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Cryptographic Standard Contests 
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Evaluation Criteria in Cryptographic Contests 

Security 

Software  Efficiency  Hardware Efficiency  

Simplicity 

FPGAs ASICs 

Flexibility Licensing 

µProcessors µControllers 
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AES Contest 1997-2000 
Final Round  

Hardware results matter! 

Speed in FPGAs Votes at the AES 3 conference 
GMU results 
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Throughput vs. Area Normalized to Results for SHA-256  
and Averaged over 11 FPGA Families – 256-bit variants 

Early Leader 

Overall Normalized Area 

Overall Normalized Throughput 
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SHA-3 finalists in high-performance FPGA families 
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FPGA Evaluations – From AES to SHA-3 
AES eSTREAM SHA-3 
Design 

Primary optimization 
target 

Throughput Area 
Throughput/

Area 

Throughput/
Area 

Multiple architectures No Yes Yes 
Embedded resources No No Yes 

Benchmarking 
Multiple FPGA families No No Yes 
Specialized tools No No Yes 
Experimental results No No Yes 

Reproducibility 
Availability of source 
codes 

No No Yes 

Database of results No No Yes 
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•  Focus on ranking, rather than absolute values 
•  Only relatively large differences (>20-30%) matter 
•  Winner in use for the next 20-30 years, implemented using 

technologies not in existence today 
•  Very wide range of possible applications, and as a result 

performance and cost targets 
•  Large number of candidates 
•  Limited time for evaluation 
•  Results are final 

Hardware Benchmarking in Cryptographic Contests 
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Number of Candidates in Cryptographic Contests 
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Goal:     Portfolio of new-generation authenticated ciphers 

First-round submissions:  March 15, 2014 

Announcement of final portfolio:   TBD 
Organizer:  An informal committee of leading cryptographic 

         experts  

Number of candidate families:   

     Round 1:  57           Round 2:  29          Round 3:  15 

CAESAR Competition 
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Two Possible Approaches 

Better Manual  
Register Transfer Level  

Automated 
High-Level Synthesis 
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Manual  
Register-Transfer 

Level 
Approach 
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New in CAESAR Hardware Benchmarking 

1)    Standard hardware Application Programming Interface (API) 
2)    Comprehensive Implementer’s Guide and Development Packages, 

including VHDL and Python code common for all candidates 

CAESAR Committee: 

1) Design teams asked to submit their own Verilog/VHDL code 
2)   Three Use Cases corresponding to different applications and  
    different optimization targets 

GMU Benchmarking Team: 
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Minimum Compliance Criteria 
•  Encryption, decryption, key scheduling 
•  Padding 
•  Maximum size of message & AD 
•  Permitted data port widths, etc. 

Communication Protocol 

Interface Timing Characteristics 

CAESAR Hardware API 
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CAESAR Hardware API 
vs. GMU Development Package 

CAESAR Hardware API: 

1) Approved by the CAESAR Committee in May 2016, stable 
2) Necessary for fairness and compatibility 
3)   Obligatory 

GMU Development Package: 

1) First version published in May 2016, constantly evolving 
2) Recommended in order to reduce the development time 
3)   Totally optional  
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Top-level block diagram of a High-Speed architecture  
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a.  VHDL code of a generic PreProcessor, PostProcessor, 
and CMD FIFO, common for all CAESAR Candidates 
(src_rtl) 

b.   Universal testbench common for all CAESAR candidates  
(AEAD_TB) 

c.  Python app used to automatically generate test vectors 
      (aeadtvgen) 
d.   Reference implementations of Dummy authenticated 

ciphers (dummyN) 

Development Package 

To be extended with support for  
lightweight implementations in June 2017 
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Manual 
Design 

HDL	Code	

Post	Place	&	Route	
Results	

(Resource	UClizaCon,	
Max.	Clock	Frequency)	

Functional  
Verification 

SpecificaCon	

Test	Vectors	

The API Compliant Code Development 

Reference		
C	Code	

Development		
Package	
src_rtl	

Development		
Package	
aeadtvgen	

Development		
Package	
AEAD_TB	

Pass/ 
Fail 

Formulas		
for	the		

ExecuCon	Time	
&	Throughput	

Development		
Package	
dummyN	

FPGA Tools 
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Round 2 VHDL/Verilog Submitters 
1.  CCRG NTU (Nanyang Technological University) Singapore –  

