
Lightweight Implementations of SHA-3
Candidates on FPGAs? ??

Jens-Peter Kaps, Panasayya Yalla, Kishore Kumar Surapathi, Bilal Habib,
Susheel Vadlamudi, Smriti Gurung, and John Pham

ECE Department, George Mason University, Fairfax, VA 22030, U.S.A.
{jkaps, pyalla, ksurapat, bhabib, svadlamu, sgurung, jpham4}@gmu.edu

http://cryptography.gmu.edu

Abstract. The NIST competition for developing the new cryptographic
hash algorithm SHA-3 has entered its third round. One evaluation cri-
terion is the ability of the candidate algorithm to be implemented on
resource-constrained platforms. This includes FPGAs for embedded and
hand-held devices. However, there has not been a comprehensive set of
lightweight implementations for FPGAs reported to date. We hope to fill
this gap with this paper in which we present lightweight implementations
of all SHA-3 finalists and all round-2 candidates with the exception of
SIMD. All implementations were designed to achieve maximum through-
put while adhering to an area constraint of 400-600 slices and one Block
RAM on Xilinx Spartan-3 devices. We also synthesized them for Virtex-
V, Altera Cyclone-II, and the new Xilinx Spartan-6 devices.

Keywords: SHA-3, FPGA, lightweight implementation, benchmarking

1 Introduction and Motivation

The National Institute of Standards and Technology (NIST) started a public
competition to develop a new cryptographic hash algorithm in November 2007.
From the submitted 64 entries only 14 were selected for the second round of
the competition and in December 2010, the 5 Secure Hash Algorithm-3 (SHA-3)
finalists were announced. NIST is expected to announce the winner in 2012. In
its decision which candidate algorithms should advance to the next round, NIST

? Jens-Peter Kaps, Panasayya Yalla, Kishore Kumar Surapathi, Bilal Habib, Susheel
Vadlamudi, Smriti Gurung and John Pham. Lightweight Implementations of SHA-
3 Candidates on FPGAs. In Daniel J. Bernstein and Sanjit Chatterjee editors,
Progress in Cryptology INDOCRYPT 2011, Lecture Notes in Computer Science vol.
7107, pages 270–289. Springer Berlin Heidelberg, Dec, 2011. The original publica-
tion is available at http://www.springerlink.com. http://dx.doi.org/10.1007/
978-3-642-25578-6_20

?? This work has been supported in part by NIST through the Recovery Act Mea-
surement Science and Engineering Research Grant Program, under contract no.
60NANB10D004.

used the following criteria [39][3]: security, cost, and algorithm and implemen-
tation characteristics. The cost criterion describes the computational efficiency
(speed) and memory requirements (gate counts for hardware implementations).
One important implementation characteristic is the ability of the hash function
to be “[. . .] implemented securely and efficiently on a wide variety of platforms,
including constrained environments, such as smart cards”[3]. During the sec-
ond phase of the SHA-3 competition many hardware implementations of the
candidates have been published. The first comprehensive analysis on FPGAs
that included I/O overhead was done by Kobayashi et al. [31] on high through-
put implementations of 8 round-2 candidates. The authors adapted an interface
from [14] to the SASEBO [37]. Matsuo et al. [33] implemented all 14 round-
2 candidates on FPGAs on SASEBO. Gaj et al.,[19] also implemented all 14
round-2 candidates on FPGAs optimized for throughput over area ratio with a
different interface [15]. All implementations mentioned above only consider hash
sizes of 256 bits. Homsirikamol et al. [26] and Baldwin et al [5] implemented all
14 round-2 candidates on FPGAs considering other hash sizes. Neither of these
comprehensive implementations were done for resource-constrained applications.
In a system-on-chip (SOC) on FPGAs, cryptographic functions such as encryp-
tion algorithms or hash algorithms are not necessarily the main purpose of the
application but a part of it. Many other components such as soft-core processors,
optimized signal processing algorithms, etc. are integrated in one chip. Further-
more, a space-constrained implementation could allow for using a smaller FPGA
which in turn leads to cost and power savings. Recent developments in low-cost
and low-power FPGAs [40] will increase their usage in battery powered devices
which makes small implementations even more important.

Unfortunately, designing low-area implementations is not as straightforward
as optimizing a design for best throughput over area. One has to go beyond
merely reducing the datapath width and carefully evaluate the trade-off speed
vs. area at every step of the design process. The control unit is an additional
hurdle. Extensive component re-use in the datapath can lead to a very com-
plex control logic which might negate the area savings in the datapath. There
have been several publications that show low-area implementations of single
SHA-3 candidates on FPGAs such as BLAKE [11], Grøstl [29], Keccak [9], and
Skein [35][?]. Unfortunately, they are implemented on different FPGAs from
different vendors and with different target sizes. This makes a fair comparison
amongst these implementations impossible. Most recently Jungk [28] presented
compact implementations of Grøstl, JH and Skein and Kerckhof et al. [30] of all
five SHA-3 finalists at the “ECRYPT II Hash Workshop 2011”. [30] shows re-
sults for 256-bit digest versions only on Spartan-6 devices. This device choice
makes comparisons with previously reported results impossible. Furthermore,
the authors did not formulate a clear design criterion other than “compact”.
Neither design is the smallest possible, yet the implementation area varies from
117 slices to 304 slices, the throughput from 105Mbit/s to 960Mbit/s, with the
largest design (Grøstl) being the fastest. Only if one criterion is fixed (e.g. area
or throughput) a meaningful comparison can be made.

Standardized interfaces have been proposed [14][15] for implementations of
SHA-3 candidates and used by several comprehensive implementations in order
to facilitate a fair comparison. Depending on the design of the hash function the
interface can become a bottleneck. Furthermore, the interface protocol causes
overhead and increases the size of the data path and control logic. Low area
implementations will be particularly affected by the protocol overhead. Only the
most recent publications, [28] and [30] use standardized interfaces.

In this paper we present low-area implementations of all five finalists and all
round-2 candidates with the exception of SIMD1, designed using the same crite-
rion (space constraint), device, interface and optimization methods. This work
is the most comprehensive analysis of lightweight implementations reported to
date. In Sect. 2 we present the design methodology we used including clear as-
sumptions and goals, interface description and performance metrics. Due to space
constraints we describe only the datapaths of the five SHA-3 finalists in detail in
Sect. 3. Our designs of the other algorithms are summarized in Table 1. Section 4
shows the results of our implementations and compares the 13 candidates with
each other and other reported implementations.

2 Methodology

The primary target for our lightweight implementations are the low-cost Xilinx
Spartan-3 FPGAs. We choose VHDL to describe our lightweight architectures.
All implementations were designed at a low level for our main target FPGA fam-
ily such that we can already obtain a rather precise estimate of the required area
from detailed datapath diagrams. This approach allowed us to enforce a similar
coding style across several designers and algorithms. Furthermore, we built a
small VHDL library of elementary functions that was used by all designers.

