modular Exponentiation, NTL and LiDIA
have their own different implementations, with NTL choice of algorithms similar
to GMP. CLN has its own implementation for all operations. As an overall result

Table 7. Large Integer Operation Rankings Pentium IV, Windows XP

Library MUL E3 E65537 E GCD xGCD LIBRWinXP

CLN 2.12 2.23 2.25 2.79 1.34 1.37 1.95
CryptoPP 7.11 15.17 4.71 4.04 464.90 9.99 14.56
GMP 1.00 1.00 1.00 1.00 1.01 1.08 1.01
LiDIA 1.08 1.45 1.08 1.65 1.03 1.10 1.21
MIRACL 3.58 22.40 4.56 2.62 5.15 3.15 5.00
NTL 1.01 1.42 1.17 1.18 1.00 1.00 1.12
OpenSSL 2.75 8.07 2.65 2.33 8.31 12.17 4.90
PIOLOGIE 7.60 7.40 6.63 10.65 16.41 213.30 15.51



11

Table 8. Large Integer Operation Rankings Pentium IV, RedHat 9.0

Library MUL E3 E65537 E GCD xGCD LIBRRH

CLN 1.50 1.27 1.39 1.87 1.37 1.27 1.43
CryptoPP 4.49 9.19 3.79 5.04 65.96 16.82 9.78
GMP 1.00 1.00 1.01 1.00 1.00 1.08 1.01
LiDIA 1.00 1.10 1.06 1.84 1.00 1.09 1.15
MIRACL 3.60 21.06 4.30 2.77 3.99 2.36 4.52
NTL 1.01 1.20 1.10 1.29 1.01 1.00 1.10
OpenSSL 2.80 7.12 2.43 2.43 8.93 12.49 4.86
PIOLOGIE 5.35 5.01 5.07 8.79 21.95 24.22 9.27

Table 9. Large Integer Operations Rankings UltraSPARC, Solaris

Library MUL E3 E65537 E GCD xGCD LIBRSPARC

CLN 1.21 1.60 1.70 1.98 1.67 1.40 1.58
CryptoPP 16.43 38.52 18.10 17.68 184.68 49.08 34.99
GMP 1.00 1.00 1.00 1.00 1.00 1.12 1.02
LiDIA 1.00 1.20 1.10 1.55 1.02 1.14 1.16
MIRACL 9.08 23.85 2.98 7.41 8.77 3.71 7.33
NTL 1.00 1.25 1.15 1.13 1.05 1.00 1.09
OpenSSL 2.16 7.80 2.81 2.45 7.67 7.74 4.36
PIOLOGIE 3.51 4.13 4.06 5.95 9.13 37.22 7.01

for large integer operations, GMP has the best ranking under all three platforms
followed by NTL, LiDIA and CLN.

5.2 Operations On EC2 and ECP Points

Figures 4 and 5 show the performance results for operations on EC2 and ECP
points respectively, on all platforms.

For EC2, LiDIA has the best rank under Pentium IV,RedHat 9.0 and Ultra-
SPARC,Solaris while CryptoPP has the worst rank under all platforms. MIRACL
has the best rank under Pentium IV, Windows XP.

For ECP, under all platforms, OpenSSL has the best rank and CryptoPP has
the worst rank.

6 Observations And Comments

6.1 Portability, Documentation and Ease of Use

The number of supported compilers was considered as a measure of portability of
a given library. For CLN, GMP and LiDIA the only supported compiler is GNU



12

Fig. 4. EC2 Operations Rankings

C/C++. PIOLOGIE supports the largest set of compilers followed by CryptoPP,
OpenSSL, MIRACL and NTL.

In terms of documentation and ease of use, PIOLOGIE simple structure
makes it the easiest among all libraries, on the other hand CryptoPP com-
plex structure and insufficient documentation makes it the hardest among all
libraries. CLN, GMP, LiDIA, MIRACL and NTL have complex structure but
their documentation and documentation sample code and test suites decrease
their difficulty.