ACORN, AEGIS, JAMBU, & MORUS 
2.  CLOC-SILC Team, Japan – CLOC & SILC 
3.  Ketje-Keyak Team – Ketje & Keyak 
4.  Lab Hubert Curien, St. Etienne, France – ELmD & TriviA-ck 
5.  Axel Y. Poschmann and Marc Stöttinger –  Deoxys & Joltik 
6.  NEC Japan – AES-OTR 
7.  IAIK TU Graz, Austria – Ascon 
8.  DS Radboud University Nijmegen, Netherlands – HS1-SIV 
9.  IIS ETH Zurich, Switzerland – NORX 
10.  Pi-Cipher Team – Pi-Cipher 
11.   EmSec RUB, Germany – POET 
12.  CG UCL, INRIA – SCREAM 
13.  Shanghai Jiao Tong University, China – SHELL 

Total:  19 Candidate Families  
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Round 2 VHDL Submitters – GMU Team 

“Ice” Homsirikamol 
AES-GCM, AEZ, 
Ascon, Deoxys,  
HS1-SIV, ICEPOLE,  
Joltik, NORX, OCB, 
PAEQ, Pi-Cipher, STRIBOB 

Will Diehl 

Ahmed  
Ferozpuri 
PRIMATEs- 
GIBBON & 
HANUMAN, 
PAEQ 

Farnoud  
Farahmand 
AES-COPA 
CLOC 

Mike X.  
Lyons 
TriviA-ck 

Minalpher 
OMD 
POET 
SCREAM 

Total:  19 Candidate Families + AES-GCM  
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CAESAR Round 2 Statistics 

•  75 unique designs 

•  Covering the majority of primary variants of  

28 out of 29 Round 2 Candidate Families (all except Tiaoxin) 

•  High-speed implementation of AES-GCM (baseline) 

The biggest and the earliest hardware benchmarking effort  
in the history of cryptographic competitions 
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HDL	Code	

Automated Optimization 
FPGA	Tools	

Post	
Place	&	Route	

Results	
(Resource	UClizaCon,	
Max.	Clock	Frequency)	

RTL Benchmarking 

ReplicaCon	
Script	

OpCmal	
OpCons	of		

Tools	
(for	the	best	

Throughput/Area)	

4 high-performance &  
4 low-cost  
FPGA Families 
from Xilinx & Altera 
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Generation of Results Facilitated by ATHENa 

vs. 
old days… 

“working” with ATHENa… 
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ATHENa – Automated Tool for Hardware EvaluatioN 

•  Open-source 
•  Written in Perl 
•  Developed 2009-2012 
•  FPL Community Award 2010 
•  Automated search for optimal 

•  Options of tools 
•  Target frequency 
•  Starting placement point 

•  Supporting Xilinx ISE, Altera Quartus 

 No support for Xilinx Vivado 
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Extension of ATHENa to Vivado: Minerva 

•  Programming language:  
 Python 

 
•  Target synthesis and implementation tool: 

 Xilinx Vivado Design Suite 
 
•  Supported FPGA families: 

 All Xilinx 7 series and beyond 
 
•  Optimization criteria:  

 1. Maximum frequency     
       2. Frequency/#LUTs    

 3. Frequency/#Slices 

Expected release – July 2017 
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Relative Improvement of Results (Throughput/Area)  
by Using Minerva: Virtex 7, Round 2 CAESAR Candidates 

Ratios of results obtained using Minerva vs. binary search 
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Throughput/Area of AES-GCM =  1.020 (Mbit/s)/LUTs  

Relative Throughput/Area in Virtex 6 
vs. AES-GCM 

E – Throughput/Area for Encryption 
D – Throughput/Area for Decryption 
A – Throughput/Area for Authentication Only 
Default: Throughput/Area the same for all 3 operations 

Red – algorithms qualified to Round 3 
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Relative Throughput in Virtex 6 
Ratio of a given Cipher Throughput/Throughput of AES-GCM 