2.1 Assumptions and Goals

Only SHA-3 variants with 256-bit digest have been implemented as these are the
most likely variants to be used in area-constrained designs. Furthermore, we as-
sume that padding is done in software. This assumption goes hand-in-hand with
the application of hash functions to SOC designs. The salt values of all SHA-3
candidates who support them are set to zero. Typical optimization goals for hard-
ware implementations are: maximum throughput, maximum throughput to area
ratio, and minimum area. In order to compare lightweight implementations the
minimum area target seems logical. However, optimizing the implementations
for minimum area would yield a ranking of algorithms solely based on area,
i.e. we would know which is the smallest and which is the largest irrespective of
the throughput that is achieved by these implementations. This information is
of not much use in practice. A different approach is to optimize for throughput

1 Our initial investigation has shown that it is unlikely that SIMD could be imple-
mented within our area constraints, due to its complex underlying functions.

given an area constraint. We believe that this is a much more realistic scenario.
Additionally this optimization goal lets us determine how efficient an algorithm
is in a constrained environment which is a factor of an algorithm’s flexibility. This
is a clearly stated evaluation criterion by NIST [3]. We choose to use an area
range of 400 to 600 slices and 1Block RAM on Xilinx Spartan-3 FPGAs as our
constraint. The size of the range was chosen based on low-area implementation
results published on the SHA-3 Zoo [2] website and our own analysis. Within
this area constraint we try to achieve maximum throughput. Therefore, our final
comparisons will be in terms of the ratio of throughput to area. The Block RAM
was chosen due to the large storage requirements of some hash functions.

2.2 Tools and Result Generation

Even though all designs were targeted for Spartan-3 devices it is interesting to
see how our implementations perform on low-cost devices from another vendor
such as Altera Cyclone-II, newer devices such as Spartan-6 and on high speed
devices such as Xilinx Virtex-V. Complete results are published in the ATHENa
results database [1]. All designs were implemented using the vendor tools: Xilinx
ISE 12.3 Web Pack and Altera Quartus II v. 10.0 Web Edition, and verified after
place-and-route against known answer test files provided by the submissions
packet of each hash function. All results were generated using the open source
benchmarking tool ATHENa (Automated Tool for Hardware EvaluatioN) [20].
Other than simplifying the result generation, ATHENa also varies the vendor
tool parameters to achieve optimal results.

2.3 Interface and Protocol

We based our hardware interface and I/O protocol (Fig. 1) on the one presented
in [15] and updated in [19]. The SHA Core assumes that its inputs and outputs
are connected to FIFOs. We believe that the FIFO interface model proposed
in [15] is very suitable for lightweight implementations. In its simplest form a
FIFO is a single w-bit wide register with minimal logic to support the handshake
of read/write and ready. This can easily be interfaced to a microcontroller or
other circuitry in an embedded system. Lightweight applications usually have
smaller databus sizes than the 32 or 64 bits proposed in [15]. Therefore, we use
a databus width w of 16 bits. The protocol supports two scenarios: 1) when
the message length is known and 2) when the message length is not known.
In case 1) the message is sent as a single segment starting with the message
length after padding “msg len ap” in 32-bit words concatenated with a ’1’ fol-
lowed by the message length before padding “msg len bp” in bits followed by
the message. The “msg len bp” is needed by several algorithms even when the
message is already padded. In case 2) the message can be processed in segments
seg0, seg1, · · · , segn−1. Each segment seg0, · · · , segn−2 is headed by the segment
length after padding “seg len ap” concatenated with a ’0’ followed by the seg-
ment of the message. The last segment segn−1 follows the format of case 1). It

din
w

bitsw seg_len_ap 01

seg
1

bitsw

seg
0

seg
n−1

src_ready dst_ready

clk

clk

SHA Core

src_read dst_write

rst

rst

dout
w

msg_len_ap 1

msg_len_bp

message

a)SHA Interface b)SHA Protocol

seg_len_ap 00

seg_len_ap 1

seg_len_bp n−1

n−1

Fig. 1: Interface and protocol for our SHA cores

contain a block of the message and must contain all padding. The formulae to
compute the total number of bits before padding and after padding are:

msg len ap =
n−1∑
i=0

seg len api · 32

msg len bp =
n−2∑
i=0

seg len api · 32 + seg len bpn−1

Furthermore in order to conserve logic resources needed for message counters we
limit the total amount of data in a single message to 232 bits i.e. 4Gbits which
we believe is sufficient for lightweight applications.

2.4 Area Minimization Techniques

Datapath: The most straightforward approach to reducing the area of the dat-
apath is folding. Vertical folding reduces the datapath width while horizontal
folding reduces the size of processing elements while maintaining the datapath
width. How many times and in which direction a design can be folded depends
on the algorithm. The extent to which folding can be applied to the SHA-3 can-
didates and how much it affects their throughput and throughput over area ratio
has been examined by Homsirikamol et al. [27]. They show that only BLAKE
can reach our area constraints through folding alone, Grøstl remains too large,
JH area increases when folded, and Keccak as well as Skein cannot be folded at
all and hence far exceed our area constraints. Another technique is reusing of
processing elements. We heavily use this technique and additionally, we apply
vertical folding at multiple levels down to single processing elements, not just
the datapath as a whole as done in [27]. For example the Skein algorithm uses
4 Mix functions each using a 64-bit adder and a 64-bit XOR. We fold the 4
Mix functions into 1 and within the Mix function we reuse a 32-bit adder to
perform 64-bit additions. The same adder is also reused for the key injections.
Both folding and reuse of processing elements minimize the area consumption
at the cost of an increased number of clock cycles. We reduced this increase to
some extent by interleaving operations through pipelining.

Block RAM: Block RAMs (BRAMs) offer a large amount of memory space for
storage but have a limited number of ports and I/O lines. Xilinx Spartan-3
BRAMs can be configured as single or dual port memories with a maximum
data width of 64 bits or 32 bits per port, respectively. Each port is associated
with a single address input. This limits the number of independent values and
the number of bits that can be accessed in a single clock cycle. Our Grøstl design
processes four 8-bit values in each clock cycle. Even though these are only 32
bits, a dual port BRAM does not allow reading of four independent values in
one clock cycle. Hence, we store that data in 4 Distributed RAMs. The Spartan-
3 BRAM data sheet specifies that data is written to the address applied in
the current clock cycle, but read from the address of the previous clock cycle.
Hence, computing Mem[i] = Mem[i] + k, where each element is a 64-bit word,
requires 2 clock cycles per address location i, i.e. dedicated write cycles. These
are not needed when computing Mem[i+ i] = Mem[i] + k, i.e. when an address
shift is acceptable. In our early Keccak design, this address shift increased the
complexity of the control logic and with it the area consumption beyond our
constraint. Hence it now uses dedicated write cycles. The new Xilinx Spartan-6
and Virtex-6 devices allow for independent read and write addresses for 64-bit
data width.

Control Logic: The control logic of our implementations consists of a main finite
state machine (FSM) with up-to 8 states, a single counter to count the clock
cycles per state, and ROM-based FSMs for each state of the main FSM. ROM-
based FSMs are more efficient in terms of area consumption and speed compared
to conventional FSM [36], [38], [21], and their maximum frequency is independent
of the complexity. However they are more complex to design. The area required
to implement ROM-based FSMs is determined by the number of control signals
and states. In order to reduce the number of control signals we try to use bits
from the counter output, the main finite state machine, and simple boolean logic
combinations thereof wherever possible. Furthermore, short sequences of control
signals are placed in sub-controllers. The complexity of address generation for
BRAMs can be reduced by placing datasets in memory locations starting at
addresses which are a power of 2.

