Comprehensive Evaluation of High-Speed and Medium-Speed Implementations of Five SHA-3 Finalists Using Xilinx and Altera FPGAs

Kris Gaj,
Ekawat Homsirikamol,
Marcin Rogawski,
Rabia Shahid,
Malik Umar Sharif
George Mason University
U.S.A.

Co-Authors

Ekawat "Ice" Homsirikamol

Marcin Rogawski

Rabia Shahid

Malik Umar Sharif

Focus of This Talk

Motivation & Highlights

Advantages of Benchmarking using FPGAs

- Short development time
- Accurate post-place & route results
- Existence of tools for optimization of program options
- Relatively small number of vendors and device families that dominate the market

Highlights

- 5 to 10 different architectures per algorithm
- Two variants, with a 256-bit and a 512-bit output
- Realistic FIFO-based interface
- Padding unit for arbitrary size messages
- VHDL codes portable among FPGA families
- Two primary designers
- 600+ results for 4 modern FPGA families
- Result replication scripts
- All source codes available for public scrutiny

Investigated Hardware Architecture

Basic Iterative Architecture

Currently, most common architecture used to implement SHA-1, SHA-2, and many other hash functions.

Folded Architectures

Folded Horizontally

Folded Vertically

Folded Architectures with the State Kept in Memory

Unrolled Architectures

Multi-Unit Architecture

MU2

Pipelined Architectures

Unrolled architecture with 2 Pipeline Stages

Basic architecture with 2 Pipeline Stages

FPGA Families

- two major vendors: Altera and Xilinx (~90% of the market)
- two most recent high-performance families

	Alt	era	Xilinx		
Technology	Low-cost	High- performance	Low-cost	High- performance	
90 nm	Cyclone II	Stratix II	Spartan 3	Virtex 4	
65 nm	Cyclone III	Stratix III		Virtex 5	
40-60 nm	Cyclone IV	Stratix IV	Spartan 6	Virtex 6	

Results for Altera & Xilinx FPGAs

BLAKE-256 in Virtex 5

Groestl-256 in Virtex 5

Groestl P+Q – parallel architecture; two independent units for P and Q Groestl P/Q – quasi-pipelined architecture; one unit shared between P and Q

JH-256 in Virtex 5

JH MEM – round constants stored in memory JH OTF – round constants computed on-the-fly

Keccak-256 in Virtex 5

Skein-256 in Virtex 5

SHA-256 in Virtex 5

256-bit variants in Virtex 5

512-bit variants in Virtex 5

256-bit variants in Stratix III

512-bit variants in Stratix III

Flexibility of SHA-3 Finalists

Algorithm	Iterative	Folded			Pipelined			Efficient
		Horizontally	Vertically	Mixed	Unrolled	Basic	Folded	Unrolled
BLAKE	x1	/2(h),		/4(h)/4(v)-		x1-	/2(h)-	
		/4(h)		m [*]		PPL2,	PPL2,	
						x1-	/2(h)-	
						PPL4	PPL4	
Groestl	x1 [*]		/2(v),			x1-		
			/4(v),			PPL2,		
			/8(v)			x1-		
						PPL7		
JH	x1 [*]		/2(v)	/8(v)-m	x2-PPL2			
Keccak	x1 [*]			/8(v)-m		x1-		
						PPL2		
Skein	x1				x4-			x4 [*]
					PPL2,			
					x4-PPL5			

ARCH_SYMBOL* - the best non-pipelined architecture

BLAKE – most flexible, Keccak, JH – least flexible

Architectures Based on Embedded Resources

Implementations Based on the Use of Embedded Resources in FPGAs

(#Logic resources, #Multipliers/DSP units, #RAM_blocks)

Graphics based on The Design Warrior's Guide to FPGAs Devices, Tools, and Flows. ISBN 0750676043 Copyright © 2004 Mentor Graphics Corp. (www.mentor.com)

Throughput Best Non-pipelined Architectures in Virtex 5

Logic Resources: Best Non-pipelined Architectures in Virtex 5

Throughput / #Logic Resources Best Non-pipelined Architectures in Virtex 5

Architectures with Embedded Resources - Summary

- No or marginal improvement in Throughput.
- Significant savings in the amount of Logic Resources obtained for functions based on large look-up tables:
 BLAKE and Groestl
- Improvement in the Throughput to #Logic Resources ratio for BLAKE and Groestl
- No change in ranking based on the Throughput/#Logic Resources ratio
- Limited advantage of using DSP units

Correlation Between FPGA Results and ASIC Results

Assumptions

- ASIC Chip developed in collaboration with ETHZ Zurich, including
 - 6 GMU Cores optimized for the maximum Throughput/Area ratio for single-message (non-pipelined) architectures
- 256-bit variants of algorithms
- No padding units
- Wide infinite bandwidth input/output interface
- standard-cell CMOS 65nm UMC ASIC technology (UMC65LL) offered through Europractice MPW services
- 65nm technology used to manufacture our ASIC and Altera Stratix III FPGAs

Layout of the GMU Cores

Correlation Between ASIC Results and FPGA Results

Stratix III FPGA

Correlation Between ASIC Results and FPGA Results

Stratix III FPGA

Inherent Features of all SHA-3 Finalists

Summary

- Keccak consistently outperforms SHA-2; front runner for high-speed implementations, but not very suitable for folding
- JH performs better than SHA-2 most of the time,
 not very suitable for folding or inner-round pipelining
- Groestl better than SHA-2 for only one out of four FPGA families, and only with relatively large area; suitable for vertical folding
- Skein the only candidate benefiting from unrolling; easy to pipeline after unrolling
- BLAKE most flexible; can be folded horizontally and vertically, can be effectively pipelined, however relatively slow compared to other candidates.

Conclusions

- Using multiple architectures provides a more comprehensive view of the algorithms
- Algorithms differ substantially in terms of their flexibility and suitability for folding, unrolling, and pipelining
- Optimum architecture (including an optimum number of pipeline stages) may depend on FPGA family

Two front-runners: Keccak, JH

Reproducability of Results

GMU Source Codes and Block Diagrams

GMU Source Codes for all Round 3 SHA-3 Candidates & SHA-2 made available at the ATHENa website at: http://cryprography.gmu.edu/athena

Majority of codes accompanied by hierarchical block diagrams.

Details of Results and Replication Scripts

Currently available in the ATHENa database at http://cryptography.gmu.edu/athena
 600+ optimized results
 for
 16 hash functions
 50+ designs

11 FPGA families

- Scripts and configuration files sufficient to easily reproduce all results (without repeating optimizations)
- Automatically created by ATHENa and stored in ATHENa Database

ATHENa Database of Results for FPGAs and ASICs http://cryptography.gmu.edu/athenadb

Generation of Results Facilitated by ATHENa

ATHENa – Automated Tool for Hardware EvaluatioN Benchmarking tool developed at GMU since 2009

batch mode of FPGA tools

VS.

- ease of extraction and tabulation of results (Excel, CSV)
- optimized choice of tool options

Experimental Testing using PCI Express Boards

Thank you!

Questions?

Questions?

CERG: http://cryptography.gmu.edu

ATHENa: http://cryptography.gmu.edu/athena