
Comparison of FPGA-Targeted Hardware

Implementations of eSTREAM Stream Cipher

Candidates

David Hwang, Mark Chaney, Shashi Karanam, Nick Ton, and Kris Gaj

Department of Electrical and Computer Engineering
George Mason University, Fairfax, Virginia, U.S.A.

{dhwang, mchaney, skaranam, nton1, kgaj}@gmu.edu

Abstract. This work discusses FPGA hardware implementations of all
eSTREAM phase 3 hardware stream cipher candidates (profile 2) and
some of their derivatives. The designs are optimized for maximum through-
put per unit area as well as minimum area, and targeted for Xilinx
Spartan 3 FPGAs. The results have found that the Grain and Trivium
families of ciphers have demonstrated relative implementation efficiency
compared to the rest of the cipher candidates; Mickey also provided a
balance of low area with high throughput per area.

1 Introduction

Efficient hardware implementations of stream ciphers are important in both
high-performance and low-power applications which require encryption. To this
end, in 2004 the ECRYPT stream cipher project (eSTREAM) [1] was launched
to identify new stream ciphers for adoption in a variety of systems; the call
for profile 2 stream cipher candidates in particular focused on stream ciphers
suited toward hardware implementation. Currently in phase 3 of the eSTREAM
competition there are eight families of hardware-oriented stream ciphers which
remain as candidates: DECIM, Edon80, F-FCSR, Grain, MICKEY, Moustique,
Pomaranch, and Trivium. The general characteristics of these ciphers and their
variants are shown in Table 1. In this paper we compare the hardware imple-
mentations of all hardware-oriented candidates (profile 2) and their variants,
targeted toward the Xilinx Spartan 3 family of FPGAs. The source of these
implementations was a capstone course project for a graduate course on digital
system design at George Mason University. As part of the course, each student
was assigned to one cipher variant and asked to implement the cipher from spec-
ification and algorithmic state machine to post-place and route simulation on
FPGA, verifying each step against the C test vectors provided on the eSTREAM
website. At least three students were assigned per cipher variant; after the course
was completed, the authors further optimized the best code for each cipher and
performed further verification. The remainder of the paper is partitioned as fol-
lows. Section 2 describes the specification, design methodology, and tool flow
for the cipher implementations. Section 3 discusses cipher optimizations, both



general and cipher-specific. Section 4 presents implementation results for each
cipher on the Xilinx Spartan 3 FPGA family of devices. Section 5 presents prior
art, and Section 6 concludes the paper.

Table 1. Table of the eSTREAM hardware candidates (profile 2) and their variants

Candidate Key Size Max IV Size Data radix d Separate key Separate IV
(bits) (bits) (bits/cycle) register register

DECIM v2 80 64 0.25 no yes
DECIM 128 128 128 0.25 no no
Edon80 80 64 1 yes yes
F-FCSR-H v2 80 80 8 no no
F-FCSR-16 128 128 16 no no
Grain v1 80 64 1 no no
Grain 128 128 96 1 no no
MICKEY 2.0 80 80 1 no no
MICKEY 128 2.0 128 128 1 no no
Moustique 96 104 1 yes no
Pomaranch 80 /128 108 /162 1 yes yes
Trivium 80 80 1 no no

2 Design Methodology

2.1 Specification

The specification of the system is shown in Fig. 1. The operation of the sys-
tem begins with a system reset, after which the cipher asserts the key iv ready

signal. If the cipher can implement separate encode and decode modes (e.g.
Moustique), the user sets the enc dec signal accordingly. The user asserts the
key iv write signal and commences the loading of the key data and the IV (initial
value) data k-bits at a time through the key iv port. The IV is always loaded
with the maximum size permitted. After the cipher has read in the required
data, it sets the key iv ready flag low and begins the cipher initialization pro-
cess which varies by cipher and which can take a few hundred clock cycles to
complete. Upon completion of the initialization process, the cipher asserts the
data in ready flag, indicating it is ready to process streaming data. The user as-
serts the data in write flag and loads the plaintext data in d-bits at a time into
the cipher. The cipher asserts the data write flag when the ciphertext data out

is valid, and outputs the data d-bits per clock cycle. This general specification
was used for all ciphers with some cipher-specific modifications if necessary. An
example waveform of the cipher operation is given in Fig. 2.