6.2 CryptoPP GNU C/C++ vs. MS VC++ 6.0

The CryptoPP’s performance was tested under MS VC++ 6.0 and the results
were compared to the results obtained under GNU C/C++. The execution time
ratios for GNU C/C++ vs MS VC++ 6.0 were computed for multiplication and
modular exponentiation for three input sizes under the Pentium IV, Windows
XP machine. It was found that CryptoPP compiled under MS VC++ 6.0 is
more than twice as fast as that compiled under GNU C/C++. This is due to the
library’s optimization for Pentium IV processors under MS VC++ 6.0 versus its
generic Pentium optimization under GNU C/C++. MIRACL and PIOLOGIE
were also compiled under MS VC++ 6.0 with no significant change in their
performance as compared to GNU C/C++.



13

Fig. 5. ECP Operations Rankings

6.3 Support For Public Key Cryptosystems

Support for public key cryptosystems is based on the support of primitive arith-
metic and number theoretical operations needed by the three main categories of
public key cryptosystems, and also on complete implementations of public key
schemes present in the library.

Support for Primitive Operations Figure 7 summarizes the libraries sup-
port for primitive operations on large integers, ECP and EC2. Support for ECP
operations is limited to CryptoPP, LiDIA, MIRACL and OpenSSL. Support for
EC2 is limited to CryptoPP, LiDIA and MIRACL. Elliptic curve generation and
point counting is supported by LiDIA and MIRACL only.

Support for Cryptographic Schemes Complete implementation of Crypto-
graphic schemes is limited to three libraries, CryptoPP, MIRACL and OpenSSL.
CryptoPP has the largest collection of public key cryptographic schemes followed
by MIRACL and OpenSSL. Moreover, CryptoPP contains a collection of secret
key ciphers, hash functions, and MAC functions and I/O support. Version 5.0.4
of the library has received FIPS 140-2 level 1 validation in 9/5/2003. MIRACL
implements cryptographic primitives in IEEE P1363[8]. It also has implemen-
tations for AES and SHA (1, 256, 384, and 512). OpenSSL implements DH,



14

DSA and RSA, and a collection of secret key ciphers, hash functions and MAC
functions.

Fig. 6. Support for Primitive Operations

Fig. 7. Support vs Performance, Pentium IV, RedHat 9.0



15

7 Conclusion

In terms of support for operations on large integers, GMP, NTL, LiDIA, and
CLN have the best performance under all platforms tested, with GMP being
the fastest and CLN the slowest among the group. LiDIA is the only library
in the group that needs a license for commercial use. For a developer targeting
operations on large integers, GMP would be the best choice in terms of per-
formance. The trade off however, is the amount of time and effort needed for
implementation, and portability.

OpenSSL and MIRACL trail libraries from the first group in terms of overall
performance. OpenSSL is faster than MIRACL for all operations except GCD
and xGCD. While having an acceptable performance as compared to other li-
braries and support implementations of cryptographic schemes, this group is a
good choice for fast development of public key cryptosystems based on opera-
tions on large integers.

CryptoPP is the best choice for the fast development based on the com-
plete implementations of a wide range of cryptographic schemes involving large
integers; the drawback is its performance as compared to other libraries.

For elliptic curves over binary fields, the competition is between LiDIA, MIR-
ACL and CryptoPP. LiDIA has the best performance under Pentium IV-RedHat
9.0 and UltraSPARC-Solaris. Under Pentium IV, Windows XP, MIRACL has
the best performance. CryptoPP is the slowest under all platforms.

For elliptic curves over prime fields, OpenSSL has the best performance un-
der all platforms, LiDIA performance is better than MIRACL on Pentium IV-
RedHat 9.0 and UltraSPARC-Solaris, while under Pentium IV-Windows XP,
MIRACL is better than LiDIA. Again CryptoPP has the lowest performance.
For a developer targeting ECP cryptosystems, OpenSSL is a good choice since
it has the best performance, and is portable and free.

Although public key schemes implemented in CryptoPP, MIRACL and OpenSSL
were not compared for performance, one can estimate their performance based
on the performance of primitive operations. Accordingly, OpenSSL is expected
to have better performance followed by MIRACL and CryptoPP respectively,
with CryptoPP having the richest collection of cryptographic schemes.

