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AbstractMost modern security standards and security applications are de�ned to be algorithm in-dependent, that is, they allow a choice from a set of cryptographic algorithms for the samefunction. Since the Data Encryption Standard (DES) is currently the most widely usedprivate-key encryption algorithm, DES is usually amongst them. Field Programmable GateArrays (FPGA) are recon�gurable hardware devices. They can switch algorithms on-the-y. Thus, cryptographic algorithms which are implemented on FPGAs provide an an idealmatch for algorithm independent security applications. On FPGAs, cryptographic algo-rithms can run much faster than on software while preserving the security of traditionalhardware solutions. At the same time, FPGAs allow potentially the same exibility assoftware does. Although there have been a few previous reports on DES implementationson recon�gurable devices, there has been no systematic treatment of that matter.We designed and implemented various architecture options with strong emphasis onhigh-speed performance. Techniques like pipelining and loop unrolling were used and theire�ectiveness for DES on FPGAs investigated. We also performed optimization on a lowerlevel. The most interesting result is that we could achieve data rates of up to 384 Mbit/susing a standard Xilinx FPGA (speed-grade -3). This result is by factor 30 faster thansoftware implementations while we are still maintaining exibility.
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Chapter 1
Introduction
1.1 MotivationWe are in the midst of a shift toward an information society. In a recent study [10]Dataquest reports that at the end of 1997 82 million computers were connected tothe Internet. They projected the number of computers connected to the Internet forthe year 2001 to be 268 million. With this immense growth the Internet also be-comes more and more attractive as a market place. Other areas of communicationsare growing too, e.g., the wireless communication market, electronic payment systems(home banking), to name just a few. At the same time security aspects of informationand communication systems are of growing concern. Tapped mobile phone conversa-tions, stolen credit card numbers, faked bank transactions are just a few examples ofthreats imposed by an unprotected communication infrastructure. The central toolfor achieving the desired security is cryptography.Already in 1972, the National Bureau of Standards, now the National Instituteof Standards and Technology (NIST), was aware of the potential thread to computerand communications data. They initiated a program to develop a standardized en-cryption algorithm. In 1976 the Data Encryption Standard (DES) was released. Since1



CHAPTER 1. INTRODUCTION 2then DES was approved by the American National Standards Institute (ANSI X3.92)and renamed Data Encryption Algorithm (DEA), by the International Standards Or-ganization (ISO) and many bank standards. DES is being reviewed every �ve yearsfor renewed approval. The next review is scheduled for this year and it is expectedthat DES will not be reapproved for another �ve years. DES is currently the mostwidely used private-key algorithm and it is also part of many other standards e.g.,for ATM cell encryption, the Secure Socket Layer protocol, and for various ANSIbanking standards. Even if DES is not being reapproved, it is still important and willcontinue to play a major role for several more years.Most new security standards and security applications are de�ned to be algo-rithm independent. That is, for a given security service such as privacy, a number ofdi�erent algorithms can be used alternatively. This situation applies to public-keybased services as well as to private-key services. It is fairly easy to switch cryptoalgorithms in software, but it is di�cult in hardware. On the other hand, hardwaresolutions provide a better speed and higher physical security. One answer to thisproblem is recon�gurable hardware, based on modern �eld programmable gate array,or FPGA, devices. FPGAs can switch algorithms, they can thus be used to buildalgorithm agile applications. This means that the same device can be used for dif-ferent algorithms, the nature of the algorithms does not matter. In cryptographicapplications, an FPGA can be used for the realization of several di�erent encryptionalgorithms. Although at a given time only one algorithm is con�gured, the FPGA canbe recon�gured with a di�erent algorithm on-the-y if needed. Moreover the sameFPGA can therefore be used for public-key and private-key algorithms. In summary,cryptographic algorithms on FPGAs bear a number of advantages such as:� Algorithm agility, the same FPGA can be reprogrammed on the y to supportdi�erent algorithms,� Scalable security, through di�erent versions on the same algorithm (e.g., DES



CHAPTER 1. INTRODUCTION 3and triple-DES),� Alterable architecture parameters, e.g., desirable features such as variableS-boxes, variable number of rounds, or di�erent modes of operation can easilybe realized,� Resource e�cient the same resource can be used for private and public-keyalgorithms.Although there have been a few previous reports on DES implementations on re-con�gurable devices, there has been no systematic treatment of the matter. In thisthesis, several architectural options for DES implementation on FPGAs are investi-gated and implemented with a strong emphasis on high-speed architectures.1.2 Thesis OutlineChapter 3 describes the design and implementation cycle. Furthermore it gives anoverview of the hardware and software tools we used for our research. In addition itincludes some remarks on the performance and e�ectiveness of the tools.Chapter 4 provides an introduction to the Data Encryption Standard. It alsoconcerns the modes of operation and enhancements to DES.Chapter 5 explores di�erent architecture options for DES like loop unrolling andpipelining. At the end it provides an overview of the architecture versions we decidedto implement.Chapter 6 is concerned with the design of the circuit. DES is broken down intosmall elementary computational units and some optimizations are performed.



CHAPTER 1. INTRODUCTION 4Chapter 7 describes the implemented architectures in detail. It explains our choiceof device and gives an overview of the source code. The signals of the control logicfor each architecture are discussed in detail.Chapter 8 presents the results of our implementations of the di�erent architec-tures. We compare the achievements of pipelining and loop unrolling and discuss theinuence of chip parameters.Chapter 9 concludes this work with a short summary of the results and somerecommendations for further research.



Chapter 2
Previous Work
This chapter summarizes previous work on hardware implementations of DES. Itdistinguishes between ASIC and FPGA implementations and also mentions futuretechnologies which might become important for DES implementations.2.1 Early WorkEarly references for custom hardware implementations are [6] and [11]; both paperswere presented at CRYPTO 84. [6] describes an DES implementation which supportsall four modes of operation. The maximum speed of this chip is said to be 20 Mbit/sec.The paper [11] concerns an LSI digital encryption processor. It enables a user toprogram any mode of operation. The maximum speed is given as 4.72 Mbit/sec.In 1988 [8] was published. It describes a CMOS chip in 3-�m double-metal tech-nology which can achieve a data rate of 32 Mbit/sec. This is 60% faster than theimplementation shown in [6]. It also supports all modes of operation.Earlier reference [3] is the �rst paper which is mainly concerned with increasingthe performance of DES by restructuring the algorithm. This paper mentions theone-round sub-key precomputation as a speed-up technique. Another interesting idea5



CHAPTER 2. PREVIOUS WORK 6that is presented in this paper is XOR rearrangement which takes one XOR-delayout of the critical path. We did not employ this approach in our design, as modernFPGA synthesizing tools optimize the low level logic themselves. The data rate ofthe implementation was not mentioned.2.2 Current ImplementationsModern custom hardware implementations can achieve data rates of 1 Gbit/sec andbeyond. Reference [2] was the �rst report of a custom chip, employing modern Gal-lium Arsenide technology to achieve 1 Gbit/sec. In a later publication of the sameresearch group [5] they describe this design in more detail. They also mention thatthe fasted chip they tested could run at 1.4 Gbit/sec. One major disadvantage of thisdesign is, that only a 7 bit wide port is available for loading the master key. Thatmeans that frequent key changes slow this chip down signi�cantly.The �rst paper to show an implementation of DES on FPGAs is [9]. Their ap-proach generates key-speci�c circuitry for the Xilinx FPGAs. One drawback of thisapproach is that a binary image (bit-stream) for each key has to be precomputed be-fore it can be used in the device. We experienced run times of the synthesis and placeand route tools from 4 hours to longer than weeks on high power workstations. Thisis a task that can not be accomplished on the y. Hence, prestored binary imageslimits the number of keys that can be used drastically. Furthermore even their fastestimplementation without decryption and adjusted to one key, is in the same device(although a slower speed grade) by factor three slower and requires almost twice asmuch logic resources as the design we present in this paper DES ED16.A very interesting technology, especially for algorithm agile implementations ispresented in [4]. The new technology Dynamically Programmable Gate Arrays (DP-GAs) support a single cycle, array wide context switch. That means that it take



CHAPTER 2. PREVIOUS WORK 7only one clock cycle for the device to switch to an entirely di�erent algorithm. Withcurrent FPGAs this takes 10's of milliseconds due to limited bandwidth to o�-chipmemories [14]. Although [4] does not target cryptographic applications in particular,DPGAs seem highly attractive for these purposes.



Chapter 3
Methodology
This chapter describes the design procedure we applied for our research. It alsodescribes our choice of tools in hardware and software as well as it includes someremarks on the performance and e�ectiveness of the tools.3.1 The Design CycleThe general design cycle for this work consisted of the following steps:1. Research of DES algorithm2. Researching architecture options3. Optimizing the DES architecture4. VHDL implementation of basic DES function blocks5. Creating multiple versions of the DES design employing di�erent architectureoptions6. Verifying each version on the register-transfer-level (RTL)8



CHAPTER 3. METHODOLOGY 97. Synthesis and logic optimization8. Place and Route for a speci�c device9. Back-annotated veri�cation of the designThe steps outlined above were performed more or less in this order. Steps 1trough 4 were performed �rst and sometimes even concurrently; e.g., during theVHDL implementation of the basic function blocks some more ideas for optimizationdeveloped.Steps 5 to 9 were performed in this order for each design separately. The nextdesign was started usually while the current design was in the Place and Route stage,because this particular stage took the longest time. In case a veri�cation step did notgive the desired results, we had to go back some steps, usually till step 5 or even 4,to �x that problem and start the design process again from there.Early in the design we decided upon a FPGA vendor and a device family asdescribed in Subsection 7.1. That decision was based majorly on previous work inthis area done by Haskins (see [7]). Availability of the actual Chip and the tools wereanother important reason. This enabled us to use vendor speci�c macros (LogiBLOX,see Chapter 6.3.1).3.2 ToolsThe entire design, with the exception of the LogiBLOX, was implemented usingVHDL. Each design was tested at the register-transfer-level (RTL), i.e., right fromthe VHDL �les and LogiBLOX VHDL simulation models. This way we could �ndlogical errors and major timing problems early in the design phase. For the rtl-levelsimulation Synopsys VHDL analyzer (vhdlan) version 1997.08 was used.