Fig. 1. eSTREAM cipher specification

Fig. 2. Example waveform from a cipher designed according to specification

2.2 Data Radix and Key Radix

As noted in the previous section, the data is input into the cipher d bits per clock
cycle and the key is input into the cipher k bits per clock cycle. The value of d is
referred to as the data radix and affects the throughput of the cipher; the value
of k is referred to as the key radix and affects the programming latency (the
time it takes to input the key and IV into the cipher) of the system. Each of the
eight cipher families (and their variants) has a natural value of d which can be
determined from the authors’ specification. This natural value is shown for each
cipher on Table 1. The value of k is largely independent of the value of d. A large
value of k would reduce the programming latency but potentially increase area
and the required pin count. A smaller value of k would increase programming
latency but potentially reduce area. Unless otherwise noted, to balance these
two issues the value of k was selected to be equal to d for all ciphers.

There are a few exceptions to the values of d and k. For DECIM v2 and
DECIM 128, the ciphers output a decimated output, in which one bit of output



is produced every four clock cycles. Hence the natural value of d is 1 bit per
4 clock cycles = 0.25 bits/clock cycle; in this case k was chosen as 1 bit/cycle.
Two of the cipher families can also be implemented using parallel lookahead
techniques to increase the data radix dramatically with reasonable hardware in-
creases. Specifically, Grain v1 can be implemented to produce d = 16 bits/cycle,
Grain 128 can be implemented to produce d = 32 bits/cycle, and Trivium can
be implemented to produce d = 64 bits/cycle. These variants of the ciphers were
also implemented in this paper. For fair comparison in each of these cases, the
new k value was set to the new d value.

2.3 Tool Flow and Optimization Criteria

The design flow began with the design of an algorithmic state machine (ASM),
followed by the partitioning the design problem into a datapath (including coun-
ters, muxes, etc.) and a controller (a finite state machine). After this process was
complete, the design was implemented in synthesizable VHDL and verified via
functional simulation against the C test vectors using Aldec Active-HDL or Men-
tor Graphics Modelsim. Synthesis was performed using Synplicity Synplify Pro
or Xilinx XST and post-synthesis simulation was performed. Finally, implemen-
tation into FPGA was performed using Xilinx ISE and post-place and route
simulation and static timing analysis was completed. The tools are shown in
Table 2.

The ciphers were targeted for Xilinx Spartan 3 FPGAs, a 90 nm family of
low-cost FPGAs. The smallest device in the Spartan 3 family that could fit the
particular cipher variant was chosen. The designs were optimized for maximum
throughput per area measured in Mbps / slice, as well as minimum area measured
in slices as primary design criteria.

Table 2. Table of FPGA implementation tools

Design Step Tool

VHDL simulation Aldec Active-HDL 7.2, ModelSim SE 6.3a
FPGA synthesis Synplicity Synplify Pro 8.6, Xilinx XST 9.1
FPGA implementation Xilinx ISE 9.1
Target FPGA Xilinx Spartan 3

2.4 Verification

Verification was performed on all ciphers against the C code provided on the
eSTREAM website. It was often the case, due to the C implementation, that
the results were bit-reversed within each byte. For example, a typical output
in C would be F09B in hexadecimal and the equivalent VHDL output would



be 0FD9. The byte-reversing or bit-reversing generally differed from cipher to
cipher. Some ciphers had minor discrepancies between the submitted C code and
the published cipher specification. In those cases, we chose to bit match with the
C code. DECIM 128 used 32 bits of buffer in the submitted C code, but 64 bits
in the specification. Pomaranch was matched against the C code instead of the
specification (since the type 1 jump register for the first three cells was slightly
different).