Figure 7 summaries the libraries support of public key cryptosystems versus
their performance under Pentium IV, RedHat 9.0. The x-axis represents the
performance scale from low performance to high performance, y-axis represents
support starting from support for large integers (LINT) and ending with support
for public key schemes (PKS). GMP has the highest performance and lowest
support, while CryptoPP has the highest support and lowest performance.

This work has been done before the introduction of eBATS [24], and currently
we are trying to use it to test the various asymmetric operations implemented
in the eight libraries . We hope that this will give more insight on some of the
reasons why one libaray cryptographic operation might perform better than the
others under a specific platform.



16

References

1. A. Karatsuba and Yu. Ofman, Multiplication of Multidigit Numbers on Automata.
Soviet Physics-Doklady, 7 (1963), 595-596.

2. R. E. Bryant and D. O’Hallaron. Computer Systems, A Programmer’s Perspective.
Prentice-Hall, 2003.

3. CLN: Class Library for Numbers http://www.ginac.de/CLN/
4. P. G. Comba. Exponentiation cryptosystems on the IBM PC. IBM Systems Journal,

vol. 29, n. 4, pp. 526538, 1990.
5. Crypto++ Library 5.1: a Free C++ Class Library of Cryptographic schemes

http://www.eskimo.com/ weidai/cryptlib.html
6. The GNU MP Library http://www.swox.com/gmp/
7. HiPiLib Piologie http://www.hipilib.de/piologie.htm
8. IEEE P1363: Standard Specifications for Public-Key Cryptography.

http://grouper.ieee.org/groups/1363/
9. Intel Corporation. IA-32 Intel Architecture, Software De-

velopers Manual, vol 2B: Instruction Set Reference, N-Z
http://developer.intel.com/design/pentium4/manuals/25366713.pdf

10. Tudor Jebelean. A Generalization of the Binary GCD Algorithm. ISSAC 93, 111-
116.

11. D.E. Knuth.The Art in Computer Programming. Vol2 : Seminumerial Algorithms.
Addison-Wesley, 2nd.Ed. 1981.

12. C.K. Koc. Analysis of sliding window techniques for exponentiation. Computers
and Mathematics with Applications, vol.30, n.10, pp.1724,195.

13. D. H. Lehmer. Euclid’s Algorithm for Large Numbers. American Mathematical
Monthly. 45 (1938), 227-233.

14. LiDIA: A C++ Library For Computational Number Theory
http://www.informatik.tu-darmstadt.de/TI/LiDIA/

15. A. Menesez, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptogra-
phy. CRC Press, 1997.

16. B. Möller. Algorithms for multi-exponentiation. Selected Areas in Cryptography
SAC 2001 (2001), S. Vaudenay and A.M. Youssef (Eds.), LNCS 2259, pp. 165180.

17. NTL: A Library for doing Number Theory http://www.shoup.net/ntl/
18. OpenSSL: The Open Source toolkit for SSL/TLS http://www.openssl.org/
19. R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures

and Public Key Cryptosystems. Communications of the ACM, vol. 21, no.2, pp. 158-
164, 1978.

20. Shamus Software Ltd MIRACL http://indigo.ie/ mscott/
21. Standards for Efficient Cryptography Group. SEC 2: Recommended Elliptic Curve

Domain Parameters. Version 0.6, 1999.
22. S. Y. Yan. Number Theory for Computing. Springer-Verlag 2000
23. T. Jebelean. A Generalization of the Binary GCD Algorithm. ISSAC 93, pp. 111-

116.
24. eBATS: ECRYPT Benchmarking of Asymmetric Systems

http://www.ecrypt.eu.org/ebats/


	Comparative Analysis of Software Libraries for Public Key Cryptography
	Ashraf Abusharekh(George Mason University), Kris Gaj(George Mason University
	Introduction
	Libraries and Test Platforms
	Cryptographic Operations
	Large Integer Operations
	Elliptic Curve points

	Methodology
	Operands
	Operation Ranking
	Library Ranking

	Performance Results
	Operations On Large Integers
	Operations On EC2 and ECP Points

	Observations And Comments
	Portability, Documentation and Ease of Use
	CryptoPP GNU C/C++ vs. MS VC++ 6.0
	Support For Public Key Cryptosystems

	Conclusion