CHAPTER 3. METHODOLOGY 10The next step is to synthesis the design and create an optimized netlist describingthe gate level design in Xilinx format. Synopsys fpga analyzer version 1997.08accomplished this task.The netlist is used by Xilinx to place and route the design for a speci�c device.The result is a bit-stream to program the chip, a simulation model as well as exacttiming results. The Xilinx design-manager dsgnmgr version M1.3.7 was employed forthis.The �nal step is to verify the design once again, this time with the simulationmodel generated by the Xilinx tools. This simulation model contains the actualphysical net, CLB, and pad delays introduced from the device. The Synopsys VHDLanalyzer (vhdlan) was used once again to verify this back-annotated design.3.2.1 Xilinx Synopsys InterfaceThe Xilinx-Synopsys-Interface (XSI) design tool kit allows to implement Xilinx FieldProgrammable Gate Arrays (FPGA) designs using the Synopsys FPGA Compiler. Itincludes all libraries necessary for Synopsys fpga analyzer to optimize the design forthe FPGA and for Synopsys vhdlan to read the back-annotated designs from Xilinxfor past place and route veri�cation. Figure 3.1 presents a ow chart diagram of thedesign ow with the XSI tools.3.2.2 Simulation and Veri�cationAs stated before, the design is veri�ed twice during the design process. First theRTL-level simulation of the VHLD source code and the behavioral models of theLogiBLOX and second after place and route.For both simulations the same test bench can be used. The test bench is a VHDL�le which contains test vectors and the order and timing of how they are going tobe applied to the design. A sample test bench can be found in Appendix E and the



CHAPTER 3. METHODOLOGY 11
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CHAPTER 3. METHODOLOGY 12result of a past place and route timing simulation in Appendix D.The test vectors for the design were generated by a DES design written in C. Thisprogram also provides results from within the DES design, so that smaller entitiescould be tested and errors could be tracked down easily to single VHDL �les.The Synopsys simulator can work in two di�erent modes: compiled mode andinterpreted mode. In order to run in compiled mode a C-compiler is necessary. On theHP-Workstation on which Sysnopsys is installed, a C-compiler was not available to us.Therefore we had to run the simulator in interpreted mode. That required editing ofall the library �les used by the design: mvlutil.vhd, mvlarith.vhd, logiblox.vhd,simprim Vcomponents.vhd, simprim Vpackage.vhd, and simprim VITAL.vhd and ofcourse time sim.vhd, which is the result of the past place and route timing simulation.Sample script �les to invoke the simulation are presented in Appendix A.1 andAppendix A.2.3.2.3 SynthesisIn the middle of our research we switched synthesis tools from Workview O�ce toSynopsys. That also included a shift from Windows to UNIX. It was found thatthe Synopsys tools are much more powerful than the Workview O�ce environment,but also much more di�cult to learn. The documentation accompanying Synopsys isquite extensive and very helpful.One interesting result of that switch is that the design DES16 v1.1 (see 6.3) syn-thesized with Workview O�ce could run at a maximum speed of 62 Mbit/sec, whereasadjusted to Synopsys and synthesized the same design could run at a maximum speedof 88 Mbit/sec.Another major advantage of Synopsys is the ability to run script �les. All neces-sary steps to synthesize and optimize a design, prepare summaries and specifying thesetup parameters, can be included in a script �le. A sample script �le is provided in



CHAPTER 3. METHODOLOGY 13Appendix B.3.2.4 Place and RouteThe Xilinx place and route tools were used on the HP Workstations as well as onWindows computers. The Windows computers were Pentium based PCs running at200 Mhz, whereas the HPs are running at 60 MHz and at 75 Mhz. Therefore theXilinx tools were much faster on the PCs, but still the pace and route process tookin some cases more than a week. The results achieved using the Xilinx tools on thePCs were comparable with the results achieved using the Xilinx tools on the HPs.The input to the place and route tools is a design netlist and constraints �legenerated by Synopsys, as well as user constraints, specifying the maximum clockperiod desired and pin assignments. The output of this process is a bit-stream �lethat can be used to program the FPGAs and the back-annotated design.Furthermore the Xilinx tools perform a timing analysis after place and routewhich shows the minimum clock period for the given design. This clock period isguaranteed by Xilinx for the design and therefore is to be seen as rather pessimistic.We are using this timing result for our speed calculations.



Chapter 4
DES Algorithm
The Data Encryption Standard was published by the National Bureau of Standardsin 1975. DES is a so-called Block Cipher, i.e., it encrypts or decrypts a whole block ofdata bits at once as opposed to stream ciphers which encrypt or decrypt a bit-streambit by bit. Figure 4.1 shows a basic I/O diagram of DES.
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Figure 4.1: Overview of DESDES encrypts blocks of 64 bits length (plaintext) with a 56 bits long key. Theresult is a ciphertext of equal length to the plaintext. During the explanation ofDES in this chapter we will concentrate on the encryption function The decryption,which is almost identical to the encryption function. function will be discussed inSection 4.3. Our description will highlight the internal functions of DES which areimportant for a hardware implementation.14



CHAPTER 4. DES ALGORITHM 15Here is a small example of how DES works. Alice and Bob are sharing the samekey k. Alice encrypts the plaintext x and sends the encrypted version y over thenetwork to Bob. Bob uses the same key and the inverse of the DES function torecover the plaintext x. Alice Bob
DES-1
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XDESk(X) = Y DES�1k (Y ) = X4.1 The DES Core FunctionFigure 4.2 shows an overview of the whole DES-Algorithm. The plaintext input ofDES x gets permuted by the initial permutation IP resulting in x0. For the next stepx0 is split up into the higher (�rst) 32 bits L0 and the lower (last) 32 bits R0 (littleendian): IP(x) = L0R0.This is the input for the main DES function, the so called Feistel Network. Itcontains an iterative structure; a certain function is executed 16 times where theinput of the next round is the output of the previous round. Figure 4.3 shows oneround of DES.The index i indicates for the current iteration and can therefore take the values1 � i � 16. The result of one round of the DES algorithm can be described as:Li = Ri�1Ri = Li�1 � f(Ri�1; Ki)where � denotes the exclusive-or of two bit-strings. The f -function of each roundis dependent on Ri�1 and the sub-key Ki of the 56-bit key. After the 16th roundR16 and L16 get swapped resulting in R16L16 and the �nal permutation IP�1 which
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Figure 4.3: DES Feistel networkis inverse to the initial permutation is applied. This generates the �nal ciphertexty =IP�1(R16L16).The f -function (see Figure 4.4) takes the 32 bits of Ri�1 as input and expands itto 48 bits; 16 bits of Ri�1 are appearing twice at the output E(Ri�1). The 48 bits arecombined via an exclusive-or with the 48 bits sub-key Ki from the key transformation:E(Ri�1)�Ki. This result is split into 8 blocks of 6 bits each which form the input ofthe S-Boxes. The S-Boxes are basically look-up tables which assign each 6-bit inputvalue a 4-bit value. The eight 4-bit values get combined to 32 bits and a permutationP is applied. The resulting bit-string is f(Ri�1; Ki).4.2 DES Key SchedulingEach round of DES requires a distinct sub-key Ki. These sub-keys are generatedfrom the key K. The key K is 64 bits long and contains eight parity check bits, so
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Figure 4.4: DES f-functionthe e�ective key is 56 bits long. The 56 bit key is also the input the design describedhere expects.The sub-key generation is also an iterative process comprising 16 rounds. The56-bit key gets permuted by the permutation PC-1 and then split up into two halfs,each 26 bits long: PC-1(K) = C0D0, where C0 denotes the higher (�rst) 32 bits andD0 the lower (last) 32 bits (little endian).For each round of the Feistel network a new sub-key is being generated. Figure 4.5shows one iteration of the DES key schedule. With each iteration Ci�1 and Di�1 arerotated left (cyclic shift left) denoted as LSi. Depending on i, Ci�1 and Di�1 areshifted one position (for i = 1,2,9,16) or two positions (otherwise).Ci = LSi(Ci�1)



CHAPTER 4. DES ALGORITHM 19Di = LSi(Di�1)The result Ci and Di are passed as input to the next round and are also permutedwith the permutation PC-2 to form the sub-key: Ki =PC-2(CiDi). This permutationreduces the number of bits from 56 to 48.
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Figure 4.5: DES key schedule
4.3 DecryptionDES decryption uses the same algorithm as encryption. The only di�erence is thatthe sub-keys have to be generated in a reverse order K16; : : : ; K1. The result will bethe plaintext x. In order to create the sub-keys in the reverse order, Ci�1 and Di�1have to be cyclicly shifted right, as opposed to left for encryption, depending on i.The following Table 4.1 shows how many positions Ci�1 and Di�1 have to be shifted.



CHAPTER 4. DES ALGORITHM 20Iteration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Encryption 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1Decryption 0 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1Table 4.1: DES sub-key shift schedule4.4 DES Modes of OperationFour modes of operation have been standardized for DES (see [13] page 83): elec-tronic codebook mode (ECB), cipher block chaining mode (CBC), cipher feedback mode(CFB), and output feedback mode (OFB).Electronic Codebook Mode (ECB) is the simplest approach for using a blockcipher. The plaintext is divided into 64 bit long blocks Xi and each block is encryptedseparately (see Figure 4.6). Identical plaintext blocks result in identical ciphertextblocks: Yi = ek(Xi). The major problem with this simple mode of operation is thatciphertext substitution attacks can be performed.
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Figure 4.6: Electronic Codebook ModeCipher Block Chaining Mode (CBC) employs an initialization vector IV and afeedback loop. Each block of ciphertext depends on all previous blocks of ciphertext(see Figure 4.7). The �rst block of the plaintext is XORed with the initializationvector before it is encrypted. All consecutive blocks is XORed with the encryptedprevious block before they are encrypted: Y0 = ek(X0 � IV ) and Yi = ek(Xi � Yi�1)for i � 1.
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Figure 4.7: Cipher Block Chaining ModeCipher Feedback Mode (CFB) is often employed to encrypt messages smallerthan 64 bits; it does not require padding. Figure 4.8 shows a schematic of the CFB. Ashift-register is preloaded with an initialization vector IV in stage i = 0. The paralleloutput of this 64 bits wide shift register is encrypted: ~z0 = ek(IV ).
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CHAPTER 4. DES ALGORITHM 22Output Feedback Mode is similar to CFB except that output of the encryptionfunction is used as feedback and not the ciphertext.4.5 DES EnhancementsDES can be made more secure if it is used three times (triple encryption) in a row.Two di�erent type of triple encryption are very common: encrypt-decrypt-encrypt and encrypt-encrypt-encrypt.For the encrypt-decrypt-encrypt type usually only two keys are used. The plain-text X gets encrypted with the �rst key ek1(X), decrypted with the second keye�1k2 (ek1(X)) and then encrypted again with the �rst key: Y = ek1(e�1k2 (ek1(X))).Figure 4.9 shows the encrypt-encrypt-encrypt type. The plaintext X gets en-crypted three times in a row with a di�erent key for each: Y = ek3(ek2(ek1(X))).
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Figure 4.9: Triple encryptionPlease note that double encryption does not result in a signi�cantly larger keyspace than single encryption due to themeet-in-the-middle attack. Due to this attack,the key space of triple encryption is roughly 22�56 = 2112 [1].