3 Design Optimizations

3.1 General Optimizations

The ciphers were optimized for implementation on Spartan 3 FPGAs. General
optimization steps for the ciphers included pipelining, retiming, different variants
of state machine encoding (one-hot, gray coding, etc.), clocking FSM outputs,
and modifying options on synthesis and implementation tools. Architectural im-
provements were also made on a cipher-specific basis. In particular, some ciphers
did not require internal storage of the key and IV values. In other words, the key
and IV values could be shifted directly into the Linear Feedback Shift Register
(LFSR), Non-Linear Feedback Shift Register (NFSR), or other memory location
and did not need separate storage registers. The ciphers to which this apply
are shown in Table 1. Since the devices were targeted onto Spartan 3 FPGAs,
a specific optimization used was the inference of Xilinx shift registers (SRL16)
[2]. The SRL16 component allows a 16-bit shift register to be implemented as a
single LUT. Thus a 32-bit shift register could take only 1 slice (2 LUTs), rather
than 16 slices, a drastic savings. However, this savings can only take place when
a true shift register is an internal component (i.e. modeling an LFSR or NFSR).
If combinational logic is required between internal cells in a shift register, often
the inference to SRL16 is not possible. In addition, when intermediate outputs
of the shift registers are required, the full 16-bit register is not inferred; rather,
a shorter register is inferred.

3.2 Cipher-Specific Architectures and Optimizations

DECIM The DECIM family of ciphers is composed of DECIM v2, which uses
an 80-bit key and a 64-bit IV, and DECIM 128, which uses a 128-bit key and
128-bit IV. The DECIM ciphers are based on an LFSR feeding data to a Boolean
function F, which in turns inputs data into a block called the ABSG. The ABSG
serves to decimate data, producing on average one bit per four clock cycles, which
is smoothed out by an external buffer. Optimizations made on the DECIM family
of ciphers included removing a separate storage register for the key, reducing the
size of separate storage of IV (removing it for DECIM 128), and implementing
the F function as a sum rather XOR chains. Coding the LFSR in VHDL to infer
SRL16 Spartan 3 shift register cells was also implemented. The buffer was also
coded in VHDL to infer shift registers.



Edon80 The Edon80 cipher is a binary additive stream cipher with an 80-
bit key and a 64-bit IV. It operates with a unique architecture using pipelined
stages of 80 simple 2-bit transformers called e-transformers. The output of the
cipher occurs two bits per cycle, of which one is discarded, effectively causing the
input and output data rate to be d = 1 bit/cycle. As shown in [3], these stages
can be implemented in an iterative architecture for low area. In this paper, we
implement the original pipelined approach. Architectural improvements for the
Edon80 cipher included adding pipeline registers in the datapath for selection
and mux logic. The quasigroup operations were implemented as ROM lookup
tables.

F-FCSR The F-FCSR family of ciphers is composed of F-FCSR-H v2, which
uses an 80-bit key and an 80-bit (maximum) IV and produces d = 8 bits/cycle,
and F-FCSR-16, which uses a 128-bit key and a 128-bit (maximum) IV and pro-
duces d = 16 bits/cycle. The core of these ciphers is the Feedback with Carry
Shift Register (FCSR), which resembles a shift register with a full adder and a
carry storage block between flip-flops. The output is created by a filter which
uses AND and XOR functions. Architectural optimizations for F-FCSR ciphers
included removing separate key and IV registers by using the same register to
hold the key and IV values as the pseudorandom S bytes after cipher initializa-
tion.

Grain The Grain family of ciphers includes Grain v1, which uses an 80-bit key
and a 64-bit IV, and Grain 128, which uses a 128-bit key and a 96-bit IV. The
Grain ciphers are simple in their architecture, with primary components being
an LFSR, and NFSR, and another non-linear Boolean function. Architecture im-
provements implemented in our design include not implementing separate key
and IV registers and coding the NFSR and LFSR shift registers to infer SRL16
shift register cells. In addition, Grain can be made to produce a higher radix out-
put using a simple lookahead technique described in [4]. Thus, we implemented
a d = 16 bits/cycle version of Grain v1 and a d = 32 bits/cycle version of Grain
128 as well.

