
Fair	and	Efficient		
Hardware	Benchmarking	of	

Candidates	in	Cryptographic	Contests	

Kris Gaj
CERG
George Mason University

Partially supported by NSF under grant no. 1314540

Designs & results for this talk contributed by

“Ice” Homsirikamol Ahmed Ferozpuri Farnoud Farahmand

Panasayya Yalla Marcin Rogawski Will Diehl

Cryptographic Standard Contests

time
97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

AES

NESSIE

CRYPTREC

eSTREAM

SHA-3

34 stream 4 HW winners
ciphers → + 4 SW winners

51 hash functions → 1 winner

15 block ciphers → 1 winner

IX.1997 X.2000

I.2000 XII.2002

IV.2008

X.2007 X.2012

XI.2004

CAESAR
I.2013

57 authenticated ciphers → multiple winners

TBD

4

Evaluation Criteria in Cryptographic Contests

Security

Software Efficiency Hardware Efficiency

Simplicity

FPGAs ASICs

Flexibility Licensing

µProcessors µControllers

5

AES Contest 1997-2000
Final Round

Hardware results matter!

Speed in FPGAs Votes at the AES 3 conference
GMU results

6

Throughput vs. Area Normalized to Results for SHA-256
and Averaged over 11 FPGA Families – 256-bit variants

Early Leader

Overall Normalized Area

Overall Normalized Throughput

7

SHA-3 finalists in high-performance FPGA families

2.83 0.79 4.00 2.00 1.41 1.00 0.50 0.35 0.25

FPGA Evaluations – From AES to SHA-3
AES eSTREAM SHA-3
Design

Primary optimization
target

Throughput Area
Throughput/

Area

Throughput/
Area

Multiple architectures No Yes Yes
Embedded resources No No Yes

Benchmarking
Multiple FPGA families No No Yes
Specialized tools No No Yes
Experimental results No No Yes

Reproducibility
Availability of source
codes

No No Yes

Database of results No No Yes

9

•  Focus on ranking, rather than absolute values
•  Only relatively large differences (>20-30%) matter
•  Winner in use for the next 20-30 years, implemented using

technologies not in existence today
•  Very wide range of possible applications, and as a result

performance and cost targets
•  Large number of candidates
•  Limited time for evaluation
•  Results are final

Hardware Benchmarking in Cryptographic Contests

10

Number of Candidates in Cryptographic Contests

Initial number
of candidates

15

34

51

AES

eSTREAM

SHA-3

Implemented
in hardware

5

8

14

Percentage

33.3%

23.5%

27.5%

11

Goal: Portfolio of new-generation authenticated ciphers

First-round submissions: March 15, 2014

Announcement of final portfolio: TBD
Organizer: An informal committee of leading cryptographic

 experts

Number of candidate families:

 Round 1: 57 Round 2: 29 Round 3: 15

CAESAR Competition

12

Two Possible Approaches

Better Manual
Register Transfer Level

Automated
High-Level Synthesis

13	

Manual
Register-Transfer

Level
Approach

14

New in CAESAR Hardware Benchmarking

1)  Standard hardware Application Programming Interface (API)
2)  Comprehensive Implementer’s Guide and Development Packages,

including VHDL and Python code common for all candidates

CAESAR Committee:

1) Design teams asked to submit their own Verilog/VHDL code
2)  Three Use Cases corresponding to different applications and
 different optimization targets

GMU Benchmarking Team:

15

Minimum Compliance Criteria
•  Encryption, decryption, key scheduling
•  Padding
•  Maximum size of message & AD
•  Permitted data port widths, etc.

Communication Protocol

Interface Timing Characteristics

CAESAR Hardware API

16

CAESAR Hardware API
vs. GMU Development Package

CAESAR Hardware API:

1) Approved by the CAESAR Committee in May 2016, stable
2) Necessary for fairness and compatibility
3)  Obligatory

GMU Development Package:

1) First version published in May 2016, constantly evolving
2) Recommended in order to reduce the development time
3)  Totally optional