Chapter 5
Architecture
The �rst step for an e�ective implementation of DES is to structure the algorithmand evaluate the resulting architecture options.5.1 Structuring DESAs described in Section 4 the DES algorithm contains an iterative structure. Datais passed through the Feistel Network, as shown in Figure 4.3, 16 times, each timewith a di�erent sub-key from the key transformation. Figure 5.1 shows this using aow-chart. The plaintext is the input and the iteration counter i is set to 1. TheFeistel Network is shown as a box labeled Roundi. After each round, i is tested if it issmaller than 16 and if so, i is incremented by one, the current output is fed-back intothe Feistel Network, and the next iteration starts. After 16 rounds the calculation ofthe ciphertext y is done.From the owchart we can derive the block diagram of DES which is closer to thehardware implementation and therefore enables us to investigate further enhance-ments. The block diagram shown in Figure 5.2 comprises the same design as theowchart. 23
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Figure 5.2: DES block diagramAs we have seen in Section 4, the incoming data and key are passed through initialpermutations. Then the data passes 16 times through the Feistel Network and also



CHAPTER 5. ARCHITECTURE 2516 sub-keys are generated simultaneously. Both, the Feistel Network operation andthe sub-key generation is denoted in the block diagram as Combinatorial Logic (CLU,combinatorial logic unit). In order to be able to loop the output back to the inputof the combinatorial logic unit we need Registers and Multiplexers. The multiplexerswitches the inputs of the combinatorial logic unit between data from the previousround and new input data and key. The registers store the results of each loop andpass them on to the multiplexer. The output of the data register passes through theFinal Permutation. For simplicity the result of each loop passes through the �nalpermutation and then to the output. It is the responsibility of a control logic tosignal an external entity if the output is valid or not.5.2 Loop UnrollingIn this section we will discuss the �rst general technique for accelerating a DEShardware implementation. Loop Unrolling is the concatenation of two combinatorialunits in order to half the number of iterations. This means that with one clock cycletwo rounds of DES will be calculated. Figure 5.3 shows the block diagram. Thisblock diagram di�ers from Figure 5.2 only in the 2nd combinatorial logic unit. Theinitial and �nal permutations as well as the registers and multiplexers are the same.Where is now the speed improvement? In the not unrolled version, one iterationof DES has the following simple timing model: Tmux + Tcl + Treg where Tmux denotesthe time a signal needs to pass through a multiplexer, Tcl the delay introduced by thecombinatorial logic, and Treg the delay introduced by the register. So for the whole16 rounds this sums up to: 16 � Tmux + 16 � Tcl + 16 � Treg.The equation for the loop unrolled version looks like this: Tmux+2�Tcl+Treg. Thishas to be executed 8 times, so that the over-all delay is now: 8�Tmux+16�Tcl+8�Treg.The same principle can be applied to four unrolled DES rounds. The following list
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Figure 5.3: Block diagram of DES with 2 unrolled loopsshows the timing for each case.DES not unrolled : 16 � Tmux + 16 � Tcl + 16 � Treg2 unrolled loops : 8 � Tmux + 16 � Tcl + 8 � Treg4 unrolled loops : 4 � Tmux + 16 � Tcl + 4 � TregObviously we can not reduce the delay introduced by the combinatorial logicunits but we reduced the runs through the multiplexers and bu�ers by half. Butthere is another motivation for speed increase if modern design methods are applied.It is possible that the synthesis tools can optimize an unrolled design better, andtherefore the logic can potentially be reduced. Also the routing can be more e�ective.5.3 PipeliningWe now discuss the second architectural principle for accelerating DES. Pipeliningtries to achieve a speed improvement in a di�erent way. Instead of processing one



CHAPTER 5. ARCHITECTURE 27block of data at a time, a pipelined design can process two or more data blocks. Adesign with two pipelines is shown in Figure 5.4. The block diagram in Figure 5.4 isvery similar to the one with the two unrolled loops (Figure 5.3). The only di�erenceis the additional bu�er between the combinatorial logic units.
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Figure 5.4: Block diagram of DES with 2 pipelinesThe �rst block of data x1 and the associated key k1 are loaded and passed throughthe initial permutations and the multiplexer. The 1st combinatorial logic unit com-putes x1;1 and k1;1 which is stored into the 1st register block. On the next clock cyclex1;1 and k1;1 leave the 1st registers and the 2nd combinatorial logic unit computesx1;2 and k1;2 which is put into the 2nd register block. At the same time the secondblock of data x2 and key k2 are loaded and passed through the initial permutations,and the multiplexer, and the 1st combinatorial unit computes x2;1 and k2;1 which getmoved into the 1st register block.



CHAPTER 5. ARCHITECTURE 28Now the pipeline is �lled and with each clock cycle another iteration for two pairsof data and key are computed. The data which has entered the pipeline �rst, willalso exit it �rst. At that time the next data and key pair can be loaded.The advantage of this design is that two or more data{key pairs can be workedupon at the same time. As there is still only one instance of the initial permutations,the multiplexer and the �nal permutation, the cost in terms of resources on the chipwill not be twice as high as if we implemented two full non pipelined DES designs.Also there has to be only one control logic which is just slightly more complicated thanfor a non pipelined DES design. The maximum clock speed should be roughly thesame as during one clock cycle the same amount of logic resources has to be traversedas in the non pipelined design. It is also straight forward to design pipelines withmore than two stages, e.g., with four.5.4 Combination of Pipelining and Loop UnrollingIt is possible to combine both architecture acceleration techniques that we just de-scribed. Each pipeline would contain two unrolled loops. The resulting block diagramshown in Figure 5.5 looks similar to Figure 5.4 except that each combinatorial logicunit is duplicated. During one clock cycle two iterations of two data{key pairs getcomputed: x1;4 and k1;4 get computed from x1;2 and k1;2, and x2;2 and k2;2 get com-puted from x2 and k2.5.5 Comparison and Design DecisionsAs described in Section 4.4 some DES modes of operation require that the outputof DES is used to compute the next input (e.g., the CFB mode). If such a mode isto be used, a pipelined design would not work, as it processes two data{key pairs atthe same time. A loop unrolled design would work �ne and is the only method for
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Figure 5.5: Block diagram of DES with 2 unrolled loops within 2 pipelinesspeed-up that can be applied for such modes. In an application that is not subjectto this constraint, like ECB-mode or ATM-counter mode, the pipelined versions canbe used. A pipelined design should result in a higher speed-up than a loop unrolleddesign.One major objective of this thesis was to obtain a realistic comparison of the di�er-ent acceleration methods (loop unrolling, pipelining, combination of both). Table 5.1shows the architecture versions we decided to implement.
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Name DescriptionDES ED16 standard DES (16 iterations)DES ED8 DES with 2 unrolled loops (8 iterations)DES ED4 DES with 4 unrolled loops (4 iterations)DES ED16x2 DES with 2 pipelinesDES ED16x4 DES with 4 pipelinesDES ED8x2 DES with 2 pipelines each containing 2 unrolled loopsTable 5.1: Implemented DES architectures



Chapter 6
DES Design
This section is concerned with the design of the circuit. The next step after analyzingthe architecture of DES is to break DES down into small elementary computationalunits, so called function blocks and then to analyze how they can be implementede�ciently. After this some further optimization can be done.6.1 DES Function BlocksIn this section we will only describe a not-unrolled and not-pipelined version of DES.Also, only encryption is possible. The function blocks developed can then also beused for the more advanced designs.In the previous section we have shown that the DES design comprises the initialpermutation, the �nal permutation, registers and multiplexers. The combinatoriallogic unit needs to be investigated further. It contains the Feistel network and thekey scheduling.The Feistel network, as shown in Figure 4.3, comprises a 32-bit XOR and thef -function. The f -function is composed of an expansion box, a 48-bit XOR, eightS-Boxes and a permutation box. 31



CHAPTER 6. DES DESIGN 32The key schedule needs shift registers and a permutation box. The shift registershave to rotate the bits by one or two positions depending on the round and changedirections if the mode changes between encryption or decryption. The basic functionblocks for all these operations are� Permutation Boxes and Expansion Boxes� Registers� Multiplexers� Standard Logic Functions (XOR)� S-Boxes� Shift Registers6.2 Logic ResourcesEvery function block listed in the previous section will be analyzed here and ways toimplement them will be shown.6.2.1 Permutation Boxes and Expansion BoxesPermutation boxes reorder the bits of a bit-string. Expansion boxes are a special formof permutation boxes; they also duplicate bits. Reordering and duplication of bitsrequires no logic resources, it can be implemented by wiring only. The outputs of theprevious logic block are wired in a di�erent (permuted) order to the next logic block.If the permutation is directly at the input or at the output of the device, which is thecase for the initial permutations and the �nal permutation, the reordering takes placein the wiring of the I/O pins of the device and the logic blocks they are connected



CHAPTER 6. DES DESIGN 33to. Therefore a permutation or expansion causes no additional delays, except somewiring delays if it complicates the wiring. Following is an example of the VHDLdescription of the PC1BOX, which is the initial permutation for the key.library ieee;use ieee.std_logic_1164.all;ENTITY pc1box IS PORT( CD : IN std_logic_vector (56 downto 1);KS : OUT std_logic_vector (56 downto 1));END pc1box;ARCHITECTURE behave OF pc1box ISBEGINKS(1) <= CD(53); KS(2) <= CD(46); KS(3) <= CD(39); KS(4) <= CD(32);KS(5) <= CD(52); KS(6) <= CD(45); KS(7) <= CD(38); KS(8) <= CD(31);KS(9) <= CD(24); KS(10) <= CD(17); KS(11) <= CD(10); KS(12) <= CD(3);KS(13) <= CD(51); KS(14) <= CD(44); KS(15) <= CD(37); KS(16) <= CD(30);KS(17) <= CD(23); KS(18) <= CD(16); KS(19) <= CD(9); KS(20) <= CD(2);KS(21) <= CD(50); KS(22) <= CD(43); KS(23) <= CD(36); KS(24) <= CD(29);KS(25) <= CD(22); KS(26) <= CD(15); KS(27) <= CD(8); KS(28) <= CD(1);KS(29) <= CD(25); KS(30) <= CD(18); KS(31) <= CD(11); KS(32) <= CD(4);KS(33) <= CD(54); KS(34) <= CD(47); KS(35) <= CD(40); KS(36) <= CD(33);KS(37) <= CD(26); KS(38) <= CD(19); KS(39) <= CD(12); KS(40) <= CD(5);KS(41) <= CD(55); KS(42) <= CD(48); KS(43) <= CD(41); KS(44) <= CD(34);KS(45) <= CD(27); KS(46) <= CD(20); KS(47) <= CD(13); KS(48) <= CD(6);KS(49) <= CD(56); KS(50) <= CD(49); KS(51) <= CD(42); KS(52) <= CD(35);KS(53) <= CD(28); KS(54) <= CD(21); KS(55) <= CD(14); KS(56) <= CD(7);END behave;6.2.2 RegistersRegisters (data bu�ers) can be implemented either in combinatorial logic or usingRAM elements. Most modern FPGAs have RAM/ROM elements built in which aremore e�ective than combinatorial logic for these purposes.



CHAPTER 6. DES DESIGN 346.2.3 MultiplexersMultiplexers can easily be implemented using combinatorial logic. The synthesizingtools will try to use prede�ned functions from the FPGA vendor to implement them.The same is valid for the registers too. Here is an example of the VHDL descriptionof a 32-bit multiplexer.library ieee;use ieee.std_logic_1164.all;ENTITY mux32 IS PORT( A : IN std_logic_vector (31 downto 0);B : IN std_logic_vector (31 downto 0);O : OUT std_logic_vector (31 downto 0);sel : IN std_logic);END mux32;ARCHITECTURE behave OF mux32 ISsignal element : std_logic_vector (31 downto 0);BEGINO <= element;element <= B WHEN sel = '1' ELSEA;END behave;6.2.4 Standard Logic FunctionsStandard logic functions, such as AND, OR, XOR are composed of basic gates. Theirperformance does not depend of the width of the bit-string they have to operate upon,e.g., the 32-bit XOR performs equally to the 48-bit XOR used in the Feistel network.Following is a VHDL example of the 32-bit XOR.library ieee;use ieee.std_logic_1164.all;ENTITY xormod IS PORT( A : IN std_logic_vector (31 downto 0);B : IN std_logic_vector (31 downto 0);