MICKEY The MICKEY family of ciphers includes MICKEY 2.0, which uses
an 80-bit key and 80-bit (maximum) IV, and MICKEY 128, which uses a 128-
bit key and 128-bit (maximum) IV. MICKEY stands for Mutual Irregular Clock
Keystream Generator, and uses an R register which is “linear” and an S register
which is “non-linear”. The R and S registers consists of registers with combi-
national logic between each flip-flop, in either feedforward and feedback modes.
Architectural optimizations included not implementing separate key and IV reg-
isters, reducing logic on counter compare signals, and balancing logic and flip-flop
use.

Moustique Moustique is a self-synchronizing cipher, which differs from the
other ciphers which are binary additive, and uses an 80-bit key and 104-bit IV.



The basic structure of Moustique uses a conditional complementing shift regis-
ter (CCSR) and a number of pipelined stages with Boolean functions between
each stage. The cipher has separate encrypt and decrypt modes of operation.
Optimizations on Moustique include not implementing a separate IV register
and various CAD tool optimizations.

Pomaranch The Pomaranch cipher can be implemented either as a 128-bit key
and 162-bit (maximum) IV architecture, or an 80-bit key and 108-bit (maximum)
IV architecture. This paper examines the 80-bit key version only. Pomaranch
with an 80-bit key consists of 6 jump registers, whose outputs cascade from one
register to another in a chain; hence, the cipher is also referred to as a cascade
jump controlled sequence generator. The outputs of each jump register are in-
put into an S-Box and xored by the key to producing the cascading output of
the jump register. Architecture improvements to Pomaranch primarily revolved
around the implementation of the S-Box. Initially the S-Box was implemented
using large lookup tables; during the optimization phase, the S-Box was imple-
mented using reduced hardware based on composite fields and explicit Boolean
operations in [5]. This optimization actually reduced the speed of the design but
improved area; this will be described in the results section.

Trivium The Trivium cipher uses an 80-bit key and an 80-bit IV. It has a
simple structure with a number of LFSR and NFSR registers feeding into one
another. Due to the structure, the architecture was optimized to not implement
separate key and IV registers and to infer SRL16 registers as much as possi-
ble. Trivium also had the advantage of implementing a higher radix (d = 64
bits/cycle) implementation by minimal hardware duplication [6].

4 Results

The results of the Xilinx Spartan 3 FPGA implementations are shown in Ta-
ble 3. The results show area in slices after place-and-route using the CAD tools
described earlier. The maximum clock frequency was determined by the Xilinx
static timing analysis tool. The post place-and-routed designs were simulated at
a baseline clock frequency for functional verification against the C vectors. A
brief overview of each cipher family follows. The DECIM ciphers produced low
area implementations due to the simple LFSR structure; however, the through-
put was low due to the decimation factor of four. Edon80 was the largest design
of the implemented ciphers. The F-FCSR family of ciphers were somewhat large
(342 slices and 473 slices) compared to the smallest ciphers, but due to the
high data radix (8 bits/cycle and 16 bits/cycle), the throughput and through-
put/area was relatively high. Grain was a top performer in terms of small area
and good throughput/area ratio. It was the smallest cipher and the parallelized
versions of Grain produced higher throughput/area ratios. Mickey had a medium
size area but a good throughput/area ratio; the main disadvantage Mickey had



in Xilinx FPGAs were that the S and R registers could not be inferred into
Xilinx primitive shift register blocks; thus Mickey in an ASIC implementation
may yield better results when compared to the other small ciphers. The same
could be said with the F-FCSR family of ciphers. Moustique was of medium-
to-large area with a less than one ratio of throughput/area from our design.
Moustique was the only self-synchronizing cipher so this should be mentioned
in the comparison. Pomaranch was the slowest design and yielded a high area.
An implementation using a lookup table of the S-Box was faster (68 MHz) but
also larger (1155 slices). Trivium was another top performer in terms of area and
throughput/area, again due to its simple structure. In particular, the parallelized
version of 64x produced the best throughput/area ratio. The results of the im-
plementation are also sorted by minimum area and maximum throughput/area
ratio in Table 4. In both of these criteria, Grain and Trivium performed well.
As stated previously, the F-FCSR family performed well in the throughput/area
category and the DECIM family performed well in the minimum area category.
The results are summarized graphically in Fig. 3.