17

Top-level block diagram of a High-Speed architecture

KEY_SIZE

Processor
Pre

Processor
Post

do_ready do_ready

24 24

key_update

bdi_eot

bdi_eoi

bdi_type

bdi_ready

3

bdi_valid

bdi

key

bdo

Datapath

CipherCore

msg_auth_valid

msg_auth_done

key_update

bdi_eot

bdi_eoi

bdi_type

bdi_ready

bdo_size

bdo_ready

Controller

CipherCorebdi_valid bdo_valid

bdi

key

DBLK_SIZE

msg_auth_valid

msg_auth_done

bdo_size

bdo_ready

bdo_valid

bdo

key_valid

key_ready

key_valid

key_ready

LBS_BYTES+1

decrypt decrypt

bdi_valid_bytes

bdi_pad_loc

DBLK_SIZE/8

DBLK_SIZE/8

bdi_size

bdi_pad_loc

bdi_valid_bytes

bdi_size
LBS_BYTES+1

CipherCore

AEAD

pdi_valid

pdi_readypdi_ready
pdi_valid

OptionalRequired

sdi_valid

sdi_readysdi_ready
sdi_valid

do_valid do_valid

sdi_data

pdi_data

do_datado_data

sdi_data

pdi_data

sw

w

w

din_valid

din_ready

din FIFO
CMD

dout

dout_ready

dout_valid

cm
d

_
va

lid

cm
d

_
re

a
d

y
cm

d

cm
d

_
va

lid

cm
d

_
re

a
d

y

cm
d

bdi_partialbdi_partial

DBLK_SIZE

18

a.  VHDL code of a generic PreProcessor, PostProcessor,
and CMD FIFO, common for all CAESAR Candidates
(src_rtl)

b.   Universal testbench common for all CAESAR candidates
(AEAD_TB)

c.  Python app used to automatically generate test vectors
 (aeadtvgen)
d.   Reference implementations of Dummy authenticated

ciphers (dummyN)

Development Package

To be extended with support for
lightweight implementations in June 2017

19

Manual
Design

HDL	Code	

Post	Place	&	Route	
Results	

(Resource	UClizaCon,	
Max.	Clock	Frequency)	

Functional
Verification

SpecificaCon	

Test	Vectors	

The API Compliant Code Development

Reference		
C	Code	

Development		
Package	
src_rtl	

Development		
Package	
aeadtvgen	

Development		
Package	
AEAD_TB	

Pass/
Fail

Formulas		
for	the		

ExecuCon	Time	
&	Throughput	

Development		
Package	
dummyN	

FPGA Tools

20

Round 2 VHDL/Verilog Submitters
1.  CCRG NTU (Nanyang Technological University) Singapore –

ACORN, AEGIS, JAMBU, & MORUS
2.  CLOC-SILC Team, Japan – CLOC & SILC
3.  Ketje-Keyak Team – Ketje & Keyak
4.  Lab Hubert Curien, St. Etienne, France – ELmD & TriviA-ck
5.  Axel Y. Poschmann and Marc Stöttinger – Deoxys & Joltik
6.  NEC Japan – AES-OTR
7.  IAIK TU Graz, Austria – Ascon
8.  DS Radboud University Nijmegen, Netherlands – HS1-SIV
9.  IIS ETH Zurich, Switzerland – NORX
10.  Pi-Cipher Team – Pi-Cipher
11.   EmSec RUB, Germany – POET
12.  CG UCL, INRIA – SCREAM
13.  Shanghai Jiao Tong University, China – SHELL

Total: 19 Candidate Families

21

Round 2 VHDL Submitters – GMU Team

“Ice” Homsirikamol
AES-GCM, AEZ,
Ascon, Deoxys,
HS1-SIV, ICEPOLE,
Joltik, NORX, OCB,
PAEQ, Pi-Cipher, STRIBOB

Will Diehl

Ahmed
Ferozpuri
PRIMATEs-
GIBBON &
HANUMAN,
PAEQ

Farnoud
Farahmand
AES-COPA
CLOC

Mike X.
Lyons
TriviA-ck

Minalpher
OMD
POET
SCREAM

Total: 19 Candidate Families + AES-GCM

22

CAESAR Round 2 Statistics

•  75 unique designs

•  Covering the majority of primary variants of

28 out of 29 Round 2 Candidate Families (all except Tiaoxin)

•  High-speed implementation of AES-GCM (baseline)

The biggest and the earliest hardware benchmarking effort
in the history of cryptographic competitions

23

HDL	Code	

Automated Optimization
FPGA	Tools	

Post	
Place	&	Route	

Results	
(Resource	UClizaCon,	
Max.	Clock	Frequency)	

RTL Benchmarking

ReplicaCon	
Script	

OpCmal	
OpCons	of		

Tools	
(for	the	best	

Throughput/Area)	

4 high-performance &
4 low-cost
FPGA Families
from Xilinx & Altera

24

Generation of Results Facilitated by ATHENa

vs.
old days…

“working” with ATHENa…

25

ATHENa – Automated Tool for Hardware EvaluatioN

•  Open-source
•  Written in Perl
•  Developed 2009-2012
•  FPL Community Award 2010
•  Automated search for optimal