2.5 Performance Metrics

The number of clock cycles needed to hash N message blocks using our imple-
mentations can be computed from the number of clock cycles required to perform
the following functions:

i Initialization (if not precomputed) p Processing one block
h Loading protocol header of message z Finalization
l1 Loading first block o Output of the hash value
l Loading each subsequent block

This results in the following formula for the number of clock cycles clk for hashing
N blocks of data.

clk = i+ h+ l1 + l · (N − 1) + p ·N + z + o

This formula can now be simplified to reflect the number of clock cycles needed
for the initial steps before processing can begin st = i+h+(l1− l), loading and
processing one block of data l+ p, and finalization and output of the hash value
end = z + o resulting in (1).

clk = st+ (l + p) ·N + end (1)

Throughput is defined as the number of input bits processed per unit of time. The
precise formula for throughput of a hash function is dependent on the number
of message blocks N to be hashed, the block size b of the algorithm, the number
of clock cycles needed to hash the message clk and the clock period T . We can
derive the formula to compute the throughput from (1).

throughput(N) =
b ·N
clk · T

=
b ·N

(st+ (l + p) ·N + end) · T
(2)

Especially in embedded applications, messages can be very short. It is therefore
important to also calculate the throughput for short messages. We use the empty
message which after padding is one block long and therefore set N = 1 in (2) to
compute the throughput.

When computing the throughput for very long messages, we can neglect st
and end as their influence on the result goes to zero. This leads to the simplified
equation (3).

throughputlong =
b

(l + p) · T
(3)

Resource Utilization of FPGAs is very difficult to define. All FPGAs contain
configurable logic elements which contain flip-flops (Xilinx: slices, Altera: LE),
BRAMs, multipliers and other resources. These resources have different features
not only depending on the vendor but even on the FPGA family. Hence, we
can compare implementations using the metric of throughput over area ratio
only within a specific FPGA family and provided they use the same number of
dedicated resources. As area in this formula we use solely slices for Xilinx and
LEs for Altera devices as there is no direct mapping from BRAM utilization to
slice or LE.

3 Implementations

Due to space constraints we only briefly describe our implementations of the
SHA-3 finalists. A short list of implementation details of all 13 SHA-3 candidates
evaluated in this paper is shown in Table 1. The throughput formulae for all
implementations is shown in Table 2.

REG_1

01

REG_2
01

3232 32 32

32

32

32

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

R
E

G
_B

1

R
E

G
_B

2
R

3
<

<
<

R
1

<
<

< 0

1

R
E

G
_C

R
4

<
<

<
R

2
<

<
<

0

1

0

1

0

1

0

1

0

1

R
E

G
_A

32
CM

32

32

32

32

Reg
31

16
15

0

din

do
ut

0 1
15

0

31
16

BRAM

Port−B

Port−A

D BC A

C

D

A

B B’

D’

A’

C’

Fig. 2: Blockdiagram of BLAKE

3.1 BLAKE

Our implementation of BLAKE-32 and BLAKE-256 (Fig. 2) uses the BRAM
to store the message, constants, initial hash values, chaining hash values, salt,
and a counter. It takes 16 clock cycles to initialize the internal state. The in-
ternal V-state is stored in four Distributed RAMs which can be accessed easily
for each G-Function. We implemented 1/2 G-Function with interleaved pipeline
stages such that it takes 20 clock cycles for computing 8 G-Functions. Addi-
tionally we need one extra clock cycle to store the registered value back into
Distributed RAM leading to a total of 21 clock cycles for each round. The G-
Function requires permuted values of constants and messages which are stored
in BRAM. This permutation doesn’t have a repeatable pattern, therefore the
BRAM addressing alone consumes 70% of the size of the controller. For round-3
of the SHA-3 competition a tweak was introduced for BLAKE which increases
the number of rounds by four resulting in an increase in area consumption as the
permutation function needs data values for 4 more rounds from BRAM. This
version of BLAKE is called BLAKE-256.

3.2 Grøstl

Grøstl [22] is based on the AES round with the following sequence of operations:
AddRoundConstant, SubBytes, ShiftBytes, and MixBytes. In our implementa-
tion (Fig. 3) the state, consisting of two 512-bit matrices P & Q, is stored in 16
4x8 Distributed RAMs. Each row is stored in one Distributed RAM. In order to
get the first 64-bit column we access byte0 from RAM0, byte1 from RAM1. . . etc.
This access scheme performs the ShiftBytes operation with which we start each
round. SubBytes is implemented using 4 pipelined S-Boxes which are described
as logic functions [?]. The multiplier takes a column from SubBytes and pro-
duces 32 bits of the new column in one clock cycle, the remaining 32 bits in the

second clock cycle. It takes a total 3 clock cycles to produce a new column. Each
round of P and Q computes 16 new columns which takes 48 clock cycles. We in-
terleave the computations of P and Q through the pipeline. The XOR operation
(P ⊕Q⊕h) takes 32 clock cycles. So a block of message is processed in 515 clock
cycles (48 · 10 + 32 + 3 clock cycles to fill the pipeline). BRAM is used in dual
port mode and stores the initialization vector and the intermediate hash (h). For
round-3 of the SHA-3 competition a tweak was introduced which changes the
shifts in the ShiftBytes operation and introduces a different AddRoundConstant
function. This has minimal effect on the area consumption and does not change
the overall architecture. Grøstl from round-2 is now called Grøstl-0.

3.3 JH

Our implementation of JH (Fig. 4) stores the state and constants in BRAM.
Two independent 32x8 Distributed RAMs store the state of the round constant
generator. The BRAM is used as two independent memories to simplify the con-
trol logic and ease synchronization with the round constant generator. During
initialization, which takes 35 cycles, the location of the state in BRAM is ini-
tialized with the precomputed starting value of H(0) from another address in
the same BRAM. Grouping and de-grouping take advantage of the dual port
memory and read two addresses from the BRAM simultaneously, retaining 4
bits from each address in registers and discarding the rest. This is repeated 4
times to write a full 32-bit value back into the BRAM and takes 160 cycles. The
core round function is 32 times vertically folded and contains a pipelined per-
mutation function. It needs a total of 34 cycles per round. Difficulties in creating
this implementation were the memory access delays and the nonconsecutive read
and write addresses. The tweak for round-3 of the SHA-3 competition increases
the number of rounds to 42. This version of JH is called JH42.

3.4 Keccak

One round of Keccak [9] applies five functions, θ, ρ, π, χ, and ι to its state.
In our implementation (Fig. 5), we store the state and the round constant in
BRAM. The basic operations of Keccak use 64-bit data values which is also the
maximum that we can read or write to BRAM in a single clock cycle. Therefore,
in order to make the design more efficient we decided to quasi pipeline our
functions. We have merged the θ and ρ functions. The later function uses a
variable rotator. A barrel shifter consumes 192 slices on Spartan-3, hence we
build a shifter that can only shift the 25 offsets Keccak needs. It uses on average
1.5 clock cycles per rotation and consumes only 128 slices. We use dedicated
write cycles to accommodate the data rearrangement of the π function. These
three functions take a total of 91 clock cycles. The χ function takes its operands
from BRAM, applies a series of simple logical operations, and stores the result
into BRAM. The ι operation combines a round constant with one 64-bit value
of the new state. These operations take an additional 63 clock cycles. A single
round operation thus takes a total of 154 clock cycles. Reducing the number of