CHAPTER 6. DES DESIGN 35Q : OUT std_logic_vector (31 downto 0));END xormod;ARCHITECTURE behave OF xormod ISBEGIN Q <= A XOR B;END behave;6.2.5 S-BoxesS-Boxes are look-up tables which are of size 6 x 4 and therefore contain 64 4-bit values(see Section 4.1). The implementation of the S-Boxes is cruical for an e�cient DESdesign [7]. If they are implemented via combinatorial logic they need hundreds oflogic elements. A study by Greg Haskins [7] shows that using ROM elements is themost e�cient way to implement S-Boxes.6.2.6 Shift RegistersThe shift registers1 used in the key schedule can be classi�ed as combinatorial shifters,decisive shifters and directional shifters. Figure 6.1 shows an overview of the di�erentshifters. All these shifters rotate a four-bit bit-string by at most 1 bit.Combinatorial Shifters shift by a �xed number of positions and they shift always,not depending on a clock. They are essentially permutations.Decisive Shifters have an additional input upon which they decide if the datashould be shifted or not. A decisive shifter can be realized with a multiplexer.Directional Shifters are very similar to decisive shifters. They also have theadditional input upon which they decide if the data has to be shifted right or left. Adirectional shifter can also be realized with a multiplexer.1shift registers are used here synonymously for rotators
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Figure 6.1: Implementation of shift registers6.3 OptimizationsFigure 6.2 shows a detailed block diagram of standard DES. It is a re�nement of thehigh-level diagram in Figure 5.2. It contains all the function blocks discussed in theprevious section. This design has been implemented under the name DES16 Version1.1.6.3.1 LogiBLOXOne simple way of optimizing the design is to use LogiBLOX. LogiBLOX are precon-�gured, optimized modules for Xilinx FPGAs. The performance of the LogiBLOXdoes not depend on the quality of the synthesizing tool, as modules described inVHDL would.We created a design using LogiBLOX named: DES16 Version 1.2. The functional
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CHAPTER 6. DES DESIGN 38blocks we implemented in this version as LogiBLOX have a light grey background inthe block diagram shown in Figure 6.2.6.3.2 Timing AnalysisBefore the actual implementation we can do a rough timing analysis of the designshown in Figure 6.2. Boxes with a white background denote permutation and ex-pansion boxes as well as combinatorial shifters. They are just wiring resources sothey can be assumed to be very fast. Boxes with a background color are using logicresources, so it will take some time for data to propagate through them.Each iteration, except the 1st, starts with the data and the key coming out of theregisters and through the multiplexers. Then the data passes through an expansionbox and into an 48-bit XOR. The key passes through a combinatorial shifter and thenthrough a decisive shifter. The result of this goes through a permutation and also tothe 48-bit XOR.The data XOR-ed with the sub-key is applied to the S-Boxes, another permutationand �nally through another XOR. After this data and key are at the input of theregisters. Figure 6.3 shows how these function elements are executed in successiveorder from left to right. Function elements executed concurrently are shown in thesame column.
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CHAPTER 6. DES DESIGN 39This diagram shows a problem. The 48-bit XOR (xormod48) can not be executed2until the key is propagated through the conditional shifters (lm rot).6.3.3 Improved Sub-Key-Generation LogicThe problem shown in the timing analysis section (Section 6.3.2) leads to a di�erentapproach for the sub-key generation. As Figure 6.3 shows, the problem is that thecurrent sub-key is generated too late and the data path has to \wait". After thesub-key generation is done the data-path has to execute more steps. That time isunused on the key-path. A higher level of parallelism would be valuable.The solution to this problem is to perform the sub-key computations while thedata moves through the S-Boxes and the �nal XOR. That means, that the sub-keywould have to be precomputed by one clock cycle and send to the XOR (xormod48)right at the beginning of the next clock cycle.In order for this to work we have to be able to give the f -function during the 16thround the 16th sub-key and at the same time load a new key and pre-compute the 1stsub-key for the next data packet. Therefore we have to move the multiplexer betweenthe permutation (pc2box) and the rest of the key generation. Figure 6.4 shows howa sub-key generation according to this schema would look like.6.3.4 Encryption { DecryptionAs we are generating the sub-key during the time the data moves through the S-Boxes and the �nal XOR, we have more time than we would need for just a sub-keygeneration for encryption.It is possible to include the logic for decryption too at the expense of more logicresources, but with the same time constraints. As described in Subsection 4.3 de-cryption means that we have to shift the key right, either none times, or one time, or2executed means that it will produce the �nal result
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CHAPTER 6. DES DESIGN 41two times. Therefore we can not use combinatorial shifters but only decisive shifters.The key propagates through two branches. In the �rst branch it is shifted left by 1or 2 positions, depending on the round, for encryption. In the second branch the keyis shifted right by 0, 1, or 2 positions, depending on the round, for decryption. Amultiplexer at the end switches between the results of the two branches and therewithswitches between encryption or decryption. This way a simple directional shifter isimplemented. Figure 6.5 shows the block diagram for this.
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Figure 6.6: Encryption { decryption timing diagramstate for the sub-key) this diagram has only 5 grey boxes in a row. We implementedthis version of DES under the name: DES ED16.6.4 Control LogicThe control logic for this DES design is a simple state machine. A non loop unrolledimplementation of DES needs 16 iterations to compute the cipher text. This can berealized with a state machine comprising 16 states ordered in one loop.In Section 6.3.3 we showed the advantages of computing the sub-key one roundin advance. For this to work we need to create a state machine with an initial stateto preload the key before the data is loaded in state 1. In state 16, while the lastiteration of the data is calculated, the key for the next operation is preloaded. Thestate machine does not need to return to the initial state but can continue right tostate 1. Figure 6.7 shows the state transition diagram.The transition from one state to the next in sequence is triggered by the clock.A clock enable signal is also implemented which makes it possible to stop the statemachine in any given state for as many clock cycles as wanted. A reset signal in anystate causes the state machine to return to the INIT state.The control signals the state machine controls are not shown in the diagram asthey vary from design to design. However, here is a short overview about the controlsignals the state machine has to provide.
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Figure 6.7: DES control state machineKE key expected, signals an external entity that a key is expected at the inputs (KE= high)IE input expected, signals an external entity that the data is expected at the inputs(IE = high)OV output valid, signals an external entity that the output data is valid (OV = high),otherwise the data at the output is not valid (OV = low)Data Sel signal for the input multiplexer of the data path to either load new data(data sel = low) or forward data from the data loop (data sel = high)Key Sel signal for the input multiplexer of the key path to either load a new key(key sel = high) or forward the key from the key loop (key sel = low)SFT shift, signals the sub-key generation logic to not shift the key (SFT = low) ifin decryption mode (ST1 has to signal one position).



CHAPTER 6. DES DESIGN 44ST1 shift two signals the sub-key generation logic to shift the key by one (ST1 =low) or two positions (ST1 = high).Other control signals are needed for di�erent versions of the design. These are de-scribed in the respective sections. The state machine for a design with loop unrollingcontains as many states as iterations needed plus one initial state. That means, thestate machine for a design with 2 unrolled loops comprises 16=2 + 1 = 9 states andfor a design with 4 unrolled loops only 16=4 + 1 = 5 states. Therefore loop-unrollingresults in simpler state machines.6.5 Filling PipelinesA pipelined design introduces an initial delay. The reason is that the pipelines haveto be �lled �rst. In an ideal 4 pipeline design it would take 4 clock cycles to �ll thepipelines.The designs of type DES ED* listed in Table 5.1 and the design DES MQP withencryption and decryption mode, perform key precomputation. As described in Sec-tion 6.3.4 the key has to be loaded one clock cycle before the data. Therefore it ispossible to use the same input pins for key and data. The data multiplexer and keymultiplexer can demultiplex the combined input at no additional cost. The advantageis that less IO-pins are used.The multiplexed data-key input complicates the loading of pipelines. The key hasto be loaded �rst and then the associated data. This requires that during the clockcycle after half the pipelines are �lled nothing is loaded. Starting with the followingclock cycle the rest of the pipelines can be �lled. Table 6.1 shows how the pipelinescan be �lled the most e�cient way. In the states not shown no key or data is loaded.The state R16 behaves the same way as the state INIT.From Table 6.1 it can be seen that a design with eight pipelines could not be



CHAPTER 6. DES DESIGN 45State INIT R1 R2 R3 R4 R5 R6 R7 R8 R9Input for 2 pipeline design K1 D1 { K2 D2 { { { { {Input for 4 pipeline design K1 D1 K2 D2 { K3 D3 K4 D4 {Table 6.1: Loading pipelinesimplemented in this way. It would take eight states (INIT { R7 ) to load the �rst fourkey{data pairs, and during R8 nothing could be loaded. It would take another eightstates to load the remaining four key{data pairs. But during state R16 the next K1is to be loaded. Therefore only seven out of eight pipelines could be used. A solutionto this problem is to have separate key and data busses.



Chapter 7
DES Implementation
We implemented various architecture versions of DES (see Table 5.1) and a modi�edversion for an MQP (Major Qualifying Project or senior thesis). These architectureswere also ported to di�erent chips.7.1 FPGA ChoiceWe have chosen FPGAs from Xilinx for our implementation. This decision was basedon research described in [7]. The major relevant discovery in [7] was that it is di�cultto implement more than one set of S-boxes with other commercial available recon�g-urable devices such as Altera EPLDs. However, multiple sets of S-boxes are neededfor loop unrolling and for pipelining. We therefore had to choose a vendor who couldsupply us with devices large enough for this task.7.2 VHDL-SourceFor each function block (see Section 6.1) a separate VHDL �le was created, except forthe ones implemented using LogiBLOX. Table 7.1 lists the �les and their function.46
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Filename Functionbigbu�.vhd 64 bit data bu�er and 56 bit key bu�er with one clock eachbigmux.vhd 64 bit data and 56 bit key multiplexer with two switchescontrol.vhd Control Logic (state machine)des.vhd Top level description �le for DESebox.vhd Expansion permutationfeistel.vhd One iteration of the feistel network�unc.vhd F-Functioninitial.vhd The initial permutations for the plaintext and keyipinv.vhd inverse initial permutationipnorm.vhd Initial Permutationiteration.vhd One complete iteration inc feistel and sub-key generationkey1gen.vhd Key generation �rst round onlykeygen.vhd Key generationla rot.vhd Combinatorial Rotation Unit. Performs a 1 bit cyclic leftshift automaticallylm rot.vhd Combinatorial Left Rotation Unit. Performs a 1 bit cyclicleft shift or a pass through, depending on the mode bitmodule pack.vhd module de�nition �lemux32.vhd 32 bit 2x1 multiplexermux56.vhd 56 bit 2x1 multiplexermux64.vhd 64 bit 2x1 multiplexerpbox.vhd Permutation boxpc1box.vhd PC-1 DES Key Scheduler permutationpc2box.vhd PC-2 Key Scheduler permutationra rot.vhd Combinatorial Rotation Unit. Performs a 1 bit cyclic rightshiftreg28.vhd 28 bit registerreg56.vhd 56 bit registerreg64.vhd 64 bit registerrm rot.vhd Combinatorial Left Rotation Unit. Performs a 1 bit cyclicright shift or a pass through, depending on the mode bitsboxes.vhd Main SBOX modulexormod.vhd 32 bit XOR Modulexormod48.vhd 48 bit XOR ModuleTable 7.1: VHDL source �les and their function