•  Options of tools
•  Target frequency
•  Starting placement point

•  Supporting Xilinx ISE, Altera Quartus

 No support for Xilinx Vivado

26

Extension of ATHENa to Vivado: Minerva

•  Programming language:
 Python

•  Target synthesis and implementation tool:

 Xilinx Vivado Design Suite

•  Supported FPGA families:

 All Xilinx 7 series and beyond

•  Optimization criteria:

 1. Maximum frequency
 2. Frequency/#LUTs

 3. Frequency/#Slices

Expected release – July 2017

27

Relative Improvement of Results (Throughput/Area)
by Using Minerva: Virtex 7, Round 2 CAESAR Candidates

Ratios of results obtained using Minerva vs. binary search

28
Throughput/Area of AES-GCM = 1.020 (Mbit/s)/LUTs

Relative Throughput/Area in Virtex 6
vs. AES-GCM

E – Throughput/Area for Encryption
D – Throughput/Area for Decryption
A – Throughput/Area for Authentication Only
Default: Throughput/Area the same for all 3 operations

Red – algorithms qualified to Round 3

29

Relative Throughput in Virtex 6
Ratio of a given Cipher Throughput/Throughput of AES-GCM

Throughput of AES-GCM = 3239 Mbit/s

E – Throughput for Encryption
D – Throughput for Decryption
A – Throughput for Authentication Only
Default: Throughput the same for all 3 operations

30

•  Available at
 http://cryptography.gmu.edu/athena

•  Developed by John Pham, a Master’s-level student of
Jens-Peter Kaps as a part of the

 SHA-3 Hardware Benchmarking project, 2010-2012,
 (sponsored by NIST)

•  In June 2015 extended to support Authenticated Ciphers

ATHENa Database of Results

Extension to support Round 3 Use Cases and ranking of
candidate variants - Summer 2017

31

Number of Candidates in Cryptographic Contests

Initial number
of candidates

15

34

51

57

AES

eSTREAM

SHA-3

CAESAR

Implemented
in hardware

5

8

14

28

Percentage

33.3%

23.5%

27.5%

49.1%

32

•  Different skills of designers
•  Different amount of time and effort
•  Misunderstandings regarding Hardware API
•  Requests for extending the deadline or disregarding ALL

results

Remaining Problems

33	

High-Level Synthesis
Approach

34

Potential Solution: High-Level Synthesis (HLS)

High Level Language
(preferably C or C++)

Hardware Description Language
(VHDL or Verilog)

High-Level
Synthesis

35

•  Each submission includes reference implementation in C
•  Development time potentially decreased several times
•  All candidates can be implemented by the same

group, and even the same designer
•  Results from High-Level Synthesis could have a large impact

in early stages of the competitions and help narrow down the
search

•  RTL code and results from previous contests form
excellent benchmarks for High-Level Synthesis tools,
which can generate fast progress targeting
cryptographic applications

Case for High-Level Synthesis & Crypto Contests

36

BEFORE: Early feedback for designers of algorithms
•  Typical design process based only on security analysis and

software benchmarking
•  Lack of immediate feedback on hardware performance
•  Common unpleasant surprises, e.g.,

§  Mars in the AES Contest
§  BMW, ECHO, and SIMD in the SHA-3 Contest

DURING: Faster design space exploration
•  Multiple hardware architectures (folded, unrolled, pipelined, etc.)
•  Multiple variants of the same algorithms (e.g., key, nonce, tag size)
•  Detecting suboptimal manual designs

Potential Additional Benefits

37

•  Ranking of candidates in cryptographic contests
in terms of their performance in modern FPGAs
will remain the same independently whether the HDL
implementations are developed manually or
generated automatically using High-Level Synthesis tools

•  The development time will be reduced by a factor of 3 to 10
•  This hypothesis should apply to at least

•  AES Contest, SHA-3 Contest, CAESAR Contest
•  possibly Post-quantum Cryptography?

Our Hypotheses

38

In-Use Tools supporting C, C++, Extended C

Commercial:

Academic:
•  Bambu: Politecnico di Milano, Italy
•  DWARV: Delft University of Technology, The Netherlands
•  GAUT: Universite de Bretagne-Sud, France
•  LegUp: University of Toronto, Canada

•  Vivado HLS: Xilinx
•  CHC: Altium; CoDeveloper: Impulse Accelerated;

Cynthesizer: FORTE; eXCite: Y Explorations;
ROCCC: Jacquard Comp.