012 0120101

A

BRAM

Port−B

Port−A

Reg
din

15
0

31
16

dout 0
1

15
0

31

SBoxSBoxSBoxSBox

Reg

Add Constant

8 8 8 8

4xDRAM 4xDRAM 4xDRAM4xDRAM

0 1

Reg
0 1

Reg

GFMul

0 1

32

32

A
B

B

A

Fig. 3: Blockdiagram of Grøstl-0

S−box

L

Group
De−group

31
16

Reg

0 1

DRAM

R6

0

7

0

7

Pdout 0
1

31
16 15

0

Reg
0

14

Reg Reg
0

14
15

31

0
14

15
31

0
1

31
0

31
0

31
15

0

3

1
2

BRAM

Port−B

Port−A

31
0

31
0

din
15

0

0
1
2

Fig. 4: Blockdiagram of JH

1
<

<
<

Rho&Pi

0
63

0
31

0
31

32
63

0
15 BRAM

Port−A

Port−B
0

31

0
31

0

1

dout 0
31

32
63

32
63

Chi_B

RegA_out

RegB_out

RegC_out

0
1
2

A

A

var_out

rc_a

var_out

rc_a

var_out
Chi_B

Chi_B

din

R
eg

−
A

0
1

R
eg

−
B

R
eg

−
C

01

Reg−V

R
eg

0
63

0
31

0

3

1
2

A

out_32

out_32

C
hi

Fig. 5: Blockdiagram of Keccak

clock cycles would require more BRAM accesses which is not possible or more
registers or Distributed RAMs, both would increase area consumption.

3.5 Skein

The basic building block of Skein [18] is a Mix function which consists of 64-bit
ADD, XOR and rotate operations. Even though all main operations are of 64-bit
size we chose a 32-bit datapath for our Skein-512-256 implementation (Fig. 6).
The BRAM limits us to read two 32-bit values per clock cycle. Hence, we read
the 32LSB of two operands in one clock cycle and perform an addition, followed
by the 32MSB in the next clock cycle. The big advantage of this strategy is that
we can use a 32-bit adder which has a much shorter critical path than a 64-bit
adder. The variable rotator is realized as a 64-bit barrel shifter with a single
pipeline stage. It is the single largest block in our design. We use the BRAM to
store the state and the processed IV. This allows us to skip the initialization.
Hashing a single block of data takes 72 rounds and 19 key injections. Within
each round the Mix function is used 4-times which takes 20 clock cycles. The
first key injection takes 48 clock cycles and all following 45, resulting in 858
clock cycles per block. After the round function completes a new chaining value
has to be generated which is used to generate the new key for the next message
block. Permutations take an additional 109 clock cycles. When all message blocks
are processed the message finalization starts. This finalization is equivalent to
processing a message block, except no new key has to be generated. For round-3
of the SHA-3 competition only a single constant got changed. This neither affects
the size of our implementation nor its speed.

4 Results and Conclusions

4.1 Implementation Results

The results of our implementations are summarized by the graph shown in Fig. 7.
It shows the area consumption of each implementation on the x-axis and the
throughput on the y-axis. Hash functions where the implementations did not
change between round 2 and round 3 of the SHA competition are marked as
“Round 2 & 3”. Otherwise they are grouped by competition rounds. It can be
seen that all implementations fall within our target range of 400 to 600 slices.
Each algorithm was optimized for maximum throughput without violating the
area constraint. The throughput over area ratio of each implementation on a
Xilinx Spartan-3 and, due to page limitations, only of the finalists on other
FPGA devices is shown in Fig. 8. Each graph is sorted by throughput over area
for long messages according to (3) in red. The results for short messages of one
block only are computed according to (2) and shown in light-blue. The order of
the algorithms differs slightly depending on the implementation platform. Shabal
outperforms all other hash functions for long messages. Of the five finalists,
BLAKE-256 performs better on Xilinx devices, Grøstl on the Altera device. It

T
ab

le
1:

Im
p
lem

en
tation

d
etails

of
S
H
A
-3

can
d
id
ate

im
p
lem

en
tation

s

A
lg
o
rith

m

Datapath
Size(bits)

Rounds

Clockcycles
perRound

Additional
Clockcycles

Clockcycles
perblockp

Clockcycles
perbyteof
message

Im
p
lem

en
ta
tio

n
D
eta

ils

B
L
A
K
E
-3
2

3
2

1
0

2
1

2
4

2
3
4

3
.7

B
L
A
K
E
-2
5
6

3
2

1
4

2
1

2
4

3
1
8

5
.0

S
ee

d
escrip

tio
n
in

S
ect.3

.1
.

B
M
W

3
2

1
7
3
0

0
7
3
0

1
1
.4

B
R
A
M

sto
res

IV
a
n
d
sta

te,
sh
ifter

a
n
d
ro
ta
to
r
im

p
lem

en
ted

sep
a
ra
tely

to
p
er-

fo
rm

in
p
a
ra
llel,

th
e
o
u
tp
u
ts

o
f
ro
ta
to
r,

sh
ifter

a
n
d
th
e
a
d
d
ers

a
re

reg
istered

to
red

u
ce

d
elay.

C
u
b
eH

a
sh

3
2

1
6

5
8

0
9
2
8

2
9
.0

P
ro
cessed

IV
a
n
d

sta
te

is
sto

red
in

B
R
A
M
.
F
in
a
liza

tio
n

is
eq
u
iva

len
t

to
1
0
*
R
o
u
n
d
s.

D
istrib

u
ted

R
A
M
s
sto

re
im

m
ed

ia
te

va
lu
es

to
ov

erco
m
e
sw

a
p
p
in
g
.

E
C
H
O

6
4

8
2
9
0

1
2
9

2
4
4
9

1
2
.8

M
essa

g
e
a
n
d

sta
te

sto
red

in
B
R
A
M
.
S
-b
ox

im
p
lem

en
ted

a
s
lo
g
ic.

R
o
u
n
d

is
g
en

era
ted

u
sin

g
3
2
-b
it
a
d
d
er

a
n
d
3
2
-b
it
reg

ister
a
n
d
sto

red
in

D
istrib

u
ted

R
A
M
.

F
u
g
u
e

3
2

1
6
1

0
6
1

1
5
.3

S
ta
te

is
sto

red
in

B
R
A
M
.
S
u
p
er-M

ix
is

crea
ted

fro
m

4
A
E
S
S
-B

ox
es

a
n
d
fi
x
ed

ro
ta
tio

n
s.

G
rø
stl(-0

)
3
2

1
0

4
8

3
5

5
1
5

7
.8

S
ee

d
escrip

tio
n
in

S
ect.3

.2
.

H
a
m
si

6
4

3
1
6

2
6

7
4

1
8
.5

M
essa

g
e
sto

red
in

reg
ister.

E
x
p
a
n
sio

n
fu
n
ctio

n
co
n
sta

n
ts

3
2
*
1
2
8
b
its,

in
itia

l-
iza

tio
n
co
n
sta

n
ts,

a
n
d
sta

te
in

B
R
A
M
.
p
/
p
f
fu
n
ctio

n
co
n
sta

n
ts

in
D
istrib

u
ted

R
a
m
.
6
4
-b
it

p
/
p
f
fu
n
ctio

n
.

J
H

3
2

3
6

3
4

3
8
4

1
6
0
8

2
5
.1

J
H
4
2

3
2

4
2

3
4

3
8
5

1
8
1
3

2
8
.3

S
ee

d
escrip

tio
n
in

S
ect.3

.3
.