Throughput of AES-GCM =  3239 Mbit/s  

E – Throughput for Encryption 
D – Throughput for Decryption 
A – Throughput for Authentication Only 
Default: Throughput the same for all 3 operations 
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•  Available at 
  http://cryptography.gmu.edu/athena 
  

•  Developed by John Pham, a Master’s-level student of  
Jens-Peter Kaps as a part of the  

      SHA-3 Hardware Benchmarking project, 2010-2012, 
      (sponsored by NIST) 
 
•  In June 2015 extended to support Authenticated Ciphers 

ATHENa Database of Results 

Extension to support Round 3 Use Cases and ranking of  
candidate variants - Summer 2017  
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Number of Candidates in Cryptographic Contests 

Initial number 
of candidates 

15 
 
 

34 
 
 

51 
 
 

57 

AES 
 
 
eSTREAM 
 
 
SHA-3 
 
 
CAESAR 

Implemented 
in hardware 

5 
 
 

8 
 
 

14 
 
 

28 

Percentage 

33.3% 
 
 

23.5% 
 
 

27.5% 
 
 

49.1% 
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•  Different skills of designers 
•  Different amount of time and effort 
•  Misunderstandings regarding Hardware API  
•  Requests for extending the deadline or disregarding ALL 

results 

Remaining Problems 
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High-Level Synthesis 
Approach 
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Potential Solution: High-Level Synthesis (HLS) 

High Level Language 
(preferably C or C++) 

Hardware Description Language 
(VHDL or Verilog) 

High-Level 
Synthesis 
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•  Each submission includes reference implementation in C 
•  Development time potentially decreased several times 
•  All candidates can be implemented by the same  

group, and even the same designer 
•  Results from High-Level Synthesis could have a large impact 

in early stages of the competitions and help narrow down the 
search 

•  RTL code and results from previous contests form 
excellent benchmarks for High-Level Synthesis tools, 
which can generate fast progress targeting  
cryptographic applications 

 

Case for High-Level Synthesis & Crypto Contests 
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BEFORE: Early feedback for designers of algorithms 
•  Typical design process based only on security analysis and 

software benchmarking 
•  Lack of immediate feedback on hardware performance 
•  Common unpleasant surprises, e.g.,  

§  Mars in the AES Contest 
§  BMW, ECHO, and SIMD in the SHA-3 Contest 

DURING: Faster design space exploration 
•  Multiple hardware architectures (folded, unrolled, pipelined, etc.) 
•  Multiple variants of the same algorithms (e.g., key, nonce, tag size) 
•  Detecting suboptimal manual designs 

Potential Additional Benefits 
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•  Ranking of candidates in cryptographic contests  
in terms of their performance in modern FPGAs 
will remain the same independently whether the HDL 
implementations are developed manually or  
generated automatically using High-Level Synthesis tools 

•  The development time will be reduced by a factor of 3 to 10 
•  This hypothesis should apply to at least 

•  AES Contest, SHA-3 Contest, CAESAR Contest 
•  possibly Post-quantum Cryptography? 

Our Hypotheses 
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In-Use Tools supporting C, C++, Extended C 

Commercial:  

Academic:  
•  Bambu:   Politecnico di Milano, Italy 
•  DWARV:  Delft University of Technology, The Netherlands 
•  GAUT:    Universite de Bretagne-Sud, France 
•  LegUp:    University of Toronto, Canada 

•  Vivado HLS: Xilinx 
•  CHC: Altium; CoDeveloper: Impulse Accelerated; 

Cynthesizer: FORTE; eXCite: Y Explorations;  
ROCCC: Jacquard Comp. 