CHAPTER 7. DES IMPLEMENTATION 48These �les can be divided into �les that describe core functions and are not de-pending on other �les, and �les that describe higher level modules. The �le mod-ule pack.vhd contains the component instantiation of all the components (modules).The core function �les are: ebox.vhd, ipinv.vhd, ipnorm.vhd, la rot.vhd, lm rot.vhd,mux32.vhd, pbox.vhd, pc1box.vhd, pc2box.vhd, ra rot.vhd, reg28.vhd, rm rot.vhd,xormod.vhd, and xormod48.vhd. Some �les are written in two versions, one usingVHDL to describe the core functions and the other employing LogiBLOX to providethe core function: mux56.vhd, mux64.vhd, reg56.vhd, and reg64.vhd. The other �lesare depending on these core modules or LogibBLOX.The same �les are used in di�erent revisions for the various implementations. Inorder to keep track of which revision of a certain �le is used in which version of theDES implementation a revision control system RCS was employed.7.3 LogiBLOXWe created LogiBLOX versions for registers, multiplexers, S-Boxes and some shifters.The LogiBLOX were not subject to frequent changes, so there was no need to havethem managed by RCS. Furthermore the LogiBLOX are all instantiated from withinVHDL �les. Table 7.2 lists the LogiBLOX created and their function.LogiBLOX can be created by the interactive graphical tool lbgui. The tool creates*.ngo �les which are inferred by the Xilinx design manager, VHDL simulation models,and instantiation templates.7.4 Designs ImplementedWe implemented DES in several versions to compare the di�erent architectures andthe inuence of the size of the FPGAs on the maximum speed. Many designs wereimplemented in the chip: XC4013-3-PG223. This device o�ers enough resources even
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Filename Functionmux16l 16 bit multiplexermux32l 32 bit multiplexermux8l 8 bit multiplexerreg16c 16 bit register with clock enablereg16l 16 bit registerreg32c 32 bit register with clock enablereg32l 32 bit registerreg8c 8 bit register with clock enablereg8l 8 bit registershift2 2 bit shift register with clock enable, MSB out, LSB in, andparallel outshift4 4 bit shift register with clock enable, MSB out, LSB in, andparallel outsox1 S-Box 1sox2 S-Box 2sox3 S-Box 3sox4 S-Box 4sox5 S-Box 5sox6 S-Box 6sox7 S-Box 7sox8 S-Box 8Table 7.2: LogiBLOX and their function



CHAPTER 7. DES IMPLEMENTATION 50for more advanced designs than the simple DES16. Furthermore a group of studentsis using this device for their MQP. The design DES MQP was tailored to their speci�cneeds.7.4.1 DES16This is the very �rst design we implemented. One encryption requires 16 clock cycles,no pipelining or unrolling techniques were employed. DES16 only supports encryptionand the sub-keys are not precomputed.We implemented two versions of DES16. In version 1.1 only the S-Boxes were im-plemented using LogiBLOX. In version 1.2 LogiBLOX were used also for the registersand multiplexers.The schematic of DES16 for both versions is shown in Figure 6.2. The target forboth versions is the chip XC4013E-3-PG223.7.4.2 DES ED16DES ED16 is the �rst design using the one round sub-key precomputation techniquedescribed in Chapter 6.3.3 and the modi�cation for encryption { decryption shown inChapter 6.3.4. All subsequent designs are employing these features. One encryptionor decryption takes 16 clock cycles.DES ED16 was implemented in three di�erent versions. The di�erence betweenthe three versions is only the target device. Version 1.1 is implemented on the deviceXC4013E-3-PG223, version 1.2 on the device XC4008E-3-PG233 and version 1.3 on thedevice XC4025E-3-PG223, these devices di�er in the amount of logic resources theyprovide.The control logic for this design has to provide the following signals: ke, ie, ov,data sel, key sel, SFT, and ST1 (for a description see Chapter 6.4). Figure 7.1 showsthe timing diagram for these signals.
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1-1 1-5 1-7 1-9 1-131-11 1-15 1-11-2 1-4 1-6 1-8 1-10 1-12 1-14 1-16 1-2Figure 7.1: Control signals for DES ED16The signal OV is without any function for this design. The output is valid atthe same time new data gets loaded. The signal IE is to be used for both purposes,output valid and data input expected. The numbers shown next to the signal ST1denote the sub-key computed during the respective state. In state INIT the 1st sub-key is generated, during state R1 the 2nd sub-key, and so on. During state R16 the1st sub-key of the next key is computed which is indicated through light shade ofgray.7.4.3 DES MQPThe design DES MQP is a special design for an MQP based on the DES ED16 design.The only di�erence is that it uses a bidirectional 64-bit bus for data and key inputand data output.DES MQP was implemented in 2 di�erent versions. The only di�erence be-tween these versions is the target device. Version 1.1 was implemented on the deviceXC4013-3-PG223 with speed grade -3, version 1.2 on a device with speed grade -2 :XC4013-2-PG233 .The control signals are the same as for DES ED16 shown in Figure 7.1. The



CHAPTER 7. DES IMPLEMENTATION 52signal OV indicates that the output is put on the bidirectional bus. If OV is low theoutput is tri-stated. This means that this chip is accessing the bus for only three clockcycles, loading key, loading data and output result. During the remaining 16� 3 = 13clock cycles the bus is tri-stated. While the bus is try-stated by one chip other chipscould access that it. Up to 5 chips could be run in parallel of the same bus (16 clockcycles divided by 3 clock cycles for I/O per chip) if their loading and output cyclesare scheduled in the right order.7.4.4 DES ED8This is the �rst loop unrolled design. One encryption or decryption takes 8 clockcycles, therefore the state machine has to support only 9 states. DES ED8 wastargeted for the XC4013-3-PG223 device in which it �ts comfortably.The control logic has one additional signal ST2. It has basically the same functionas ST1 but operates on the second sub-key generator. Figure 7.2 shows the timingdiagram. During the state R8 the 16th sub-key gets generated in the 2nd sub-keygenerator and the 1st sub-key generator calculates the 1st sub-key for the next datapacket, indicated through a light shade of gray. The mode (encryption or decryption)of the next data packet is entirely independent of the mode for the current one.During state R1 data is �rst encrypted with the precomputed �rst sub-key fromthe previous state. At the same time the second sub-key is precomputed in the secondsub-key generator. As soon as the second sub-key generator is �nished the �rst sub-key generator produces the third sub-key to be used in the next state and the datais encrypted with the precomputed second sub-key.7.4.5 DES ED4This is the second loop unrolled design with 4 unrolled loops. One encryption or de-cryption takes 4 clock cycles. The state machine supports 5 states. DES ED4 was tar-
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1-4Figure 7.2: Control signals for DES ED8geted for the XC4028EX-3-PG299 device. An implementation on the XC4025E-3-PG223device failed even though it has enough logic resources. The lack of wiring resourcesmade a change from the XC4000E series to the XC4000EX series necessary.The control logic has three additional signals ST2, ST3, and ST4. These signalsoperate on the second, third and fourth sub-key generators. Figure 7.3 shows thetiming diagram. During state R4 the 14th, 15th, and 16th sub-key get generatedby the second, third and fourth sub-key generator, and the �rst sub-key generatorgenerates the �rst sub-key for the next data packet, indicated through light shadeof gray. The mode (encryption or decryption) of the next data packet is entirelyindependent of the mode for the current one.During the state R1 data is �rst encrypted with the precomputed �rst sub-keyfrom the previous state. At the same time the second sub-key is created by the secondsub-key generator. As soon as the second sub-key generator is �nished the third sub-key generator generates the third sub-key and at the same time data is encryptedwith the second sub-key and so on.



CHAPTER 7. DES IMPLEMENTATION 54
CLK

INIT R1 R2 R3 R4 R1

KE

IE

data_sel

key_sel

OV

SFT

ST1

ST4

ST3

ST2

1-1

1-2

1-3

1-4

1-5

1-6

1-7

1-8

1-131-9

1-10

1-11

1-12 1-16

1-15

1-16

1-1

1-14 1-2

1-3

1-4

1-5

1-15

1-14

Figure 7.3: Control signals for DES ED47.4.6 DES ED16x2DES ED16x2 is the �rst pipelined design. One encryption or decryption takes 16clock cycles, two operations can run at the same time. The modes of both operations(encryption or decryption) are independent of each other; one data block can beencrypted while the other is being decrypted, or both can be encrypted or decrypted.DES ED16x2 was targeted for the XC4013E-3-PG223 device.DES ED16x2 has one additional signal: ST2 which operates on the second sub-key generator. Figure 7.4 shows the timing diagram. As this is a pipelined design itcan work on 2 data blocks at the same time, hence the notation 2-14 which denotesthe 14th sub-key for the 2nd data block. The key for the �rst data block gets loadedduring state R16 or INIT followed by the �rst data block in the next state. The keyfor the second data block gets loaded during state R3 followed by the second datablock in the next state.During state R16 the 14th sub-key for the second data block is being generatedby the second sub-key generator, and the �rst sub-key generator computes the 1st



CHAPTER 7. DES IMPLEMENTATION 55sub-key of the new �rst data block. In state R1 the �rst sub-key generator computesthe 15th sub-key for the second data block and the second sub-key generator the 2ndsub-key of the new �rst data block, and so on.
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Figure 7.4: Control signals for DES ED16x27.4.7 DES ED16x4This is the second pipelined design, comprising 4 pipelines. Each encryption or de-cryption takes 16 clock cycles; 4 operations can be handled at the same time. Themodes of the operations are independent from each other; the mode (encryption ordecryption) can be selected for each operation separately.DES ED16x4 was implemented in 2 di�erent versions. The only di�erence be-tween these versions is the target device. Version 1.1 was implemented on theXC4025E-3-PG223 device and version 1.2 a device of a di�erent family: XC4028EX-3-PG299.The control logic provides three additional signals: ST2, ST3, and ST4 whichoperate on the second, third and fourth sub-key generator. Figure 7.5 shows thetiming diagram. The sub-key generation is straight forward and can be seen in theFigure.



CHAPTER 7. DES IMPLEMENTATION 56The key for the �rst data block gets loaded during state R16 or INIT followed bythe �rst data block in the next state. The key for the second data block gets loadedduring state R2 followed by the second data block in the next state. The key for thefourth and �fth block get loaded during the states R5 and R7 respectively, the datablocks follow one stage later R6 and R8. Initially it takes 8 clock cycles for all thepipelines to get �lled.
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Figure 7.5: Control signals for DES ED16x47.4.8 DES ED8x2This design is a mixture between a pipelined and a loop unrolled design. It containstwo pipelines with each two unrolled loops. Each encryption or decryption takes 8clock cycles, 2 operations can be processed at the same time. The modes of bothoperations (encryption or decryption) are independent from each other. DES ED8x2was targeted for the XC4028EX-3-PG299 device.The loading of the keys and the data packets is similar to the design DES ED16x2.But after 8 clock cycles the result is already computed and the next loading cycle



CHAPTER 7. DES IMPLEMENTATION 57begins.The control logic provides three additional signals: ST2, ST3, and ST4 whichoperate on the second, third and fourth sub-key generator. Figure 7.6 shows thetiming diagram. The sub-key generation is straight forward and can be seen in thediagram.
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Chapter 8
Results
We implemented multiple versions of each architecture option listed in Table 5.1 inorder to evaluate their e�ectiveness. We also implemented some designs multiple timeswith varying chip parameters in order to judge their inuence on the performance.In the following sections we compare the di�erent designs. In most cases the designsare compared to the design DES ED16 which serves as our reference model.The unit CLB stands for combinatorial logic block which is employed by Xilinx tomeasure the amount of logic resources on a device. We are using it here to comparethe amount of logic resources used by a given design.The abbreviation CLU stands for combinatorial logic unit (see Chapter 5).8.1 Loop UnrollingWe implemented two loop unrolled versions: DES ED8 and DES ED4. The designDES ED8 contains two combinatorial logic units (CLU, see Section 5.2) and thereforeencrypts or decrypts one data block in 8 clock cycles. The design DES ED4 containsfour CLUs and provides the result after 4 clock cycles. Both designs are comparedwith the design DES ED16 in Table 8.1.58



CHAPTER 8. RESULTS 59Min Data RateDesign Chip CLBs CLBs CLK per CLU Data Rateper CLU in ns in Mbit/s in Mbit/sDES ED16 XC4008E-3-PG223 262 262 40.4 94.5 94.5DES ED8 XC4013E-3-PG223 443 222 54.0 70.6 141.3DES ED4 XC4028EX-3-PG299 722 241 86.7 44.0 176.0Table 8.1: Comparison of loop unrolled architecturesThe design DES ED8 is 50% faster than DES ED16 whereas the resource con-sumption (in CLBs) increases by 69%. The design DES ED4 is only 25% faster thanDES ED8, the speed increase is only half as much as from the �rst unrolling. Theresource consumption increases by 63%.The number of CLBs divided by the number of CLUs indicates that the amountof logic resources consumed per unrolled CLU is almost constant. The speed dividedby the number of CLUs shows that the speed for one CLU in the design DES ED4is less then half the speed of DES ED16. From this we can see that the further weunroll the design the lesser amount of speed-up we can gain.8.2 PipeliningWe implemented two pipelined designs, DES ED16x2 and DES ED16x4. The designDES ED16x2 contains two CLUs and therefore 2 pipelines and the designDES ED16x4contains four CLUs and therefore 4 pipelines. The encryption or decryption of oneblock of data takes in both cases 16 clock cycles. Table 8.2 compares both designswith the design DES ED16.The speed divided by the number of CLUs shows that is stays almost constant forall designs. The lower speed for the designDES ED16x2 is caused by the lack of wiringresources on the device which results in a less e�cient design. This phenomenon isfurther examined in Section 8.4.3.