K
ecca

k
6
4

2
4

1
5
4

0
3
6
9
6

2
7
.2

S
ee

d
escrip

tio
n
in

S
ect.3

.4
.

L
u
ff
a

3
2

8
6
6

7
8

6
0
6

1
8
.9

M
essa

g
e
in
jectio

n
th
ro
u
g
h
seria

lized
X
O
R
.
T
w
ea
k
u
ses

sh
ift

reg
ister.

T
h
e
S
u
b
-

C
ru
m
b
is

im
p
lem

en
ted

a
s
R
O
M
.
C
o
n
sta

n
ts,

IV
s
a
n
d
sta

te
sto

red
in

B
R
A
M

S
h
a
b
a
l

3
2

4
8

1
1
6

6
4

1
.0

D
esig

n
fro

m
[1
7
]
w
ith

IV
s
a
n
d
C
-sta

te
lo
ca
ted

in
B
R
A
M
.

S
H
A
v
ite-3

3
2

1
2

3
8

2
8
8

7
4
4

1
1
.6

B
R
A
M

sto
res

sta
te

a
n
d
IV

.
4
S
-B

ox
es

im
p
lem

en
ted

a
s
R
O
M
.
4
x
3
2
-b
it
sh
ift

reg
is-

ter
is
ta
p
p
ed

a
t
3
2
b
it
p
o
sitio

n
s
to

p
rov

id
e
d
a
ta

fo
r
M
ix
C
o
lu
m
n
s
m
u
ltip

lica
tio

n
.

K
ey

g
en

era
tio

n
u
ses

sa
m
e
d
a
ta
p
a
th

a
n
d
ta
k
es

2
8
8
clo

ck
cy
cles.

S
k
ein

3
2

7
2

2
0

9
6
7

2
4
0
7

3
7
.6

S
ee

d
escrip

tio
n
in

S
ect.3

.5
.

31
0

reg−2
0 1

0
reg−1

63
0

0 1

0

63
32

31
0

0
1
2

R
eg

63
32

63
0

0
1

31
0

0
1

15
0

31
16

Tweak

BRAM

Port−B

Port−A

63
32

15
0

31
16

dout

din

0

31

63

32

31
0

<<<R

Fig. 6: Blockdiagram of Skein

��� ��� ��� ��� ���
�

���

���

���

���

��� �	
�
�

�������

��������

���������
��

����
�
 ���!""
#!$!�

%�
�!���
�	

��&&
'

�'��(

��������

������

%���

)*!(+,�

)*!(+,�,-,�

)*!(+,�

���
,.���&��/

0
	
�*
!
$
	
1
!
�,
.�
�
1
�
/

Fig. 7: Throughput over area of our SHA-3 implementations on Xilinx Spartan-3

Table 2: Throughput formulae for our implementations of SHA-3 candidates

Algorithm
Speci-
fication

Block
Size
(bits)

b

Clock Cycles to hash
N blocks
clk =

st+ (l + p) ·N + end

Throughput

b

(l + p) · T

BLAKE-32 [4] 512 2 + (32 + 234) ·N + 17 512/(266 · T)
BLAKE-256 [4] 512 2 + (32 + 318) ·N + 17 512/(350 · T)

BMW [24] 512 2 + (32 + 730) ·N + 757 512/(762 · T)
CubeHash [7] 256 2 + (16 + 928) ·N + 9312 256/(944 · T)

ECHO [6] 1536 18 + (96 + 2449) ·N + 17 1536/(2545 · T)
Fugue [25] 32 33 + (2 + 61) ·N + 990 32/(63 · T)

Grøstl-0, Grøstl [22], [23] 512 2 + (32 + 515) ·N + 532 512/(547 · T)
Hamsi [32] 32 2 + (2 + 74) ·N + 65 32/(76 · T)

JH [41] 512 35 + (32 + 1608) ·N − 15 512/(1640 · T)
JH42 [42] 512 35 + (32 + 1813) ·N − 15 512/(1845 · T)

Keccak [9], [10] 1088 2 + (68 + 3696) ·N + 17 1088/(3764 · T)
Luffa [16] 256 2 + (16 + 606) ·N + 647 256/(622 · T)

Shabal [13] 512 32 + (32 + 64) ·N + 208 512/(96 · T)
SHAvite-3 [12] 512 18 + (32 + 744) ·N + 17 512/(776 · T)

Skein [18] 512 5 + (32 + 2407) ·N + 2423 512/(2439 · T)

can clearly be seen, that algorithms that have a lengthy finalization step do
not perform well for short messages. It is interesting to note, that all round-
3 candidates which introduced a tweak after round-2 that requires a change
in the datapath perform slightly worse after the tweak with the exception of
JH42. Its tweak leads to an increase in the number of rounds, however, this
penalty is compensated for by the simpler datapath resulting from dropping the
half round. The detailed results of our implementations on Xilinx Spartan-3,
Spartan-6, Virtex-V and Altera Cyclone-II devices are summarized in Tables 3
and 4. Both tables show first the results of the SHA-3 finalists followed by the
remaining round-2 candidates.

One challenge when implementing the hash functions for low-area, is the
trade-off between simplicity of the datapath versus complexity of the control
logic. Reuse of components in the datapath for several different functions, clock
cycle optimized usage of the BRAM, pipelining complex functions to achieve low
critical path delay, and interleaving elementary functions of a hash algorithm all
lead to a better throughput over area ratio of the datapath. However, all of
them also lead to a complex control logic. Figure 8e shows how many percent
of the total area consumption of each hash function was used for the datapath
and for the control unit. A small control unit indicates that the control signals
needed for an algorithm are very regular, i.e. the algorithm is very regular and
can be easily scaled down for lightweight implementations. A large control unit
might indicate the opposite. On the other hand, BLAKE-256 has a very good
throughput over area ratio, yet, due to its permutation schedule with 210 entries
it requires a relatively large control unit.

������
���	
��

���	
���
��������

������
���������

���

���

�����
 �!��

��"��
#�$

#�
	�%%�&

��������
�&��'

�(�

�(

�($

�(�

�()

*(�

�+'!,�����!��

��+��,�����!��

-
.
/�
��
�
,0
�
�
1
�
/�
��%
�
2

(a) Throughput over area ratio on Xilinx Spartan-3

��������	

����

������
����

�����

����

����

����

��	�

����

����

����

����

��	�

�
�

 �
��

�
!"

#
$

%

���
�

&

�'�(!#��(�

�)'��!#��(�

(b) on Spartan-6

��������	

����

������
����

�����

����

����

����

��	�

����

����

����

����

��	�

�
�

 �
��

�
!"

#
$

%

���
�

&

�'�(!#��(�

�)'��!#��(�

(c) on Xilinx Virtex-V

������
��	
����

�����
���

�����

����

���

����

����

����

����

���

����

����

�
�

 	
��

�
!"