•  Catapult-C: Calypto Design Systems; CtoS: Cadence; 
DK Design Suite: Mentor Graphics; Synphony C: Synopsys 
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•  Integrated into the primary Xilinx toolset, Vivado, and 
released in 2012 

•  Free (or almost free) licenses for academic institutions 
•  Good documentation and user support 
•  The largest number of performance optimizations 
•  On average the highest clock frequency of the generated 

code 
 
 

Our Choice of the HLS Tool: Vivado HLS 
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1.  Designers are not allowed to target devices of  
other FPGA vendors (e.g., Altera) 

2.  Designers are not allowed to target ASICs 

3.  Results cannot be compared with results 
obtained using other HLS tools 

 

Licensing Limitations of Vivado HLS 
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Our Approach: Language Partitioning 
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Transformation to HLS-ready C/C++ Code 

1.  Addition of HLS Tool directives (pragmas) 

2.  Hardware-driven code refactoring 

3.  Mapping software to hardware API 
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Code Refactoring – High-Level 

Reference C 

HLS-ready C/C++ 

Encryption Decryption 

Encryption/ 
Decryption 

Use of pragmas possible but unreliable 
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Code Refactoring: Low-Level 

Single vs. Multiple Function Calls: 
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Sources of Productivity Gains 

•  Higher-level of abstraction 
•  Focus on datapath rather than control logic 
•  Debugging in software (C/C++) 

•  Faster run time 
•  No timing waveforms 
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GMU Case Studies 

•  5 Final SHA_3 Candidates 
 Applied Reconfigurable Computing, ARC 2015, Bochum 

      [paper + presentation] 
 
•  18 Round 2 CAESAR Candidates + AES-GCM 
      Directions in Authenticated Ciphers, DIAC 2016, Nagoya, Japan 
      [presentation only] 
 
•  15 Round 3 CAESAR Candidates + AES-GCM  
     (all Round 3 families except Keyak and AEZ) 
     [this talk] 
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Ending Point for Optimization 
Target: Basic Iterative Architecture 

•  Initial #cycles_per_block:              thousands 
•  Expected #cycles_per_block:        #rounds + ε,     ε = 0−2   

  
•  Examples of results achieved for Round 3 Candidates: 

#rounds + 0 :    ACORN, AEGIS, MORUS, Ketje, Tiaoxin 
                         (all with #rounds = 1) 
 
#rounds + 2 :   AES-GCM, AES-OTR, Ascon, COLM,  
                       Deoxys, JAMBU-AES, NORX, OCB, SILC-AES 
  

No need for the RTL implementation or timing analysis 
before HLS implementation 
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RTL vs. HLS Ratios for Throughput/Area in Virtex 6 

Suboptimal 
HLS

Sub-
optimal 

RTL

> 1.30

< 0.70

(0.70, 0.90]

RTL
may be

improved

[0.90, 1.30]
RTL and HLS
acceptable
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RTL vs. HLS Throughput/Area [(Mbits/s)/LUTs] 

                   

                   

                   

Consistently 
better than 
AES-GCM 

Suboptimal  
HLS 

Suboptimal  
RTL 
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Conclusions 

 

 

 

 

Accuracy: 
•  Good (but not perfect) correlation between algorithm rankings 
     using RTL and HLS approaches 
Efficiency: 
•  Changes in the reference code (code refactoring) needed to infer  
     the desired architecture, and thus #cycles_per_block 
•  3-10 improvement in the development time 
•  Designer can focus on functionality : control logic inferred 
•  Much easier verification : C/C++ testbenches 
•  A single designer can produce implementations of multiple  

(and even all) candidates   
Bottom Line: 
•  Manual (RTL) design approach still predominant 
•  HLS design approach at the experimental stage – more research needed 
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Future Work 

1.  Step-by-step designer’s guide, including general 
strategies for 

•  Code refactoring 
•  Pragmas insertion 

2.  Multiple examples (AES, SHA-3, CAESAR contests) 
3.  Use for design space exploration (folding, unrolling, etc.) 
4.  Experiments with multiple HLS tools 

•  automated translation of Vivado HLS pragmas to pragmas of 
leading  academic tools: Bambu, DWARV, LegUp 

5.  Identifying limitations of HLS tools and possible 
improvements 
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Identifying suboptimal RTL implementations in Round 3 
of the CAESAR Contest 
 
Designing new building blocks [e.g., rounds, steps, etc.] for 
hardware-friendly block ciphers, hash functions, and 
authenticated ciphers 
 
Post-Quantum Cryptography 
 
Early Rounds of Future Contests 

Possible Future Uses of HLS 



Questions? 

Thank you! 
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Comments? 

Suggestions? 
ATHENa:  http://cryptography.gmu.edu/athena  

CERG: http://cryptography.gmu.edu 