CHAPTER 8. RESULTS 60Min Data RateDesign Chip CLBs CLBs CLK per CLU Data Rateper CLU in ns in Mbit/s in Mbit/sDES ED16 XC4008E-3-PG223 262 262 40.4 94.5 94.5DES ED16x2 XC4013E-3-PG223 433 217 43.5 87.7 175.3DES ED16x4 XC4028EX-3-PG299 741 185 39.7 96.0 384.0Table 8.2: Comparison of pipelined architecturesThe amount of logic resources consumed per implemented CLB is decreasing if wecreate more pipelines. This is due to the fact that the control unit does not get morecomplicated if we implement more pipelines. Also the multiplexers are implementedonly once.It is interesting to compare the pipelined designs with the loop unrolled designs.It can be seen that DES ED16x2 is both faster and smaller than the loop unrolledDES ED8. The di�erence is even more dramatically if the DES ED16x4 is comparedwith the DES ED4. DES ED16 is more than twice as fast as DES ED4 and utilizesalmost the same amount of CLBs.8.3 Combination of Pipelining and Loop UnrollingA design that contains loop unrolling as well as pipelining is in the simplest ver-sion already as large as the largest designs we have implemented so far which wereDES ED16x4 and DES ED4. Therefore we implemented only the design DES ED8x2which contains 4 CLUs; 2 in each of the 2 pipelines. Table 8.3 compares this designwith DES ED16x2 and DES ED8.It is not easy to compare this mixed design with the two other designs. Theminimum clock period shows that the time it takes for two CLUs (loop unrolled) toexecute in the design DES ED8x2 is faster than in the design DES ED8. It is ofcourse slower, but surprisingly not much, than one CLU in the design DES 16x2.



CHAPTER 8. RESULTS 61Min Data RateDesign Chip CLBs CLK p. pipeline Data Ratein ns in Mbit/s in Mbit/sDES ED8x2 XC4028EX-3-PG299 733 48.0 158.8 317.6DES ED16x2 XC4013E-3-PG223 433 43.5 87.7 175.3DES ED8 XC4013E-3-PG223 443 54.0 141.3 141.3Table 8.3: Comparison of a combined architecture with others8.4 Chip DependenciesDuring implementation of our designs we experienced that the result of an implemen-tation is depending on the chip parameters. These are investigated further here.8.4.1 Chip SizesWe implemented the design DES ED16 on chips of three di�erent sizes. Table 8.4compares these implementations. The size of a chip is measured in number of CLBs.MinDesign Chip CLBs CLBs CLK Data Rateon Chip used in ns in Mbit/sDES ED16 XC4008E-3-PG223 324 262 40.4 94.5DES ED16 XC4013E-3-PG223 576 262 41.8 91.2DES ED16 XC4025E-3-PG223 1024 262 45.5 83.9Table 8.4: Comparison of di�erent chip sizesThe interesting result is that the bigger a chip is, the slower the design gets.Even though a bigger chip provides more logic and routing resources, and the placeand route tool has an easier job of optimizing, the time it takes for data to prop-agate through the chip is longer. The oor plans of the XC4025E-3-PG223 andXC4008E-3-PG223 can be found in Appendix C.



CHAPTER 8. RESULTS 628.4.2 Speed GradesThe speed grade is de�ned by Xilinx as the time it takes for a signal to propagatethrough one combinatorial level (see [15]). We implemented the design DES MQPfor three di�erent speed grades: -1, -2, and -3.The Xilinx Timing Analyzer has a feature that enables the user to calculate theminimum clock period for any selected speed grade based on a placed and routeddesign. These results are unfortunately not comparable to the results we go when wesynthesized and placed and routed a design from scratch for a new speed grade. Theresults presented in Table 8.5 are generated using the later approach.MinDesign Chip Data Rate CLBs CLK Data RateGrade in ns in Mbit/sDES MQP XC4013E-3-PG223 -3 294 40.9 93.3DES MQP XC4013E-2-PG223 -2 294 36.5 104.6DES MQP XC4013E-1-PG223 -1 294 29.3 130.1Table 8.5: Comparison of di�erent speed gradesThe change of speed grades from -3 to -2 resulted in a 10% performance increase.The change from -2 to -1 resulted in a further performance increase of 24%.8.4.3 Device FamiliesThe XC4000EX series o�ers almost twice the routing capacity of the XC4000E series(see [14]). As seen in Section 8.2 the routing resources can inuence the performanceof the design. To examine this further we implemented the design DES ED16x4 onthe devices XC4025E-3-PG223 and XC4028EX-3-PG299. Table 8.6 compares the twoimplementations.This comparison shows clearly the inuence of the wiring resources on the per-formance of the design. The implementation on the XC4000EX family device is more



CHAPTER 8. RESULTS 63MinDesign Chip Chip CLBs CLK Data RateFamily in ns in Mbit/sDES ED16x4 XC4025E-3-PG223 XC4000E 741 61.5 248.3DES ED16x4 XC4028EX-3-PG299 XC4000EX 741 39.7 384.0Table 8.6: Comparison of di�erent chip familiesthan 54% faster for our largest design. It is to be noted that both devices providethe same amount of logic resources (CLBs).Even tough the design DES ED16x4 is our largest design, it is not the mostrouting intensive. The most routing intensive design is DES ED4 ; the Xilinx toolswere not able to place and route this design in the XC4025E-3-PG223 device.8.5 Summary and OverviewTable 8.7 summarizes the results of all the implemented designs. Our fastest im-plementation with loop unrolling is DES ED4 with 176.0 Mbit/sec, the fastestemploying pipelines is DES ED16x4 with 384.0 Mbit/sec.
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Min Data RateDesign Chip CLBs CLBs CLK per CLU Data Rateper CLU in ns in Mbit/s in Mbit/sDES16, v1.1 XC4013E-3-PG223 200 200 43.4 88.0 88.0DES16, v1.2 XC4013E-3-PG223 198 198 41.8 91.3 91.3DES MQP XC4013E-3-PG223 294 294 40.9 93.3 93.3DES MQP XC4013E-2-PG223 294 294 36.5 104.6 104.6DES MQP XC4013E-1-PG223 294 294 29.3 130.1 130.1DES ED16 XC4013E-3-PG223 262 262 41.8 91.2 91.2DES ED16 XC4025E-3-PG223 262 262 45.5 83.9 83.9DES ED16 XC4008E-3-PG223 262 262 40.4 94.5 94.5DES ED8 XC4013E-3-PG223 443 222 54.0 70.6 141.3DES ED4 XC4028EX-3-PG299 722 241 86.7 44.0 176.0DES ED16x2 XC4013E-3-PG223 433 217 43.5 87.7 175.3DES ED16x4 XC4028EX-3-PG299 741 185 39.7 96.0 384.0DES ED16x4 XC4025E-3-PG223 741 185 61.5 62.1 248.3DES ED8x2 XC4028EX-3-PG299 733 184 48.0 79.4 317.6Table 8.7: Complete table of all implemented architectures



Chapter 9
Conclusion
This chapter concludes the thesis. It lists some recommendations for the design ofDES on FPGAs and presents a summary of the results. Finally some recommenda-tions for future work are given.9.1 Design RecommendationsDuring our research and the implementation phase of the designs, we formulated somerecommendations for an e�cient DES design on Xilinx FPGAs.� S-Boxes should be implemented in ROM for maximum performance; a fastimplementation of the S-Boxes is crucial for the over-all performance of thedesign.� Permutations and expansions are implemented using only wiring resources.� Shift registers can be implemented using only wiring resources, or for decisiveand directional shifters a multiplexer.� LogiBLOX ease the design entry and are already well optimized.65



CHAPTER 9. CONCLUSION 66We could also show that our technique of one-round sub-key precomputation resultsin a faster design and enables us to generate sub-keys for encryption and decryptionat no performance penalty (as opposed to just generate sub-keys for encryption).The split up of the design into small basic function blocks simpli�ed design mod-i�cations. In order to create a new architecture we had to modify only some �les.Each new architecture needed a new control logic.9.2 Summary of ResultsWe implemented all designs based on devices from Xilinx (see Section 7.1). Here areour most important �ndings.� Maximum speed: We achieved speeds of up to 384.0 Mbit/sec.� Performance Comparison: If we compare the reported DES speeds forASICs (1600 Mbit/sec) [12] and Software (12 Mbit/sec) [12], with our bestresult of 384.0 Mbit/sec we conclude that the speed-up factor from software toFPGAs is 32.0, and from FPGAs to ASICs is 4.3.We explored the architecture options loop unrolling and pipelining in detail forFPGAs. Here are our most important results.� Loop unrolling: With the �rst unrolling we gained 50% higher encryptionrate and used 69% more logic resources; with the second unrolling we gainedonly 25% speed over the �rst unrolling and used 63% more logic resources.Conclusion: the amount of logic resources consumed rises linearly, whereasthe speed increases much slower.� Pipelining: With two pipelines we gained 86% more speed at the expenseof 65% more logic resources; with four pipelines we gained 120% more speed



CHAPTER 9. CONCLUSION 67over two pipelines and used 71% more logic resources. This speed-up is a littledistorted due to the limited amount of wiring resources on the chip we imple-mented the two pipeline design. Conclusion: the amount of logic resourcesconsumed rises linearly and the speed too.� Combined Design: Results in a fast overall design. The result is a mixtureof both base designs this is comprised of.Loop unrolling does not result in the highest speeds but it is can be used in anymode of operation. Pipelined designs are faster but can only be used in modes whichare not based on a feedback of the result of DES or a derivation therefrom. A pipelineddesign can therefore only be used in ciphers that employ ECB or counter mode (e.g.,Counter Mode speci�ed for ATM-networks). This holds also for the combined designas it contains a pipeline.If the pipelines are demultiplexed external to the FPGA a pipelined design com-prising two pipelines could be used as two separate DES chips, and then every modeof operation is possible within each pipeline.The inuence of Xilinx chip parameters is summarized below:� Chip size: A bigger chip results in a slower design.� Speed grades: A migration from a speed grade -3 to -2 results in a 10%higher performance.� Device family: The amount of routing resources on the chip is crucial for theimplementation.9.3 Recommendations for Future WorkFor this thesis we implemented DES just in ECB mode. It can be used in othermodes as well but at the expense of additional external hardware. It would be very



CHAPTER 9. CONCLUSION 68interesting to explore the issues involved in enhancing this design so that it supportsall modes de�ned for DES within the same FPGA and its �nal speed.Future work will also investigate applications for the designs presented here. In-teresting areas would be ATM-encrypters and key-search machines. A natural ap-plication area for our design would be encryption modules that provide algorithmagility, i.e., encryption algorithm switch on-the-y. A possible system might be a PCplug-in board with fast bus interface which supports a variety of encryption schemes.



Appendix A
Simulation Script Files
RTL-level simulation requires that the used libraries are analyzed �rst, then all VHDLsource �les and behavioural description of the LogiBLOX, and at the end the testbench.For past place and route simulation also the libraries have to be analyzed �rst,then the time sim.vhd �le which comprises the whole back-annotated design, and atthe end the test bench.A.1 RTL-Level Simulation Script# ----------------------------------------------------------------# everything to get ready for the rtl-level simulation## Jens-Peter Kaps February 23rd, 1998## $Log: make_rtl_sim,v $# Revision 2.1 1998/02/25 03:09:18 kaps# updated for encrypt / decrypt des## Revision 1.1 1998/02/23 05:05:17 kaps# Initial revision## ----------------------------------------------------------------vhdlan -i ./rtl_sim/mvlutil.vhd \./rtl_sim/mvlarith.vhd \ 69



APPENDIX A. SIMULATION SCRIPT FILES 70./rtl_sim/logiblox.vhd \./logiblox/sox1.vhd \./logiblox/sox2.vhd \./logiblox/sox3.vhd \./logiblox/sox4.vhd \./logiblox/sox5.vhd \./logiblox/sox6.vhd \./logiblox/sox7.vhd \./logiblox/sox8.vhd \./logiblox/reg32c.vhd \./logiblox/reg16c.vhd \./logiblox/reg8c.vhd \./logiblox/mux32l.vhd \./logiblox/mux16l.vhd \./logiblox/mux8l.vhd \./src/sboxes.vhd \./src/ebox.vhd \./src/ipinv.vhd \./src/ipnorm.vhd \./src/la_rot.vhd \./src/lm_rot.vhd \./src/ra_rot.vhd \./src/rm_rot.vhd \./src/mux56.vhd \./src/mux64.vhd \./src/pbox.vhd \./src/pc1box.vhd \./src/pc2box.vhd \./src/reg56.vhd \./src/reg64.vhd \./src/xormod.vhd \./src/xormod48.vhd \./src/ffunc.vhd \./src/feistel.vhd \./src/keygen.vhd \./src/control.vhd \./src/des.vhd \./rtl_sim/testbench.vhdA.2 Post Place and Route Simulation Scriptvhdlan -i ./ppr_sim/simprim_Vcomponents.vhd \./ppr_sim/simprim_Vpackage.vhd \./ppr_sim/simprim_VITAL.vhd \./time_sim.vhd \./rtl_sim/testbench.vhd



APPENDIX A. SIMULATION SCRIPT FILES 71# afterwards invoke the simulator with the following command line:## vhdldbx -sdf_top testbench/uut -sdf time_sim.sdf CFG_TB &



Appendix B
Synthesis Script
This is the script �le for Synopsys to synthesis the design DES ED16 for the deviceXC4013E-3-PG223./* --------------------------------------------------------------- *//* Script file for Synopsys FPGA Compiler *//* targeting a XC4013E device using Logiblox for the S-Boxes *//* --------------------------------------------------------------- *//* $Log $*//* --------------------------------------------------------------- *//* Defining the Paths *//* --------------------------------------------------------------- */SRC_PATH = "src/"DB_PATH = "db/"DC_PATH = "dc/"REPORT_PATH = "reports/"SXNF_PATH = "sxnf/"LOGI_PATH = "logiblox/"/* --------------------------------------------------------------- *//* Defining the Logiblox Elements No Need but..... *//* --------------------------------------------------------------- */SBOX1 = sox1SBOX2 = sox2SBOX3 = sox3SBOX4 = sox4SBOX5 = sox5SBOX6 = sox6SBOX7 = sox7 72



APPENDIX B. SYNTHESIS SCRIPT 73SBOX8 = sox8REG8C = reg8cREG16C = reg16cREG32C = reg32cMUX8L = MUX8LMUX16L = MUX16LMUX32L = MUX32L/* --------------------------------------------------------------- *//* Name for the design's top-level and other *//* --------------------------------------------------------------- */TOP = desMODULS = module_packCONTROL = controlKEY1GEN = key1genFEISTEL = feistelFFUNC = ffunc/* --------------------------------------------------------------- *//* Name for the design's modules containing Loginlox *//* --------------------------------------------------------------- */MUX56 = mux56MUX64 = mux64REG56 = reg56REG64 = reg64SBOXES = sboxes/* --------------------------------------------------------------- *//* Low level modules (don't contain other modules) *//* --------------------------------------------------------------- */EBOX = eboxIPINV = ipinvIPNORM = ipnormLAROT = la_rotLMROT = lm_rotRMROT = rm_rotPBOX = pboxPC1BOX = pc1boxPC2BOX = pc2boxXORMOD = xormodXORMOD48 = xormod48/* --------------------------------------------------------------- *//* Design Group and Part Number *//* --------------------------------------------------------------- */designer = "Jens-Peter Kaps"company = "WPI Crypto Group"part = "4013EPG223-3"



APPENDIX B. SYNTHESIS SCRIPT 74/* --------------------------------------------------------------- *//* Analyze the Module Package *//* --------------------------------------------------------------- */analyze -f vhdl -lib WORK SRC_PATH + MODULS + ".vhd"/* --------------------------------------------------------------- *//* Analyze and elaborate the low level files first *//* --------------------------------------------------------------- */analyze -f vhdl -lib WORK SRC_PATH + EBOX + ".vhd"analyze -f vhdl -lib WORK SRC_PATH + IPINV + ".vhd"analyze -f vhdl -lib WORK SRC_PATH + IPNORM + ".vhd"analyze -f vhdl -lib WORK SRC_PATH + LAROT + ".vhd"analyze -f vhdl -lib WORK SRC_PATH + LMROT + ".vhd"analyze -f vhdl -lib WORK SRC_PATH + RMROT + ".vhd"analyze -f vhdl -lib WORK SRC_PATH + PBOX + ".vhd"analyze -f vhdl -lib WORK SRC_PATH + PC1BOX + ".vhd"analyze -f vhdl -lib WORK SRC_PATH + PC2BOX + ".vhd"analyze -f vhdl -lib WORK SRC_PATH + XORMOD + ".vhd"analyze -f vhdl -lib WORK SRC_PATH + XORMOD48 + ".vhd"elaborate EBOXelaborate IPINVelaborate IPNORMelaborate LAROTelaborate LMROTelaborate RMROTelaborate PBOXelaborate PC1BOXelaborate PC2BOXelaborate XORMODelaborate XORMOD48/* --------------------------------------------------------------- *//* Analyze and elaborate the design files containing Logiblox *//* --------------------------------------------------------------- *//* --------------------------------------------------------------- *//* SBOXES *//* --------------------------------------------------------------- */analyze -f vhdl -lib WORK SRC_PATH + SBOXES + ".vhd"elaborate SBOXES/* --------------------------------------------------------------- *//* set don't touch on LogiBLOX *//* --------------------------------------------------------------- */set_dont_touch find(cell, "MY_SBOX1")set_dont_touch find(cell, "MY_SBOX2")set_dont_touch find(cell, "MY_SBOX3")



APPENDIX B. SYNTHESIS SCRIPT 75set_dont_touch find(cell, "MY_SBOX4")set_dont_touch find(cell, "MY_SBOX5")set_dont_touch find(cell, "MY_SBOX6")set_dont_touch find(cell, "MY_SBOX7")set_dont_touch find(cell, "MY_SBOX8")/* --------------------------------------------------------------- *//* REG64 *//* --------------------------------------------------------------- */analyze -f vhdl -lib WORK SRC_PATH + REG64 + ".vhd"elaborate REG64/* --------------------------------------------------------------- *//* set don't touch on LogiBLOX *//* --------------------------------------------------------------- */set_dont_touch find(cell, "LEFT_REG")set_dont_touch find(cell, "RIGHT_REG")/* --------------------------------------------------------------- *//* REG56 *//* --------------------------------------------------------------- */analyze -f vhdl -lib WORK SRC_PATH + REG56 + ".vhd"elaborate REG56/* --------------------------------------------------------------- *//* set don't touch on LogiBLOX *//* --------------------------------------------------------------- */set_dont_touch find(cell, "BUF_8")set_dont_touch find(cell, "BUF_16")set_dont_touch find(cell, "BUF_32")/* --------------------------------------------------------------- *//* MUX64 *//* --------------------------------------------------------------- */analyze -f vhdl -lib WORK SRC_PATH + MUX64 + ".vhd"elaborate MUX64/* --------------------------------------------------------------- *//* set don't touch on LogiBLOX *//* --------------------------------------------------------------- */set_dont_touch find(cell, "LEFT_MUX")set_dont_touch find(cell, "RIGHT_MUX")/* --------------------------------------------------------------- *//* MUX56 *//* --------------------------------------------------------------- */



APPENDIX B. SYNTHESIS SCRIPT 76analyze -f vhdl -lib WORK SRC_PATH + MUX56 + ".vhd"elaborate MUX56/* --------------------------------------------------------------- *//* set don't touch on LogiBLOX *//* --------------------------------------------------------------- */set_dont_touch find(cell, "MY_MUX_8")set_dont_touch find(cell, "MY_MUX_16")set_dont_touch find(cell, "MY_MUX_32")/* --------------------------------------------------------------- *//* Analyze and elaborate some more design files *//* --------------------------------------------------------------- */analyze -f vhdl -lib WORK SRC_PATH + FFUNC + ".vhd"analyze -f vhdl -lib WORK SRC_PATH + FEISTEL + ".vhd"analyze -f vhdl -lib WORK SRC_PATH + KEY1GEN + ".vhd"analyze -f vhdl -lib WORK SRC_PATH + CONTROL + ".vhd"analyze -f vhdl -lib WORK SRC_PATH + TOP + ".vhd"elaborate FFUNCelaborate FEISTELelaborate KEY1GENelaborate CONTROLelaborate TOP/* --------------------------------------------------------------- *//* Set the current design to the top level. *//* --------------------------------------------------------------- */current_design TOP/* --------------------------------------------------------------- *//* Set the synthesis design constraints *//* --------------------------------------------------------------- */remove_constraint -all/* --------------------------------------------------------------- *//* set don't touch on Startup Block *//* --------------------------------------------------------------- */set_dont_touch {STARTUPBLK}/* --------------------------------------------------------------- *//* uniquify multiple instances of designs *//* --------------------------------------------------------------- */uniquify/* --------------------------------------------------------------- *//* include timing and timing constraints */



APPENDIX B. SYNTHESIS SCRIPT 77/* --------------------------------------------------------------- */create_clock clk -period 40set_input_delay 5 -clock clk { all_inputs()}set_output_delay 5 -clock clk { all_outputs()}set_wire_load "4013e-3_avg"set_operating_conditions WCCOM/* --------------------------------------------------------------- *//* Indicate top-level module ports that shoud become i/o pads *//* --------------------------------------------------------------- */set_port_is_pad "*"set_pad_type -clock clkset_pad_type -slewrate HIGH all_outputs()insert_pads/* --------------------------------------------------------------- *//* Synthesize and optimize the design. *//* --------------------------------------------------------------- */compile -boundary_optimization/* --------------------------------------------------------------- *//* Write the design report files. *//* --------------------------------------------------------------- */report_fpga > REPORT_PATH + TOP + ".fpga"report_timing > REPORT_PATH + TOP + ".timing"/* --------------------------------------------------------------- *//* Write out an intermediate DB file to save state *//* --------------------------------------------------------------- */write -format db -hierarchy -output DB_PATH + TOP + "_compiled.db"/* --------------------------------------------------------------- *//* Replace CLBs and IOBs primitives (XC4000E/EX/XL only) *//* --------------------------------------------------------------- */replace_fpga/* --------------------------------------------------------------- *//* Set the part type for the output netlist. *//* --------------------------------------------------------------- */set_attribute TOP "part" -type string part/* --------------------------------------------------------------- *//* Write out an intermediate DB file to save state *//* --------------------------------------------------------------- */write -format db -hierarchy -output DB_PATH + TOP + ".db"/* --------------------------------------------------------------- *//* Write-out the timing constraints that were applied earlier. *//* And flatten the hierarchy */