#
$

%
�
 �

�
&

�'�(!#����(��

�)'��!#����(��

(d) on Altera Cyclone-II

����
����	

����
�����

���������

��

���

���

���

���

���

���

���

���

 ��

����

!"�	�"

#�	�$�	%

�
�
�
&'
�

��

�
(

(e) Ratio of Datapath vs. Control
Unit area consumption on Xilinx
Spartan-3

Fig. 8: Lightweight SHA-3 implementations results

Table 3: Implementation results of our implementations of SHA-3 candidates
Xilinx Xilinx Xilinx Altera

xc3s50-5 xc6slx4csg-3 xc5vlx20-2 ep2c5f256c6

Algorithm A
re
a
(s
li
ce
s)

B
lo
ck

R
A
M
s

M
a
x
im

u
m

D
el
ay

(n
s)

T

A
re
a
(s
li
ce
s)

B
lo
ck

R
A
M
s

M
a
x
im

u
m

D
el
ay

(n
s)

T

A
re
a
(s
li
ce
s)

B
lo
ck

R
A
M
s

M
a
x
im

u
m

D
el
ay

(n
s)

T

A
re
a
(L

E
s)

M
em

o
ry

B
it
s

M
a
x
im

u
m

D
el
ay

(n
s)

T

BLAKE-256 545 1 8.42 139 1 6.47 212 1 4.30 1,365 2,048 8.70
Grøstl 537 1 6.95 163 1 5.44 234 1 3.77 1,026 2,560 5.86
JH42 428 1 9.74 142 1 8.16 176 1 5.28 702 8,704 8.59

Keccak 582 1 8.30 142 1 5.91 196 1 3.74 996 8,192 5.48
Skein 491 1 10.68 227 1 8.07 215 1 5.74 930 4,096 9.89

BLAKE-32 527 1 7.38 138 1 7.23 238 1 4.37 1,262 2,048 8.71
BMW 561 1 9.99 183 1 7.15 233 1 5.16 1,104 8,192 9.45

CubeHash 434 1 12.58 131 1 8.11 231 1 6.05 2,761 16,384 9.18
ECHO 508 1 11.33 155 1 9.72 232 1 5.34 1,069 16,512 10.14
Fugue 451 1 13.48 269 1 12.84 209 1 6.43 940 16,384 7.81

Grøstl-0 517 1 6.93 163 1 5.23 232 1 3.61 1,020 2,560 5.93
Hamsi 533 1 9.97 162 1 12.83 208 1 5.28 687 10,240 8.87

JH 482 1 9.99 180 1 8.35 161 1 4.97 702 8,704 8.59
Luffa 474 1 10.17 107 1 6.86 176 1 5.08 946 8,192 7.66

Shabal 502 1 10.17 165 1 7.66 231 1 4.86 2,093 1,760 9.16
Shavite-3 501 1 7.60 120 1 5.24 136 1 3.37 471 16,384 7.01

4.2 Comparison with Other Reported Results

We compare our results with previously reported ones in Table 5. Due to space
limitations we concentrate only on the SHA-3 finalists. Even though our primary
design target is Xilinx Spartan-3, we synthesized our implementations for other
devices to match the devices of reported results. This puts our designs at a dis-
advantage as we could not take full advantage of their features. Most notably,
pipeline stages might become unbalanced when synthesizing a design for a device
with 4-input LUTs on a 6-input LUT device. The compact BLAKE-32 design
reported in [11] uses two BRAMs, one for the controller and one to store the
message, constant, internal states, hash values and counters. In order to have a
fair comparison we moved the control unit of our BLAKE-32 design to a second
BRAM. This enabled us to reduce the number of clock cycles. The designs are
quite comparable in terms of throughput to area ratio. Furthermore, the design-
ers of [11] did not include the clock cycles needed for loading a message block
which would bring our designs even closer. Our BLAKE-256 design performs
significantly better than the design by Kerckhof [30]. Our result for Keccak on
Virtex-V compares favorably with the design reported in [8]. For comparison we
are assuming that we can equate their system memory with one BRAM. The
reason for the difference in clock cycles is that we chose to use a quasi pipelined
design whereas [8] has implemented each of the functions separately. However,
Kerckhof’s result for Keccak [30] is better than ours even though their area is

Table 4: Throughput results of our lightweight implementations of SHA-3 can-
didates. First are round-3 results followed by round-2 results.

Xilinx xc3s50-5 Xilinx xc6slx4csg225-3
Message Long Short Long Short

Algorithm T
h
ro
u
g
h
p
u
t

(M
b
p
s)

T
P
/
A
re
a

(M
b
p
s/
sl
ic
e)

T
h
ro
u
g
h
p
u
t

(M
b
p
s)

T
P
/
A
re
a

(M
b
p
s/
sl
ic
e)

T
h
ro
u
g
h
p
u
t

(M
b
p
s)

T
P
/
A
re
a

(M
b
p
s/
sl
ic
e)

T
h
ro
u
g
h
p
u
t

(M
b
p
s)

T
P
/
A
re
a

(M
b
p
s/
sl
ic
e)

BLAKE-256 173.8 0.32 164.8 0.302 226.0 1.63 214.4 1.542
Grøstl 134.6 0.25 68.1 0.127 171.9 1.05 87.0 0.534
JH-42 28.5 0.07 28.2 0.066 34.0 0.24 33.6 0.237

Keccak 34.8 0.06 34.7 0.060 48.9 0.34 48.6 0.343
Skein 19.7 0.04 9.9 0.020 26.0 0.11 13.0 0.057

BLAKE-32 261.0 0.50 243.6 0.462 266.4 1.93 248.6 1.802
BMW 67.3 0.12 33.7 0.060 93.9 0.51 47.1 0.257

CubeHash 21.6 0.05 2.0 0.005 33.5 0.26 3.1 0.024
ECHO 53.3 0.10 52.5 0.103 62.1 0.40 61.2 0.395
Fugue 37.7 0.08 2.2 0.005 39.6 0.15 2.3 0.009

Grøstl-0 135.1 0.26 68.4 0.132 179.0 1.10 90.6 0.556
Hamsi 42.2 0.08 22.4 0.042 32.8 0.20 17.4 0.108

JH 31.2 0.06 30.9 0.064 37.4 0.21 37.0 0.205
Luffa 40.5 0.09 19.8 0.042 60.0 0.56 29.4 0.275

Shabal 524.7 1.05 149.9 0.299 687.5 4.17 196.4 1.190
Shavite-3 86.8 0.17 83.1 0.166 126.0 1.05 120.6 1.005

Xilinx xc5vlx20-2 Altera ep2c5f256c6
Message Long Short Long Short

Algorithm T
P

(M
b
p
s)

(M
b
p
s

/
sl
ic
e)

T
P

(M
b
p
s)

(M
b
p
s

/
sl
ic
e)

T
P

(M
b
p
s)

(M
b
p
s

/
L
E
)

T
P

(M
b
p
s)

(M
b
p
s

/
L
E
)

BLAKE-256 340.4 1.61 322.8 1.523 168.1 0.12 159.4 0.117
Grøstl 248.5 1.06 125.7 0.537 159.7 0.16 80.8 0.079
JH-42 52.5 0.30 52.0 0.295 32.3 0.05 31.4 0.046

Keccak 77.2 0.39 76.8 0.392 52.7 0.05 52.5 0.053
Skein 36.6 0.17 18.3 0.085 21.2 0.02 10.6 0.011

BLAKE-32 440.8 1.85 411.4 1.728 220.9 0.18 206.2 0.163
BMW 130.3 0.56 65.3 0.280 71.1 0.06 35.6 0.032

CubeHash 44.8 0.19 4.1 0.018 29.6 0.01 2.7 0.001
ECHO 113.0 0.49 111.5 0.481 59.5 0.06 58.7 0.055
Fugue 79.0 0.38 4.6 0.022 65.0 0.07 3.8 0.004