Table 3. Results of Xilinx Spartan 3 FPGA implementations of all eSTREAM candi-
dates

Candidate Data rate Maximum Maximum Area Throughput/ Device
(bits/ Clock Throughput (slices) Area
cycle) Frequency (Mbps) (Mbps/

(MHz) slice)

DECIM v2 0.25 185 46.25 80 0.58 xc3s50-5pq208
DECIM 128 0.25 174 43.5 89 0.49 xc3s50-5pq208
Edon80 1 130 130 1284 0.10 xc3s200-5pq208
F-FCSR-H v2 8 138 1104 342 3.23 xc3s50-5pq208
F-FCSR-16 16 134 2144 473 4.53 xc3s50-5pq208
Grain v1 1 196 196 44 4.45 xc3s50-5pq208
Grain v1 (x16) 16 130 2080 348 5.98 xc3s50-5pq208
Grain 128 1 196 196 50 3.92 xc3s50-5pq208
Grain 128 (x32) 32 133 4256 534 7.97 xc3s50-5pq208
MICKEY 2.0 1 233 233 115 2.03 xc3s50-5pq208
MICKEY 128 2.0 1 223 223 176 1.27 xc3s50-5pq208
Moustique 1 225 225 278 0.81 xc3s50-5pq208
Pomaranch 1 49 49 648 0.08 xc3s50-5pq208
Trivium 1 240 240 50 4.80 xc3s50-5pq208
Trivium (x64) 64 211 13504 344 39.26 xc3s400-5fg320



Table 4. Spartan 3 implementation results sorted by minimum area and maximum
throughput/area

Candidate Area Candidate Throughput/Area
(slices) (Mbps/slice)

Grain v1 44 Trivium (x64) 39.26
Grain 128 50 Grain 128 (x32) 7.97
Trivium 50 Grain v1 (x16) 5.98
DECIM v2 80 Trivium 4.80
DECIM 128 89 F-FCSR-16 4.53
MICKEY 2.0 115 Grain v1 4.45
MICKEY 128 2.0 176 Grain 128 3.92
Moustique 278 F-FCSR-H v2 3.23
F-FCSR-H v2 342 MICKEY 2.0 2.03
Trivium (x64) 344 MICKEY 128 2.0 1.27
Grain v1 (x16) 348 Moustique 0.81
F-FCSR-16 473 DECIM v2 0.58
Grain 128 (x32) 534 DECIM 128 0.49
Pomaranch 648 Edon80 0.10
Edon80 1284 Pomaranch 0.08

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

 1

1 = DECIM v2
2 = DECIM 128
3 = Edon80
4 = F−FCSR−H v2
5 = F−FCSR−16
6 = Grain v1
7 = Grain v1 (x16)
8 = Grain 128
9 = Grain 128 (x32)
10 = MICKEY 2.0
11 = MICKEY 128 2.0
12 = Moustique
13 = Pomaranch
14 = Trivium
15 = Trivium (x64)

 2

1 = DECIM v2
2 = DECIM 128
3 = Edon80
4 = F−FCSR−H v2
5 = F−FCSR−16
6 = Grain v1
7 = Grain v1 (x16)
8 = Grain 128
9 = Grain 128 (x32)
10 = MICKEY 2.0
11 = MICKEY 128 2.0
12 = Moustique
13 = Pomaranch
14 = Trivium
15 = Trivium (x64)

 3

1 = DECIM v2
2 = DECIM 128
3 = Edon80
4 = F−FCSR−H v2
5 = F−FCSR−16
6 = Grain v1
7 = Grain v1 (x16)
8 = Grain 128
9 = Grain 128 (x32)
10 = MICKEY 2.0
11 = MICKEY 128 2.0
12 = Moustique
13 = Pomaranch
14 = Trivium
15 = Trivium (x64)

 4

1 = DECIM v2
2 = DECIM 128
3 = Edon80
4 = F−FCSR−H v2
5 = F−FCSR−16
6 = Grain v1
7 = Grain v1 (x16)
8 = Grain 128
9 = Grain 128 (x32)
10 = MICKEY 2.0
11 = MICKEY 128 2.0
12 = Moustique
13 = Pomaranch
14 = Trivium
15 = Trivium (x64)