•  Catapult-C: Calypto Design Systems; CtoS: Cadence;
DK Design Suite: Mentor Graphics; Synphony C: Synopsys

39

•  Integrated into the primary Xilinx toolset, Vivado, and
released in 2012

•  Free (or almost free) licenses for academic institutions
•  Good documentation and user support
•  The largest number of performance optimizations
•  On average the highest clock frequency of the generated

code

Our Choice of the HLS Tool: Vivado HLS

40

1.  Designers are not allowed to target devices of
other FPGA vendors (e.g., Altera)

2.  Designers are not allowed to target ASICs

3.  Results cannot be compared with results
obtained using other HLS tools

Licensing Limitations of Vivado HLS

41

Our Approach: Language Partitioning

42

Transformation to HLS-ready C/C++ Code

1.  Addition of HLS Tool directives (pragmas)

2.  Hardware-driven code refactoring

3.  Mapping software to hardware API

43

Code Refactoring – High-Level

Reference C

HLS-ready C/C++

Encryption Decryption

Encryption/
Decryption

Use of pragmas possible but unreliable

44

Code Refactoring: Low-Level

Single vs. Multiple Function Calls:

45

Sources of Productivity Gains

•  Higher-level of abstraction
•  Focus on datapath rather than control logic
•  Debugging in software (C/C++)

•  Faster run time
•  No timing waveforms

46

GMU Case Studies

•  5 Final SHA_3 Candidates
 Applied Reconfigurable Computing, ARC 2015, Bochum

 [paper + presentation]

•  18 Round 2 CAESAR Candidates + AES-GCM
 Directions in Authenticated Ciphers, DIAC 2016, Nagoya, Japan
 [presentation only]

•  15 Round 3 CAESAR Candidates + AES-GCM
 (all Round 3 families except Keyak and AEZ)
 [this talk]

47

Ending Point for Optimization
Target: Basic Iterative Architecture

•  Initial #cycles_per_block: thousands
•  Expected #cycles_per_block: #rounds + ε, ε = 0−2

•  Examples of results achieved for Round 3 Candidates:

#rounds + 0 : ACORN, AEGIS, MORUS, Ketje, Tiaoxin
 (all with #rounds = 1)

#rounds + 2 : AES-GCM, AES-OTR, Ascon, COLM,
 Deoxys, JAMBU-AES, NORX, OCB, SILC-AES

No need for the RTL implementation or timing analysis
before HLS implementation

48

RTL vs. HLS Ratios for Throughput/Area in Virtex 6

Suboptimal
HLS

Sub-
optimal

RTL

> 1.30

< 0.70

(0.70, 0.90]

RTL
may be

improved

[0.90, 1.30]
RTL and HLS
acceptable

49

RTL vs. HLS Throughput/Area [(Mbits/s)/LUTs]

Consistently
better than
AES-GCM

Suboptimal
HLS

Suboptimal
RTL

50

Conclusions

Accuracy:
•  Good (but not perfect) correlation between algorithm rankings
 using RTL and HLS approaches
Efficiency:
•  Changes in the reference code (code refactoring) needed to infer
 the desired architecture, and thus #cycles_per_block
•  3-10 improvement in the development time
•  Designer can focus on functionality : control logic inferred
•  Much easier verification : C/C++ testbenches
•  A single designer can produce implementations of multiple

(and even all) candidates
Bottom Line:
•  Manual (RTL) design approach still predominant
•  HLS design approach at the experimental stage – more research needed

51

Future Work

1.  Step-by-step designer’s guide, including general
strategies for

•  Code refactoring
•  Pragmas insertion

2.  Multiple examples (AES, SHA-3, CAESAR contests)
3.  Use for design space exploration (folding, unrolling, etc.)
4.  Experiments with multiple HLS tools

•  automated translation of Vivado HLS pragmas to pragmas of
leading academic tools: Bambu, DWARV, LegUp

5.  Identifying limitations of HLS tools and possible
improvements

52

Identifying suboptimal RTL implementations in Round 3
of the CAESAR Contest

Designing new building blocks [e.g., rounds, steps, etc.] for
hardware-friendly block ciphers, hash functions, and
authenticated ciphers

Post-Quantum Cryptography

Early Rounds of Future Contests

Possible Future Uses of HLS

Questions?

Thank you!

53

Comments?

Suggestions?
ATHENa: http://cryptography.gmu.edu/athena

CERG: http://cryptography.gmu.edu