Grøstl-0 259.6 1.12 131.4 0.566 157.9 0.15 79.9 0.078
Hamsi 79.7 0.38 42.4 0.204 47.5 0.07 25.2 0.037

JH 62.8 0.39 62.0 0.385 36.3 0.05 35.9 0.051
Luffa 81.1 0.46 39.7 0.225 53.8 0.06 26.3 0.028

Shabal 1097.8 4.75 313.7 1.358 582.5 0.28 166.4 0.080
Shavite-3 196.1 1.44 187.6 1.380 94.1 0.20 90.1 0.191

Table 5: Comparison of lightweight implementations of SHA-3 finalists on Xilinx
FPGAs ([TW] – this work)

Algorithm R
ef
er
en

ce

Device I/
O

W
id
th

D
a
ta
p
a
th

W
id
th

C
lo
ck

C
y
cl
es

(l
+

p
)

A
re
a
(s
li
ce
s)

B
lo
ck

R
A
M
s

M
a
x
im

u
m

D
el
ay

(n
s)

T
h
ro
u
g
h
p
u
t

(M
b
p
s)

T
P
/
A
re
a

(M
b
p
s/
sl
ic
e)

BLAKE-32 [11] xc3s50-5 32 32 846 124 2 5.26 115.0 0.927
BLAKE-32 [TW] xc3s50-5 16 32 220 360 2 7.38 315.6 0.877

BLAKE-256 [30] xc6vlx75t-1 64 64 1,336 117 0 3.65 105.0 0.897
BLAKE-256 [TW] xc6vlx75t-1 16 32 350 146 1 5.27 277.7 1.902

Grøstl-0 [29] xc3s200 64 64 160 1,276 0 16.67 192.0 0.150
Grøstl-0 [TW] xc3s200-5 16 32 547 529 1 7.15 131.0 0.248
Grøstl [30] xc6vlx75t-1 64 64 176 285 0 3.57 815.0 2.860
Grøstl [TW] xc6vlx75t-1 16 32 547 179 1 4.13 226.7 1.266
Grøstl [28] xc5v 32 64 160 470 0 2.82 1,132.0 2.409
Grøstl [TW] xc5v 16 32 547 234 1 3.77 248.5 1.062

JH42 [30] xc6vlx75t-1 64 64 689 240 0 3.47 214.0 0.892
JH42 [TW] xc6vlx75t-1 16 32 1,845 164 1 5.39 51.5 0.314
JH42 [28] xc5v 32 8 6,466 205 0 2.93 27.0 0.132
JH42 [TW] xc5v 16 32 1,845 176 1 5.28 52.5 0.299

Keccak [8] xc5vlx50-3 64 64 5,492 448 1 3.77 52.5 0.117
Keccak [TW] xc5vlx50-3 16 64 3,764 192 1 3.54 81.8 0.426
Keccak [30] xc6vlx75t-1 64 64 2,125 144 0 4.00 128.0 0.889
Keccak [TW] xc6vlx75t-1 16 64 3,764 154 1 3.69 78.3 0.509

Skein [30] xc6vlx75t-1 64 64 458 240 0 6.25 179.0 0.746
Skein [TW] xc6vlx75t-1 16 32 2,439 162 1 6.02 34.9 0.215
Skein [28] xc5v 32 64 585 555 0 3.69 237.0 0.427
Skein [TW] xc5v 16 32 2,439 215 1 5.74 36.6 0.170

slightly smaller. One reason is, that we have to use dedicated write cycles for the
BRAM and that our rotator requires 1.5 clock cycles on average. The Grøstl-
0 implementation reported in [29] is more than twice as large as our design,
yet our throughput to area ratio is 1.5 times better. Their design processes the
data in fewer clock cycles leading to a higher throughput. However, as they are
using 8 S-boxes with no pipeline register in between, their delay is high and
the area is comparatively large. The Grøstl implementations by Kerckhof [30]
and Jungk [28] outperform our implementation. However, both are significantly
larger, have a wider I/O, and a 64-bit datapath. We can make the same observa-
tion also for the JH implementation in [30] and Skein in [30] and [28]. Our area
constraint and the BRAM restricts us to a 32-bit datapath. It is interesting to
note though, that the throughput over area ratio is highly non-linear with the
area of implementations of the same algorithm, i.e. the more area is available,
the disproportional more the throughput improves. Jungk’s implementation of
JH [28] has a worse performance than ours due to its 8-bit datapath.

4.3 Conclusions

In this paper we presented the first comprehensive comparison of lightweight
FPGA implementations of all SHA-3 finalists and all round-2 candidates with
the exception of SIMD. All algorithms were implemented using the same as-
sumptions, goals, tools, interface, and the same area optimization techniques.
The lightweight implementations were evaluated with regards to their through-
put over area ratio. The resulting ranking of algorithms is very different from
implementations for best throughput over area reported in the literature [33],
[19], [5]. The finalists with the best throughput over area ratio on Xilinx devices
is BLAKE-256 followed by Grøstl. On the Altera Cyclone-II Grøstl is followed
by BLAKE-256. JH42 and Keccak are very close to each other. The finalist with
the lowest ratio is Skein. However, this ranking might change, when we change
the available area or the BRAM requirement. As future work we would like to
explore how much more area is needed for each of these algorithms in order to
achieve a significant increase in throughput over area. This will give us an even
better understanding of the scalability of the algorithms.

References

1. ATHENa results database. http://cryptography.gmu.edu/athenadb/, auto-
mated Tool for Hardware EvaluatioN project

2. The sha-3 zoo. http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo, eCRYPT,
Information Societies Technology (IST) Programme of the European Commission

3. Announcing request for candidate algorithm nominations for a new cryptographic
hash algorithm (SHA-3) family. Federal Register/ Vol. 72, No. 212 (Nov 2007),
notices 62212

4. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE.
Submission to NIST (Round 3) (2010), http://131002.net/blake/blake.pdf

5. Baldwin, B., Hanley, N., Hamilton, M., Lu, L., Byrne, A., O’Neill, M., Marnane,
W.P.: FPGA implementations of the round two SHA-3 candidates. Tech. rep.,
Second SHA-3 Candidate Conference (2010)

6. Benadjila, R., Billet, O., Gilbert, H., Macario-Rat, G., Peyrin, T., Robshaw, M.,
Seurin, Y.: SHA-3 proposal: ECHO. Submission to NIST (updated) (Feb 2009),
http://crypto.rd.francetelecom.com/echo/

7. Bernstein, D.J.: CubeHash specification (2.b.1). Submission to NIST (Round 2)
(2009), http://cubehash.cr.yp.to/

8. Bertoni, G., Daemen, J., Peeters, M., Gilles, V.A.: Keccak function version 2.0
(Sep 2009)

9. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak sponge function
family main document. http://keccak.noekeon.org (Apr 2009), version 1.2

10. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak SHA-3 sub-
mission. Submission to NIST (Round 3) (2011), http://keccak.noekeon.org/

Keccak-submission-3.pdf

11. Beuchat, J.L., Okamoto, E., Yamazaki, T.: Compact implementations of BLAKE-
32 and BLAKE-64 on FPGA. Cryptology ePrint Archive, Report 2010/173 (2010)