 5

1 = DECIM v2
2 = DECIM 128
3 = Edon80
4 = F−FCSR−H v2
5 = F−FCSR−16
6 = Grain v1
7 = Grain v1 (x16)
8 = Grain 128
9 = Grain 128 (x32)
10 = MICKEY 2.0
11 = MICKEY 128 2.0
12 = Moustique
13 = Pomaranch
14 = Trivium
15 = Trivium (x64)

 6

1 = DECIM v2
2 = DECIM 128
3 = Edon80
4 = F−FCSR−H v2
5 = F−FCSR−16
6 = Grain v1
7 = Grain v1 (x16)
8 = Grain 128
9 = Grain 128 (x32)
10 = MICKEY 2.0
11 = MICKEY 128 2.0
12 = Moustique
13 = Pomaranch
14 = Trivium
15 = Trivium (x64)

 7

1 = DECIM v2
2 = DECIM 128
3 = Edon80
4 = F−FCSR−H v2
5 = F−FCSR−16
6 = Grain v1
7 = Grain v1 (x16)
8 = Grain 128
9 = Grain 128 (x32)
10 = MICKEY 2.0
11 = MICKEY 128 2.0
12 = Moustique
13 = Pomaranch
14 = Trivium
15 = Trivium (x64)

 8

1 = DECIM v2
2 = DECIM 128
3 = Edon80
4 = F−FCSR−H v2
5 = F−FCSR−16
6 = Grain v1
7 = Grain v1 (x16)
8 = Grain 128
9 = Grain 128 (x32)
10 = MICKEY 2.0
11 = MICKEY 128 2.0
12 = Moustique
13 = Pomaranch
14 = Trivium
15 = Trivium (x64)

 9

1 = DECIM v2
2 = DECIM 128
3 = Edon80
4 = F−FCSR−H v2
5 = F−FCSR−16
6 = Grain v1
7 = Grain v1 (x16)
8 = Grain 128
9 = Grain 128 (x32)
10 = MICKEY 2.0
11 = MICKEY 128 2.0
12 = Moustique
13 = Pomaranch
14 = Trivium
15 = Trivium (x64)

 10

1 = DECIM v2
2 = DECIM 128
3 = Edon80
4 = F−FCSR−H v2
5 = F−FCSR−16
6 = Grain v1
7 = Grain v1 (x16)
8 = Grain 128
9 = Grain 128 (x32)
10 = MICKEY 2.0
11 = MICKEY 128 2.0
12 = Moustique
13 = Pomaranch
14 = Trivium
15 = Trivium (x64)

 11

1 = DECIM v2
2 = DECIM 128
3 = Edon80
4 = F−FCSR−H v2
5 = F−FCSR−16
6 = Grain v1
7 = Grain v1 (x16)
8 = Grain 128
9 = Grain 128 (x32)
10 = MICKEY 2.0
11 = MICKEY 128 2.0
12 = Moustique
13 = Pomaranch
14 = Trivium
15 = Trivium (x64)

 12

1 = DECIM v2
2 = DECIM 128
3 = Edon80
4 = F−FCSR−H v2
5 = F−FCSR−16
6 = Grain v1
7 = Grain v1 (x16)
8 = Grain 128
9 = Grain 128 (x32)
10 = MICKEY 2.0
11 = MICKEY 128 2.0
12 = Moustique
13 = Pomaranch
14 = Trivium
15 = Trivium (x64)

 13

1 = DECIM v2
2 = DECIM 128
3 = Edon80
4 = F−FCSR−H v2
5 = F−FCSR−16
6 = Grain v1
7 = Grain v1 (x16)
8 = Grain 128
9 = Grain 128 (x32)
10 = MICKEY 2.0
11 = MICKEY 128 2.0
12 = Moustique
13 = Pomaranch
14 = Trivium
15 = Trivium (x64)

 14

1 = DECIM v2
2 = DECIM 128
3 = Edon80
4 = F−FCSR−H v2
5 = F−FCSR−16
6 = Grain v1
7 = Grain v1 (x16)
8 = Grain 128
9 = Grain 128 (x32)
10 = MICKEY 2.0
11 = MICKEY 128 2.0
12 = Moustique
13 = Pomaranch
14 = Trivium
15 = Trivium (x64)

 15
1 = DECIM v2
2 = DECIM 128
3 = Edon80
4 = F−FCSR−H v2
5 = F−FCSR−16
6 = Grain v1
7 = Grain v1 (x16)
8 = Grain 128
9 = Grain 128 (x32)
10 = MICKEY 2.0
11 = MICKEY 128 2.0
12 = Moustique
13 = Pomaranch
14 = Trivium
15 = Trivium (x64)

Area (slices): log scale

T
hr

ou
gh

pu
t/A

re
a 

(M
bp

s/
sl

ic
es

):
 lo

g 
sc

al
e

Fig. 3. Area and throughput/Area results in graphical form

5 Comparison to Previous Work

The papers [3], [7], [8], [9], and [10] all show Xilinx FPGA implementations of
various eSTREAM candidates. In addition, [11] gives results for eSTREAM can-



didates on Altera devices. There has also been work on ASIC implementations
of eSTREAM candidates, such as those found in [12], [7], [13], and [14]. As seen
in Table 5, our results compare well with the best previously published FPGA
results in terms of throughput/area, particularly for MICKEY, Grain, and Triv-
ium. For some ciphers, as far as we know, there are no previously published
FPGA implementations (though ASIC implementations may exist) to compare
with; these include DECIM v2, DECIM 128, F-FCSR-H, F-and FCSR-16 (a Po-
maranch FPGA implementation has been published in [15], but we were not able
to obtain the paper.). Some notes on the other ciphers: the Edon80 publication
[3] shows an iterative architecture; our architecture is not iterative but the two
architectures can be compared using throughput/area. The authors of Mous-
tique [16] produced an FPGA implementation faster than ours but of similar
area. Paper [9] implements Mosquito, a Moustique predecessor. In general our
work agrees with [8] and [7] that Trivium and Grain seem best suited for Xilinx
FPGA implementation.

Table 5. Previously published Xilinx FPGA implementations of eSTREAM ciphers.

Candidate Maximum Maximum Area Throughput/ Device
Clock Throughput (slices) Area

Frequency (Mbps) (Mbps /
(MHz) slice)

Edon80 [3] 149 1.87 50 0.04 Spartan-3
Grain v1 [9] - 105 48 2.19 Spartan-II
Grain v1 [7] 193 193 122 1.58 Spartan-3
Grain v1 (x16) [7] 155 2480 356 6.97 Spartan-3
Grain 128 [8] 181 181 48 3.77 Virtex-II
MICKEY 128 2.0 [10] 170 170 167 1.02 Virtex
MICKEY 128 2.0 [8] 200 200 190 1.05 Virtex-II
MICKEY 128 2.0 [7] 156 156 261 0.60 Spartan-3
Moustique [16] - 369 252 1.46 Virtex-II
Mosquito [9] - 137 298 0.46 Spartan-II
Trivium [8] 207 207 41 5.05 Virtex-II
Trivium [9] - 102 40 2.55 Spartan-II
Trivium [7] 201 201 188 1.07 Spartan-3
Trivium (x64) [7] 190 12160 388 31.34 Spartan-3

6 Conclusion

This paper described hardware implementations of all eSTREAM profile 2 phase
3 candidates targeted for Xilinx FPGAs. From the results, and assuming the
mathematical security of all ciphers to be equivalent, the authors deduce the
Grain and Trivium family of ciphers are most efficient in terms of the metrics



of minimum area and maximum throughput per area on Xilinx FPGA archi-
tectures. These ciphers also have the added benefit of high-throughput modes,
in which lookahead structures can greatly increase the data radix, and thus the
throughput. The Mickey family of ciphers also provided a good balance of low
FPGA area and good throughput / area ratio.

Acknowledgements. The authors wish to thank the students of the Fall 2007
ECE 545 class at George Mason University. Particular thanks to Brent Roeder
(Edon80), Arvind Bhat (F-FCSR), Bin Zhou (Moustique), and Justin Thorpe
(Pomaranch).

References

1. eSTREAM, ECRYPT Stream Cipher Project http://www.ecrypt.eu.org/stream.
2. Xilinx Spartan-3 FPGA Family: Complete Data Sheet http://www.xilinx.com.
3. Kasper, M., Kumar, S., Lemke-Rust, K., Paar, C.: A compact implementation of

Edon80. eSTREAM, ECRYPT Stream Cipher Project, Report 2006/057 (2006)
http://www.ecrypt.eu.org/stream.

4. Hell, M., Johansson, T., Meier, W.: Grain - a stream cipher for constrained envi-
ronments. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/010 (2005)
http://www.ecrypt.eu.org/stream.

5. Jansen, C., Kholosha, A., Helleseth, T.: A lightweight implementation of the Po-
maranch S-Box. eSTREAM, ECRYPT Stream Cipher Project, Report 2007/042
(2007) http://www.ecrypt.eu.org/stream.

6. De Canniere, C., Preneel, B.: Trivium specifications. eSTREAM, ECRYPT Stream
Cipher Project http://www.ecrypt.eu.org/stream.

7. Gaj, K., Southern, G., Bachimanchi, R.: Comparison of hardware performance
of selected phase II eSTREAM candidates. State of the Art of Stream Ciphers
Workshop (SASC 2007), eSTREAM, ECRYPT Stream Cipher Project, Report
2007/026 (2007) http://www.ecrypt.eu.org/stream.

8. Bulens, P., Kalach, K., Standaert, F.X., Quisquater, J.J.: FPGA implementations
of eSTREAM phase-2 focus candidates with hardware profile. State of the Art
of Stream Ciphers Workshop (SASC 2007), eSTREAM, ECRYPT Stream Cipher
Project, Report 2007/024 (2007) http://www.ecrypt.eu.org/stream.

9. Good, T., Chelton, W., Benaissa, M.: Review of stream cipher candidates from a
low resource hardware perspective. eSTREAM, ECRYPT Stream Cipher Project,
Report 2006/016 (2006) http://www.ecrypt.eu.org/stream.

10. Kitsos, P.: On the hardware implementation of the MICKEY-128 stream ci-
pher. eSTREAM, ECRYPT Stream Cipher Project, Report 2006/059 (2006)
http://www.ecrypt.eu.org/stream.

11. Rogawski, M.: Hardware evaluation of eSTREAM candidates: Grain, Lex,
Mickey128, Salsa20 and Trivium. State of the Art of Stream Ciphers Work-
shop (SASC 2007), eSTREAM, ECRYPT Stream Cipher Project, Report 2007/025
(2007) http://www.ecrypt.eu.org/stream.

12. Feldhofer, M.: Comparison of low-power implementations of Trivium
and Grain. State of the Art of Stream Ciphers Workshop (SASC
2007), eSTREAM, ECRYPT Stream Cipher Project, Report 2007/027 (2007)
http://www.ecrypt.eu.org/stream.



13. Good, T., Benaissa, M.: Hardware results for selected stream cipher
candidates. State of the Art of Stream Ciphers Workshop (SASC
2007), eSTREAM, ECRYPT Stream Cipher Project, Report 2007/023 (2007)
http://www.ecrypt.eu.org/stream.

14. Gurkaynak, F., Luethi, P., Bernold, N., Blattmann, R., Goode, V., Marghitola,
M., Kaeslin, H., Felber, N., Fichtner, W.: Hardware evaluation of eSTREAM
candidates: Achterbahn, Grain, MICKEY, MOSQUITO, SFINKS, Trivium, VEST,
ZK-Crypt. eSTREAM, ECRYPT Stream Cipher Project, Report 2006/015, (2006)
http://www.ecrypt.eu.org/stream.

15. Kitsos, P., Koufopavlou, O.: An FPGA-based implementation of the Pomaranch
stream cipher. In: 3rd Int. Mobile Multimedia Communications Conference
(MSAN) - MobiMedia 2007. (Aug 2007)

16. Daemen, J., Kitsos, P.: The self-synchronizing stream cipher MOUSTIQUE. eS-
TREAM, ECRYPT Stream Cipher Project http://www.ecrypt.eu.org/stream.