APPENDIX B. SYNTHESIS SCRIPT 78/* --------------------------------------------------------------- */ungroup -all -flattenwrite_script > DC_PATH + TOP + ".dc"/* Save design in XNF format as <design>.sxnf */write -f xnf -h -o SXNF_PATH + TOP + ".sxnf"/* --------------------------------------------------------------- *//* Call synopsys to Xilinx contraints translator DC2NCF *//* --------------------------------------------------------------- */sh dc2ncf DC_PATH + TOP + ".dc"
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Floor Plans
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Figure C.1: Floor Plan of DES ED16 on the Chip 4008E-3-PG191
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Figure C.2: Floor Plan of DES ED16 on the Chip 4025E-3-PG223



Appendix D
Timing Diagrams
This appendix shows the timing diagram of one full encryption in Appendix D.1 andone full decryption in Appendix D.2. These timing diagrams are past place and routeand therefore show the actuall delays.The clock period is set to 44ns. The scale on top of the diagrams is in pico seconds.During state 0 the key gets loaded and during stage 1 the data. Data and key areprovided on the KEY DATA IN(63:0) bus. The result of the operation appears on theDATAOUT(63:0) bus during the �rst stage of the next operation.The test bench used to test the design and generate these diagrams is in Ap-pendix E.
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APPENDIX D. TIMING DIAGRAMS 83D.1 Encryption
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Figure D.1: Encryption with DES ED16 on the Chip 4008E-3-PG191
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Figure D.2: Encryption with DES ED16 on the Chip 4008E-3-PG191
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Figure D.3: Encryption with DES ED16 on the Chip 4008E-3-PG191
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Figure D.4: Encryption with DES ED16 on the Chip 4008E-3-PG191



APPENDIX D. TIMING DIAGRAMS 88

Figure D.5: Enrcyption with DES ED16 on the Chip 4008E-3-PG191
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Figure D.6: Decryption with DES ED16 on the Chip 4008E-3-PG191
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Figure D.7: Decryption with DES ED16 on the Chip 4008E-3-PG191
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Figure D.8: Decryption with DES ED16 on the Chip 4008E-3-PG191
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Figure D.9: Decryption with DES ED16 on the Chip 4008E-3-PG191
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Figure D.10: Decryption with DES ED16 on the Chip 4008E-3-PG191



Appendix E
Test Bench-- =============================================================== ---- FPGA SIMULATOR Testbench for Design with LogibloX ---- FOR XC4000e PARTYPES using Xilinx M1.3 ---- DES 16 ---- Jens-Peter Kaps 1/17/98 ---- $Log: testbench.vhd,v $-- Revision 2.1 1998/02/25 03:25:38 kaps-- modified for des encryption/decryption, full test---- Revision 1.2 1998/0223 04:45:06 kaps-- *** empty log message ***---- =============================================================== --library IEEE;use IEEE.std_logic_1164.all;use IEEE.std_logic_arith.all;use IEEE.std_logic_textio.all;-- =============================================================== ---- Testbench Name is E ---- =============================================================== --ENTITY E ISEND E;-- =============================================================== ---- Define Architecture AR ---- =============================================================== --ARCHITECTURE AR OF E IS 95



APPENDIX E. TEST BENCH 96-- =============================================================== ---- Component Description ---- =============================================================== --COMPONENT des PORT( key_data_in : IN std_logic_vector(63 downto 0);dataout : OUT std_logic_vector(63 downto 0);clk : IN std_logic;ed : IN std_logic; -- encryption / decryptionce : IN std_logic; -- clock enableke : OUT std_logic; -- key exspectedie : OUT std_logic; -- input exspectedov : OUT std_logic; -- output validNOTGBLRESET : IN std_logic );END COMPONENT;-- =============================================================== ---- Define the Signals ---- =============================================================== --SIGNAL key_data_in : std_logic_vector (63 downto 0);SIGNAL dataout : std_logic_vector (63 downto 0);SIGNAL clk : std_logic;SIGNAL ed : std_logic;SIGNAL ce : std_logic;SIGNAL ke : std_logic;SIGNAL ie : std_logic;SIGNAL ov : std_logic;SIGNAL NOTGBLRESET : std_logic;-- =============================================================== ---- Instantiate the design for simulation ---- =============================================================== --BEGINUUT : des PORT MAP (key_data_in => key_data_in,dataout => dataout,clk => clk,ed => ed, -- 0 = encryption, 1 = decryptionce => ce, -- 0 = disabled (stop), 1 = enabled (run)ke => ke,ie => ie,ov => ov,NOTGBLRESET => NOTGBLRESET );-- =============================================================== ---- Start the simulation ---- =============================================================== --



APPENDIX E. TEST BENCH 97flow_process: PROCESSBEGIN-- =============================================================== ---- Start Values ---- =============================================================== --key_data_in <= "0000000000000000000000000000000000000000000000000000000000000000";ed <= '0';ce <= '0';clk <= '0';NOTGBLRESET <= '0';wait for 22 NS;NOTGBLRESET <= '1';-- =============================================================== ---- Round INIT S T A R T E N C R Y P T I O N ---- =============================================================== --clk <= '1';wait for 2 NS;key_data_in <= "0000000000010010011010010101101111001001101101111011011111111000";ce <= '1';ed <= '0';wait for 20 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 1 ---- =============================================================== --clk <= '1';wait for 2 NS;key_data_in <= "0000000100100011010001010110011110001001101010111100110111101111";ed <= '0';wait for 20 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 2 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 3 ---- =============================================================== --clk <= '1';



APPENDIX E. TEST BENCH 98wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 4 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 5 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 6 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 7 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 8 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 9 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 10 ---- =============================================================== --clk <= '1';



APPENDIX E. TEST BENCH 99wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 11 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 12 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 13 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 14 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 15 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 16 S T A R T 2nd E N C R Y P T I O N ---- =============================================================== --clk <= '1';wait for 2 NS;key_data_in <= "0000000000000000010001010001001100111000100101010111001101110111";ed <= '0';wait for 20 NS;clk <= '0';wait for 22 NS;-- =============================================================== --



APPENDIX E. TEST BENCH 100-- Round 1 ---- =============================================================== --clk <= '1';wait for 2 NS;key_data_in <= "0000111100011110001011010011110001001011010110100110100101111000";wait for 20 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 2 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Stop Machine for one clock cycle ---- =============================================================== --clk <= '1';wait for 2 NS;ce <= '0';wait for 20 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 3 ---- =============================================================== --clk <= '1';wait for 2 NS;ce <= '1';wait for 20 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 4 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 5 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 6 --



APPENDIX E. TEST BENCH 101-- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 7 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 8 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 9 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 10 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 11 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 12 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 13 --



APPENDIX E. TEST BENCH 102-- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 14 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 15 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 16 S T A R T D E C R Y P T I O N ---- =============================================================== --clk <= '1';wait for 2 NS;key_data_in <= "0000000000010010011010010101101111001001101101111011011111111000";ce <= '1';ed <= '1';wait for 20 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 1 ---- =============================================================== --clk <= '1';wait for 2 NS;key_data_in <= "1000010111101000000100110101010000001111000010101011010000000101";ed <= '0';wait for 20 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 2 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 3 --



APPENDIX E. TEST BENCH 103-- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 4 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 5 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 6 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 7 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 8 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 9 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 10 --



APPENDIX E. TEST BENCH 104-- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 11 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 12 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 13 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 14 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 15 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 16 S T A R T 2nd D E C R Y P T I O N ---- =============================================================== --clk <= '1';wait for 2 NS;key_data_in <= "0000000000000000010001010001001100111000100101010111001101110111";ed <= '1';wait for 20 NS;clk <= '0';



APPENDIX E. TEST BENCH 105wait for 22 NS;-- =============================================================== ---- Round 1 ---- =============================================================== --clk <= '1';wait for 2 NS;key_data_in <= "1111100111011101010010011000101011111000100001001010100101111111";ed <= '0';wait for 20 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 2 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Stop Machine for one clock cycle ---- =============================================================== --clk <= '1';wait for 2 NS;ce <= '0';wait for 20 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 3 ---- =============================================================== --clk <= '1';wait for 2 NS;ce <= '1';wait for 20 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 4 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 5 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';



APPENDIX E. TEST BENCH 106wait for 22 NS;-- =============================================================== ---- Round 6 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 7 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 8 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 9 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 10 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 11 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 12 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';



APPENDIX E. TEST BENCH 107wait for 22 NS;-- =============================================================== ---- Round 13 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 14 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 15 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 16 E N C R Y P T I O N A G A I N ---- =============================================================== --clk <= '1';wait for 2 NS;key_data_in <= "0000000000010010011010010101101111001001101101111011011111111000";ce <= '1';ed <= '0';wait for 20 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 1 ---- =============================================================== --clk <= '1';wait for 2 NS;key_data_in <= "0000000100100011010001010110011110001001101010111100110111101111";ed <= '0';wait for 20 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 2 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';



APPENDIX E. TEST BENCH 108wait for 22 NS;-- =============================================================== ---- Round 3 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 4 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 5 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 6 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 7 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 8 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 9 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';



APPENDIX E. TEST BENCH 109wait for 22 NS;-- =============================================================== ---- Round 10 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 11 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 12 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 13 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 14 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 15 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 16 E N C R Y P T A G A I N A N D R E S E T ---- =============================================================== --clk <= '1';wait for 2 NS;key_data_in <= "0000000000010010011010010101101111001001101101111011011111111000";



APPENDIX E. TEST BENCH 110ce <= '1';ed <= '0';wait for 20 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 1 ---- =============================================================== --clk <= '1';wait for 2 NS;key_data_in <= "0000000100100011010001010110011110001001101010111100110111101111";ed <= '0';wait for 20 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 2 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 3 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Reset in the middle and decrypt this time ---- =============================================================== --clk <= '0';NOTGBLRESET <= '0';wait for 22 NS;NOTGBLRESET <= '1';wait for 22 NS;-- =============================================================== ---- Round INIT S T A R T E N C R Y P T I O N ---- =============================================================== --clk <= '1';wait for 2 NS;key_data_in <= "0000000000010010011010010101101111001001101101111011011111111000";ce <= '1';ed <= '0';wait for 20 NS;clk <= '0';wait for 22 NS;-- =============================================================== --



APPENDIX E. TEST BENCH 111-- Round 1 ---- =============================================================== --clk <= '1';wait for 2 NS;key_data_in <= "0000000100100011010001010110011110001001101010111100110111101111";ed <= '0';wait for 20 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 2 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;-- =============================================================== ---- Round 3 ---- =============================================================== --clk <= '1';wait for 22 NS;clk <= '0';wait for 22 NS;END PROCESS flow_process;END AR;-- =============================================================== ---- Configuration Statement ---- =============================================================== --configuration CFG_TB of E isfor AR-- for UUT : LOGITEST-- use configuration WORK.CFG_LOGITEST_BEHAVIORAL;-- end for;end for;end CFG_TB;
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