12. Biham, E., Dunkelman, O.: The SHAvite-3 hash function. Submission to NIST
(Round 2) (2009), http://www.cs.technion.ac.il/~orrd/SHAvite-3/Spec.15.
09.09.pdf

13. Bresson, E., et al.: Shabal, a submission to NISTs cryptographic hash algorithm
competition. Submission to NIST (October 2008), http://ehash.iaik.tugraz.
at/uploads/6/6c/Shabal.pdf

14. Chen, Z., Morozov, S., Schaumont, P.: A hardware interface for hashing algorithms.
Cryptology ePrint Archive, Report 2008/529 (2008), http://eprint.iacr.org/

15. Cryptographic Engineering Research Group, George Mason University: Hardware
Interface of a Secure Hash Algorithm (SHA), v. 1.4 edn. (Jan 2010)

16. De Cannière, C., Sato, H., Watanabe, D.: Hash function Luffa: Specification. Sub-
mission to NIST (Round 2) (Oct 2009), http://www.sdl.hitachi.co.jp/crypto/
luffa/Luffa_v2_Specification_20091002.pdf

17. Detrey, J., Gaudry, P., Khalfallah, K.: A low-area yet performant FPGA imple-
mentation of Shabal. Cryptology ePrint Archive, Report 2010/292 (2010)

18. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein hash function family. Submission to NIST (Round 3)
(2010), http://www.skein-hash.info/sites/default/files/skein1.3.pdf

19. Gaj, K., Homsirikamol, E., Rogawski, M.: Fair and comprehensive methodology for
comparing hardware performance of fourteen round two SHA-3 candidates using
FPGA. In: Cryptographic Hardware and Embedded Systems, CHES 2010. LNCS,
Springer (2010)

20. Gaj, K., Kaps, J.P., Amirineni, V., Rogawski, M., Homsirikamol, E., Brewster,
B.Y.: ATHENa – Automated Tool for Hardware EvaluatioN: Toward fair and
comprehensive benchmarking of cryptographic hardware using FPGAs. In: 20th
International Conference on Field Programmable Logic and Applications - FPL
2010. pp. 414–421. IEEE (2010)

21. Garćıa-Vargas, I., Senhadji-Navarro, R., Jiménez-Moreno, G., Civit-Balcells, A.,
Guerra-Gutiérrez, P.: Rom-based finite state machine implementation in low cost
FPGAs. In: International Symposium on Industrial Electronics, ISIE 2007. pp.
2342–2347. IEEE (June 2007)

22. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schäffer, M., Thomsen, S.S.: Grøstl – a SHA-3 candidate. Submission to NIST
(Oct 2008), http://www.groestl.info/

23. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schäffer, M., Thomsen, S.S.: Grøstl – a SHA-3 candidate. Submission to NIST
(Round 3) (2011), http://www.groestl.info/Groestl.pdf

24. Gligoroski, D., Klima, V., Knapskog, S.J., El-Hadedy, M., Amundsen, J., Mjølsnes,
S.F.: Cryptographic hash function blue midnight wish. Submission to NIST (Round
2) (Sep 2009), http://people.item.ntnu.no/~danilog/Hash/BMW-SecondRound/
Supporting_Documentation/BlueMidnightWishDocumentation.pdf

25. Halevi, S., Hall, W.E., Jutla, C.S.: The hash function Fugue. Submission to
NIST (updated) (Sep 2009), http://domino.research.ibm.com/comm/research_
projects.nsf/pages/fugue.index.html

26. Homsirikamol, E., Rogawski, M., Gaj, K.: Comparing hardware performance of
fourteen round two SHA-3 candidates using FPGAs. Cryptology ePrint Archive,
Report 2010/445 (2010), http://eprint.iacr.org/

27. Homsirikamol, E., Rogawski, M., Gaj, K.: Throughput vs. area trade-offs archi-
tectures of five round 3 SHA-3 candidates implemented using Xilinx and Altera
FPGAs. In: Workshop on Cryptographic Hardware and Embedded Systems CHES.
LNCS, Springer (Sep 2011)

28. Jungk, B.: Compact implementations of Grøstl, JH and Skein for FPGAs (May
2011), eCRYPT II Hash Workshop 2011

29. Jungk, B., Reith, S.: On FPGA-based implementations of Grøstl. Cryptology
ePrint Archive, Report 2010/260 (2010)

30. Kerckhof, S., Durvaux, F., Veyrat-Charvillon, N., Regazzoni, F., de Dormale, G.M.,
Standaert, F.X.: Compact FPGA implementations of the five SHA-3 finalists (May
2011), eCRYPT II Hash Workshop 2011

31. Kobayashi, K., Ikegami, J., Matsuo, S., Sakiyama, K., Ohta, K.: Evaluation
of hardware performance for the SHA-3 candidates using SASEBO-GII. http:

//eprint.iacr.org/2010/010 (Jan 2010)
32. Özgül Küçük: The hash function Hamsi. Submission to NIST (updated) (2009),

http://www.cosic.esat.kuleuven.be/publications/article-1203.pdf
33. Matsuo, S., Knežević, M., Schaumont, P., Verbauwhede, I., Satoh, A., Sakiyama,

K., Ota, K.: How can we conduct “fair and consistent” hardware evaluation for
SHA-3 candidate? Tech. rep., Second SHA-3 Candidate Conference (2010)

34. Namin, A., Hasan, M.: Hardware implementation of the compression function for
selected SHA-3 candidates. In: CACR 2009-28. p. 29 (July 2009)

35. Namin, A., Hasan, M.: Implementation of the compression function for selected
SHA-3 candidates on FPGA. In: Parallel Distributed Processing, Workshops and
Phd Forum (IPDPSW). pp. 1–4. IEEE (2010)

36. Rawski, M., Selvaraj, H., Luba, T.: An application of functional decomposition
in ROM-based FSM implementation in FPGA devices. J. Syst. Archit. 51(6-7),
424–434 (2005)

37. Research centre for information security (RCIS), National institute of advanced
industrial science and technology (AIST): Side-channel attack standard evaluation
board SASEBOGII specification, version 1.01 edn. (Nov 2009)

38. Skylarov, V.: Synthesis and implementation of RAM-based finite state machines in
FPGAs. In: Hartenstein, R.W., Grünbacher, H. (eds.) Field-Programmable Logic
and Applications – FPL’00. LNCS, vol. 1896, pp. 718–728. Springer-Verlag (2000)

39. Sönmez Turan, M., Perlner, R., Bassham, L.E., Burr, W., Chang, D., jen Chang,
S., Dworkin, M.J., Kelsey, J.M., Paul, S., Peralta, R.: Status report on the second
round of the SHA-3 cryptographic hash algorithm competition. NIST Interagency
Report 7764, NIST, Gaithersburg, MD, USA (Feb 2011)

40. Tuan, T., Kao, S., Rahman, A., Das, S., Trimberger, S.: A 90nm low-power
FPGA for battery-powered applications. In: International symposium on Field
programmable gate arrays - FPGA ’06. pp. 3–11. ACM/SIGDA, ACM, New York,
NY, USA (2006)

41. Wu, H.: The hash function JH. Submission to NIST (updated) (Sep 2009), http:
//icsd.i2r.a-star.edu.sg/staff/hongjun/jh/

42. Wu, H.: The hash function JH. Submission to NIST (round 3) (2011), http://
www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf

